数字图像处理基础 (2)
数字图像处理(第二版)章 (2)
第2章 数字图像处理基础
2.2 数字图像类型
第2章 数字图像处理基础
为了减小量化误差,引入了非均匀量化的方法。非均匀量 化依据一幅图像具体的灰度值分布的概率密度函数,按总的量 化误差最小的原则来进行量化。具体做法是对图像中像素灰度 值频繁出现的灰度值范围,量化间隔取小一些; 而对那些像 素灰度值的概率分布密度函数因图像不同而异,所 以不可能找到一个适用于各种不同图像的最佳非等间隔量化方 案,因此,实用上一般多采用等间隔量化。
第2章 数字图像处理基础
3. 索引颜色图像 在介绍索引颜色图像之前,首先来了解PC机是如何处理颜 色的。大多数扫描仪都是以24位模式对图像进行采样的,即可 以从图像中采样出1670万种不同的颜色。用这种方式获得的颜 色通常称为RGB颜色。颜色深度为24位每像素的数字图像是目前 所能获取、浏览和保存的颜色信息最丰富的彩色图像,由于它 所表达的颜色远远超出了人眼所能辨别的范围,故将其称为 “真彩色”。在早期,由于技术上和价格上的原因,计算机在 处理时并没有达到24位每像素的真彩色水平,为此人们创造了 索引颜色。索引颜色通常也称为映射颜色。在这种模式下,颜 色都是预先定义的,并且可供选用的一组颜色也很有限。索引 颜色的图像最多只能显示256种颜色。索引颜色通常称为调色板。 一幅索引颜色图像在图像文件里定义,当打开该文件时,构成 该图像具体颜色的索引值就被读入程序,然后根据索引值在调 色板中找到对应的颜色。
b=M×N×Q (b)
第2章 数字图像基础2——常用图像格式
(4) TIFF文件的标记——TAG
• 公共标记(public tag) 在TIFF V5.0的说明中定义了45个标记 Compression 259 SHORT 1 所有TIFF图像必须支持以下标记: NewSubfileType、lmageWidth、 ImageLength、RowsPerStrip、StripOffsets StripByteCounts、Xresolution、Yresolution ResolutionUnit • 私有标记(private tag) 由Aldus和Microsoft来分配 取值范围:32,768 - 65,535
数字图像处理
6. Windows系统的图像显示
• 消息(message) • 设备上下文(device context) • 设备句柄(handle)
数字图像处理
八、 图像颜色与文件格式与转换 —— photoshop示例
1. 图像的色彩模式及转换
• 色彩模式
– – – – – 单色 灰度 RGB色彩模式 CMYK色彩模式 Lab色彩模式
数字图像处理
1. BMP格式
Windows操作系统的标准文件格式。
大部分BMP文件是不压缩的形式,但支持图像压缩, 如RLE格式和LZW压缩格式等。
数字图像处理
(1) BMP文件结构
位图文件头 BITMAPFILEHEADER
图像信息头 BITMAPINFOHEADER 调色板 Palette 位图图像数据 Image Data
数字图像处理
(3) JPEG文件的组织(8个部分)
① 图像开始SOI(Start of Image)标记 ② APP0标记(Marker)
数字图像处理
第2章 数字图象处基础(1-27)
Digital Image Processing
2.2 人的视觉特性
人的视觉模型
▓ ▓
点光源的表示函数
点源可以用 δ 函数表示,表示平面图像的二维 δ 函数 +∞ +∞ 为: ⎧ 1 y, ) x ∫ ∫−∞ δ (dxdy = −∞ ⎪ ⎪ ⎨ = = ⎧ ∞ y , x 0 0, ⎪δ ( y , ) = ⎨ x , 其他 ⎪ ⎩ 0 ⎩ 则任意一幅图像可表示为:
Digital Image Processing
2.2 人的视觉特性
人眼的构造与机理要点(续)
( 3)视细胞: 视网膜上集中了大量视细胞,分为两类: 锥状细胞 :明视细胞,在强光下检测亮度和颜色; 杆 (柱 )状细胞 :暗视细胞,在弱光下检测亮度,无色彩感觉。 其中,每个锥状视细胞连接着一个视神经末梢,故分辨率高, 分辨细节、颜色;多个杆状视细胞连接着一个视神经末梢,故分辨 率低,仅分辨图的轮廓。 (4 ) 人眼成象过程:
2.4 数字图像表示形式和特点
▓ ▓
数字图像的矩阵表示 数字图像的矩阵 矩阵表示
O n
f (0,1) ⎡ f (0,0) ⎢ f (1,1) ⎢ f (1,0) , f (mn) = ⎢ ⋮ ⋮ ⎢ ⎣ f (M−1,0) f (M−1,1)
⋯ f (0, N−1) ⎤ ⎥ ⋯ f (1, N−1) ⎥ ⎥ ⋮ ⋮ ⎥ ⋯ f (M−1, N−1)⎦
Digital Image Processing
2.1 色度学基础
RGB模型:
在三维直角坐标系中,用相互垂直的三个坐标轴代表R、 G、B三个分量,并将R、G、B分别限定在[0,1],则该单位正 方体就代表颜色空间,其中的一个点就代表一种颜色。如下图 方体就代表颜色空间,其中的一个点就代表一种颜色。 所示。 其中,r、g、b、c、m和y分别代表红色(red)、绿色 (green)、蓝色(blue)、青色(cyan)、品红(magenta) 和黄色(yellow)。
第二章 数字图像处理基础
2.1 数字图像的表示 2.2 数字图像的采样与量化 2.3 人的视觉特性 2.4 光度学与色度学原理
第二章 数字图像处理基础
本章重点、难点
重点: 采样和量化 BMP图像文件格式 RGB颜色模型和HSI颜色模型 难点: 采样和量化的理解 BMP位图
2.1 数字图像
数字图像:f(x,y),函数值对应于图像点的 亮度。称亮度图像。 注意:模拟图像与数字图像的区别 动态图像:f(x,y,t)
人眼成像过程
视细胞分为两类: 锥状细胞:明视细胞,在强光下检测亮度 和颜色。 杆(柱)状细胞:暗视细胞,在弱光下检测亮 度,无色彩感觉。 人眼成像过程
图像的对比度和亮度
人眼的亮度感觉 图像 “黑”“白”(“亮”、“暗”)对比参数 对比度 : c=Bmax/Bmin 相对对比度:cr=(B-B0)/B0 人眼亮度感觉范围 总范围很宽 c = 108 人眼适应某一环境亮度后,范围限制 适当平均亮度下:c=103 很低亮度下:c=10
亮度
也称为灰度,它是颜色的明暗变化,常用 0 %~ 100 % (由黑到白) 表示。以下三幅图是 不同亮度对比。
对比度
对比度(contrast)是亮度的局部变化,定义为物体亮 度的平均值与背景亮度的比值,是画面黑与白的比 值,也就是从黑到白的渐变层次。比值越大,从黑 到白的渐变层次就越多,从而色彩表现越丰富。人 眼对亮度的敏感性成对数关系。
同时对比度
人眼对某个区域感觉到的亮度不是简单 地取决于该区域的强度,背景亮度不同 时,人眼所感觉到的明暗程度也不同。
马赫带效应
马赫带(Mach Band)效应:边界处亮度对比加强
为什么我们要在暗室评片?
马赫带效应的出现,是因为人眼对于图像中不同 空间频率具有不同的灵敏度,而在空间频率突变处 就出现了 “欠调”或“过调”
数字图像处理2数字图像基础-4,5,6
2.5 图像处理算法的形式
二.图像处理的几种具体算法形式 1.局部处理
对于任一像素(i,j),把像素的集合 {(i+p,j+q),p、q取任意整数}叫做该像素的邻 域,
2.5 图像处理算法的形式
依赖于起始像素的位置。为此,跟踪处理的结果与从图像 哪一部份开始进行处理相关。
②能够根据利用在此以前的处理结果来限定处理范围,从而 可能避免徒劳的处理。另外,由于限制了处理范围,有可 能提高处理精度。
③用于边界线、等高线等线的跟踪(检测)方面。如根据搜索 法检测边缘曲线。
2.5 图像处理算法的形式
4.位置不变处理和位置可变处理 输出像素JP(i,j)的值的计算方法与像素
的位置(i,j)无关的处理称为位置不变处理或 位移不变处理。随位置不同计算方法也不同的 处理称为位置可变处理或位移可变处理。
2.5 图像处理算法的形式
5.窗口处理和模板处理 单独对图像中选定的矩形区域内的像素进
行处理的方式叫做窗口处理。 单独对图像中选定的任意形状的像素进行
0
255 0
255 0
255
(a) 恰当量化 (b)未能有效利用动态范围 (c)超过了动态范围
2.4 图像灰度直方图
2. 边界阈值选取(确定图像二值化的阈值)
假设某图象的灰度直方图具有 二峰性,则表明这 个图象的较亮的区域和较暗的区域可以较好地分离, 以这一点为阈值点,可以得到好的二值处理的效果。
2.4 图像灰度直方图
1 2 3 45 6 6 4 3 22 1 1 6 6 46 6 3 4 5 66 6 1 4 6 62 3 1 3 6 46 6
数字图像处理(冈萨雷斯)第二章_数字图像处理基础
(2)辨别光强度变化的能力
2.1.3亮度适应和鉴别
✓当背景光保持恒定时,改变其他光源亮度,从不能察觉到可以察觉间
变化,一般观察者可以辨别12到24级不同强度的变化.
图2.5 亮度辨 别特性的基本 实验
韦伯定理说明:
✓人眼视觉系统对亮度的对比度敏 感而非对亮度本身敏感;
39
2.4.5 图像的收缩与放大 (2)图像放大的效果比较(例2.4)
用最近领域内插法(上一行)和双线性内插法(下一行)得到的放大图像
分别将128×128,64×64, 32×32放大到1024×1024
40
2.5 像素间的一些基本关系
主要内容 相邻像素 邻接性、连通性、区域和边界 距离度量 基于像素的图像操作 图像的代数运算性、连通性、区域和边界
✓与整个适应范围相比,人眼在某一时刻能鉴别的亮度级别范围很 小(以该环境的平均亮度为中心的一个小的亮度范围);
✓亮度适应级(视觉系统当前的灵敏度级别):
人眼适应了某一环境后,该环境的平均亮度;
✓亮度适应现象:人眼并不能同时在整个范围内
工作,而是利用改变灵敏度来实现大的动态范围 内的变动;
✓当平均亮度适中时,能分辨的最大亮度和最小 亮度之比为1000:1;当平均亮度很低时,这个比 值只有10:1
27
2.4y)
f
(1,0)
f (M1,0)
f (0,1) f (0,N1)
f (1,1)
f (1,N1)
f (M1,1) f (M1,N1)
这个表达式的右侧 了定 一义 幅数字图像。 中矩 的阵 每个
元素称为图像像素。
M,N必须为正数,L为灰度级,灰度的取值范围为[0,L-1]。
数字图像处理基础2
数字图像处理基础2第二章数字图像处理基础2.1 图像数字化技术2.2 数字图像类型2.3 常用图像文件格式2.4 像素间的基本关系2.5 图像的几何变换2.1 图像数字化技术2.2 数字图像类型2.3 常用图像文件格式2.4 像素间的基本关系2.5 图像的几何变换简单的图像成像模型一幅图像可定义成一个二维函数f(x,y)。
由于幅值f 实质上反映了图像源的辐射能量,所以f(x,y)一定是非零且有限的,也即有:0<f(x,y)</f(x,y)图像是由于光照射在景物上,并经其反射或透射作用于人眼的结果。
所以,f(x,y)可由两个分量来表征:一是照射到观察景物的光的总量,二是景物反射或透射的光的总量。
设i(x,y)表示照射到观察景物表面(x,y)处的白光强度,r(x,y)表示观察景物表面(x,y)处的平均反射(或透射)系数,则有:f(x,y)=i(x,y)r(x,y)其中:0 < i(x,y) < A 1, 0 ≤r(x,y) ≤1对于消色光图像(有些文献称其为单色光图像),f(x,y)表示图像在坐标点(x,y)的灰度值l ,且:l=f(x,y)这种只有灰度属性没有彩色属性的图像称为灰度图像。
显然:L min ≤l ≤L mxa区间[L min ,L max ]称为灰度的取值范围。
在实际中,一般取L min 的值为0,L max =L-1。
这样,灰度的取值范围就可表示成[0,L-1]。
当一幅图像的x 和y 坐标及幅值f 都为连续量时,称该图像为连续图像。
为了把连续图像转换成计算机可以接受的数字形式,必须先对连续的图像进行空间和幅值的离散化处理。
图像数字化:将模拟图像经过离散化之后,得到用数字表示的图像。
图像的数字化包括采样和量化两个过程。
连续图像空间离散数字图像幅度离散采样量化采样:是将在空间上连续的图像转换成离散的采样点(即像素)集的操作。
即:空间坐标的离散化。
量化:把采样后所得的各像素的灰度值从模拟量到离散量的转换称为图像灰度的量化。
数字图像处理第2章课后题答案
第二章数字图像处理基础1.将一幅光学模拟图像转换为数字图像的过程叫做图像的数字化,包括扫描、采样、量化三个过程。
采样点数越多、量化级数越高,图像质量越好。
2.图像数字化过程中造成失真的原因有两个方面:第一个方面,在采样过程中,如果采样点数满足取样定理(即采样频率不小于最高截止频率的2倍)的情况下,重建图像就不会产生失真,否则就会因为取样点数不够而产生所谓混淆失真;第二个方面,在量化过程中,若图像不产生失真,则需要量化级数无穷大,而实际量化级数往往无法满足这样的取值而造成图像的失真。
3.人的眼睛是人类视觉系统的重要组成部分,当外界景象通过眼球的光学系统在视网膜上成像后,视网膜产生相应的胜利电图像并经视神经传入大脑;人眼的视网膜由感光细胞覆盖,感光细胞吸收来自于光学图像的光线,并通过晶体透镜和角膜聚集在视网膜上。
晶状体相当于普通光学镜头,对光线有屈光作用。
4.发光强度简称光强,指单色光源在给定方向上的单位立体角内发出的发光强度。
亮度是指发光体(反光体)表面发光(反光)强弱的物理量。
照度指物体被被照面单位时间内所接受的光通量。
主观亮度是指由观察者判断出的亮度称为主观亮度。
5.常用的颜色模型有RGB模型、CMYK模型、HSI模型等。
RGB模型是色光的彩色模型,因为是由红、绿、蓝相叠加形成其它颜色,因此该模型也叫加色合成法。
所有的显示器、投影设备,以及电视等许多设备都是依赖于这种加色模型的;CMYK模型也称减色合成法,主要应用于印刷行业中;RGB和CMYK颜色模型都是面向硬件的,但从人眼视觉特性来看,HSI模型用色调、饱和度和亮度来描述彩色空间能更好地与人的视觉特性相匹配。
6.由于彩色图像为RGB图像,利用三元组(R,G,B)来表示每个像素的值。
根据题意,三基色灰度等级为8,而23=8,则存储一个颜色分量所需的比特数为3,存储一个三元组所需的比特数为3⨯3=9,该图像大小为1024*768,则存储整幅图像所需的比特数为9⨯1024⨯768=7077888bit=864KB。
第二章 数字图像处理基础
BMP图像文件格式
文件说明
属性 bfType bfSize bf1 bf2 bfOffBits biSize biWidth 所占字节数 2 4 2 2 4 4 4 起始字节 1 3 7 9 11 15 19 说明 文件类型(“BM”) 文件大小 保留 保留 第一个位图数数的偏移量 文件信息头的长度 位图的宽度(单位是象素)
位图的有关术语
像素(Pixel)
(可大可小)
采样点 (Sample)
位图的有关术语
图像分辨率: 每英寸图像含有的点或像素个数(dpi)
分辨率越高,图像细节越清晰,但文件尺寸大, 处理的时间长,对设备的要求高。
位图的有关术语
打印机分辨率: 打印图像时每英寸的点数(dpi)
激光打印机的分辨率可达600~1200dpi。
0, , 80 200 B 0, , 0 110 255, , 255 255
2.1 图像数字化
2.1.3 采样与量化参数的选择
采样间隔:影响着图像细节的再现程度,反映数字化 后的图像呈现何种的细微程度。采样间隔越大,图像的像素 数越少,空间分辨率低,质量差。严重出现像素块状的棋盘
2. 图像数字化器的性能
(1)分辨率:单位尺寸能够采样的像素数,由采样 孔的大小和像素间距的大小决定;
(2)灰度级:量化为多少等级;
(3)图像大小:允许输入图像的大小;
(4)扫描速度:采样数据的传输速度;
(5)噪声:数字化器的噪声水平。
(6)线性度:线性度是指对光强进行数字化时,灰 度正比于图像亮度的实际精确程度。
数字图像根据灰度级数的差异,可分为:
二值图像、灰度图像和彩色图像 二值图像:
《数字图像处理》-教学大纲
《数字图像处理》课程教学大纲Digital image processing一、教学目标及教学要求数字图像处理课程是智能科学与技术、数字媒体技术等专业的专业必修课。
主要目标及要求是通过该课程的学习,使学生初步掌握数字图像处理的基本概念、基本原理、基本技术和基本处理方法,了解数字图像的获取、存储、传输、显示等方面的方法、技术及应用,为学习相关的数字媒体、视频媒体和机器视觉等课程,以及今后从事数字媒体、视频媒体、图像处理和计算机视觉等领域的技术研究与系统开发打下坚实的理论与技术基础。
二、本课程的重点和难点(一)课程教学重点教学重点内容包括:图像的表示,空间分辨率和灰度级分辨率,图像直方图和直方图均衡,基于空间平滑滤波的图像增强方法,基于空间锐化滤波的图像增强方法,图像的傅里叶频谱及其特性分析,图像编码模型、霍夫曼编码和变换编码,图像的边缘特征及其检测方法,彩色模型,二值形态学中的有腐蚀运算和膨胀运算。
(二)课程教学难点教学难点包括:直方图均衡,二维离散傅里叶变换的若干重要性质、图像的傅里叶频谱及其特性分析,变换编码,小波变换的概念、嵌入式零树小波编码,图像的纹理特征及其描述和提取方法,Matlab图像处理算法编程。
三、主要实践性教学环节及要求本课程的实验及实践性环节要求使用Matlab软件平台,编写程序实现相关的数字图像处理算法及功能,并进行实验验证。
课程实验与实践共10学时,分别为:实验一:图像基本运算实验(2学时)。
实验二:图像平滑滤波去噪实验(2学时)。
实验三:图像中值滤波去噪实验(2学时)。
实验四:图像边缘检测实验(2学时)。
相关图像处理算法的课堂演示验证(2学时)。
要求每个学生在总结实验准备、实验过程和收获体会的基础上,写出实验报告。
四、采用的教学手段和方法利用多媒体课件梳理课程内容和讲授思路,合理运用启发式教学方式激发学生的思考力,采用讨论式教学方式增强教学过程的互动效果,理论教授与应用实例编程实践相结合,提高学生的分析和解决问题的能力。
数字图像处理(MATLAB版)(第2版)
目录分析
1.1数字图像处理的 发展
1.2数字图像的相关 概念
1.3数字图像处理的 内容
1.4数字图像处理的 方法
1
1.5图像数字 化技术
2
1.6图像的统 计特征
3
1.7数字图像 的应用
4
1.8 MATLAB 领略
5 1.9 MATLAB
图像处理应用 实例
小结
习题
1
2.1图像类型 的转换
2
2.2线性系统
数字图像处理(MATLAB版)(第2版)
读书笔记模板
01 思维导图
03 目录分析 05 读书笔记
目录
02 内容摘要 04 作者介绍 06 精彩摘录
思维导图
本书关键字分析思维导图
几何变换
技术
图像
基础
图像
特征
数字图像处理
版
数字图像
内容 小结
数字图像
第版
习题
边界
第章
图像增强
滤波
运算
内容摘要
本书主要内容包括:全书共10章,分别介绍了数字图像的相关论述、数字图像的处理基础、图像编码、图像 复原、图像几何变换、图像频域变换、图像几何变换、小波变换、图像增强、图像分割与边缘检测及图像特征描 述等内容。
10.8形态学重建 10.9特征度量
小结 10.10查表操作
习题
作者介绍
这是《数字图像处理(MATLAB版)(第2版)》的读书笔记模板,暂无该书作者的介绍。
读书笔记
这是《数字图像处理(MATLAB版)(第2版)》的读书笔记模板,可以替换为自己的心得。
精彩摘录
这是《数字图像处理(MATLAB版)(第2版)》的读书笔记模板,可以替换为自己的精彩内容摘录。
数字图像处理第2章采样量化图像格式
又称输出分辨率,是指打印机输出图像时每英寸的点数(dp i)。打印机分辨率也决定了输出图像的质量,打印机分辨率越高, 可以减少打印的锯齿边缘,在灰度的半色调表现上也会较为平滑。 打印机的分辨率可达300-1200 dpi。
4) 扫描仪分辨率
单位长度上采样的像素个数。台式扫描仪的分辨率可以分
• 曲线3:
质量
细节较多的球赛观众图像 k
5
4 32 64 128 256 N
总结
一般,当限定数字图像的大小时, 为了得到质量较好的图像 可采用如下原则:
(1)对缓变的图像,应该细量化,粗采样,以避免假轮廓。
(2)对细节丰富的图像,应细采样,粗量化,以避免模糊。 对于彩色图像,是按照颜色成分——红、绿、蓝分别采样和量
2.3.3 用传感器阵列获取图像
传感器阵列
2.4 图像数字化技术
图像的数字化包括采样和量化两个过程。 设连续图像f(x, y) 经数字化后,可以用 一个离散量组成的矩阵g(i, j)(即二维数组) 来表示。
f (0,0) f (0,1) f (0, n 1)
g(i,
j)
g(1,0)
z 蓝 (Blu e) 品 红 (Magenta )
青 (Cyan ) O 红 (Red) x
绿 (Gre en) 黄 (Yello w) y
(2) 数字化采样一般是按正方形点阵取样的, 除此之外还 有三角形点阵、正六角形点阵取样。
(3)以上是用g (i, j)的数值来表示(i, j)位置点上灰度级值的
大小,即只反映了黑白灰度的关系, 如果是一幅彩色图像, 各点
的数值还应当反映色彩的变化,可用g (i, j, λ)表示,其中λ是波 长。如果图像是运动的,还应是时间t的函数,即可表示为g (i, j, λ, t)。
数字图像处理(第二版)ppt课件
由点的齐次坐标(Hx, Hy, H)求点的规范化齐次坐标(x, y,
1),可按下式进行:
x Hx H
y Hy H
数字图像处理(第二版)
齐次坐标的几何意义相当于点(x, y)落在3D空间H=1的 平面上,如图6-2所示。如果将xOy平面内的三角形abc的各 顶点表示成齐次坐标(xi, yi, 1)(i=1, 2, 3)的形式,就变成H=1 平面内的三角形a1b1c1的各顶点。
0 0 1 1 1 1
从上式可以看出,引入附加坐标后,扩充了矩阵的第3行, 并没有使变换结果受到影响。这种用n+1维向量表示n维向 量的方法称为齐次坐标表示法
数字图像处理(第二版)
因此,2D图像中的点坐标(x, y)通常表示成齐次坐标(Hx, Hy, H),其中H表示非零的任意实数,当H=1时,称(x, y, 1) 为点(x, y)的规范化齐次坐标。显然规范化齐次坐标的前两个 数是相应二维点的坐标,没有变化,仅在原坐标中增加了H
外,常见的图像几何变换可以通过与之对应的矩阵线性变换 来实现。
数字图像处理(第二版)
由于篇幅所限,本章只讨论2D图像的几何变换。
对于2D图像几何变换,由于变换中心在坐标原点的恒
等、比例缩放、反射、错切和旋转等各种变换,都可以用
2×2矩阵表示和实现,但是一个2×2变换矩阵却
T
a c
b
d
不能实现2D图像的平移以及绕任意点的比例缩放、反射、
然后乘以相应的变换矩阵即可,即
变换后的点集矩阵 = 变换矩阵T×变换前的点集矩阵
(图像上各点的新齐次坐标) (图像上各点的原齐次坐标)
数字图像处理(第二版)
设变换矩阵T为
a b p
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
北京邮电大学世纪学院 思考题
彩色显象管荧光屏为20英寸(51cm),幅型比 为4/3。荧光点呈三角形排列,荧光点直径d0 为0.4mm。若把两个荧光点外圆之间的距离d作 为最小分辨距离,并在距离荧光屏2m的地方看 电视。试计算在荧光屏上最少要有多少个荧光 点才能实现空间混色?(取θ=1’)
北京邮电大学世纪学院
北京邮电大学世纪学院
第二章 数字图像处理基础
• • • • • • 人眼的视觉特性 图像的采样和量化 图像数字化器 常用图像数字化设备 图像的灰度直方图 图像的文件格式
北京邮电大学世纪学院
人眼的视觉特性
视觉是主观对客观的反应,是一种主观感觉。 视觉包括亮度视觉和彩色视觉。
北京邮电大学世纪学院
北京邮电大学世纪学院
图像的采样和量化
• 图像数字化:指将模拟图像经过离散化之后, 得到用数字表示的图像。
模拟图像
离散化
数字图像
北京邮电大学世纪学院
数字图像:用矩阵来描述的。
i0, 0 i 1, 0 I I [m, n] im 1,0
i0,1 i1,1 im 1,1
i0,n 1 i1,n 1 im 1,n 1
北京邮电大学世纪学院
北京邮电大学世纪学院
实验表明,人眼对彩色细节的分辨力要 低于对黑白细节的分辨力。 由于人眼对彩色细节的分辨力低,所以 在彩色电视系统传送彩色图像时,对于图像 的细节,可只传黑白的亮度信号,而不传彩 色信息。这就是所谓的彩色电视大面积着色 原理。利用这个原理可以节省传输的频带。
北京邮电大学世纪学院
人眼的视觉特性-视在对比度
视觉效应是由可见光刺激人眼引起的。如 果光的辐射功率相同而波长不同,则引起的 视觉效果也不同,不仅颜色感觉不同,而且 亮度感觉也不同。
北京邮电大学世纪学院
何谓视觉灵敏度呢? 为了确定人眼对不同波长光的敏感程度,在 产生相同亮度感觉的情况下,测出各种波长 光的辐射功率Ф(λ),则: 光谱光视效能:K(λ)= 1 /Ф(λ) 用来衡量视觉对波长为λ的光的敏感程度。
北京邮电大学世纪学院
人眼的视觉特性-人眼分辨力
何谓人眼的分辨力呢? 人在观看景物时人眼对景物细节的分辨能力。 人眼对被观察物体上刚能分辨的最紧邻两黑点 或两白点的视角的倒数称为人眼的分辨力或视 觉锐度。
北京邮电大学世纪学院
θ
d L
d 2 L
360 60
57.3 60 d d 3438 L L
北京邮电大学世纪学院
实验表明,当λ=555nm时,有最大的光谱光视 效能: Km=K(555) 任意波长光的光谱光视效能K(λ)与Km之比称为 光谱光视效率(相对视敏度),用函数V(λ)表 示: V(λ)= K(λ)/ Km V(λ)也可用得到相同主观亮度感觉时所需各波 长光的辐射功率Ф(λ)表示: V(λ)= Ф(555)/Ф(λ)
北京邮电大学世纪学院
相 对 视 敏 度
1.0 0.8 0.6 0.4 0.2 400
500
/nm
600
700
北京邮电大学世纪学院
人眼的视觉特性-彩色视觉
彩色三要素 亮度是光作用于人眼时所引起的明亮程度的感 觉。(光功率) 色调是指颜色的类别,是决定色彩本质的基本 参量。(光波长) 色饱和度是指彩色所呈现色彩的深浅程度(或 浓度)。 色调与色饱和度合称为色度。
何谓亮度感觉呢?
视亮度——在一定背景亮度环境下人的主观亮 度感觉。 费涅尔系数(相对对比度灵敏度阈) ξ=ΔBmin/B (随着环境的不同,在0.005-0.02范围内变化) ΔBmin称为可见度阈值。
北京邮电大学世纪学院
人 眼 的 亮 度 感 觉 特 性
北京邮电大学世纪学院
人眼的视觉特性-视在对比度
感觉的亮度区域不是简单取决于亮度
相同亮度的方块在不同背景下,感觉亮度不同;位于 中心位置的方块亮度相同,当背景变亮时,方块的亮 度变暗。 一张白纸放在桌子上看上去很白,但用白纸遮蔽眼睛 直视明亮的天空时,纸看起来总是黑的。
北京邮电大学世纪学院
人眼的视觉特性-视错觉
这两个图形在视网膜上是固定不动的,但你对 它的感觉却是在两种可能图形中动摇。 同时感觉到两种有意义的图形是很困难的!
北京邮电大学世纪学院
人眼的视觉特性-视错觉
北京邮电大学世纪学院
人眼的视觉特性-视错觉
北京邮电大学世纪学院
人眼的视觉特性-视觉惰性
何谓视觉惰性呢?
视觉惰性是人眼的重要特性之一,它滞后于实际亮度变化, 以及光线消失后的视觉残留现象(称为视觉暂 留或视觉残留),总称为视觉惰性。
北京邮电大学世纪学院
人眼的视觉特性-视觉惰性
当有光脉冲刺激人 眼时,视觉的建立 和消失都需要一定 的过程,光源消失 以后,景物影像会 在视觉中保留一段 时间。 视觉暂留时间在 0.05~0.2秒
北京邮电大学世纪学院
人眼的视觉特性-视觉惰性
何谓临界闪烁频率呢?
当人眼受周期性的光脉冲照射时,如果光 脉冲频率不高,则会产生一明一暗的闪烁感觉。 如果将光脉冲频率提高到某一定值以上,由于 视觉惰性,眼睛便感觉不到闪烁,感到是一种 均匀的连续的光刺激。 刚好不引起闪烁感觉的最低频率,称为临 界闪烁频率,它主要与光脉冲的亮度有关。
人的视觉系统对颜色的感知可归纳出 如下几个特性: 眼睛可类比于一个摄像机。 人的视网膜通过神经元来感知外部世界 的颜色。 每个神经元或者是一个对亮度和颜色敏 感的锥状细胞,或者是一个只对亮度敏感 而对颜色不敏感的杆状细胞。
北京邮电大学世纪学院
人眼的视觉特性-视觉灵敏度
何谓视觉灵敏度呢?
何谓图像对比度呢?
图像中最大亮度Lmax与最小亮度Lmin的比值C 称 为对比度。 C= Lmax/ Lmin
例:实际传送的景物亮度200-20000cd/m2,电视屏幕亮 度2-200cd/m2 两者对比度都为100 重现景物的亮度范围无需与实际景物的相等,只需保持 二者的对比度相同。
北京邮电大学世纪学院