设计年产180万吨制钢生铁的炼铁厂

合集下载

年产值刚生铁450吨的高炉车间中高炉内型设计

年产值刚生铁450吨的高炉车间中高炉内型设计

课程设计说明书题目名称:年产值钢生铁450吨的高炉车间中高炉内型设计系部:机械系工程系专业班级:学生:学号:指导教师:完成日期:新疆工程学院课程设计评定意见设计题目系部_________________ 专业班级学生_________________ 学生学号评定意见:评定成绩:指导教师〔签名〕:年月日新疆工程学院____________系(部)课程设计任务书学年学期年月日教研室主任〔签名〕系〔部〕主任〔签名〕目录前言 (1)配料计算方法 (3)配料计算原始条件 (3)吨铁简易配料计算 (5)物料平衡计算方法 (10)物料平衡计算的原始条件 (10)吨铁物料平衡计算 (10)高炉内型设计方法 (15)炉缸 (15)炉腹 (16)炉身 (17)炉腰 (17)炉喉 (17)死铁层厚度 (18)高炉内型计算 (18)高炉内型图 (20)参考资料 (21)一、前言近年来,随着我国经济的快速发展,在基础设施建设,,比上年度增长15.19%,占世界总产量的49.74%,08年全国生铁产量4.7067亿t,炼铁生产能力超过6亿t,09年全国生铁产量达5.4375亿t,但有6000万t/年的生产能力居于淘汰之列〔主要是300m³以下容积小高炉〕。

在产量不断增长的同时,我国的高炉炼铁技术也取得了较大的进步,入炉焦比和炼铁工序能耗不断下降,喷煤比、热风温度和利用系数也不断提高,高炉操作技术也日趋成熟,各项技术经济指标得到进一步改善。

我国现有高炉1300多座,大于1000m3以上容积的高炉有150多座。

近年来,高炉大型化的步伐加快,宝钢建成三座4 000m³级的高炉,另外已建成和在建的7 座4000m³级高炉以及首钢曹妃甸2座5500 m³高炉。

大型高炉均采用了先进的技术装备,一大批成熟高新技术和装备的应用大大降低了生产成本和劳动强度,自动化程度也进一步提升,生产环境有了很大改善,企业生产效率和经济效益得到明显提高。

东北大学毕业设计(论文)-模板

东北大学毕业设计(论文)-模板
This manual is divided into two parts: the first part, the blast furnace workshop design; the second part, translation.
The first part is divided into 10 chapters, the content including comprehensive calculation, design of blast furnace, raw material system, top charging equipment, air supply system (blast system), blast furnace gas system, slag-iron management system, injection fuel system, blast furnace layout, and environmental protection.
本设计主要的任务是:设计一座年产480万吨制钢生铁和40万吨铸造生铁的炼铁厂。根据国内外大型高炉先进生产技术指标,确定的主要技术经济指标:利用系数2.3,焦比315kg,煤比180kg,热风温度1200℃,富氧3%。炼铁厂设计主体包括两座33003的高炉,以及每座高炉对应的四座新日铁外燃式热风炉,一座重力除尘器及其它附属设备。在设计上,采用国内外先进技术,如高风温,喷吹煤粉,干法除尘,环形出铁场等。另外,在炉前设置了除烟罩和其他除尘设备,在噪音大的地方安装消音器,以改善炼铁厂的环境,减少对环境的污染。本设计预计可实现高产、优质、低耗、长寿和环保的综合目标。
3.孙志礼,冷兴聚,魏延刚等.机械设计[M],沈阳:东北大学出版社,2000,32-33.

年产350万吨炼钢生铁高炉车间毕业设计

年产350万吨炼钢生铁高炉车间毕业设计
d h1 = 10.8 2 3.5 =320.47 m 3 4 4 V2 = h 2 ( D 2 D d d 2 ) 12
V1 =
2
= 炉腰体积 炉身体积
V3 =

12
2
3.5 (11 .9 2 11 .9 10.8 10.8 页 共 22 页
唐山科技职业技术学院(成)毕业设计(论文)
1 设计条件
1.1 主要技术经济指标 1.1.1 高炉有效容积利用系数(V ) 高炉有效容积利用系数即每昼夜生铁的产量与高炉有效容积之 比,即每昼夜 1m³有效容积的生铁产量。可用下式表示:
P V有
3
v
式中
v ---高炉有效容积利用系数,吨铁/米 ·昼夜
d = 0 . 23 I Vu = 0 . 23 i燃 0 . 95 2520 =10.73 1.1
取 d =10.8 m 合理
Vu 2520 = =27.5 A 2 10.8 4
第 5 页 共 22 页
唐山科技职业技术学院(成)毕业设计(论文)
2) 炉缸高度 渣口高度
hz = 1.27
第 4 页 共 22 页
唐山科技职业技术学院(成)毕业设计(论文)
2 高炉炉型设计
2.1 高炉炉型选择 高炉炉型选择五段式矮胖型。见图 1
图1
2520m 高炉炉型图
3
2.2 设计与计算 2.2.1 炉缸尺寸: 1) 炉缸直径 选定冶炼强度 I =0.95 t / m 3 d , 燃烧强度 i燃 =1.10 t / m 3 h 则 校核
年产量 年工作日
根据高炉炼铁车间日产量和高炉有效容积利用系数可以计算出炼 铁车间总容积( m 3 ): 高炉炼铁车间总容积=

设计年产1000万吨炼钢生铁炼铁厂

设计年产1000万吨炼钢生铁炼铁厂

❖ 每座高炉对应四座新日铁外燃式热风炉,一座重 力除尘器及其它附属设备。考虑到目前的经济形 势,采用了先进的技术和设备。在操作上采用高 喷煤量,以降低焦碳的用量,强化冶炼,并采用 高度自动化,减轻工人的劳动强度
❖ 在设计上,采用国内外先进技术,如环形出铁场 、串罐式无钟炉顶、INBA法炉渣处理系统等。另 外,在炉前设置了除烟罩和其他除尘设备,在噪 音大的地方安装消音器,以改善炼铁厂的环境, 减少对环境的污染。
0.1 52
0
0.547
1.8 89
0
0
0.654
0.9 81
∑—

114 .84

122 .21

41.

26. — 5.3

3.0
Fe
(1)炉渣中CaO的量GCaO渣=122.217㎏ (2)炉渣中SiO2的量GSiO2渣=114.845-8.571=106.273kg 式中 114.845——原、燃料带入SiO2的总量,kg。
Fe
计算矿石需要量
(1)燃料带入的铁量GFe燃 首先计算20kg炉尘中的焦粉量:
G焦粉=G尘C%尘/C%焦=20*20/84.485 =4.735㎏\7 高炉内参加反应的焦碳量为:G焦=350-4.375 =345.265㎏ 故 GFe燃=G焦FeO%焦56/72+G煤FeO%煤56/72= G焦Fe2O3%焦*13.725%*112/160+G 煤Fe2O3%煤*12.179%*112/160=1.366㎏ (2)进入炉渣中的铁量
对红土镍矿(c/o=1.0)进行高温高料层试验如下:
20min 温度/℃
25 min
30 min 35 min
(加料 CaO %

年产万吨生铁的高炉炼铁车间工艺设计

年产万吨生铁的高炉炼铁车间工艺设计

年产万吨生铁的高炉炼铁车间工艺设计1. 引言高炉炼铁车间是钢铁企业中重要的生产部门之一,承担着将铁矿石通过高温还原产生生铁的任务。

本文旨在设计一套年产万吨生铁的高炉炼铁车间工艺,以确保高效、稳定地生产高质量的生铁。

2. 工艺流程为了实现年产万吨生铁的目标,我们采用以下工艺流程:2.1 矿石预处理矿石预处理是高炉炼铁的第一步,目的是将原始矿石进行破碎、筛分、洗选等工序,以去除杂质并获得合适的粒度分布。

矿石预处理的具体工艺流程包括: 1.矿石破碎:通过破碎设备将原始矿石破碎至适合进一步处理的大小; 2. 筛分:经过筛分设备将破碎后的矿石按照粒度分布分级,分别进入不同的处理线路; 3. 洗选:利用洗选设备去除矿石中的杂质和尾矿,获得洗选后的矿石。

2.2 炼铁炉料配料炼铁炉料配料是将预处理好的矿石与其他辅助炼铁原料按照一定的配比混合,以形成合适的炉料,满足高炉内燃烧和还原的需求。

炼铁炉料配料的工艺流程包括:1. 矿石称量:将预处理后的矿石按照设定的配比进行称量,并放入配料设备中; 2. 辅料添加:将其他辅助炼铁原料如焦炭、石灰石等按照一定比例添加到配料设备中;3. 搅拌混合:通过搅拌设备对矿石和辅料进行混合,确保配料均匀。

2.3 高炉炉缸操作高炉炉缸操作是指将配料装入高炉内,并控制高炉内的温度、气氛和流动状态,使炉料逐渐进行还原反应并生成生铁。

高炉炉缸操作的工艺流程包括: 1. 入炉:将配料从炼铁炉料配料设备中装入高炉的料斗中,并通过配料装置均匀地投放到炉缸中; 2. 点火:在炉缸底部点火,通过引入适量的空气使焦炭燃烧,形成高温的还原气体; 3. 加料:在还原气氛下,定期加入炉料和燃料以保持高炉的运行; 4.排渣:定期排出炉缸内产生的废渣和不可燃物,以保持炉缸的畅通。

2.4 生铁产出在高炉炼铁的过程中,生铁通过熔化和融合的过程逐渐生成,并且由底部口出高炉。

生铁的质量受到炉料配比、温度和操作的影响,需要进行质量监控和调整。

设计年产120万吨制钢生铁的炼铁厂.

设计年产120万吨制钢生铁的炼铁厂.

H EBEI P OLYTECHNIC U NIVERSITY课程设计说明书设计题目:设计年产120万吨制钢生铁的高炉学号:201015090502班级:10冶金五姓名:俞占扬导师:刘卫星2014年1月4日目录摘要 (1)ABSTRACT ............................................ 错误!未定义书签。

第一节绪论.. (2)1.1概述 (2)1.2高炉冶炼现状及其发展 (3)1.3高炉生产主要技术经济指标 (3)1.4高炉冶炼的主要操作技术措施 (4)1.5本设计采用的技术 (5)第二节工艺计算 (6)2.1配料计算 (6)2.1.1原料成分计算 (6)2.1.2参数设定 (7)2.1.3预定生铁成分 (8)2.1.4矿石需求量的计算 (9)2.1.5生铁成分校核 (9)2.1.6渣量及炉渣成分计算 (10)2.1.7炉渣性能及脱硫能力的计算 (10)2.2物料平衡计算 (11)2.2.1风量计算 (11)2.2.2炉顶煤气成分及数量计算 (12)2.2.3编制物料平衡表 (14)2.3热平衡计算 (15)2.3.1热收入 (15)2.3.2热支出 (16)2.3.3编制热量平衡表 (19)第三节高炉本体设计 (21)3.1设定有关参数 (21)3.2高炉内型设计 (21)3.3风口、铁口设计 (23)3.4高炉内衬 (25)3.4.1炉底设计 (26)3.4.2炉缸设计 (27)3.4.3炉腹设计 (27)3.4.4炉腰设计 (27)3.4.5炉身设计 (27)3.4.6炉喉设计 (27)3.5 炉体冷却 (28)3.5.1冷却目的 (28)3.5.2炉底冷却形式选择 (28)3.5.3冷却设备选择 (28)3.5.4冷却水耗量的计算 (30)3.5.5供水水压 (31)3.6高炉承重结构设计 (32)参考文献 (34)致谢 (35)摘要本设计建造一座年产180万吨制钢生铁的炼铁厂,力求达到低污染,低能耗,高效率。

一座年产100万吨炼钢生铁的高炉炉型设计

一座年产100万吨炼钢生铁的高炉炉型设计

一座年产100万吨炼钢生铁的高炉炉型设计1. 摘要高炉炉型是指高炉内部耐火材料构成的几何空间,近代高炉炉型由炉缸、炉腹、炉腰、炉身和炉喉五部分组成。

炉型的设计要适应原燃料条件,保证冶炼过程的顺行。

高炉炉型设计的依据是单座高炉的生铁产量,由产量确定高炉有效容积,以高炉有效容积为基础,计算其它尺寸。

本设计主要从高炉炉型设计、炉衬设计、高炉冷却设备的选择、风口及出铁口的设计。

高炉本体自上而下分为炉喉、炉身、炉腰、炉腹、炉缸五部分。

高炉的横断面为圆形的炼铁竖炉,用钢板作炉壳,高炉的壳内砌耐火砖内衬。

同时为了实现优质、低耗、高产、长寿炉龄和对环境污染小的方针设计高炉,高炉本体结构和辅助系统必须满足耐高温,耐高压,耐腐蚀,密封性好,工作可靠,寿命长,产品优质,产量高,消耗低等要求。

在设计高炉炉体时,根据技术经济指标对高炉炉体尺寸进行计算确定炉型。

对耐火砖进行合理的配置,对高炉冷却设备进行合理的选择、对风口及出铁口进行合理的设计。

2. 高炉高炉炉型设计与计算(一)、确定容积1、确定年工作日高炉的工作日是指高炉一代寿命中,扣除大、中、小修时间后,平均每年的实际生产时间。

根据国内经验,不分炉容大小,年工作日均可定为355天。

利用系数ηv =2.0t/(m 3·d)。

2、确定高炉日出铁量 年工作日年产量高炉日出铁量= = 1000000/355=2816 t/d 3、确定高炉的有效容积V uU u P V η高炉有效容积利用系数高炉日出铁量== 2816/2=1408(二)、高炉缸尺寸1、炉缸直径d炉缸直径的计算可参考下述经验公式:大型高炉 45.032.0u V d = =0.32×1408^0.45≈8 m2、炉缸高度'hA 渣口高度h 渣= (1.27×1.2×2816)/(9×0.55×7.1×8^2) ≈1.91m 式中:b ——生铁产量波动函数,一般取值1.2N ——昼夜出铁次数,取9227.1d c N bp h 铁渣γ⋅=铁γ——铁水密度,取值7.1t/m3C ——渣口以下炉缸容积利用系数,取值055一般小高炉设一个渣口,大中型高炉设两个渣口,高低渣口标高差一般为100~200mm ,2000m 3以上高炉渣口数目应和铁口数目一起考虑,如有两个铁口,可以设二个渣口。

参观实习报告(鞍山钢铁公司)

参观实习报告(鞍山钢铁公司)

轧辊前宽度测量器
PLC
轧辊
轧辊后宽度测量器
宽度
- 10 -
图 4.9 另外,要说明的是轧辊电机选择的是交流电机,采用变频器控制其转速。
3. 精轧区 经过粗轧后的钢板便可以进入精轧区了。 粗轧后的钢板首先要经过一个轧机对钢板进行轧制,为精轧做准备在粗轧 时,也会在钢板表面上形成一层杂质还要经过除鳞机进行处理。 精轧机由数个轧辊组成,他们共同完成对钢板的最后轧制。故精轧机要求的 的轧制精度更高,其所包含的控制系统也是最多的。精轧后的钢板要满足一定性 能,包括长度,宽度,厚度与板型。在精轧系统中,有几个控制系统:AGC 自 动厚度控制,ASC 自动板型控制,FDT 冷却温度控制。 1. AGC 自动控制系统 AGC 自动控制系统有基本的反馈 AGC,原理同前面的反馈 AWC,通过轧 辊采集轧制力送入 PLC 带入弹跳方程产生控制信号作用轧辊,控制轧制厚度, 其作用同前。
PLC 给定
轧辊 3 轧辊 4
厚度
滞后检测仪
图 4.12 再用压尾 AGC 最后控制带钢厚度。 ASC 自动板型控制系统主要由窜辊与弯辊组成,弯辊是一个线性可变的轧 辊通过一定检测环节送入 PLC 控制窜辊与弯辊来得到所需板型。精轧出口对钢 板温度有严格要求温度高低对钢板硬度,韧性,质量性能有重要影响,此外,也 对后面的卷曲有影响。在精轧中,轧机间配置了冷却装置,用于控制出口温度。 对于温度控制,是一个大滞后环节,故在设计中,一定要考虑滞后环节的影响。 温度的控制用的是 FDT 系统,在出口设置温度检测环节,将信号引入 PLC 中,利用 PD 控制产生控制信号。冷却采用喷洒冷却水冷却,通过控制冷却水的 控制阀来达到控制冷却水量大小,控制冷却效果。精轧后,钢板厚度达到了 1.8cm, 长度大大增加,只能用卷曲来达到存放的目的,就要求钢板有良好的韧性,冷却

年产200万吨炼铁高炉车间设计

年产200万吨炼铁高炉车间设计

年产200万吨炼铁高炉车间设计摘要人类获得生铁重要手段是通过高炉炼铁,高炉炼铁是钢铁冶金中的根底环节,同时也是最重要的环节。

本设计任务是设计一个年生产能力达200万吨炼铁高炉车间。

本次设计的高炉 1100m³。

高炉炉型为五段式,高炉炉衬设计依据各个局部的工作条件的不同以及炉衬破损的机理,选择相应的耐火材料。

热风炉采用的传统改良型内燃式热风炉,燃烧室为复合型断面,热风炉数量为3座,关于热风炉的设计局部还包括热风炉的各种设备以及相应的技术参数。

上料系统采用的是可不间断上料,原料破损率低的皮带运输上料,炉顶装料设备是并罐式无钟炉顶。

煤气处理系统的功能是降低高炉煤气粉尘含量,一般分为三个阶段--粗除尘、半精细除尘、精细除尘。

煤粉喷吹系统采用了单管路串罐式直接喷吹工艺,这种工艺大大提高了喷吹效率,改善冶炼条件。

本设计中还包括了其他一些环节的设计,例如渣铁处理系统。

在设计的同时,广泛参考借鉴前辈的研究数据和国内外同级别炉容的高炉的实际生产经验,从理论和实践并举的角度出发,努力使本设计的高炉在技术操作上实现自动化和机械化,并把对环境的损害降到最低。

关键词:高炉,冶金计算,热风炉,鼓风机,煤气处理,渣铁处理目录前言 (1)第一章高炉炼铁概况 (2)§1.1 高炉炼铁的开展概况 (2)§1.2 高炉及其附属设备 (2)§1.3 高炉炼铁设计的根本原那么 (2)第二章高炉炼铁综合计算 (4)§2.1 原始资料 (4)§2.2 配料计算 (5)§2.3 物料平衡计算 (8)§2.4 热平衡计算 (12)第三章高炉炼铁车间设计 (17)§3.1 高炉座数及容积设计 (17)第四章高炉本体设计 (18)§4.1 炉型设计 (18)§4.2 炉衬设计 (20)§4.3 高炉冷却设备 (21)§4.4 高炉冷却系统 (23)§4.5 高炉送风管路 (23)§4.6 高炉钢结构 (23)§4.7 高炉根底 (24)第五章附属设备系统 (25)§5.1 供料系统 (25)§5.2 炉顶装料系统 (26)§5.3 送风系统 (27)§5.4 煤气处理系统 (30)§5.5 煤粉喷吹系统 (33)§5.6 渣铁处理系统 (34)第六章高炉炼铁车间平面布置 (37)§6.1 应遵循的原那么 (37)§6.2 高炉炼铁车间平面布置的形式 (37)结论 (38)前言随着改革开放翻开国门,我国的经济飞速开展,也促进了钢铁业的飞速开展。

毕业设计--年产300万吨生铁高炉设计

毕业设计--年产300万吨生铁高炉设计

年产300万吨生铁高炉设计摘要高炉炼铁是传统的炼铁工艺,也是钢铁冶金过程中最重要的环节之一,在国民经济建设中起着举足轻重的作用。

随着钢铁行业的蓬勃发展和节能环保要求的日益严格,高炉炉型逐渐走向大型化。

本论文对年产300万吨生铁大型高炉车间进行了设计,设计内容包括炼铁物料平衡和热平衡计算、高炉炉型确定、高炉各部位炉衬、炉体冷却设备的选择和风口的设计。

此外,还就高炉附属系统的煤气除尘处理系统进行了设计。

本设计的高炉车间共有容积2162m³的大型高炉两座,高炉车间按并列式布置。

关键词:高炉;炼铁工艺计算;设计;煤气处理年产300万吨生铁高炉设计AbstractBlast furnace ironmaking was the traditional iron-making craft, also was one of the most important link in ferrous metallurgy, it played a decisive role in national economic construction. With the vigorous development of the steel industry and more and more strict requirement of energy conservation and environmental protection requirement, the BF became maximization gradually.A large scale BF plant which had annual output of 3 million tons of pig iron was designed in this thesis, design content includeed material balance and thermal equilibrium calculation, determination of BF profile, selection of lining and cooling equipment for each part of BF and design of taphole. In addition, the gas processing sytem which was one of the BF subsidiary system was designed.The ironmaking plant of this thesis has two 2162m³ BF, they were layouted side by side. Key words:blast furnace;Ironmaking process calculation;design;gas processing目录2011年 4 月17日...................................................................................... 错误!未定义书签。

毕业设计----年产305万吨的高炉炼铁车间

毕业设计----年产305万吨的高炉炼铁车间

摘要本设计是根据唐山地区条件设计的一个年产305万吨的高炉炼铁车间。

整个车间的平面布置采用半岛式平面布置形式。

设计的高炉有效容积是2200m3。

其中高炉的炉衬设计方法采用的是均衡炉衬的方法,根据不同的冶炼条件砌筑不同的砖。

上部采用的砖型有高砖,下部采用的是全碳砖炉底。

冷却方式:炉身部分采用板壁结合的方式炉腰部分采用凸台冷却壁;炉缸和炉底采用光面冷却壁和水冷炉底结构。

设计的热风炉采用传统改进型内燃式热风炉。

蓄热式和燃烧室在同一炉壳内,中间用隔热墙隔开;采用眼睛型燃烧室。

这部分同时包括热风炉各种设备和阀门的选取计算。

上料系统采用的皮带机连续上料,同时增加了皮带的速度和宽度,满足高炉冶炼的要求。

炉顶装料设备采用串罐式无料钟炉顶装料。

喷吹系统增加了煤的数量,采用了单管路串罐式直接喷吹。

煤气处理设备采用的是湿法除尘设备。

所涉及的计算有高炉和热风炉尺寸的计算、高炉的物料平衡和热平衡计算以及热风炉风机的选择等。

关键词:高炉;热风炉;湿法除尘;风机;无钟炉顶AbstractA blast furnace plant of 3.05 million tons product annual was desigened in the in the paper according to Tangshan area condition. The horizontal layout of the whole plant is peninsula type layout.The dischargeable capacity of the BF in this design is 2200m3.among it, the BF lining adopted equalization lining method and was made of alumina brick and chayote in upper of BF and all carbon brick in the bottom of BF.The cooling methods were batten wall style in shaft, boss-cooling stave in bosh, smooth cooling stave in hearth and water-cooling stave in bottom of hearth.The air-stove was modified tradition style of internal combustion. The checker chamber and combustion chamber were in the same furnace shell and divided by heat insulation wall. And the combustion chamber was eye-style. Furthermore this part of the paper included the selection of various equipments and valves.The charging equipment used the belt machine to continuing supplying charge and the belt velocity and width were increased in order to meet the BF melting needs. The furnace roof equipment used string pot style of non-bell furnace roof. Injection system increased amount of coal and use single valve line sting pot direct injection. The gas treating system used hydro filter equipment.The computes in the paper have size of BF and air-stave, charge balance, heat balance and fan of air-stave choice, etc.Key word: blast furnace, air-stove, hydro filter, fan, non-bell furnace roof目录摘要 (I)Abstract (II)第一部分设计说明书 (1)引言 (2)1 绪论 (3)1.1 概述 (3)1.2 高炉生产主要经济技术指标 (3)1.3 高炉冶炼现状及其发展 (4)1.4 本设计采用的新技术 (5)2 高炉车间设计 (6)2.1 厂址的选择 (6)2.2 高炉炼铁车间平面布置应遵循的原则 (7)2.3 车间平面布置形式 (7)3 高炉本体设计 (8)3.1 高炉数目及总容积的确定 (8)3.2 炉型设计 (8)3.3 参数 (11)3.4 炉衬设计及高炉基础 (11)3.4.1 高炉炉基的形状及材质 (11)3.4.2高炉炉底和各段炉衬的选择、设计和砌筑 (13)3.5高炉冷却及钢结构 (14)3.5.1炉底冷却型式选择 (14)3.5.2高炉各部位冷却设备的选择 (15)3.5.3高炉供水量、水压的确定 (15)3.5.4风口数目及直径 (17)3.5.5铁口 (17)3.5.6炉壳及钢结构确定 (17)4 原料系统 (19)4.1 焦矿槽容积的确定 (19)4.1.1 贮矿槽和附矿槽的布置、容积及数目的确定 (19)4.1.2 焦矿槽的布置、容积及数目的确定 (20)4.2 槽上、槽下设备及参数的确定 (20)4.2.1 槽上设备 (20)4.2.2 槽下设备及参数选择 (20)4.3 皮带上料机能力的确定 (20)5 送风系统 (22)5.1 高炉鼓风机的选择 (22)5.1.1高炉入炉风量 (22)5.1.2 鼓风机风量 (22)5.1.3 高炉鼓风压力 (22)5.1.4 鼓风机的选择 (23)5.2 热风炉 (23)5.2.1 热风炉座数的确定 (23)5.2.2 热风炉工艺布置 (23)5.2.3 热风炉型式的确定 (23)5.2.4 热风炉主要尺寸的计算 (23)5.2.5 热风炉设备 (26)5.2.6 热风炉管道及阀门 (26)6 炉顶设备 (28)6.1 炉顶基本结构: (28)6.2 布料方式 (28)6.3 基本参数的计算 (29)7 煤气处理系统 (30)7.1 荒煤气管道 (30)7.1.1导出管 (30)7.1.2上升管 (30)7.1.3下降管 (31)7.2 除尘系统的选择和主要设备尺寸的确定 (31)7.2.1 粗除尘装置 (31)7.2.2 半精细除尘装置 (32)7.2.3 精细除尘装置 (32)7.2.4 布袋除尘器 (32)7.2.5 附属设备 (32)8 渣铁处理系统 (34)8.1 风口平台及出铁场 (34)8.2 炉渣处理设备 (34)8.3 铁水处理设备 (34)8.3.1 铁水罐车 (35)8.3.2 铸铁机 (35)8.3.3 铁水炉外脱硫设备 (35)8.4 铁沟流咀布置 (35)8.4.1 渣铁沟的设计 (35)8.4.2 流咀的设计 (36)8.5 炉前设备的选择 (36)8.5.1 开铁口机 (36)8.5.2 堵铁口泥炮 (36)8.5.3 堵渣机 (36)8.5.4 换风口机 (36)8.5.5 炉前吊车 (36)9 高炉喷吹煤粉系统 (37)9.1 煤粉制备系统 (37)9.1.1 煤粉制备工艺 (37)9.1.2 煤粉喷吹系统 (38)9.2 喷吹工艺流程 (40)第二部分物料平衡及热平衡计算 (41)1原始条件 (42)1.1 原燃料条件 (42)1.2主要技术经济指标 (42)2 工艺计算 (44)2.1 配料计算 (44)2.1.1原燃料成分的整理 (44)2.1.2预定铁水成分(%) (44)2.1.3 原燃料的消耗 (44)2.1.4渣量及炉渣成分的计算 (45)2.1.5生铁成分的校对 (46)2.2 物料平衡 (46)2.2.1 风量的计算 (46)2.2.2 炉顶煤气成分的计算 (46)2.2.3 物料平衡表的编制 (48)2.3 热平衡计算 (48)2.3.1 热收入的计算 (48)2.3.2 热支出的计算 (48)2.3.3 热平衡表的编制 (50)结论 (52)参考文献 (53)致谢 (54)第一部分设计说明书引言进入21世纪,国际钢铁工业的共同的时代命题是市场竞争力和可持续发展问题。

年产250万吨炼钢生铁高炉车间设计说明书

年产250万吨炼钢生铁高炉车间设计说明书

年产250万吨炼钢生铁高炉车间设计说明书第一章文献综述钢铁是重要的金属材料之一,广泛应用于各个领域,因此钢铁生产水平是一个国家工业发展程度的标志之一。

工农业生产要大量的机械设备,这些都需要大量的工业材料。

钢铁工业为机械制造和工程建设提供最基本的材料,在国民经济中占有重要地位。

1.1概述钢铁作为基础工业材料自身价格相对低廉同时具有以下优点:(1)具有较高的强度及韧性。

(2)容易用于铸、锻、切削以及焊接等多种加工方式,可以得到任何结构、任何形态的工件。

(3)生产所需资源(铁矿石、煤炭、石灰石等)储量丰富,易于开采,生产成本较低。

(4)钢铁生产历史悠久,积累了大量成熟的生产技术,与其他材料工业相比,钢铁工业规模大、产量高、成本低。

所以在一定意义上说,一个国家的钢铁工业发展状况也反映其国民经济发展程度。

到目前为止,没有任何材料能够代替钢铁的地位。

1.1.1 高炉炼铁简史人类炼铁历史悠久,原始的炼铁炉是由石堆炼铁法改造而成的。

在土中挖一坑洞,周围用石块堆砌,称为地炉。

以木炭为燃料,利用自然风力进行燃烧、加热和还原铁矿石,产品为类似块状的海绵铁。

随着人力、畜力和水力鼓风方法的出现,产量提高,渣和铁也比较容易分离,产品质量有所提高。

随着科学技术的进步,炼铁工艺逐步得到改进和发展,到近现代工艺技术基本成熟。

1709年欧洲开始用焦炭炼铁,1776年高炉应用了蒸汽机带动的鼓风机,1832年回收炉顶煤气,1857年应用了考贝式热风炉,逐步形成了近代高炉雏形。

19世纪下半叶,高炉容积逐步扩大,设备结构趋向完善。

20世纪初至50年代,美国采用了人造富矿以及高压炉顶、综合鼓风技术,为高炉发展奠定了基础。

70年代卢森堡研制无料钟装料设备成功,为进一步扩大炉容和提高炉顶压力创造了条件。

60年代初,高炉最大炉容达2000m3 ,日产生铁4000t。

随着精料、超高压炉顶、高风温热风炉、燃料喷吹、富氧、脱湿和计算机控制等技术的发展,70年代初炉容增大至4000~5500m3 ,日产生铁10000t 以上。

年产500万吨炼钢车间设计-毕业设计

年产500万吨炼钢车间设计-毕业设计

年产500万吨炼钢车间设计-毕业设计年产500万吨合格铸坯炼钢厂转炉炼钢系统设计冶金工程冶金06-3班邵志华指导老师:张芳摘要本设计的题目:年产500万吨合格铸坯炼钢厂转炉炼钢系统设计。

本说明书在实习和参考文献的基础上,对所学知识进行综合利用。

讲述了设计一转炉车间的方法和步骤,说明书中对车间主要系统例如铁水供应系统,废钢供应系统,散装料供应系统,铁合金供应系统,除尘系统等进行了充分论证和比较确定出一套最佳设计方案。

并确定了车间的工艺布置,对跨数及相对位置进行设计,简述了其工艺流程,并在此基础上进行设备计算,包括转炉炉型计算,转炉炉衬计算及金属构件计算,氧枪设计,净化系统设备计算,然后进行车间计算和所用设备的规格和数量的设计,在此基础上进行车间尺寸计算,确定各层平台标高。

最后对转炉车间设计得环境和安全要求进行说明。

为了更加详细说明转炉车间设计中的一些工艺及设备结构,本设计穿插了图形,为能够明确、直观的介绍了转炉炼钢车间的工艺布置。

关键词: 转炉;500万吨;设计;设备计算;车间计算Design of Converter Systems of Annual Output 5 Million T ons of Qualified ContinuousCasting SlabAbstractThis design topic of annual 5 million tons' qualified casting steel of converter steelmaking system.This instruction booklet in the practice and in the reference foundation, to studies the knowledge to carry on the comprehensive utilization.Narrated has designed a converter mill the method and the step, in the instruction booklet to the workshop main system for example molten iron supply system, scrap supply system,dispersed feeds the supply system, ferroalloy supply system,dedustingsystem and so on to carry on the abundant proof and quite is definite a set of best design proposal.And had determined the workshop craft arrangement, carries on the design to the cross number and the relative position, has summarized its technical process, and carries on the equipment computation in this foundation, including the converter stove computation, the converter lining computation and the converter metal components computation the oxygen gun design, the purification system equipment computation, then carries on the workshop computation and uses the equipment the specification and quantity design, carries on the workshop size computation in this foundation, determines each platform elevation. Finally to environmental and safety requirements of the Steel workshop to carry on the explanation.For more detailed description of some of the converter workshop design technology and equipment structure, the design with graphics, which can clear, intuitive introduces converter steelmaking plant process arrangement.Key word: The Converter;5 million tons;design;the converter equipment calculates;the workshop computation 第一章文献综述1.1 国内外钢铁产业的发展情况钢铁产业是国民经济的重要支柱产业,涉及面广、产业关联度高、消费拉动大,在经济建设、社会发展、财政税收、国防建设以及稳定就业等方面发挥着重要作用。

鞍钢股份介绍

鞍钢股份介绍

公司概况鞍钢股份有限公司是鞍山钢铁集团公司的控股上市子公司。

现具有大型烧结、焦化、炼铁、炼钢、轧钢、动力、运输等装备、技术与人员的综合资源配置优势。

目前能够生产16大类品种、600个牌号、42000个规格的钢铁产品和近40种焦化产品,广泛应用于机械、冶金、石油、化工、煤炭、电力、铁路、船舶、汽车、家电、航空、国防等行业,还可以根据国家重点工程项目和顾客的特殊要求研制、开发、生产特种产品,满足市场需求和顾客的特性需要。

鞍钢股份有限公司坚持走低碳经济发展道路,凭借突出的经营业绩和巨大的成长空间,公司在行业内部和钢铁市场上享有良好的声誉和广泛的影响力。

鞍钢股份有限公司拥有鞍山本部和营口鲅鱼圈新区两个钢铁产品生产基地,目前已经具备了年产铁、钢、材2000万吨的能力,鞍钢股份有限公司的持续发展,将为企业员工实现自身价值提供更为广阔的舞台。

基层单位简介鲅鱼圈分公司:鞍钢股份有限公司营口鲅鱼圈钢铁项目是我国第一个沿海钢铁项目,是鞍钢落实国家钢铁产业发展政策,适应经济全球化,走向国际市场的一个重要项目,营口鲅鱼圈钢铁项目于2006年5月17日经国家发改委批准建设。

鲅鱼圈钢铁分公司位于营口市鲅鱼圈开发区工业园区,地处辽东湾东岸,占地面积8.32平方公里,其中陆地面积5.05平方公里,填海造地面积3.27平方公里。

鲅鱼圈分公司采用国际最先进的钢铁生产工艺、流程和装备,拥有能源动力、焦化、烧结、炼铁、炼钢、轧钢等配套设施,各项技术经济指标达到世界先进水平。

主要装备有7m52孔焦炉4座、405m2烧结机2台、4038m3高炉2座、260吨顶底复合吹炼转炉3座、双流1450mm板坯连铸机2台、单流2300mm板坯连铸机1台、1580mm热轧带钢生产线1条、5500mm宽厚板生产线1条,以及原料仓储、成品码头、水库、铁路运输、理化检验等辅助设施,其中5500mm厚板轧机为世界之最。

具备年产铁493万吨、钢500万吨、厚板200万吨宽、热轧卷板296万吨等系列钢铁产品的生产能力,主导产品定位于集装箱用钢、管线钢、船板、机械结构用钢、锅炉板、容器板、桥梁板、建筑用钢系列产品。

鞍钢股份各生产单位介绍

鞍钢股份各生产单位介绍

鞍钢股份各生产单位介绍鞍钢股份炼铁总厂鞍钢股份炼铁总厂是由始建于1917年的原鞍钢烧结总厂和炼钢厂于2000年7月组建而成,是鞍钢股份下属的主体生产厂之一,占地面积尽240万平方米,主体设备有烧结机9台、总面积1906平方米,带式焙烧机,面积为321.6平方米,大、中型高炉九座,高炉有效容积20191立方米 ; 在建一座2580立方米高炉。

主要产品是人造富矿和制钢生铁,人造富矿生产能力达2100万吨,生铁生产能力达1500万吨。

至今,炼铁总厂己为国家炼出合格生铁3亿多吨,为祖国的钢铁事业做出了巨大的贡献。

……随着鞍钢股份改造东部、开发西部整体战略的推进,炼铁总厂也发生了翻天复地的变化。

西部新区2座 3200 立方米的现代化高炉、配套新建的2台328平方米现代化烧结机己于2005年底陆续投入生产。

到2007年,炼铁总厂将形成3座3200立方米和5座 2580立方米高炉,年产生铁能力将达到1600万吨。

来源:鞍钢股份网站化工总厂化工总厂是鞍钢股份有限公司下属的重要主体厂。

化工总厂始建于1919,经过80余年的发展壮大,已成为中国最大的、具有领先地位的炼焦及煤化工产品生产企业。

厂区占地150万平方米,并拥有一个负责自主研发的鞍钢焦化技术中心,技术力量雄厚。

化工总厂年生产焦炭600万吨,煤化工产品30余万吨。

拥有一批装备精良、工艺先进的生产线。

特别是经过近几年技术改造,国内先进水平的6米焦炉、140万吨干熄焦、制冷、生物脱氮、大回收已经陆续投入运行。

生产的产品有焦炭、煤气、苯系列、萘系列、洗油系列、酚系列、吡啶系列、沥青系列等60余种,其中大宗产品40多种,小吨位及新产品20余种。

产品畅销全国各地,硬质沥青、硫酸铵等远销海外。

我们的产品以其技术新、质量优、服务好而深得用户信赖。

化工总厂具有规范健全的生产保证体系,质量体系文件齐全,岗位职责清晰,技术性、作业性、管理性文件充分有效,产品检测手段完备,检测设备精良,所有产品都需经公司质量监督检查站取样,分别由化工总厂研化中心和公司质检中心经过严格的理化检验,确保每一种产品质量指标合格率达到100%。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

ANHUI UNIVERSITY OF TECHNOLOGY 毕业设计说明书设计题目:设计年产180万吨制钢生铁的炼铁厂学号:099014237班级:冶094姓名:王海东导师:汪志全2013年4月15日目录摘要 (1)ABSTRACT (2)第一节绪论 (3)1.1概述 (3)1.2高炉冶炼现状及其发展 (3)1.3高炉生产主要技术经济指标 (4)1.4高炉冶炼的主要操作技术措施 (5)1.5本设计采用的技术 (6)第二节工艺计算 (7)2.1配料计算 (7)2.1.1原料成分计算 (7)2.1.2参数设定 (8)2.1.3预定生铁成分 (9)2.1.4矿石需求量的计算 (10)2.1.5生铁成分校核 (10)2.1.6渣量及炉渣成分计算 (11)2.1.7炉渣性能及脱硫能力的计算 (11)2.2物料平衡计算 (12)2.2.1风量计算 (12)2.2.2炉顶煤气成分及数量计算 (13)2.2.3编制物料平衡表 (15)2.3热平衡计算 (16)2.3.1热收入 (16)2.3.2热支出 (17)2.3.3编制热量平衡表 (20)第三节高炉本体设计 (22)3.1设定有关参数 (22)3.2高炉内型设计 (22)3.3风口、铁口设计 (25)3.4高炉内衬 (26)3.4.1炉底设计 (27)3.4.2炉缸设计 (28)3.4.3炉腹设计 (28)3.4.4炉腰设计 (28)3.4.5炉身设计 (28)3.4.6炉喉设计 (29)3.5 炉体冷却 (29)3.5.1冷却目的 (29)3.5.2炉底冷却形式选择 (29)3.5.3冷却设备选择 (29)3.5.4冷却水耗量的计算 (31)3.5.5供水水压 (32)3.6高炉承重结构设计 (33)第四节厂址选择 (36)4.1 考虑因素 (36)4.2 要求 (36)第五节炉顶设备 (38)5.1对装料设备的要求 (38)5.2炉顶基本结构 (39)5.3均压控制装置 (40)5.4探料装置 (41)第六节高炉送料系统 (42)6.1贮矿槽和贮焦槽的设计 (42)6.1.1贮矿槽的设计 (42)6.1.2贮焦槽的设计 (43)6.1.3矿槽的结构形式 (43)6.2给料机、槽下筛分与称量设计 (43)6.2.1给料机 (43)6.2.2槽下筛分 (43)6.2.3槽下称量 (44)6.3槽下运输 (45)6.4高炉上料设备 (46)第七节高炉鼓风系统 (48)7.1高炉鼓风机的选择 (48)7.1.1高炉入炉风量 (48)7.1.2鼓风机出口风量 (48)7.2高炉热风炉设计 (49)7.2.1有关原始数据 (50)7.2.2混合湿煤气的燃烧值计算 (51)7.2.3空气需要量和燃烧生成物的计算 (51)7.2.4热风炉理论燃烧温度的计算 (53)7.2.5热风炉实际消耗煤气量和空气量的计算 (53)7.2.6热风炉热平衡的计算 (54)7.2.7热风炉系统热效率计算 (56)7.3热风炉炉体的设计 (56)7.3.1热风炉蓄热室格子砖的要求 (56)7.3.2所需加热面积的计算 (57)7.3.3热风炉尺寸的计算 (62)7.4热风炉的附属设备 (63)7.4.1助燃风机 (63)7.4.2燃烧器 (64)7.4.3热风炉阀门 (65)7.4.4煤气和助燃空气的预热设备 (67)7.5热风炉的耐火材料及砌体结构 (68)7.5.1热风炉内衬的破损机理及选砖原则 (68)7.5.2砌体结构 (69)第八节高炉喷吹系统 (70)8.1煤粉制备工艺流程 (70)8.2喷吹工艺流程 (70)第九节高炉煤气除尘系统和渣铁处理系统 (73)9.1煤气除尘系统 (73)9.1.1高炉煤气除尘目的及工艺流程 (73)9.1.2煤气除尘设备及原理 (73)9.2渣铁处理系统 (76)9.2.1风口平台及出铁场 (76)9.2.2渣铁沟和撇渣器 (77)9.2.3炉前主要设备 (79)9.2.4铁水处理设备 (79)9.2.5水渣处理 (81)第十节车间的平面布置 (84)10.1车间平面布置的原则 (84)10.2高炉炼铁车间平面布置的形式 (84)参考文献 (86)致谢 (87)摘要本设计建造一座年产180万吨制钢生铁的炼铁厂,力求达到低污染,低能耗,高效率。

高炉炼铁是现代获得生铁的主要手段,而高炉是炼铁的主要设备。

设计中高炉的主要经济技术指标:年产量P:180×104t焦比:350kg/t煤比:160kg/t综合冶炼强度:1.05t/m3·d高炉有效容积利用系数:2.197t/m3·day本设计说明书高炉设计内容包括绪论、工艺计算(配料计算、物料平衡和热平衡)、高炉炉型设计、厂址的选择、高炉炉顶设备、高炉送料系统、送风系统、煤气处理系统、渣铁处理系统、高炉喷吹系统和炼铁车间的布置等。

设计同时借鉴了了国外先进技术和经验,尽量实现高机械化、自动化,并获得最大的经济效益。

关键词:高炉炼铁设计,物料平衡,渣铁处理,热平衡,喷吹,热风炉,煤气处理ABSTRACTIn line with the high quality , high yield , low consumption and environmental pollution policy, design and build a blast furnace iron-making workshop producing 1.8 million t irons every year in advance. Blast furnace iron-making is a main means to obtain pig iron, and one of the most important links in the metallurgical course of steel, and the blast furnace is the main equipment of iron-making.The main economic and technical indicators of the blast furnace:Annual production: 180×104tCoke: 350kg/tCoal ratio: 160kg/tIntergrated smelting intensity: 1.05t/m3·dEffective capacity utilization coefficient of blast: 2.197t/m3·dayThis design instruction designs the blast furnace detailedly,including introducion, the craft calculating (the batching is calculated, supplies balance and thermal balance),the furnace type of blast furnace is designed,site selection,furnace roof equipment,blast furnace feed system,blow system,gas processing system,iron slag handing system,ejection system and ironmaking plant layout etc. Combine domestic and international the same furnace volume some advanced production operation experience and relevant data of blast furnace also while the design,strive blast furnace should designed to make accomplish highly mechanized , automation and maximizing, in the hope of reaching the best productivity effect.Keywords: BF iron-making design,material balance, slag iron disposal ,heat balance, blowing,hot blast stove,coal gas disposal,第一节绪论1.1概述高炉冶炼是获得生铁的主要手段,它以铁矿石(天然富矿,烧结矿,球团矿)为原料,焦碳,煤粉,重油,天然气等为燃料和还原剂,以石灰石等为溶剂,在高炉内通过燃料燃烧,氧化物中铁元素的还原以及非氧化物造渣等一系列复杂的物理化学过程,获得生铁。

其主要副产品有高炉炉渣和高炉煤气。

为了实现优质,低耗,高产和延长炉龄,高炉本体结构及辅助系统必须满足冶炼过程的要求,即耐高温,耐高压,耐磨,耐侵蚀密封性好,工作可靠,寿命长,而且具有足够的生产能力我国自1996年粗钢产量突破1亿吨以来,连续稳居第一钢国的位置。

2012年我国粗钢产量更是达到7.16亿吨,占全球钢产量的46.3%。

虽然多年来我国生铁产量居世界第一位,但是我们应该看到与世界先进国家的差距。

目前,我国正在生产的高炉有几千座。

近年来,由于生铁铁水供不应求,价格上涨,一些本应该淘汰的500m3容积以下的小高炉,又开始生产。

应当承认,小高炉的发展现状,一定程度上阻碍了我国高炉大型化的发展。

在21世纪,我国高炉炼铁将继续在结构调整中发展。

高炉结构调整不能简单的概括为大型化,应该根据企业生产规模、资源条件来确定高炉炉容。

从目前的我国的实际情况来看,高炉座数必须大大减少,平均炉容大型化是必然趋势。

高炉大型化,有利于提高劳动生产率、便于生产组织和管理,提高铁水质量,有利于减少热量损失、降低能耗,减少污染点,污染容易集中管理,有利于环保。

所有这一切都有利于降低钢铁厂的生产成本,提高企业的市场竞争力。

1.2高炉冶炼现状及其发展(1)炉容大型化及其空间尺寸的横向发展。

最近几年来,大型钢铁企业大4000m3以上的高炉,中国沙钢拥有世界上最大的高炉,有效容积达多采用V有5860m3。

(2)精料:精料是改善高炉冶炼的基础,近代高炉冶炼必须将精料列为头等重要措施,精料包括提高入炉况品味,改善入炉原料的还原性能,提高熟料率,稳定入炉原料成分和整粒。

(3)提高鼓风温度:提高鼓风温度可以大幅度降低焦比,特别是在鼓风温度比较低时效果更为显著。

相关文档
最新文档