[兰州大学]兰州大学2015年数学分析考研试题及解答
2015年考研数学一真题及答案解析
2015年考研数学一真题及答案解析22015年全国硕士研究生入学统一考试数学(一)试题一、选择题:18小题,每小题4分,共32分。
下列每题给出的四个选项中,只有一个选项符合题目要求的,请将所选项前的字母填在答题纸...指定位置上。
(1)设函数()f x 在(),-∞+∞内连续,其中二阶导数()''f x 的图形如图所示,则曲线()=y f x 的拐点的个数为( ) (A) 0 (B) 1 (C) 2(D) 3【答案】(C )【解析】拐点出现在二阶导数等于0,或二阶导数不存在的点,并且在这点的左右两侧二阶导函数异号。
因此,由()f x ''的图形可得,曲线()y f x =存在两个拐点.故选(C ).3(2)设211()23=+-xxy ex e 是二阶常系数非齐次线性微分方程'''++=xy ay by ce 的一个特解,则( )(A) 3,2,1=-==-a b c(B) 3,2,1===-a b c (C) 3,2,1=-==a b c(D)3,2,1===a b c【答案】(A )【分析】此题考查二阶常系数非齐次线性微分方程的反问题——已知解来确定微分方程的系数,此类题有两种解法,一种是将特解代入原方程,然后比较等式两边的系数可得待估系数值,另一种是根据二阶线性微分方程解的性质和结构来求解,也就是下面演示的解法.【解析】由题意可知,212xe 、13xe -为二阶常系数齐次微分方程0y ay by '''++=的解,所以2,1为特征方程20r ar b ++=的根,从而(12)3a =-+=-,122b =⨯=,从而原方程变为32xy y y ce '''-+=,再将特解xy xe =代入得1c =-.故选45y x=,y =围成的平面区域,函数(),f x y 在D 上连续,则(),Df x y dxdy =⎰⎰( )(A) ()13sin 2142sin 2cos ,sin d f r r rdrπθπθθθθ⎰⎰(B)()34cos ,sin d f r r rdr ππθθθ⎰(C) ()13sin 2142sin 2cos ,sin d f r r drπθπθθθθ⎰⎰(D) ()34cos ,sin d f r r drππθθθ⎰【答案】(B )【分析】此题考查将二重积分化成极坐标系下的累次积分【解析】先画出D 的图形,6所以(,)Df x y dxdy =⎰⎰sin 23142sin 2(cos ,sin )d f r r rdrπθπθθθθ⎰⎰,故选(B )(5) 设矩阵21111214A a a ⎛⎫⎪= ⎪⎪⎝⎭,21b d d ⎛⎫ ⎪= ⎪⎪⎝⎭,若集合{}1,2Ω=,则线性方程组Ax b =有无穷多解的充分必要条件为( )(A) ,a d ∉Ω∉Ω (B) ,a d ∉Ω∈Ω (C) ,a d ∈Ω∉Ω (D),a d ∈Ω∈Ω【答案】D 【解析】2211111111(,)1201111400(1)(2)(1)(2)A b ad a d a d a a d d ⎛⎫⎛⎫⎪ ⎪=→-- ⎪ ⎪ ⎪ ⎪----⎝⎭⎝⎭,7由()(,)3r A r A b =<,故1a =或2a =,同时1d =或2d =。
2015年考研数学一真题及答案解析
2015年全国硕士研究生入学统一考试数学(一)试题一、选择题:18小题,每小题4分,共32分。
下列每题给出的四个选项中,只有一个选项符合题目要求的,请将所选项前的字母填在答题纸...指定位置上。
(1)设函数()f x 在(),-∞+∞内连续,其中二阶导数()''f x 的图形如图所示,则曲线()=y f x 的拐点的个数为 ( )(A) 0 (B) 1 (C) 2 (D) 3【答案】(C )【解析】拐点出现在二阶导数等于0,或二阶导数不存在的点,并且在这点的左右两侧二阶导函数异号。
因此,由()f x ''的图形可得,曲线()y f x =存在两个拐点.故选(C ).(2)设是二阶常系数非齐次线性微分方程'''++=x y ay by ce 的一个特解,则 ( )(A) 3,2,1=-==-a b c (B) 3,2,1===-a b c (C) 3,2,1=-==a b c (D) 3,2,1===a b c【答案】(A )【分析】此题考查二阶常系数非齐次线性微分方程的反问题——已知解来确定微分方程的系数,此类题有两种解法,一种是将特解代入原方程,然后比较等式两边的系数可得待估系数值,另一种是根据二阶线性微分方程解的性质和结构来求解,也就是下面演示的解法. 【解析】由题意可知,212xe 、为二阶常系数齐次微分方程0y ay by '''++=的解,所以2,1为特征方程20r ar b ++=的根,从而(12)3a =-+=-,122b =⨯=,从而原方程变为32x y y y ce '''-+=,再将特解x y xe =代入得1c =-.故选(A )(3) 若级数条件收敛,则 =x 3=x 依次为幂级数的 ( )(A) 收敛点,收敛点(B) 收敛点,发散点 (C) 发散点,收敛点 (D) 发散点,发散点 【答案】(B )【分析】此题考查幂级数收敛半径、收敛区间,幂级数的性质。
2015考研数一真题答案及详细解析
(8) D
解 因为X,Y不相关,所以Cov(X,Y) =E(XY) =EX• EY=O, 即E(XY)=EX• EY, 则E[X(X +Y — 2)] =E(X2 + XY-2X) =E(X2 ) +E(XY) — 2EX
=[DX+ (EX) 2 ] +EX• EY-2EX=5.
二、填空题
(9)
——
(6) A 解
�m� Q =P[�
�1�)
又因为 所以
_J, pTAP{ 1
(1
QT A Q
。 一。 ff[� �ff ( 1
_
0
\0
01
O\ 勹 0
PTAP[�!
rn
!
�l�J
_ \0 0
。1
·) 0 10
\ 、
0 1
2
2
_J[ rJ[ 三J[ 1
王子
)[
J
玄�l子 �
-1
故应选A.
(7) C
解 对于A,B选项:
P{XY — Y<O}=P{(X —l)Y<O}
=P{X — 1 <O,Y> O}+P{X -1 > O,Y<O}
=P{X — 1 <O} P{Y> O}+P{X —1 > O} P{Y<O}
=- 1 X- 1 +- 1 X- 1 =-1 2 2 2 2 2·
三、解答题
+ + (15)解
由于ln(l +x) =x
(2 ) A
解
由题设条件知,Y1 = — e幻 , Y2 = —— ex 是已知二阶常系数非齐次线性微分方程所对应
2015年考研数学一真题及答案
求 a , b , k 值。
【考点】等价无穷小量,极限的计算 【难易度】★★★
【详解】 f (x) x a ln(1 x) bx ×sin x
e
x
是二阶常系数非齐次线性微分方程
y
ay
by
ce x
的一个特解,
则()
(A) a 3,b 1,c 1.
(B) a 3,b 2,c 1.
(C) a 3,b 2,c 1.
(D) a 3,b 2,c 1.
【答案】(A) 【考点】常系数非齐次线性微分方程的解法 【难易度】★★
【 详 解 】 1 e2x , 1 ex 为 齐 次 方 程 的 解 , 所 以 2 、 1 为 特 征 方 程 2 +a b 0 的 根 , 从 而 23
【答案】(A) 【考点】二次型 【难易度】★★
2 0 0
【详解】由 x Py ,故
f
xT Ax
yT
(PT
AP ) y
2 y 12
y
2 2
y
2 3
且:
PT
AP
0
1
0
0 0 1
3
1 0 0
2 0 0
Q P 0 0 1 PC,Q T AQ C T (P T AP)C 0 1 0
0 1 0
【详解】 P(A) P(AB), P(B) P(AB)
P(A) P(B) 2P(AB)
P(AB) P(A) P(B) 故选(C) 2
8、设随机变量 X, Y 不相关,且 EX 2, EY 1, DX 3, 则 E X X Y 2
2015真题及解析
2015年全国硕士研究生入学统一考试数学(三)试题解析一、选择题:18小题,每小题4分,共32分.下列每题给出的四个选项中 ,只有一个选项符合题目要求的,请将所选项前的字母填在答题纸..指定位置上.⑴设:■是数列,下列命题中不正确的是 ()(A) 若 lim x n: -a,则 lim X=lim X=n _i :n L :n _ac(B)若 lim x 2n二lim X 2n 1 二 a ,贝U lim X n二 an ;:n t: n _sc (C) 若 lim x n= 二a ,则lim X 3n =lim X 3nan ;:n L :n _sc1(D) 若 lim X 3n =limX3n 1=a ,则 lim x n= an _$ : n :【答案】(D)【解析】答案为D,本题考查数列极限与子列极限的关系•数列Xn —• a n 、:::= 对任意的子列:Xn k "匀有Xn k —• a k —• ■■' ;■,所以A 、B 、C 正确;D 错(D 选项缺少X 3n 2的敛散性),故选D(2)设函数f X 在-::,V 内连续,其2阶导函数「X 的图形如 右图所示则曲线y = f X 的拐点个数为()(A) 0(B) 1(C) 2(D) 3【答案】(C)【解析】根据拐点的必要条件,拐点可能是「(x)不存在的点或f (X ^Q 的点处产生.所以y = f (x)有三个点可能是拐点,根据拐点的定义,即凹凸性改变的点;二阶导函数 「(X)符号发生改变的点即为拐点•所以从图可知,拐点个数为2,故选 C.(3)设D・;[X , y x 2• y 2咗2x,x 2• y 2乞2yf ,函数f X,y 在D 上连续,则f x,y dxdy =()D2cos2sin •二(A)/dA 。
f r cos’r si" rdr 亠!2dj f r cos’r sin^ rdr42sin 2cos T 1(B) 04犷 0 f rcosdrsin^ rdr 亠 引二。
2015年考研数学试题详解及评分参考
2sin 2q
故选 (B) .
æ1 1 1 ö
æ1 ö
(5) 设矩阵 A = çççè11
2 4
a a2
÷ ÷÷ø
,
b
=
ç ç çè
d d
2
÷ ÷ ÷ø
,若集合
W
=
{1,
2} ,则线性方程组
Ax
=
b
有无穷
多解的充分必要条件为
(A) a Ï W, d Ï W (B) a Ï W, d Î W (C) a Î W, d Ï W (D) a Î W, d Î W
【答】 应填 -dx .
【解】 令 F (x, y, z) = ez + xyz + x + cos x - 2 ,有
Fx¢(x, y, z) = yz +1- sin x, Fy¢ = xz, Fz¢(x, y, z) = ez + xy
又当 x = 0, y = 1 时,有 ez = 1 ,即 z = 0 .
【答】 应选 (D) .
【解】 因 Ax = b 有无穷多解的充分必要条件为 r( A) = r( A, b) < 3 ,而
æ1 1 1 1 ö æ1 1
1
1ö
(A,b) = çç1 2 a
d
÷ ÷
®
ç ç
0
1
a -1
d -1
÷ ÷
çè1 4 a2 d 2 ÷ø çè 0 0 (a -1)(a - 2) (d -1)(d - 2) ÷ø ,
【解法二】 因在正交变换为 x = P y 下,有 f = xT Ax = yT (PT AP) y = 2 y12 + y22 - y32 .
2015考研数一真题及解析
2015年全国硕士研究生入学统一考试数学(一)试题一、选择题:1 8小题,每小题4分,共32分.下列每题给出的四个选项中,只有一个选项符合题目要求的,请将所选项前的字母填在答题纸...指定位置上. (1)设函数()f x 在(),-∞+∞内连续,其中二阶导数()''f x 的图形如图所示,则曲线()=y f x 的拐点的个数为 ( )(A) 0 (B) 1 (C) 2 (D) 3【答案】(C )【解析】拐点出现在二阶导数等于0,或二阶导数不存在的点,并且在这点的左右两侧二阶导函数异号。
因此,由()f x ''的图形可得,曲线()y f x =存在两个拐点.故选(C ). (2)设211()23=+-x x y e x e 是二阶常系数非齐次线性微分方程'''++=x y ay by ce 的一个特解,则 ( )(A) 3,2,1=-==-a b c (B) 3,2,1===-a b c (C) 3,2,1=-==a b c (D) 3,2,1===a b c【答案】(A )【分析】此题考查二阶常系数非齐次线性微分方程的反问题——已知解来确定微分方程的系数,此类题有两种解法,一种是将特解代入原方程,然后比较等式两边的系数可得待估系数值,另一种是根据二阶线性微分方程解的性质和结构来求解,也就是下面演示的解法.【解析】由题意可知,212x e 、13xe -为二阶常系数齐次微分方程0y ay by '''++=的解,所以2,1为特征方程20r ar b ++=的根,从而(12)3a =-+=-,122b =⨯=,从而原方程变为32x y y y ce '''-+=,再将特解x y xe =代入得1c =-.故选(A )(3) 若级数1∞=∑n n a条件收敛,则=x 3=x 依次为幂级数1(1)∞=-∑nnn na x 的 ( )(A) 收敛点,收敛点(B) 收敛点,发散点 (C) 发散点,收敛点 (D) 发散点,发散点 【答案】(B )【分析】此题考查幂级数收敛半径、收敛区间,幂级数的性质. 【解析】因为1nn a∞=∑条件收敛,即2x =为幂级数1(1)nn n a x ∞=-∑的条件收敛点,所以1(1)nn n a x ∞=-∑的收敛半径为1,收敛区间为(0,2).而幂级数逐项求导不改变收敛区间,故1(1)nnn na x ∞=-∑的收敛区间还是(0,2).因而x =3x =依次为幂级数1(1)nnn na x ∞=-∑的收敛点,发散点.故选(B ).(4) 设D 是第一象限由曲线21xy =,41xy =与直线y x =,y =围成的平面区域,函数(),f x y 在D 上连续,则(),Df x y dxdy =⎰⎰ ( )(A)()13sin2142sin2cos ,sin d f r r rdr ππθθθθ⎰⎰(B)()34cos ,sin d f r r rdr ππθθθ⎰ (C)()13sin 2142sin 2cos ,sin d f r r dr πθπθθθθ⎰⎰(D)()34cos ,sin d f r r dr ππθθθ⎰【答案】(B )【分析】此题考查将二重积分化成极坐标系下的累次积分 【解析】先画出D 的图形,所以(,)Df x y dxdy =⎰⎰34(cos ,sin )d f r r rdr ππθθθ⎰,故选(B )(5) 设矩阵21111214A a a ⎛⎫⎪= ⎪ ⎪⎝⎭,21b d d ⎛⎫ ⎪= ⎪ ⎪⎝⎭,若集合{}1,2Ω=,则线性方程组Ax b =有无穷多解的充分必要条件为 ( )(A) ,a d ∉Ω∉Ω (B) ,a d ∉Ω∈Ω (C) ,a d ∈Ω∉Ω (D) ,a d ∈Ω∈Ω 【答案】D【解析】2211111111(,)1201111400(1)(2)(1)(2)A b ad a d a d a a d d ⎛⎫⎛⎫⎪ ⎪=→-- ⎪ ⎪ ⎪ ⎪----⎝⎭⎝⎭,由()(,)3r A r A b =<,故1a =或2a =,同时1d =或2d =。
2015年考研数学一真题及答案解析
2015年全国硕士研究生入学统一考试数学(一)试题一、选择题:18小题,每小题4分,共32分。
下列每题给出的四个选项中,只有一个选项符合题目要求的,请将所选项前的字母填在答题纸...指定位置上。
(1)设函数()f x 在(),-∞+∞内连续,其中二阶导数()''f x 的图形如图所示,则曲线()=y f x 的拐点的个数为 ( )(A) 0 (B) 1 (C) 2 (D) 3【答案】(C )【解析】拐点出现在二阶导数等于0,或二阶导数不存在的点,并且在这点的左右两侧二阶导函数异号。
因此,由()f x ''的图形可得,曲线()y f x =存在两个拐点.故选(C ). (2)设211()23=+-x x y e x e 是二阶常系数非齐次线性微分方程'''++=x y ay by ce 的一个特解,则 ( )(A) 3,2,1=-==-a b c (B) 3,2,1===-a b c (C) 3,2,1=-==a b c (D) 3,2,1===a b c【答案】(A )【分析】此题考查二阶常系数非齐次线性微分方程的反问题——已知解来确定微分方程的系数,此类题有两种解法,一种是将特解代入原方程,然后比较等式两边的系数可得待估系数值,另一种是根据二阶线性微分方程解的性质和结构来求解,也就是下面演示的解法.【解析】由题意可知,212x e 、13x e -为二阶常系数齐次微分方程0y ay by '''++=的解,所以2,1为特征方程20r ar b ++=的根,从而(12)3a =-+=-,122b =⨯=,从而原方程变为32x y y y ce '''-+=,再将特解x y xe =代入得1c =-.故选(A )(3) 若级数1∞=∑nn a条件收敛,则=x 3=x 依次为幂级数1(1)∞=-∑n n n na x 的 ( )(A) 收敛点,收敛点 (B) 收敛点,发散点 (C) 发散点,收敛点 (D) 发散点,发散点 【答案】(B )【分析】此题考查幂级数收敛半径、收敛区间,幂级数的性质。
2015年考研数学一真题与答案解析
2015年全国硕士研究生入学统一考试数学〔一试题一、选择题:18小题,每小题4分,共32分。
下列每题给出的四个选项中,只有一个选项符合题目要求的,请将所选项前的字母填在答题纸...指定位置上。
<1>设函数()f x 在(),-∞+∞内连续,其中二阶导数()''f x 的图形如图所示,则曲线()=y f x 的拐点的个数为< ><A> 0<B> 1 <C>2<D> 3 [答案]〔C[解析]拐点出现在二阶导数等于0,或二阶导数不存在的点,并且在这点的左右两侧二阶导函数异号。
因此,由()f x ''的图形可得,曲线()y f x =存在两个拐点.故选〔C. <2>设211()23=+-x x y e x e 是二阶常系数非齐次线性微分方程'''++=x y ay by ce 的一个特解,则< ><A> 3,2,1=-==-a b c <B> 3,2,1===-a b c <C>3,2,1=-==a b c <D> 3,2,1===a b c [答案]〔A[分析]此题考查二阶常系数非齐次线性微分方程的反问题——已知解来确定微分方程的系数,此类题有两种解法,一种是将特解代入原方程,然后比较等式两边的系数可得待估系数值,另一种是根据二阶线性微分方程解的性质和结构来求解,也就是下面演示的解法.[解析]由题意可知,212x e 、13x e -为二阶常系数齐次微分方程0y ay by '''++=的解,所以2,1为特征方程20r ar b ++=的根,从而(12)3a =-+=-,122b =⨯=,从而原方程变为32x y y y ce '''-+=,再将特解x y xe =代入得1c =-.故选〔A<3> 若级数1∞=∑nn a条件收敛,则=x 3=x 依次为幂级数1(1)∞=-∑n n n na x 的< ><A> 收敛点,收敛点 <B> 收敛点,发散点 <C>发散点,收敛点 <D> 发散点,发散点 [答案]〔B[分析]此题考查幂级数收敛半径、收敛区间,幂级数的性质。
2015年考研数学一真题及答案解析
2015年考研数学一真题及答案解析22015年全国硕士研究生入学统一考试数学(一)试题一、选择题:1:8小题,每小题4分,共32分。
下列每题给出的四个选项中,只有一个选项符合题目要求的,请将所选项前的字母填在答题纸...指定位置上。
(1)设函数()f x 在(),-∞+∞内连续,其中二阶导数()''f x 的图形如图所示,则曲线()=y f x 的拐点的个数为( ) (A) 0 (B) 1 (C) 2(D) 3【答案】(C )【解析】拐点出现在二阶导数等于0,或二阶导数不存在的点,并且在这点的左右两侧二阶导函数异号。
因此,由()f x ''的图形可得,曲线()y f x =存在两个拐点.故选(C ).3(2)设211()23=+-xxy ex e 是二阶常系数非齐次线性微分方程'''++=xy ay by ce 的一个特解,则( )(A) 3,2,1=-==-a b c(B) 3,2,1===-a b c (C) 3,2,1=-==a b c(D)3,2,1===a b c【答案】(A )【分析】此题考查二阶常系数非齐次线性微分方程的反问题——已知解来确定微分方程的系数,此类题有两种解法,一种是将特解代入原方程,然后比较等式两边的系数可得待估系数值,另一种是根据二阶线性微分方程解的性质和结构来求解,也就是下面演示的解法.【解析】由题意可知,212xe 、13xe -为二阶常系数齐次微分方程0y ay by '''++=的解,所以2,1为特征方程20r ar b ++=的根,从而(12)3a =-+=-,122b =⨯=,从而原方程变为32xy y y ce '''-+=,再将特解xy xe =代入得1c =-.故选4(A )(3) 若级数1∞=∑n n a 条件收敛,则=x 3=x 依次为幂级数1(1)∞=-∑nnn na x 的 ( )(A) 收敛点,收敛点 (B) 收敛点,发散点 (C) 发散点,收敛点 (D) 发散点,发散点 【答案】(B )【分析】此题考查幂级数收敛半径、收敛区间,幂级数的性质。
2015年考研数学一真题及答案解析
2015年全国硕士研究生入学统一考试数学(一)试题一、选择题:18小题,每小题4分,共32分。
下列每题给出的四个选项中,只有一个选项符合题目要求的,请将所选项前的字母填在答题纸...指定位置上。
(1)设函数()f x 在(),-∞+∞内连续,其中二阶导数()''f x 的图形如图所示,则曲线()=y f x 的拐点的个数为 ( )(A) 0 (B) 1 (C) 2 (D) 3【答案】(C )【解析】拐点出现在二阶导数等于0,或二阶导数不存在的点,并且在这点的左右两侧二阶导函数异号。
因此,由()f x ''的图形可得,曲线()y f x =存在两个拐点.故选(C ).(2)设是二阶常系数非齐次线性微分方程'''++=x y ay by ce 的一个特解,则 ( )(A) 3,2,1=-==-a b c (B) 3,2,1===-a b c (C) 3,2,1=-==a b c (D) 3,2,1===a b c【答案】(A )【分析】此题考查二阶常系数非齐次线性微分方程的反问题——已知解来确定微分方程的系数,此类题有两种解法,一种是将特解代入原方程,然后比较等式两边的系数可得待估系数值,另一种是根据二阶线性微分方程解的性质和结构来求解,也就是下面演示的解法. 【解析】由题意可知,212xe 、为二阶常系数齐次微分方程0y ay by '''++=的解,所以2,1为特征方程20r ar b ++=的根,从而(12)3a =-+=-,122b =⨯=,从而原方程变为32x y y y ce '''-+=,再将特解x y xe =代入得1c =-.故选(A )(3) 若级数条件收敛,则 =x 3=x 依次为幂级数的 ( )(A) 收敛点,收敛点(B) 收敛点,发散点 (C) 发散点,收敛点 (D) 发散点,发散点 【答案】(B )【分析】此题考查幂级数收敛半径、收敛区间,幂级数的性质。
2015年考研数学一真题及答案解析
2015年全国硕士研究生入学统一考试数学(一)试题一、选择题:18小题,每小题4分,共32分。
下列每题给出的四个选项中,只有一个选项符合题目要求的,请将所选项前的字母填在答题纸指定位置上。
(1)设函数()f x 在(),-∞+∞内连续,其中二阶导数()''f x 的图形如图所示,则曲线()=y f x 的拐点的个数为 ( )(A) 0 (B) 1 (C) 2 (D) 3【答案】(C )【解析】拐点出现在二阶导数等于0,或二阶导数不存在的点,并且在这点的左右两侧二阶导函数异号。
因此,由()f x ''的图形可得,曲线()y f x =存在两个拐点.故选(C ).(2)设211()23=+-x x y e x e 是二阶常系数非齐次线性微分方程'''++=xy ay by ce 的一个特解,则 ( )(A) 3,2,1=-==-a b c (B) 3,2,1===-a b c (C) 3,2,1=-==a b c (D) 3,2,1===a b c【答案】(A )【分析】此题考查二阶常系数非齐次线性微分方程的反问题——已知解来确定微分方程的系数,此类题有两种解法,一种是将特解代入原方程,然后比较等式两边的系数可得待估系数值,另一种是根据二阶线性微分方程解的性质和结构来求解,也就是下面演示的解法.【解析】由题意可知,212x e 、13xe -为二阶常系数齐次微分方程0y ay by '''++=的解,所以2,1为特征方程20r ar b ++=的根,从而(12)3a =-+=-,122b =⨯=,从而原方程变为32x y y y ce '''-+=,再将特解x y xe =代入得1c =-.故选(A )(3) 若级数1∞=∑nn a条件收敛,则 3=x 与3=x 依次为幂级数1(1)∞=-∑nnn na x 的 ( )(A) 收敛点,收敛点 (B) 收敛点,发散点 (C) 发散点,收敛点 (D) 发散点,发散点 【答案】(B )【分析】此题考查幂级数收敛半径、收敛区间,幂级数的性质。
2015年考研数学一真题及答案
【答案】 2n1 2
【考点】行列式的计算 【难易度】★★★ 【详解】按第一行展开得
2n1 2
14、设二维随机变量 ( X ,Y ) 服从正态分布 N (1, 0,1,1, 0) ,则 P( XY Y 0)
.
1
【答案】
2
【考点】 【难易度】★★
【详解】(X ,Y ) ~ N(1, 0,1,1, 0) , X ~ N (1,1),Y ~ N (0,1), 且 X ,Y 独立
x
a
x
x2 2
x3 3
x3
bx
x
x3 3!
x3
1
a
x
a 2
b
x2
a 3
x3
x3
f (x)与g(x) kx3 是等价无穷小
1+a 0
a 2
b
0
a k 3
a 1
b
1 2
k
1 3
16、(本题满分 10 分)
设函数在 f (x) 定义域 I 上的导数大于零,若对任意的 x0 I ,曲线 y f (x) 在点 (x0, f (x0 )) 处
【答案】(A) 【考点】二次型 【难易度】★★
2 0 0
【详解】由 x Py ,故
f
xT Ax
yT
(PT
AP ) y
2 y 12
y
2 2
y
2 3
且:
PT
AP
0
1
0
0 0 1
3
1 0 0
2 0 0
Q P 0 0 1 PC,Q T AQ C T (P T AP)C 0 1 0
0 1 0
已知函数 f (x, y) x y xy ,曲线 C : x 2 y 2 xy 3 ,求 f (x, y) 在曲线 C 上的最大方向
2015年考研数学(二)真题及答案详解
2015年全国硕士研究生入学统一考试数学(二)试题解析一、选择题:1 8小题,每小题4分,共32分.下列每题给出的四个选项中,只有一个选项符合题目要求的,请将所选项前的字母填在答题纸...指定位置上. (1) 下列反常积分收敛的是 ( )(A)2+∞⎰(B) 2ln x dx x+∞⎰(C)21ln dxx x +∞⎰(D) 2x x dx e+∞⎰【答案】(D) 【解析】(1)xx x dx x e e-=-+⎰,则2222(1)3lim (1)3xx x x x dx x e e x e e e +∞+∞----→+∞=-+=-+=⎰.(2) 函数()2sin lim(1)x tt t f x x→=+在(,)-∞+∞内( )(A) 连续 (B) 有可去间断点 (C) 有跳跃间断点 (D) 有无穷间断点 【答案】(B)【解析】220sin lim 0sin ()lim(1)t x t x x t x tt t f x e e x→→=+==,0x ≠,故()f x 有可去间断点0x =. (3) 设函数()1cos ,00,0x x x f x x α⎧>⎪=⎨⎪≤⎩(0,0)αβ>>,若()'f x 在0x =处连续则:( ) (A)0αβ-> (B)01αβ<-≤ (C)2αβ-> (D)02αβ<-≤ 【答案】(A)【解析】0x <时,()0f x '=()00f -'=()1001cos10lim lim cosx x x x f x x x ααβ++-+→→-'== 0x >时,()()()11111cos1sin f x x x x x x ααβββαβ-+'=+-- 1111cossin x x x xααβββαβ---=+()f x '在0x =处连续则:()()10100lim cos 0x f f x xαβ+--+→''===得10α-> ()()++1100110lim =lim cos sin =0x x f f x x x x x ααβββαβ---→→⎛⎫''=+ ⎪⎝⎭得:10αβ-->,答案选择A(4)设函数()f x 在(),-∞+∞内连续,其中二阶导数()''f x 的图形如图所示,则曲线()=y f x 的拐点的个数为( )(A) 0 (B) 1 (C) 2 (D) 3 【答案】(C)【解析】根据图像观察存在两点,二阶导数变号.则拐点个数为2个.(5) 设函数(),f u v 满足22,y f x y x y ⎛⎫+=- ⎪⎝⎭ ,则11u v fu==∂∂与11u v f v==∂∂ 依次是 ( )(A)1,02 (B) 10,2 (C) 1,02- (D) 10,2-【答案】(D)【解析】此题考查二元复合函数偏导的求解. 令,y u x y v x =+=,则,11u uv x y v v ==++,从而22(,)y f x y x y x+=-变为222(1)(,)111u uv u v f u v v v v -⎛⎫⎛⎫=-= ⎪ ⎪+++⎝⎭⎝⎭.故222(1)2,1(1)f u v f u u v v v ∂-∂==-∂+∂+, 因而111110,2u u v v ff uv ====∂∂==-∂∂.故选(D ). (6)设D 是第一象限由曲线21xy =,41xy =与直线y x =,y =围成的平面区域,函数(),f x y 在D 上连续,则(),Df x y dxdy =⎰⎰ ( )(A)()13sin2142sin2cos ,sin d f r r rdr πθπθθθθ⎰⎰(B)()34cos ,sin d f r r rdr ππθθθ⎰ (C)()13sin 2142sin 2cos ,sin d f r r drπθπθθθθ⎰⎰(D)()34cos ,sin d f r r dr ππθθθ⎰【答案】(B)【解析】根据图可得,在极坐标系下计算该二重积分的积分区域为(,)43D r r ππθθ⎧⎫=≤≤≤≤⎨⎩所以34(,)(cos ,sin )Df x y dxdy d f r r rdr ππθθθ=⎰⎰⎰故选B.(7) 设矩阵21111214a a ⎛⎫ ⎪= ⎪ ⎪⎝⎭A ,21d d ⎛⎫ ⎪ ⎪= ⎪ ⎪⎝⎭b .若集合}{1,2Ω=,则线性方程组=Ax b 有无穷多解的充分必要条件为 ( )(A) ,a d ∉Ω∉Ω (B) ,a d ∉Ω∈Ω (C) ,a d ∈Ω∉Ω (D) ,a d ∈Ω∈Ω 【答案】(D)【解析】2211111111(,)1201111400(1)(2)(1)(2)A b ad a d a d a a d d ⎛⎫⎛⎫⎪ ⎪=→-- ⎪ ⎪ ⎪ ⎪----⎝⎭⎝⎭,由()(,)3r A r A b =<,故1a =或2a =,同时1d =或2d =.故选(D )(8) 设二次型()123,,f x x x 在正交变换=x Py 下的标准形为2221232y y y +-,其中123(,,)=P e e e ,若132(,,)=-Q e e e 则123(,,)f x x x =在正交变换=x Qy 下的标准形为( )(A)2221232y y y -+ (B) 2221232y y y +-(C) 2221232y y y -- (D) 2221232y y y ++【答案】(A)【解析】由x Py =,故222123()2T T T f x Ax y P AP y y y y ===+-. 且200010001TP AP ⎛⎫⎪= ⎪ ⎪-⎝⎭.由已知可得100001010Q P PC ⎛⎫⎪== ⎪ ⎪-⎝⎭故200()010001T T TQ AQ C P AP C ⎛⎫⎪==- ⎪ ⎪⎝⎭所以222123()2T T T f x Ax y Q AQ y y y y ===-+.选(A ) 二、填空题:9 14小题,每小题4分,共24分.请将答案写在答题纸...指定位置上. (9) 3arctan 3x t y t t=⎧⎨=+⎩ 则 212t d y dx ==【答案】48【解析】 2222333(1)11dy dy t dt t dx dxdt t +===++ 2222[3(1)]d y d t dx dx=+=222222[3(1)]12(1)12(1)11d t t t dt t t dx dt t ++==++ 22148t d ydx ==. (10)函数2()2x f x x =⋅在0x =处的n 阶导数(0)nf =_________ 【答案】()()21ln 2n n n --【解析】根据莱布尼茨公式得:()()()()()(2)222(1)0222ln 2(1)ln 22n n n n x n x n n f C n n ---=-===- (11) 设()f x 连续,()()20x x x f t dt ϕ=⎰,若()()11,15ϕϕ'==,则()1f =【答案】2【解析】 已知2()()x x x f t dt ϕ=⎰,求导得2220()()2()x x f t dt x f x ϕ'=+⎰,故有1(1)()1,f t dt ϕ==⎰(1)12(1)5,f ϕ'=+=则(1)2f =.(12)设函数()y y x =是微分方程'''20y y y +-=的解,且在0x =处()y x 取得极值3,则()y x = .【答案】22x x e e -+【解析】由题意知:()03y =,()00y '=,由特征方程:220λλ+-=解得121,2λλ==- 所以微分方程的通解为:212x x y C e C e -=+代入()03y =,()00y '=解得:12C =21C = 解得:22xxy e e-=+(13)若函数(),Z z x y =由方程231x y ze xyz +++=确定,则()0,0dz = .【答案】()1d 2d 3x y -+ 【解析】当0,0x y ==时0z =,则对该式两边求偏导可得2323(3)x y z x y z ze xy yz e x++++∂+=--∂ 2323(3)2x y z x y z ze xy xz e y++++∂+=--∂.将(0,0,0)点值代入即有 12,.(0,0)(0,0)33z z x y ∂∂=-=-∂∂则可得()(0,0)121|d 2d .333dz dx dy x y =--=-+ (14) 若3阶矩阵A 的特征值为2,2,1-,2B A A E =-+,其中E 为3阶单位阵,则行列式B = .【答案】21【解析】A 的所有特征值为2,2,1.-B 的所有特征值为3,7,1. 所以||37121B =⨯⨯=.三、解答题:15~23小题,共94分.请将解答写在答题纸...指定位置上.解答应写出文字说明、证明过程或演算步骤. (15) (本题满分10分)设函数()ln(1)sin f x x a x bx x =+++,3()g x kx =.若()f x 与()g x 在0x →时是等价无穷小,求,,a b k 的值.【答案】111,,32a kb =-=-=- 【解析】 方法一:因为233ln(1)()23x x x x o x +=-++,33sin ()3!x x x o x =-+, 那么,23333000(1)()()()ln(1)sin 231lim lim lim ()x x x a aa xb x x o x f x x a x bx x g x kx kx→→→++-+++++===, 可得:100213a ab ak⎧⎪+=⎪⎪-=⎨⎪⎪=⎪⎩,所以,11213a b k ⎧⎪=-⎪⎪=-⎨⎪⎪=-⎪⎩.方法二: 由题意得300sin )1ln(lim )()(lim1kx xbx x a x x g x f x x +++==→→203cos sin 11limkx x bx x b x ax ++++=→由分母03lim 2=→kx x ,得分子)cos sin 11(lim 0x bx x b xax ++++→0)1(lim 0=+=→a x ,求得c ;于是)()(lim10x g x f x →=23cos sin 111lim kx x bx x b x x +++-=→)(x kx xx bx x x b x x +++++=→13cos )1(sin )1(lim20 203c o s )1(s i n )1(lim kx xx bx x x b x x ++++=→kxxx bx x bx x x b x x b x b x 6sin )1(cos cos )1(cos )1(sin 1lim0+-++++++=→由分母06lim 0=→kx x ,得分子]sin )1(cos cos )1(2sin 1[lim 0x x bx x bx x x b x b x +-++++→0)cos 21(lim 0=+=→x b x ,求得21-=b ; 进一步,b 值代入原式)()(lim 10x g x f x →=kxx x x x x x x x x 6sin )1(21cos 21cos )1(sin 211lim0++-+--=→ kxx x x x x x x x x x x x x x 6cos )1(21sin 21sin )1(21sin 21cos 21sin )1(cos cos 21lim 0++++++-++--=→k621-=,求得.31-=k(16) (本题满分10分)设A>0,D 是由曲线段sin (0)2y A x x π=≤≤及直线0y =,2x π=所围成的平面区域,1V ,2V 分别表示D 绕x 轴与绕y 轴旋转成旋转体的体积,若12V V =,求A 的值.【答案】8π【解析】由旋转体的体积公式,得dx x f ⎰=2021)(V ππdx x A ⎰=202)sin (ππdx x A⎰-=20222cos 1ππ422A π=dx x xf ⎰=22)(2V ππA x d x A -πππ2c o s 220==⎰由题,V V 21=求得.8A π=(17) (本题满分11分)已知函数(,)f x y 满足"(,)2(1)x xy f x y y e =+,'(,0)(1)xx f x x e =+,2(0,)2f y y y =+,求 (,)f x y 的极值. 【答案】极小值(0,1)1f -=-【解析】xxye y y xf )1(2),(+=''两边对y 积分,得 )()21(2),(2x e y y y x f x x ϕ++=')()2(2x e y y x ϕ++=, 故x x e x x x f )1()()0,(+=='ϕ, 求得)1()(+=x e x x ϕ,故)1()2(),(2x e e y y y x f x x x +++=',两边关于x 积分,得⎰+++=dx x e e y y y x f x x )1()2(),(2⎰+++=xxde x e y y )1()2(2 ⎰-+++=dx e e x e y y xxx )1()2(2 C )1()2(2+-+++=x x x e e x e y y C )2(2+++=x x xe e y y由y y y y y f 2C 2),0(22+=++=,求得.0=C 所以x x xe e y y y x f ++=)2(),(2.令⎪⎩⎪⎨⎧=+='=+++='0)22(0)2(2xy xx x x e y f xe e e y y f ,求得⎩⎨⎧-==10y x . 又x x x xxxe e e y y f +++=''2)2(2, x xye yf )1(2+='',xyy e f 2='', 当1,0-==y x 时,(0,1)1,xxA f ''=-=,0)1,0(B =-''=xy f 2)1,0(=-''=yy fC , 20,AC B ->(0,1)1f -=-为极小值.(18) (本题满分10分) 计算二重积分()Dx x y dxdy +⎰⎰,其中{}222(,)2,D x y x y y x =+≤≥【答案】245π-【解析】2()DDx x y dxdy x dxdy +=⎰⎰⎰⎰21202xdx dy =⎰12202)x x dx =⎰12240022222sin 2cos 55x t xt tdt π=--⎰⎰22242002222sin 2sin .5545u t tdt udu πππ==-=-=-⎰⎰(19)(本题满分 11 分) 已知函数()21Xf x =+⎰⎰,求()f x 零点的个数?【答案】2个【解析】()21)f x x '=- 令()0f x '=,得驻点为12x =, 在1(,)2-∞,()f x 单调递减,在1(,)2+∞,()f x 单调递增 故1()2f 为唯一的极小值,也是最小值.而112241()2f =+=-⎰⎰⎰1224=--⎰⎰⎰在1(,1)2故0-<从而有1()02f <1lim ()lim[]x x x f x →-∞→-∞=+=+∞⎰⎰22111lim ()lim[]lim[]x x xx x x f x →+∞→+∞→+∞=+=-⎰⎰⎰⎰考虑2lim lim x x x ==+∞,所以lim ()x f x →+∞=+∞.所以函数()f x 在1(,)2-∞及1(,)2+∞上各有一个零点,所以零点个数为2. (20) (本题满分10分)已知高温物体置于低温介质中,任一时刻该物体温度对时间的变化率与该时刻物体和介质的温差成正比,现将一初始温度为120C ︒的物体在20C ︒的恒温介质中冷却,30min后该物体降至30C ︒,若要将该物体的温度继续降至21C ︒,还需冷却多长时间? 【答案】30min【解析】设t 时刻物体温度为()x t ,比例常数为(0)k >,介质温度为m ,则()dxk x m dt=--,从而()kt x t Ce m -=+, (0)120,20x m ==,所以100C =,即()10020kt x t e -=+又1()30,2x =所以2ln10k =,所以11()20100t x t -=+ 当21x =时,t =1,所以还需要冷却30min.(21) (本题满分10分)已知函数()f x 在区间[]+a ∞,上具有2阶导数,()0f a =,()0f x '>,()''0f x >,设b a >,曲线()y f x =在点()(),b f b 处的切线与x 轴的交点是()00x ,,证明0a x b <<.【证明】根据题意得点(,())b f b 处的切线方程为()()()y f b f b x b '-=-令0y =,得0()()f b x b f b =-' 因为(x)0f '>所以(x)f 单调递增,又因为(a)0f = 所以(b)0f >,又因为()0f b '>所以0()()f b x b b f b =-<' 又因为0()()f b x a b a f b -=--',而在区间(a,b )上应用拉格朗日中值定理有 (b)f(a)(),(a,b)f f b aξξ-'=∈-所以0()()()()()()()()()()()f b f b f b f b f x a b a f b f b f f b f b f ξξξ''--=--=-=''''' 因为(x)0f ''>所以(x)f '单调递增 所以()()f b f ξ''>所以00x a ->,即0x a >,所以0a x b <<,结论得证.(22) (本题满分 11 分)设矩阵101101a A a a ⎛⎫ ⎪=- ⎪ ⎪⎝⎭且3A O =.(1) 求a 的值;(2) 若矩阵X 满足22X XA AX AXA E --+=,E 为3阶单位阵,求X .【答案】2010,111211a X -⎛⎫ ⎪==-- ⎪ ⎪-⎝⎭【解析】 (I)323100100111100011a A O A a a a a a a a a=⇒=⇒-=--==⇒=- (II)由题意知()()()()()()()()()222211122212X XA AX AXA E X E A AX E A E E A X E AE X E A E A E A E A X E A A ------+=⇒---=⎡⎤⇒--=⇒=--=--⎣⎦⇒=-- 2011111112E A A -⎛⎫ ⎪--=- ⎪ ⎪--⎝⎭,011100111010111010011100112001112001----⎛⎫⎛⎫ ⎪ ⎪-→- ⎪ ⎪ ⎪ ⎪----⎝⎭⎝⎭M M M M M M111010111010011100011100021011001211------⎛⎫⎛⎫ ⎪ ⎪→--→-- ⎪ ⎪ ⎪ ⎪-----⎝⎭⎝⎭M M M M M M110201100312010111010111001211001211---⎛⎫⎛⎫ ⎪ ⎪→-→- ⎪ ⎪ ⎪ ⎪--⎝⎭⎝⎭M M M M M M312111211X -⎛⎫ ⎪∴=- ⎪ ⎪-⎝⎭(23) (本题满分11 分)设矩阵02313312A a -⎛⎫ ⎪=-- ⎪ ⎪-⎝⎭相似于矩阵12000031B b -⎛⎫ ⎪= ⎪ ⎪⎝⎭.(1)求,a b 的值;(2)求可逆矩阵P ,使1P AP -为对角阵.【答案】(1)4,5a b ==;(2)231101011P --⎛⎫ ⎪=- ⎪ ⎪⎝⎭【解析】(I)~()()311A B tr A tr B a b ⇒=⇒+=++0231201330012031--=⇒--=-A B ba 14235-=-=⎧⎧∴⇒⎨⎨-==⎩⎩a b a a b b (II)023100123133010123123001123A E C ---⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪=--=+--=+ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪--⎝⎭⎝⎭⎝⎭ ()123112*********---⎛⎫⎛⎫ ⎪ ⎪=--=-- ⎪ ⎪ ⎪ ⎪-⎝⎭⎝⎭CC 的特征值1230,4λλλ===0λ=时(0)0-=E C x 的基础解系为12(2,1,0);(3,0,1)ξξ==-T T 5λ=时(4)0-=E C x 的基础解系为3(1,1,1)ξ=--T A 的特征值1:1,1,5λλ=+A C令123231(,,)101011ξξξ--⎛⎫ ⎪==- ⎪ ⎪⎝⎭P ,1115-⎛⎫ ⎪∴= ⎪⎪⎝⎭P AP文档内容由金程考研网整理发布。