高数中的重要定理与公式及其证明(一)

合集下载

高数公式(精简版)

高数公式(精简版)

高数公式集萃一、极限重要公式(1)0sin lim 1x xx→= (2)()10lim 1x x x e →+= (3))1n a o >=(4)1n = (5)lim arctan 2x x π→∞=(6)lim tan 2x arc x π→−∞=−(7) (8)lim arc cot 0x x →∞=lim arc cot x x π→−∞= (9)lim 0xx e →−∞=(10) (11)lim x x e →+∞=∞0lim 1xx x +→= 二、常用等价无穷小关系(0x →)(1)sin x x (2)tan x x (3)arcsin x x (4)arctan x x (5)211cos 2x x − (6)()ln 1x x + (7) (8) (9)1x e − x a 1ln x a x − ()11x x ∂+−∂三、导数的四则运算法则(1) (2)()u v u v ′′±=±′()uv u v uv ′′′=+ (3)2u u v u v v ′′′−⎛⎞=⎜⎟⎝⎠v 四、基本导数公式⑴() ⑵0c ′=1x xμμμ−= ⑶()sin cos x x ′=⑷()cos sin x x ′=− ⑸()2tan sec x x ′= ⑹()2cot csc x x ′=− x ⑼()xxe ′⑺()sec sec tan x x ′=⋅x ⑻()csc csc cot x x ′=−⋅e=⑽() ⑾()ln xxaa′=a 1ln x x ′= ⑿()1log ln x a x a′=⒀()arcsin x ′=⒁()arccos x ′= ⒂()21arctan 1x x ′=+ ⒃()21arc cot 1x x′=−+(17)′=五、微分运算法则⑴ ⑵ ⑶()d u v du dv ±=±()d cu cdu =()d uv vdu udv =+ ⑷2u vdu udvd v v −⎛⎞=⎜⎟⎝⎠六、微分公式与微分运算法则⑴ ⑵ ⑶()0d c =()1d xxdx μμμ−=()sin cos d x xd =x x x⑷ ⑸ ⑹()cos sin d x xd =−()2tan sec d x xd =()2cot csc d x xd =−x x x ⑺ ⑻ ⑼()sec sec tan d x x xd =⋅()csc csc cot d x x xd =−⋅()xxd e e dx =⑽ ⑾()ln x x d a a adx =()1ln d x dx x =⑿()1log ln x a d dx x a=⒀()arcsin d x =⒁()arccos d x = ⒂()21arctan 1d x dx x =+ ⒃()21arc cot 1d x dx x =−+ 七、下列常用凑微分公式八、中值定理与导数应用:拉格朗日中值定理。

高等数学概念定理推论公式

高等数学概念定理推论公式

高等数学概念、定理、推论、公式※ 函数及图形·和的绝对值不大于各项绝对值的和; ·差的绝对值不小于各项绝对值的差; ·乘积的绝对值等于各项绝对值的乘积;·商的绝对值等于被除数及除数的绝对值的商。

·假设自变量x 在定义域X 内每获得一确定值时,函数只有一个确定值与之对应,这种函数叫单值函数;否那么就是多值函数。

·假设函数y=f(x)当x 改变符号时函数值也只改变符号,即F(-x)=-f(x),此函数叫奇函数,奇函数对称于原点;假设x 改变符号,函数值不变,即f(-x)=f(x),即为偶函数,偶函数对称于y 轴。

·反函数的图形与直接函数(原函数)的图形对称于直线y=x※ 数列的极限及函数的极限·假如数列收敛,必然是有界的; ·有界的数列不必然都是收敛的; ·无界数列必然是发散的。

·假如0lim ()x x f x A →=,而且A >0(或A <0),那么就存在着点x 0的某一邻域,当x 在该领域内,但x ≠x 0时,f(x)>0(或f(x )<0)。

·假如f(x)≥0(或f(x)≥0),而且0lim ()x x f x A →=,那么A ≥0(或A ≤0)。

·函数f(x)当x →x0时极限存在的充分必要前提是左右极限都存在且相等。

·假如函数()f x 为无穷大,那么1()f x 为无穷小;反之亦然(()f x ≠0)。

·具有极限的函数可表示为等于其极限的一个常数及无穷小的和;反之,假如函数可表示为常数及无穷小,那么该常数就是函数的极限。

·有限个无穷小的和(代数和)也是窥小。

·有界函数与无穷小的乘积是无穷小,(常数乘以无穷小为无穷小,有限个无穷小的积是无穷小)。

·以极限不为零的函数除无穷小所得的商是无穷小。

高数中的重要定理与公式及其证明

高数中的重要定理与公式及其证明

高数中的重要定理与公式及其证明(一)考研数学中最让考生头疼的当属证明题,而征服证明题的第一关就是教材上种类繁多的定理证明。

如果本着严谨的对待数学的态度,一切定理的推导过程都是应该掌握的。

但考研数学毕竟不是数学系的考试,很多时候要求没有那么高。

而有些定理的证明又过于复杂,硬要要求自己掌握的话很多时候可能是又费时又费力,最后还弄得自己一头雾水。

因此,在这方面可以有所取舍。

现将高数中需要掌握证明过程的公式定理总结如下。

这些证明过程,或是直接的考点,或是蕴含了重要的解题思想方法,在复习的初期,先掌握这些证明过程是必要的。

1)常用的极限0ln(1)lim 1x x x →+=,01lim 1x x e x →-=,01lim ln x x a a x →-=,0(1)1lim a x x a x →+-=,201cos 1lim 2x x x →-= 【点评】:这几个公式大家在计算极限的过程中都再熟悉不过了,但有没有人想过它们的由来呢?事实上,这几个公式都是两个重要极限1lim(1)xx x e →+=与0sin lim1x xx→=的推论,它们的推导过程中也蕴含了计算极限中一些很基本的方法技巧。

证明:0ln(1)lim 1x x x →+=:由极限10lim(1)x x x e →+=两边同时取对数即得0ln(1)lim 1x x x→+=。

01lim 1x x e x →-=:在等式0ln(1)lim 1x x x →+=中,令ln(1)x t +=,则1t x e =-。

由于极限过程是0x →,此时也有0t →,因此有0lim11t t te →=-。

极限的值与取极限的符号是无关的,因此我们可以吧式中的t 换成x ,再取倒数即得01lim1x x e x→-=。

01lim ln x x a a x →-=:利用对数恒等式得ln 0011lim lim x x a x x a e x x →→--=,再利用第二个极限可得ln ln 0011limln lim ln ln x a x a x x e e a a x x a →→--==。

高等数学常用公式与定理总结

高等数学常用公式与定理总结

高等数学常用公式与定理总结作为一门基础学科,高等数学在各个领域中发挥着重要的作用。

学习高等数学,掌握一些常用的公式与定理是非常必要的。

本文将对高等数学常用的公式与定理进行总结,以供读者参考和下载使用。

一、常用公式总结1. 三角函数公式- 正弦定理:在三角形ABC中,边长分别为a、b、c,对应的角为A、B、C,那么有:a/sinA = b/sinB = c/sinC- 余弦定理:在三角形ABC中,边长分别为a、b、c,对应的角为A、B、C,那么有:c^2 = a^2 + b^2 - 2abcosC- 正切公式:tan(A+B) = (tanA + tanB) / (1 - tanA*tanB)2. 导数与微分公式- 导数的链式法则:若y = f(u)和u = g(x)都可导,则复合函数y = f(g(x))的导数为:dy/dx = f'(g(x)) * g'(x)- 微分的乘法法则:若z = u * v,则dz = u * dv + v * du- 微分的复合法则:若z = f(u)且u = g(x)都可导,则复合函数z = f(g(x))的微分为:dz = f'(g(x)) * g'(x) * dx3. 级数公式- 幂级数:若幂级数∑(n=0,∞)an(x-a)^n的收敛半径为R,则在收敛区间内函数f(x)的表达式为:f(x) = ∑(n=0,∞)an(x-a)^n- 等比数列的和:如果|q| < 1,则等比数列∑(n=0,∞)aq^n的和为:S = a / (1 - q)二、常用定理总结1. 一元函数极值定理设函数f(x)在[a, b]上连续,在(a, b)内可导,且在(a, b)内具有极值,那么它的极值点必定在(a, b)内的某个驻点或者两个端点上。

2. 泰勒公式设函数f(x)在点a附近有直到n阶的连续导数,那么函数在点a处的泰勒展开式为:f(x) = f(a) + f'(a)(x-a) + f''(a)(x-a)^2/2! + ... + f^n(a)(x-a)^n/n! + Rn(x)3. 全微分定理设函数z = f(x, y)在点(x0, y0)的某一邻域内偏导数存在且连续,那么在点(x0, y0)处可微分,且有:δz = ∂f/∂x * δx + ∂f/∂y * δy三、总结与下载通过本文的总结,我们对高等数学的常用公式与定理进行了梳理。

大学高等数学定理公式共11页

大学高等数学定理公式共11页

大学高等数学定理公式共11页在大学学习中,高等数学是一门重要的学科,其中包含了许多重要的定理和公式。

本文将总结和介绍大学高等数学中的一些重要定理和公式,共有11页。

请注意,文章中不会列举具体的定理和公式内容,仅用文字和排版格式来呈现。

第一页:高等数学定理公式总结第二页:1.导数和微分让我们先从导数和微分开始。

导数是用于衡量函数在某一点上的变化率。

微分是导数的几何意义,表示函数在某一点上的局部线性近似。

第三页:2.极限和连续性极限是一个重要的概念,它描述了函数在某一点上无限接近某个特定值的行为。

连续性则描述了函数在一个区间上的无间断性。

第四页:3.积分和不定积分积分是求解函数下方某个区间内面积的过程,而不定积分则是对函数求解原函数的过程。

第五页:4.级数和收敛性级数是无穷多个数的和,而收敛性则用于判断级数是否有一个有限的和。

第六页:5.微分方程微分方程是描述变化率和未知函数之间关系的方程,是许多实际问题的数学描述工具。

第七页:6.向量和矩阵向量是有方向和大小的量,矩阵是一个二维数组。

它们在数学和物理中具有广泛的应用。

第八页:7.多元函数与偏导数多元函数是有多个自变量的函数,偏导数是多元函数对某个自变量的导数。

第九页:8.二重积分和三重积分二重积分用于求解平面上某个区域内的曲面面积,三重积分用于求解空间内某个区域的体积。

第十页:9.曲线积分和曲面积分曲线积分用于求解曲线上的某个量,曲面积分用于求解曲面上的某个量。

第十一页:10.傅里叶级数和傅里叶变换傅里叶级数将一个周期函数分解为一系列正弦和余弦函数的和,而傅里叶变换则将一个非周期函数分解为一系列复指数函数的积分。

第十二页:这就是高等数学中一些重要的定理和公式的总结。

通过对这些内容的学习与理解,我们可以更好地应用数学知识解决实际问题,并在大学数学课程中取得良好的成绩。

注意:以上内容仅为示例,实际的定理和公式请根据需要自行添加和修改。

同时,文章排版和格式请根据需要进行调整,确保文章整洁美观,语句通顺,表达流畅。

高等数学十大定理公式

高等数学十大定理公式

高等数学十大定理公式摘要:1.高等数学概述2.高等数学中的十大定理公式3.总结正文:【高等数学概述】高等数学是数学的一个重要分支,主要研究多元函数微分学、积分学、级数、常微分方程、线性代数等。

高等数学在工程、物理、化学等自然科学领域中具有广泛的应用,是这些学科的基础。

在高等数学的学习过程中,理解和掌握一些重要的定理和公式对于提高解题能力至关重要。

【高等数学中的十大定理公式】1.洛必达法则:求极限的一种方法,通过求导来解决极限问题。

2.泰勒公式:用多项式来表示函数的近似值,可以用来求解函数的值、导数和误差。

3.柯西中值定理:如果函数在闭区间上连续,在开区间内可导,那么在这个区间内至少存在一点,使得函数的值等于该点的导数。

4.罗尔定理:如果函数在闭区间上连续,在开区间内可导,并且在区间端点的函数值相等,那么在这个区间内至少存在一点,使得函数的导数等于0。

5.牛顿- 莱布尼茨公式:定积分与原函数的关系,可以用来求解定积分。

6.积分中值定理:如果函数在闭区间上连续,在开区间内可积,那么在这个区间内至少存在一点,使得函数的积分等于该点的平均值。

7.拉格朗日中值定理:如果函数在闭区间上连续,在开区间内可导,那么在这个区间内至少存在一点,使得函数的积分等于该点的导数与区间长度的乘积。

8.柯西- 施瓦茨不等式:求和的不等式,可以用来求解最值问题。

9.空间解析几何中的向量公式:用来求解向量的模、夹角和投影。

10.微分方程解法:一阶微分方程的解法,如分离变量法、常数变易法等。

【总结】高等数学中的十大定理公式是学习高等数学的重要基础,对于解决各类问题具有指导意义。

高数(一)微积分公式(重要)

高数(一)微积分公式(重要)

R(P)的导数
4.4 曲线的凹凸性和拐点 定理 1 如果 f(x)在[a,b]上连续,在(a,b)内具有二阶导数,若在(a,b)内 (1)f''(x)>0,则 f(x)在[a,b]上的图形是凹的; (2)f''(x)<0,则 f(x)在[a,b]上的图形是凸的。 曲线的拐点及其求法 1.定义 连续曲线上凹凸的分界点称为曲线的拐点。 2.拐点的求法 拐点只可能是二阶导数为零的点以及二阶导数不存在的点。 设函数 f(x)在 x0 的邻域内二阶可导且 f''(x0)=0 或者二阶不可导: (1)x0 两侧 f''(x)变号,点(x0,f(x0))即为拐点; (2)x0 两侧 f''(x)不变号,点(x0,f(x0))不是拐点。 4 3 例 2、求曲线 y=3x -4x +1 的拐点及凹凸的区间。 解:
特殊角的三角函数值
例 1.已知一个三角函数值,求其他的三角函数值。 (1)已知 tanx=3 求其他的三角函数值 斜边^2=a^2+b^2
Sinx=对/斜 cosx=邻/斜 tgX=对/邻 cotX=邻/对 sec x=1/cosx ①倒数关系:
②商的关系
③平方关系
两角和的正弦、余弦、正切公式
两角差的正弦、余弦、正切公式
关键:将其它类型未定式化为洛必达法则可解决的类型 1、0.∞型

步骤:
,或

3、

步骤: 一、单调性的判别法
用导数取得极限值后代入原极限对数 E
定理 设函数 y=f(x)在[a,b]上连续,在(a,b)内可导, (1)如果在(a,b)内 f'(x)>0,那么函数 y=f(x),在[a,b]上单调增加; (2)如果在(a,b)内 f'(x)<0,那么函数 y=f(x)在[a,b]上单调减少。 例 1、讨论函数 解: 的单调性。

2024年考研数学高等数学部分重要基本定理证明

2024年考研数学高等数学部分重要基本定理证明

数学高等数学部分重要基本定理证明(数学一)本文将对2024年考研数学高等数学部分的几个重要基本定理进行证明,包括连续函数的一致连续性、可导函数的连续性、可导函数的增量有界性以及闭区间上函数的连续性。

首先,我们来证明连续函数的一致连续性。

定义函数f(x)在区间[a,b]上连续,则对于任意ε>0,存在对应的δ>0,当,x1-x2,<δ时,有,f(x1)-f(x2),<ε成立。

要证明函数的一致连续性,即要证明对于任意ε>0,不论取如何小的δ,总存在对应的x1和x2,使得,f(x1)-f(x2),≥ε成立。

反证法:假设对于一些ε>0,不论取多小的δ,总存在对应的x1和x2,使得,f(x1)-f(x2),≥ε成立。

则对于这个ε>0,无论如何选择δ,总可以找到这样的x1和x2,使得,f(x1)-f(x2),≥ε成立。

由连续函数的定义可知,当,x1-x2,足够小时,有,f(x1)-f(x2),<ε成立。

这与我们的假设矛盾。

综上所述,连续函数的一致连续性成立。

接下来证明可导函数的连续性。

定义函数f(x)在区间[a,b]上可导,则对于任意x∈(a,b),f(x)在x处连续。

要证明函数的连续性,即对于任意ε>0,存在对应的δ>0,当,x-x0,<δ时,有,f(x)-f(x0),<ε成立。

根据可导函数的定义可知,当x足够接近x0时,有,f(x)-f(x0),<ε'成立,其中ε'是一个任意小的正实数。

取ε'=ε/2,则对于ε>0,存在对应的δ>0,当,x-x0,<δ时,有,f(x)-f(x0),<ε'=ε/2成立。

又由于f(x0)-f(x0)=0<ε/2成立,所以有,f(x)-f(x0),≤,f(x)-f(x0),+,f(x0)-f(x0),<ε/2+ε/2=ε成立。

综上所述,可导函数的连续性成立。

关于高等数学常见中值定理证明及应用

关于高等数学常见中值定理证明及应用

关于高等数学常见中值定理证明及应用集团标准化工作小组 [Q8QX9QT-X8QQB8Q8-NQ8QJ8-M8QMN]中值定理首先我们来看看几大定理:1、介值定理:设函数f(x)在闭区间[a,b]上连续,且在该区间的端点取不同的函数值f(a)=A及f(b)=B,那么对于A与B之间的任意一个数C,在开区间(a,b)内至少有一点ξ使得f(ξ)=C(a<ξ<b).Ps:c是介于A、B之间的,结论中的ξ取开区间。

介值定理的推论:设函数f(x)在闭区间[a,b]上连续,则f(x)在[a,b]上有最大值M,最小值m,若m≤C≤M,则必存在ξ∈[a,b], 使得f(ξ)=C。

(闭区间上的连续函数必取得介于最大值M 与最小值m之间的任何值。

此条推论运用较多)Ps:当题目中提到某个函数f(x),或者是它的几阶导函数在某个闭区间上连续,那么该函数或者其几阶导函数必可以在该闭区间上取最大值和最小值,那么就对于在最大值和最小值之间的任何一个值,必存在一个变量使得该值等于变量处函数值。

2、零点定理:设函数f(x)在闭区间[a,b]上连续,且f(a)与f(b)异号,即f(a).f(b)<0,那么在开区间内至少存在一点ξ使得f(ξ)=0.Ps:注意条件是闭区间连续,端点函数值异号,结论是开区间存在点使函数值为0.3、罗尔定理:如果函数f(x)满足:(1)、在闭区间[a,b]上连续;(2)、在开区间(a,b)内可导;(3)、在区间端点处函数值相等,即f(a)=f(b).那么在(a,b)内至少有一点ξ(<aξ<b),使得f`(x)=0;4、拉格朗日中值定理:如果函数f(x)满足:(1)、在闭区间[a,b]上连续;(2)、在开区间(a,b)内可导;那么在(a,b)内至少有一点ξ(<aξ<b),使得f(b)-f(a)=f`(ξ).(b-a).5、柯西中值定理:如果函数f(x)及g(x)满足(1)、在闭区间[a,b]上连续;(2)、在开区间(a,b)内可导;(3)、对任一x(a<x<b),g`(x)≠0,那么在(a,b)内至少存在一点ξ,使得Ps :对于罗尔定理、拉格朗日中值定理、柯西中值定理结论都是开开区间内取值。

高中数学重要公式定理证明方法

高中数学重要公式定理证明方法

高中数学重要公式定理证明方法高中数学定理证明应该怎么写呢?你认真写过高中数学定理证明吗?现在就跟着店铺一起来了解一下高中数学定理证明汇总吧。

高中数学定理证明模板一证明,已知a/sinA = b/sinB = c/sinC = 2R(1)a=2RsinA, b=2RsinB,c=2RsinC(a+b+c)/(sinA+sinB+sinC)=2R(sinA+sinB+sinC)/(sinA+sinB +sinC)=2R(2)(a-b-c)/(sinA-sinB-sinC)=2R(sinA-sinB-sinC)/(sinA-sinB-sinC)=2R(3)前2个代入后提取2R就出来了,后面3个是正弦定理已知的所以由(1)(2)(3)得到(a+b+c)/(sinA+sinB+sinC)=(a-b-c)/(sinA-sinB-sinC)=a/sinA = b/sinB = c/sinC = 2R高中数学定理证明模板二定理相交两圆的连心线垂直平分两圆的公共弦定理把圆分成n(n≥3):⑴依次连结各分点所得的多边形是这个圆的内接正n边形⑵经过各分点作圆的切线,以相邻切线的交点为顶点的多边形是这个圆的外切正n边形定理任何正多边形都有一个外接圆和一个内切圆,这两个圆是同心圆正n边形的每个内角都等于(n-2)×180°/n定理正n边形的半径和边心距把正n边形分成2n个全等的直角三角形正n边形的面积sn=pnrn/2p表示正n边形的周长正三角形面积√3a/4a表示边长如果在一个顶点周围有k个正n边形的角,由于这些角的和应为360°,因此k×(n-2)180°/n=360°化为(n-2)(k-2)=4弧长计算公式:l=nπr/180扇形面积公式:s扇形=nπr2/360=lr/2内公切线长=d-(r-r)外公切线长=d-(r+r)等腰三角形的两个底脚相等等腰三角形的顶角平分线、底边上的中线、底边上的高相互重合如果一个三角形的两个角相等,那么这两个角所对的边也相等三条边都相等的三角形叫做等边三角形高中数学定理证明模板三数学公式抛物线:y = ax *+ bx + c就是y等于ax 的平方加上 bx再加上 ca > 0时开口向上a < 0时开口向下c = 0时抛物线经过原点b = 0时抛物线对称轴为y轴还有顶点式y = a(x+h)* + k就是y等于a乘以(x+h)的平方+k-h是顶点坐标的xk是顶点坐标的y一般用于求最大值与最小值抛物线标准方程:y^2=2px它表示抛物线的焦点在x的正半轴上,焦点坐标为(p/2,0) 准线方程为x=-p/2由于抛物线的焦点可在任意半轴,故共有标准方程y^2=2px y^2=-2px x^2=2py x^2=-2py圆:体积=4/3(pi)(r^3)面积=(pi)(r^2)周长=2(pi)r圆的标准方程 (x-a)2+(y-b)2=r2 注:(a,b)是圆心坐标圆的一般方程 x2+y2+Dx+Ey+F=0 注:D2+E2-4F>0(一)椭圆周长计算公式椭圆周长公式:L=2πb+4(a-b)椭圆周长定理:椭圆的周长等于该椭圆短半轴长为半径的圆周长(2πb)加上四倍的该椭圆长半轴长(a)与短半轴长(b)的差。

考研数学重要定理性质及公式证明总结

考研数学重要定理性质及公式证明总结

考研数学重要定理、性质及公式证明总结1. 证明一元函数可微、可导及连续的关系 :(1) 函数y = f ( x )在点x 0处可微的充分必要条件是函数y = f ( x )在点x 0处可导,且当函数y = f (x )在点x 0处可微时,有dy = f '( x 0 ) ∆x = f '( x 0 ) d x ; (2) 如果函数y = f ( x )在点x 0处可导,则函数函数y = f ( x )在点x 0处必连续,反之不一定.证明:(1)参看同济教材七版上册111页; (2)参看同济教材七版上册82页.2. 证明费马定理 :设函数f ( x )在x = x 0处可导且取极值,则f '( x 0 ) =0. 证明:参看同济教材七版上册125页.3. 证明罗尔定理 :设f ( x )在[a , b ]上连续,在(a , b )内可导,且f (a ) = 证明:参看同济教材七版上册126页.4. 证明柯西中值定理 :f (b ),则至少存在一点ξ ∈(a ,b ), 使得f '(ξ ) =0. 设f ( x )、g ( x )在[a , b ]上连续, (a , b )内可导, 且g '( x ) ≠ 0,则∃ξ ∈(a , b ),使得f (b ) - f (a ) = f '(ξ ).证明:参看同济教材七版上册130页.5. 证明洛必达法则:设f ( x ), g ( x )在点x 0的某去心邻域内可导,且g '( x ) ≠ 0, 又满足:f '( x )f ( x )g (b ) - g (a )f '( x )g '(ξ )(1)lim f ( x ) = lim g ( x ) = 0(, 2)极限lim 存在或为∞;则lim = lim .x →x 0 x → x 0 x →x 0 g '( x ) x →x 0 g ( x ) x → x 0 g '( x ) 证明:参看同济教材七版上册133页.6. 证明函数单调性的充分判别法 :设f ( x )在[a , b ]上连续, 在(a , b )内可导,且f '( x ) > 0 (< 0), 则f ( x )在[a , b ]上单调增加(单调减少). 证明:参看同济教材七版上册144页.7. 证明曲线凹凸性的充分判别法 :设f ( x )在[a , b ]上连续, 在(a , b )内二阶可导,且f ''( x ) > 0 (< 0), 则f ( x )在[a , b ]上的图形是凹的(凸的). 证明:参看同济教材七版上册148页.8. 证明极值点的充分条件 :设f (x )在x = x 0处二阶可导, f '( x 0 ) = 0, 若f '( x 0 ) > (0 证明:参看同济教材七版上册155页.< 0),则x = x 0是极小(大)值点.a∆ → a 9. 证明拐点的必要条件及充分条件 :(1)设f ( x )在x = x 0处二阶可导,且点( x 0 , f ( x 0 ))是曲线f (x )的拐点,则f ''( x 0 ) = 0; (2)设f (x )在x = x 0处三阶可导, f ''( x 0 ) = 0, 若f ''( x 0 ) ≠ 0, 则点(x 0 , f ( x 0 ))是曲线f (x )的拐点. 证明:(1)设f ''( x 0 )∃ ⇒ f ( x )在x = x 0的某邻域可导,因( x 0 , f ( x 0 ))是曲线的拐点 ⇒ f ( x )在x = x 0的两侧凹凸性相反⇒ f '( x )在x = x 0的两侧单调性相反,又f '( x )在x = x 0连续 ⇒ x = x 0是f '( x )的极值点,对f '( x )使用费马定理, 得f ''( x 0 ) = 0.(2)f ''( x ) = lim f '( x ) - f '( x 0 ) = lim f '( x ) > 0或< 0 ⇒ f '( x )在x = x 两侧异号 0x → x 0 x - x x →x 0 x - x0 0 0⇒ ( x 0 , f ( x 0 ))是曲线f (x )的拐点.10. 证明积分中值定理 :设f ( x )在[a , b ]上连续,则至少存在一点ξ ∈(a , b ), 使得⎰b f ( x )dx =f (ξ )(b - a ). 证明:参看同济教材七版上册242页例6.11. 证明变限积分函数的连续性 :设f ( x )在[a , b ]上可积,则对∀x 0 ∈[a , b ], 有F ( x ) = xf (t )dt 在[a ,b ]上连续.证明:因f ( x )在[a , b ]上可积, 故f ( x )在[a , b ]上有界,则可设 f ( x ) ≤ M (x ∈[a , b ]).x +∆xx +∆x 又∀x , x + ∆x ∈[a , b ], 有 ∆F = F ( x + ∆x ) - F ( x ) = ⎰xf (t ) d t - ⎰x f (t )dt = ⎰xf (t )dtx +∆x x +∆x≤ ⎰xf (t ) d t ≤ ⎰xMdt = M ∆x ,因此,当x , x + ∆x ∈[a ,b ]时,lim ∆F = 0,即F ( x )在[a , b ]上连续.x 012. 证明牛顿 — 莱布尼茨公式:设F ( x )是连续函数f ( x )在区间[a , b ]上的一个原函数,则⎰bf ( x )dx = F (b ) - F (a ). 证明:参看同济教材七版上册240页.13. 证明二元函数可微的必要条件 :设z = f ( x , y )在点( x , y )处可微,则z = f ( x , y )在点( x , y )处可导,且z = f ( x , y )在点( x , y )处的 全微分dz = ∂z dx + ∂zdy .∂x ∂y证明: 参看同济教材七版下册73页.14. 证明二元函数可微的充分条件 :设z = f (x , y )的两个偏导数∂z , ∂z在点( x , y )处都连续,则z = f ( x , y )在点( x , y )处可微. ∂x ∂y证明: 参看同济教材七版下册74页.⎰x⎰L Pdx + Qdy = ⎪ ∑ ∞15. 证明比值判别法(数一数三):⎧⎪⎪ρ < 1 ⇒ ∑ n =1u n 收敛 ∞ u n +1 ⎪ ∞设∑u n 为正项级数, 设ρ = lim ,则⎨ ρ > 1 ⇒ ∑u n 发散n =1 n →∞ u n⎪⎪ρ = 1 ⇒ ∞ n =1u n 可能收敛也可能发散 ⎩证明: 参看同济教材七版下册262页.16.证明阿贝尔定理(数一数三):∞n =1 如果级数∑ a x n 当x = x ( x ≠ 0)时收敛,那么满足 x < x 的一切x 都使该幂级数绝对收敛;nn =0 ∞反之,如果级数∑ a x n 当x = x 时发散,那么满足 x > x 的一切x 都使该幂级数发散.nn =0证明: 参看同济教材七版下册274页.17. 证明格林公式(数一):设区域D 由分段光滑的闭曲线L 围成,函数P ( x , y )及Q ( x , y )在D 上具有一阶连续偏导数,则 ⎛ ∂Q - ∂P ⎫⎰⎰ ∂x ∂y ⎪dxdy . D ⎝ ⎭证明: 参看同济教材七版下册205页.18. 证明曲线积分与路径无关问题(数一):我们已知:设P ( x , y ), Q ( x , y )在区域D 上连续,则曲线积分⎰LPdx + Qdy 在D 内与路径无关⇔ 对区域D 内∀ 分段光滑闭曲线C , 有⎰CPdx + Qdy = 0.证明: 设区域D 是一个单连通区域,函数P ( x , y ), Q ( x , y )在D 上具有一阶连续偏导数,则曲线积分⎰ Pdx + Qdy 在D 内与路径无关 ⇔ ∂Q = ∂P(( x , y )∈ D ).L证明: 参看同济教材七版下册209页.∂x ∂y 证明: 设区域D 是一个单连通区域,函数P ( x , y ), Q ( x , y )在D 上具有一阶连续偏导数,则Pdx + Qdy 在D 内是某一函数u ( x , y )的全微分⇔ ∂Q = ∂P(( x , y )∈ D ).∂x ∂y (这里的u ( x , y )也称为Pdx + Q dy 的一个原函数) 证明: 参看同济教材七版下册211页.。

高数定理大解析必背

高数定理大解析必背

高等数学定理大解析-考研必捋版考研大纲要求范围+高数重点知识第一章函数与极限1、函数的有界性在定义域内有fx≥K1则函数fx在定义域上有下界,K1为下界;如果有fx≤K2,则有上界,K2称为上界;函数fx在定义域内有界的充分必要条件是在定义域内既有上界又有下界;2、函数的单调性、奇偶性、周期性指最小正周期3、数列的极限定理极限的唯一性数列{xn}不能同时收敛于两个不同的极限;定理收敛数列的有界性如果数列{xn}收敛,那么数列{xn}一定有界; 如果数列{xn}无界,那么数列{xn}一定发散;但如果数列{xn}有界,却不能断定数列{xn}一定收敛,例如数列1,-1,1,-1,-1n+1…该数列有界但是发散,所以数列有界是数列收敛的必要条件而不是充分条件;定理收敛数列与其子数列的关系如果数列{xn}收敛于a,那么它的任一子数列也收敛于a;●如果数列{xn}有两个子数列收敛于不同的极限,那么数列{xn}是发散的,如数列1,-1,1,-1,-1n+1…中子数列{x2k-1}收敛于1,{xnk}收敛于-1,{xn}却是发散的;同时一个发散的数列的子数列也有可能是收敛的;4、函数的极限函数极限的定义中0<|x-x0|表示x≠x0,所以x→x0时fx有没有极限与fx在点x0有没有定义无关;定理极限的局部保号性如果limx→x0时fx=A,而且A>0或A<0,就存在着点那么x0的某一去心邻域,当x在该邻域内时就有fx>0或fx>0,反之也成立;●函数fx当x→x0时极限存在的充分必要条件是左极限右极限各自存在并且相等,即fx0-0=fx0+0,若不相等则limfx不存在;●一般的说,如果limx→∞fx=c,则直线y=c是函数y=fx的图形水平渐近线;如果limx→x0fx=∞,则直线x=x0是函数y=fx图形的铅直渐近线;5、极限运算法则定理有限个无穷小之和也是无穷小;有界函数与无穷小的乘积是无穷小;常数与无穷小的乘积是无穷小;有限个无穷小的乘积也是无穷小;定理如果F1x≥F2x,而limF1x=a,limF2x=b,那么a≥b;6、极限存在准则●两个重要极限limx→0sinx/x=1;limx→∞1+1/xx=1;●夹逼准则如果数列{xn}、{yn}、{zn}满足下列条件:yn≤xn≤zn 且limyn=a,limzn=a,那么limxn=a,对于函数该准则也成立;●单调有界数列必有极限;7、函数的连续性●设函数y=fx在点x0的某一邻域内有定义,如果函数fx当x→x0时的极限存在,且等于它在点x0处的函数值fx0,即limx→x0fx=fx0,那么就称函数fx在点x0处连续;●不连续情形:1、在点x=x0没有定义;2、虽在x=x0有定义但lim x→x0fx不存在;3、虽在x=x0有定义且limx→x0fx存在,但limx →x0fx≠fx0时则称函数在x0处不连续或间断;●如果x0是函数fx的间断点,但左极限及右极限都存在,则称x0为函数fx的第一类间断点左右极限相等者称可去间断点,不相等者称为跳跃间断点;非第一类间断点的任何间断点都称为第二类间断点无穷间断点和震荡间断点;●定理有限个在某点连续的函数的和、积、商分母不为0是个在该点连续的函数;●定理如果函数fx在区间Ix上单调增加或减少且连续,那么它的反函数x=fy在对应的区间Iy={y|y=fx,x∈Ix}上单调增加或减少且连续;反三角函数在他们的定义域内都是连续的;●定理最大值最小值定理在闭区间上连续的函数在该区间上一定有最大值和最小值;如果函数在开区间内连续或函数在闭区间上有间断点,那么函数在该区间上就不一定有最大值和最小值;●定理有界性定理在闭区间上连续的函数一定在该区间上有界,即m ≤fx≤M;●定理零点定理设函数fx在闭区间a,b上连续,且fa与fb异号即f a×fb<0,那么在开区间a,b内至少有函数fx的一个零点,即至少有一点ξa<ξ<b使fξ=0;●定理介值定理设函数fx在闭区间a,b上连续,且在这区间的端点处取不同的值fa=A,fb=B,那么对于A与B之间的任一数C,在开区间a, b内至少有一点ξ使fξ=C,a<ξ<b;●推论在闭区间上连续的函数必取得介于最大值M与最小值m之间的任何值;第二章导数与微分1、导数存在的充分必要条件●函数fx在点x0处可导的充分必要条件是在点x0处的左极限limh→-0fx0+h-fx0/h及右极限limh→+0fx0+h-fx0/h都存在且相等,即左导数f-′x0右导数f+′x0存在相等;2、函数fx在点x0处可导=>函数在该点处连续;函数fx在点x0处连续≠>在该点可导;即函数在某点连续是函数在该点可导的必要条件而不是充分条件;3、原函数可导则反函数也可导,且反函数的导数是原函数导数的倒数;4、函数fx在点x0处可微=>函数在该点处可导;函数fx在点x0处可微的充分必要条件是函数在该点处可导;第三章中值定理与导数的应用1、定理罗尔定理如果函数fx在闭区间a,b上连续,在开区间a,b内可导,且在区间端点的函数值相等,即fa=fb,那么在开区间a,b内至少有一点ξa<ξ<b,使的函数fx在该点的导数等于零:f’ξ=0;2、定理拉格朗日中值定理如果函数fx在闭区间a,b上连续,在开区间a,b内可导,那么在开区间a,b内至少有一点ξa<ξ<b,使的等式f b-fa=f’ξb-a成立即f’ξ=fb-fa/b-a;3、定理柯西中值定理如果函数fx及Fx在闭区间a,b上连续,在开区间a,b内可导,且F’x在a,b内的每一点处均不为零,那么在开区间a,b内至少有一点ξ,使的等式fb-fa/Fb-Fa=f’ξ/F’ξ成立;4、洛必达法则应用条件●只能用与未定型诸如0/0、∞/∞、0×∞、∞-∞、00、1∞、∞0等形式;5、函数单调性的判定法●设函数fx在闭区间a,b上连续,在开区间a,b内可导,那么:1如果在a,b内f’x>0,那么函数fx在a,b上单调增加;2如果在a,b内f’x<0,那么函数fx在a,b上单调减少;●如果函数在定义区间上连续,除去有限个导数不存在的点外导数存在且连续,那么只要用方程f’x=0的根及f’x不存在的点来划分函数fx的定义区间,就能保证f’x在各个部分区间内保持固定符号,因而函数fx在每个部分区间上单调;6、函数的极值●如果函数fx在区间a,b内有定义,x0是a,b内的一个点,如果存在着点x0的一个去心邻域,对于这去心邻域内的任何点x,fx<fx0均成立,就称fx0是函数fx的一个极大值;如果存在着点x0的一个去心邻域,对于这去心邻域内的任何点x,fx>fx0均成立,就称fx0是函数fx的一个极小值;●在函数取得极值处,曲线上的切线是水平的,但曲线上有水平曲线的地方,函数不一定取得极值,即可导函数的极值点必定是它的驻点导数为0的点,但函数的驻点却不一定是极值点;●定理函数取得极值的必要条件设函数fx在x0处可导,且在x0处取得极值,那么函数在x0的导数为零,即f’x0=0;●定理函数取得极值的第一种充分条件设函数fx在x0一个邻域内可导,且f’x0=0,那么:1如果当x取x0左侧临近的值时,f’x恒为正;当x去x0右侧临近的值时,f’x恒为负,那么函数fx在x0处取得极大值;2如果当x取x0左侧临近的值时,f’x恒为负;当x去x0右侧临近的值时,f’x恒为正,那么函数fx在x0处取得极小值;3如果当x取x0左右两侧临近的值时,f’x恒为正或恒为负,那么函数fx在x0处没有极值;●定理函数取得极值的第二种充分条件设函数fx在x0处具有二阶导数且f’x0=0,f’’x0≠0那么:1当f’’x0<0时,函数fx在x0处取得极大值;2当f’’x0>0时,函数fx在x0处取得极小值;●驻点有可能是极值点,不是驻点也有可能是极值点;7、函数的凹凸性及其判定设fx在区间Ix上连续,如果对任意两点x1,x2恒有fx1+x2/2<fx1+fx1/2,那么称fx在区间Ix上图形是凹的;如果恒有fx1+x2/2> fx1+fx1/2,那么称fx在区间Ix上图形是凸的;●定理设函数fx在闭区间a,b上连续,在开区间a,b内具有一阶和二阶导数,那么1若在a,b内f’’x>0,则fx在闭区间a,b上的图形是凹的;2若在a,b内f’’x<0,则fx在闭区间a,b上的图形是凸的;●判断曲线拐点凹凸分界点的步骤1求出f’’x;2令f’’x=0,解出这方程在区间a,b内的实根;3对于2中解出的每一个实根x0,检查f’’x在x0左右两侧邻近的符号,如果f’’x在x0左右两侧邻近分别保持一定的符号,那么当两侧的符号相反时,点x0,fx0是拐点,当两侧的符号相同时,点x0,fx0不是拐点;●在做函数图形的时候,如果函数有间断点或导数不存在的点,这些点也要作为分点;第四章不定积分1、原函数存在定理●定理如果函数fx在区间I上连续,那么在区间I上存在可导函数F x,使对任一x∈I都有F’x=fx;简单的说连续函数一定有原函数;●分部积分发如果被积函数是幂函数和正余弦或幂函数和指数函数的乘积,就可以考虑用分部积分法,并设幂函数和指数函数为u,这样用一次分部积分法就可以使幂函数的幂降低一次;如果被积函数是幂函数和对数函数或幂函数和反三角函数的乘积,就可设对数和反三角函数为u;2、对于初等函数来说,在其定义区间上,它的原函数一定存在,但原函数不一定都是初等函数;第五章定积分1、定积分解决的典型问题1曲边梯形的面积2变速直线运动的路程2、函数可积的充分条件●定理设fx在区间a,b上连续,则fx在区间a,b上可积,即连续=>可积;●定理设fx在区间a,b上有界,且只有有限个间断点,则fx在区间a, b上可积;3、定积分的若干重要性质●性质如果在区间a,b上fx≥0则∫abfxdx≥0;●推论如果在区间a,b上fx≤gx则∫abfxdx≤∫abgxdx;●推论|∫abfxdx|≤∫ab|fx|dx;●性质设M及m分别是函数fx在区间a,b上的最大值和最小值,则mb-a≤∫abfxdx≤Mb-a,该性质说明由被积函数在积分区间上的最大值及最小值可以估计积分值的大致范围;●性质定积分中值定理如果函数fx在区间a,b上连续,则在积分区间a,b上至少存在一个点ξ,使下式成立:∫abfxdx=fξb-a;4、关于广义积分设函数fx在区间a,b上除点ca<c<b外连续,而在点c的邻域内无界,如果两个广义积分∫acfxdx与∫cbfxdx都收敛,则定义∫abfxdx= ∫acfxdx+∫cbfxdx,否则只要其中一个发散就称广义积分∫abfxdx 发散;第六章定积分的应用1、求平面图形的面积曲线围成的面积●直角坐标系下含参数与不含参数●极坐标系下r,θ,x=rcosθ,y=rsinθ扇形面积公式S=R2θ/2●旋转体体积由连续曲线、直线及坐标轴所围成的面积绕坐标轴旋转而成且体积V=∫abπfx2dx,其中fx指曲线的方程●平行截面面积为已知的立体体积V=∫abAxdx,其中Ax为截面面积●功、水压力、引力●函数的平均值平均值y=1/b-a∫abfxdx第七章多元函数微分法及其应用1、多元函数极限存在的条件极限存在是指Px,y以任何方式趋于P0x0,y0时,函数都无限接近于A,如果Px,y以某一特殊方式,例如沿着一条定直线或定曲线趋于P0x0, y0时,即使函数无限接近某一确定值,我们还不能由此断定函数极限存在;反过来,如果当Px,y以不同方式趋于P0x0,y0时,函数趋于不同的值,那么就可以断定这函数的极限不存在;例如函数:fx,y={0xy/x^2+y^2x^2+y^2≠02、多元函数的连续性●定义设函数fx,y在开区域或闭区域D内有定义,P0x0,y0是D的内点或边界点且P0∈D,如果limx→x0,y→y0fx,y=fx0,y0则称fx,y在点P0x0,y0连续;●性质最大值和最小值定理在有界闭区域D上的多元连续函数,在D 上一定有最大值和最小值;●性质介值定理在有界闭区域D上的多元连续函数,如果在D上取得两个不同的函数值,则它在D上取得介于这两个值之间的任何值至少一次;3、多元函数的连续与可导如果一元函数在某点具有导数,则它在该点必定连续,但对于多元函数来说,即使各偏导数在某点都存在,也不能保证函数在该点连续;这是因为各偏导数存在只能保证点P沿着平行于坐标轴的方向趋于P0时,函数值fP趋于fP0,但不能保证点P按任何方式趋于P0时,函数值fP都趋于fP0;4、多元函数可微的必要条件一元函数在某点的导数存在是微分存在的充分必要条件,但多元函数各偏导数存在只是全微分存在的必要条件而不是充分条件,即可微=>可偏导;5、多元函数可微的充分条件定理充分条件如果函数z=fx,y的偏导数存在且在点x,y连续,则函数在该点可微分;6多元函数极值存在的必要、充分条件定理必要条件设函数z=fx,y在点x0,y0具有偏导数,且在点x0,y0处有极值,则它在该点的偏导数必为零;定理充分条件设函数z=fx,y在点x0,y0的某邻域内连续且有一阶及二阶连续偏导数,又fxx0,y0=0,fyx0,y0=0,令fxxx0,y0=0=A,fxyx0, y0=B,fyyx0,y0=C,则fx,y在点x0,y0处是否取得极值的条件如下:1AC-B2>0时具有极值,且当A<0时有极大值,当A>0时有极小值;2AC-B2<0时没有极值;3AC-B2=0时可能有也可能没有;7、多元函数极值存在的解法1解方程组fxx,y=0,fyx,y=0求的一切实数解,即可求得一切驻点; 2对于每一个驻点x0,y0,求出二阶偏导数的值A、B、C;3定出AC-B2的符号,按充分条件进行判定fx0,y0是否是极大值、极小值;注意:在考虑函数的极值问题时,除了考虑函数的驻点外,如果有偏导数不存在的点,那么对这些点也应当考虑在内;第八章二重积分1、二重积分的一些应用●曲顶柱体的体积●曲面的面积A=∫∫√1+f2xx,y+f2yx,ydσ●平面薄片的质量●平面薄片的重心坐标x=1/A∫∫xdσ,y=1/A∫∫ydσ;其中A=∫∫dσ为闭区域D的面积;●平面薄片的转动惯量Ix=∫∫y2ρx,ydσ,Iy=∫∫x2ρx,ydσ;其中ρx,y为在点x,y处的密度;●平面薄片对质点的引力FxFyFz2、二重积分存在的条件当fx,y在闭区域D上连续时,极限存在,故函数fx,y在D上的二重积分必定存在;3、二重积分的一些重要性质●性质如果在D上,fx,y≤ψx,y,则有不等式∫∫fx,ydxdy≤∫∫ψx,ydxdy,特殊地由于-|fx,y|≤fx,y≤|fx,y|又有不等式|∫∫fx,ydxdy|≤∫∫|fx,y|dxdy;●性质设M,m分别是fx,y在闭区域D上的最大值和最小值,σ是D的面积,则有mσ≤∫∫fx,ydσ≤Mσ;●性质二重积分的中值定理设函数fx,y在闭区域D上连续,σ是D的面积,则在D上至少存在一点ξ,η使得下式成立:∫∫fx,ydσ=fξ,ησ4、二重积分中标量在直角与极坐标系中的转换●把二重积分从直角坐标系换为极坐标系,只要把被积函数中的x,y 分别换成ycosθ、rsinθ,并把直角坐标系中的面积元素dxdy换成极坐标系中的面积元素rdrdθ;。

高数公式大全

高数公式大全

高数公式大全高等数学是一门涉及多个分支和概念的学科,其中包含了许多重要的公式和定理。

以下是一些高等数学中常用的公式和定理的详细内容:1. 极限与连续性:- 极限的定义:对于函数f(x),当x无限接近于某个值a时,如果f(x)的值无限接近于L,则称L为f(x)在x=a处的极限,记作lim(x→a)f(x)=L。

- 常用极限公式:- lim(x→a)(c) = c,其中c为常数。

- lim(x→a)(x^n) = a^n,其中n为正整数。

- lim(x→a)(sin(x)) = sin(a)。

- lim(x→a)(e^x) = e^a,其中e为自然对数的底数。

- lim(x→∞)(1/x) = 0。

- lim(x→0)(sin(x)/x) = 1。

2. 导数与微分:- 导数的定义:对于函数f(x),在某个点x=a处的导数表示函数在该点的变化率,记作f'(a)或df(x)/dx|_(x=a)。

- 常用导数公式:- (c)' = 0,其中c为常数。

- (x^n)' = nx^(n-1),其中n为正整数。

- (sin(x))' = cos(x)。

- (cos(x))' = -sin(x)。

- (e^x)' = e^x。

- (ln(x))' = 1/x。

- 微分的定义:对于函数f(x),在某个点x=a处的微分表示函数在该点的线性近似,记作df(x)。

- 常用微分公式:- df(x) = f'(x)dx。

3. 积分与定积分:- 不定积分的定义:对于函数f(x),其不定积分表示函数的原函数,记作∫f(x)dx。

- 常用不定积分公式:- ∫(c)dx = cx,其中c为常数。

- ∫(x^n)dx = (1/(n+1))x^(n+1),其中n不等于-1。

- ∫(sin(x))dx = -cos(x)。

- ∫(cos(x))dx = sin(x)。

- ∫(e^x)dx = e^x。

高数定理证明

高数定理证明

高数定理证明 1 极限与连续1.1 预备知识1.1.1 确界存在定理:若非空数集D ⊆R 有上(下)界,则D 必存在上(下)确界。

1.2数列极限1.2.1 唯一性:若数列{}n x 收敛,则{}n x 的极限是唯一的。

1.2.2 有界性:若数列{}n x 收敛,则{}n x 必有界。

1.2.3 保号性:若lim n n x A →∞=,则0A >,则N +∃∈Z ,使得当n N >时,有02n Ax >>。

1.2.4 归并性:数列{}n x 收敛于A 的充分必要条件是{}n x 的任一子列也收敛于A 。

1.2.5 设lim ,lim n n n n x A y B →∞→∞==,则:(1)lim()lim lim n n n n n n n x y x y A B →∞→∞→∞±=±=±;(2)lim()lim lim n n n n n n n x y x y A B →∞→∞→∞=⋅=;(3)lim limlim n nn n nn n x x A y y B →∞→∞→∞==(这里lim 0n n B y →∞=≠)。

1.2.6 夹逼准则:如果数列{}{}{},,n n n x y z 满足:N +∃∈Z ,使得当n N >时,有n n n y x z ≤≤,且lim lim n n n n y z A →∞→∞==,则lim n n x A →∞=。

1.2.7 单调有界原理:单调有界数列必有极限。

1.2.8 柯西收敛准则:数列{}n x 收敛的充分必要条件是:对0ε∀>,0N +∃∈Z ,只要0,m n N >时,就有m n x x ε-<。

或者说:对0ε∀>,0N +∃∈Z ,只要0n N >时,n p n x x ε+-<对所有的p +∈Z 成立。

1.3函数极限的性质和运算法则1.3.1 (极限唯一性)如果0lim ()x x f x →存在,则极限唯一。

高等数学公式定理整理

高等数学公式定理整理

高等数学公式定理整理1.01版本定理,公式整理仅用于参考,具体学习请多做题目以增进对知识的掌握。

蓝色为定理 红色为公式 三角函数恒等公式: 两角和差tan αanα·ta+tan βanβ)-(tan α=β)-tan(αtan αanα·ta-(1tan βa +(tan α=β)+tan(αcos αosα·s±sin αinα·c =β)±sin(αsin αinα·s +cos αosα·c =β)-cos(αβsin αsin βcos αcos )βαcos(∙-∙=+和差化积]2β)-(α]sin[2β)+(α-2sin[=cos β-cos α]2β)-(α]cos[2β)+(α2cos[=cos β+cos α]2β)-(α]sin[2β)+(α2cos[=sin β-sin α]2β)-(α]cos[2β)+(α2sin[=sin β+sin α积化和差β)]-cos(α-β)+[cos(α21-=sin αinα·s β)]-cos(α+β)+[cos(α21=cos αosα·c β)]-sin(α-β)+[sin(α21=cos αosα·s β)]-sin(α+β)+[sin(α21=sin αinα·c倍角公式(部分):很重要!αtan -1αtan 2=tan2αα2sin -1=1-α2cos =αsin -αcos =α2cos cot αo +(tan α2=2sin αsinα·=sin2α22222一、函数 函数的特性:1.有界性:假设函数在D上有定义,如果存在正数M,使得对于任何的x∈D都满足|f(x)|≤M。

则称f(x)是D的有界函数。

如果正数M不存在,则称这个函数是D上的无界函数。

2.单调性设f(x)的定义域为D,区间I D。

高数学公式和知识点笔记

高数学公式和知识点笔记

高数学公式和知识点笔记高等数学是一门重要的基础学科,包含了众多的公式和知识点。

以下是我为大家整理的一份较为全面的高数学公式和知识点笔记,希望能对大家的学习有所帮助。

一、函数与极限(一)函数函数的概念:设 x 和 y 是两个变量,D 是给定的数集,如果对于每个 x∈D,按照某种确定的对应关系 f,变量 y 都有唯一确定的值与之对应,则称 y 是 x 的函数,记作 y = f(x),x∈D。

函数的性质:1、单调性:若对于定义域内的任意 x₁< x₂,都有 f(x₁) < f(x₂)(或 f(x₁) > f(x₂)),则称函数 f(x)在该区间上单调递增(或单调递减)。

2、奇偶性:若对于定义域内的任意 x,都有 f(x) = f(x),则称函数f(x)为偶函数;若 f(x) = f(x),则称函数 f(x)为奇函数。

(二)极限极限的定义:设函数 f(x)在点 x₀的某一去心邻域内有定义,如果存在常数A,对于任意给定的正数ε(不论它多么小),总存在正数δ,使得当 x 满足 0 <|x x₀| <δ 时,对应的函数值 f(x)都满足|f(x) A|<ε,那么常数 A 就叫做函数 f(x)当x→x₀时的极限,记作lim(x→x₀) f(x) = A。

极限的运算:1、四则运算:若lim(x→x₀) f(x) = A,lim(x→x₀) g(x) = B,则lim(x→x₀) f(x) ± g(x) = A ± B;lim(x→x₀) f(x) × g(x) = A × B;lim(x→x₀) f(x) / g(x) = A / B(B ≠ 0)。

2、两个重要极限:lim(x→0) (sin x / x) = 1;lim(x→∞)(1 +1 / x)ⁿ = e(n 为常数)。

二、导数与微分(一)导数导数的定义:函数 y = f(x)在点 x₀处的导数 f'(x₀) =lim(Δx→0) f(x₀+Δx) f(x₀) /Δx。

考研数学:高数重要定理证明汇总

考研数学:高数重要定理证明汇总

考研数学:高数重要定理证明汇总高数定理证明之微分中值定理:这一部分内容比较丰富,包括费马引理、罗尔定理、拉格朗日定理、柯西定理和泰勒中值定理。

除泰勒中值定理外,其它定理要求会证。

费马引理的条件有两个:1.f'(x0)存在2.f(x0)为f(x)的极值,结论为f'(x0)=0。

考虑函数在一点的导数,用什么方法?自然想到导数定义。

我们可以按照导数定义写出f'(x0)的极限形式。

往下如何推理?关键要看第二个条件怎么用。

“f(x0)为f(x)的极值”翻译成数学语言即f(x)-f(x0)<0(或>0),对x0的某去心邻域成立。

结合导数定义式中函数部分表达式,不难想到考虑函数部分的正负号。

若能得出函数部分的符号,如何得到极限值的符号呢?极限的保号性是个桥梁。

费马引理中的“引理”包含着引出其它定理之意。

那么它引出的定理就是我们下面要讨论的罗尔定理。

若在微分中值定理这部分推举一个考频最高的,那罗尔定理当之无愧。

该定理的条件和结论想必各位都比较熟悉。

条件有三:“闭区间连续”、“开区间可导”和“端值相等”,结论是在开区间存在一点(即所谓的中值),使得函数在该点的导数为0。

该定理的证明不好理解,需认真体会:条件怎么用?如何和结论建立联系?当然,我们现在讨论该定理的证明是“马后炮”式的:已经有了证明过程,我们看看怎么去理解掌握。

如果在罗尔生活的时代,证出该定理,那可是十足的创新,是要流芳百世的。

闲言少叙,言归正传。

既然我们讨论费马引理的作用是要引出罗尔定理,那么罗尔定理的证明过程中就要用到费马引理。

我们对比这两个定理的结论,不难发现是一致的:都是函数在一点的导数为0。

话说到这,可能有同学要说:罗尔定理的证明并不难呀,由费马引理得结论不就行了。

大方向对,但过程没这么简单。

起码要说清一点:费马引理的条件是否满足,为什么满足?前面提过费马引理的条件有两个——“可导”和“取极值”,“可导”不难判断是成立的,那么“取极值”呢?似乎不能由条件直接得到。

高等数学重要定理及公式

高等数学重要定理及公式

高等数学重要定理及公式作者:电子科技大学 通信学院 张宗卫说明:本文档是笔者在考研过程中花费将近一个月的时间,总结得出的数学(一)重要公式及一些推论,并使用word 及MathType 输入成文,覆盖了微积分、线性代数、概率论这些课程。

因为时间有限,难免存在一些输入错误,请读者仔细对照所学知识,认真查阅。

线性代数重要公式1.矩阵与其转置矩阵关系:E A AA =*2.矩阵行列式:*11A A A =- 1*-=n A A *1*)(A k kA n -= ⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧=-=-<=n A r n n A r n A r A r )(,1)(,11)(,0)(* 3.矩阵与其秩:{}()min (),()()()()(,)()()(,)max(()())r AB r A r B r A B r A r B r A B r A r B r A B r A r B ≤+≤+≤+≥+4.齐次方程组0=Ax :非0解⇔线性相关⇔n A R =)(5.非齐次方程组b Ax =:有解⇔⇔=)()(A R A R 线性表出6.相似与合同:相似—n 阶可逆矩阵A,B 如果存在可逆矩阵P 使得B AP P =-1则A 与B 相似,记作:B A ~;合同—A,B 为n 阶矩阵,如果存在可逆矩阵C 使得AC C B T=则称A与B 合同。

(等价,A 与B 等价—A 与B 能相互线性表出。

)7,特征值与特征向量:λαα=A ,求解过程:求行列式0=-A E λ 中参数λ即为特征值,再求解0)(=-x A E i λ即可求出对应的特征向量。

矩阵A 的特征值与A 的主对角元及行列式之间有以下关系:⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧==∑∑A a n nii n i λλλλ...2111。

上式中∑==n i ii a A 1)(tra 称为矩阵的迹。

8.特征值特征向量、相似之间的一些定理及推论:实对称矩阵A 的互异特征值对应的特征向量线性无关;若n 阶矩阵的特征值都是单特征根,则A 能与对角矩阵相似;n 阶矩阵A 与对角矩阵相似的充分必要条件是对于A 的每一个i k 重特征根,齐次方程组0)(=-x A E i λ的基础解析由i k 个解向量组成即对应每一个i k 重特征根i λi i k n A E R -=-)(λ。

大学高等数学定理公式

大学高等数学定理公式

大学高等数学定理公式大学高等数学是大学阶段重要的一门课程,它涵盖了许多重要的定理和公式。

这些定理和公式在解决数学问题、推导数学证明以及应用数学和工程领域中发挥着重要作用。

在本文中,我们将介绍一些大学高等数学中常见的定理和公式,并探讨其应用。

一、极限与连续1. 导数的定义:对于函数f(x),若存在一个常数a,使得当x趋近于a时,函数的导数存在,并记为f'(a),则称函数在点a处可导。

2. 微分中值定理:若函数f(x)在闭区间[a,b]上连续,且在开区间(a,b)内可导,则存在c∈(a,b),使得f'(c) = (f(b)-f(a))/(b-a)。

3. 泰勒公式:对于函数f(x),若f(x)在x=a处的n阶导数存在,则有:f(x) = f(a) + f'(a)(x-a) + f''(a)(x-a)²/2! + ... + fⁿ(a)(x-a)ⁿ/n! ,其中fⁿ(a)表示函数在点a处的n阶导数。

二、微积分1. 不定积分的基本公式:∫xⁿdx = xⁿ⁺¹/(n+1) + C ,其中C为常数。

2. 定积分的基本公式:若函数f(x)在区间[a,b]上连续,则∫[a,b]f(x)dx存在,且记为F(x)的原函数在区间[a,b] 的定积分为∫[a,b]f(x)dx = F(b) - F(a)。

3. 牛顿-莱布尼兹公式:若函数f(x)在[a,b]上连续,则∫[a,b]f'(x)dx = f(b) - f(a)。

三、向量与矩阵1. 向量的模和方向:对于向量A = (a₁,a₂,...,aₙ),其模记为|A|,方向记为θ,有A =|A|cosθ·i + |A|sinθ·j。

2. 向量的点积:对于向量A = (a₁,a₂,...,aₙ)和B = (b₁,b₂,...,bₙ),其点积记为A·B = a₁b₁ + a₂b₂ + ... + aₙbₙ。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高数中的重要定理与公式及其证明(一)
考研数学中最让考生头疼的当属证明题,而征服证明题的第一关就是教材上种类繁多的定理证明。

如果本着严谨的对待数学的态度,一切定理的推导过程都是应该掌握的。

但考研数学毕竟不是数学系的考试,很多时候要求没有那么高。

而有些定理的证明又过于复杂,硬要要求自己掌握的话很多时候可能是又费时又费力,最后还弄得自己一头雾水。

因此,在这方面可以有所取舍。

现将高数中需要掌握证明过程的公式定理总结如下。

这些证明过程,或是直接的考点,或是蕴含了重要的解题思想方法,在复习的初期,先掌握这些证明过程是必要的。

1)常用的极限
0ln(1)lim 1x x x →+=,01lim 1x x e x →-=,01lim ln x x a a x →-=,0(1)1
lim a x x a x →+-=,201cos 1lim 2x x x →-= 【点评】:这几个公式大家在计算极限的过程中都再熟悉不过了,但有没有人想过它们的由来呢?事实上,这几个公式都是两个重要极限1
lim(1)x
x x e →+=与
0sin lim
1x x
x →=的推论,它们的推导过程中也蕴含了计算极限中一些很基本的方法技
巧。

证明: 0ln(1)lim 1x x x →+=:由极限1
0lim(1)x x x e →+=两边同时取对数即得0ln(1)lim 1x x x
→+=。

01
lim 1x x e x →-=:在等式0ln(1)lim 1x x x →+=中,令ln(1)x t +=,则1t x e =-。

由于极限过程是0x →,此时也有0t →,因此有0
lim
11
t t t
e →=-。

极限的值与取极限的符号是无关的,因此我们可以吧式中的t 换成x ,再取倒数即得01
lim
1x x e x
→-=。

01lim ln x x a a x →-=:利用对数恒等式得ln 0011
lim lim x x a x x a e x x →→--=,再利用第二个极限可得ln ln 0011lim
ln lim ln ln x a x a x x e e a a x x a →→--==。

因此有01
lim ln x x a a x
→-=。

0(1)1lim a x x a x
→+-=:利用对数恒等式得 ln(1)ln(1)ln(1)00000(1)111ln(1)1ln(1)lim lim lim lim lim ln(1)ln(1)a a x a x a x x x x x x x e e x e x a a a x x a x x a x x
+++→→→→→+---+-+====++上式中同时用到了第一个和第二个极限。

201cos 1lim 2
x x x →-=:利用倍角公式得2
2220002sin sin 1cos 1122lim lim lim 222x x x x x x x x x →→→⎛⎫ ⎪-=== ⎪ ⎪⎝⎭。

2)导数与微分的四则运算法则
'''''''''22(), d()(), d()(), d()(0)u v u v u v du dv uv u v uv uv vdu udv u vu uv u vdu udv v v v v v
±=±±=±=+=+--==≠
【点评】:这几个求导公式大家用得也很多,它们的证明需要用到导数的定义。

而导数的证明也恰恰是很多考生的薄弱点,通过这几个公式可以强化相关的概念,避免到复习后期成为自己的知识漏洞。

具体的证明过程教材上有,这里就不赘述了。

3)链式法则
设(),()y f u u x ϕ==,如果()x ϕ在x 处可导,且()f u 在对应的()u x ϕ=处可导,则复合函数(())y f x ϕ=在x 处可导可导,且有:
[]'
''(())()()dy dy du f x f u x dx du dx
ϕϕ==或
【点评】:同上。

4)反函数求导法则
设函数()y f x =在点x 的某领域内连续,在点0x 处可导且'()0f x ≠,并令其反函数为()x g y =,且0x 所对应的y 的值为0y ,则有:
'0''00111
()()(())dx g y dy
f x f
g y dy dx
=
==或 【点评】:同上。

5)常见函数的导数
()'
1x x ααα-=,
()'
sin cos x x =,()'
cos sin x x =-, ()
'
1ln x x =
,()'1log ln a x x a
=, ()'
x x e e =,()'
ln x x a e a =
【点评】:这些求导公式大家都很熟悉,但很少有人想过它们的由来。

实际上,
掌握这几个公式的证明过程,不但可以帮助我们强化导数的定义这个薄弱点,对极限的计算也是很好的练习。

现选取其中典型予以证明。

证明:
()'1
x x ααα-=:导数的定义是'0()()()lim x f x x f x f x x
∆→+∆-=∆,代入该公式得 ()'1100(1)1(1)1()lim lim x x x x x x x x x x x x x x x x
x
αααα
ααααα--∆→∆→∆∆+-+-+∆-====∆∆∆。

最后一步用到了极限0(1)1
lim
a x x a x
→+-=。

注意,这里的推导过程仅适用于0x ≠的情形。

0x =的情形需要另行推导,这种情况很简单,留给大家。

()'
sin cos x x =:利用导数定义()'0sin()sin sin lim x x x x x x ∆→+∆-=∆,由和差化积公式得002cos()sin
sin()sin 22lim lim cos x x x x
x x x x x x x ∆→∆→∆∆++∆-==∆∆。

()'cos sin x x =-的证明类似。

()'1ln x x =:利用导数定义()'00ln(1)
ln()ln 1ln lim lim x x x x x x x x x x x

→∆→∆++∆-===∆∆。

()'
1log ln a x x a =
的证明类似(利用换底公式ln log ln a x x a
=)。

()'
x x
e e
=:利用导数定义()
()'
001lim lim x x x x
x x x x x e e e e
e e x x
+∆∆∆→∆→--===∆∆。

()'
ln x x a e a =的证明类似(利用对数恒等式ln x x a a e =)。

相关文档
最新文档