(完整版)岩土参数计算

合集下载

(完整版)岩土力学参数大全

(完整版)岩土力学参数大全

基坑各向平均厚度(m)重度内摩擦角凝聚力土体与锚固体极限摩阻力标准值东向南向西向北向γφ CBC DE CD EF FA AB填土8 5 9 4 5 10 19 10 13 18 粘土 5.5 7.5 2.5 8.5 6.5 2.5 18.5 12 15 30 圆砾0.5 0.5 0.5 1 1 0.5 20 35 / 120 粉质粘土0.5 0.5 0.5 0.5 0.5 0.5 19.5 19 25 60 强风化板岩 2.5 8.5 7.5 7 6.5 3.5 21.5 30 30 150 中风化板岩15 15 15 15 15 15 23.5 35 35 220常用岩土材料力学参数(E, ν) 与(K, G)的转换关系如下:)21(3ν-=EK)1(2ν+=EG (7.2)当ν值接近0.5的时候不能盲目的使用公式3.5,因为计算的K 值将会非常的高,偏离实际值很多。

最好是确定好K 值(利用压缩试验或者P 波速度试验估计),然后再用K 和ν来计算G 值。

表7.1和7.2分别给出了岩土体的一些典型弹性特性值。

岩石的弹性(实验室值)(Goodman,1980) 表7.1土的弹性特性值(实验室值)(Das,1980) 表7.2各向异性弹性特性——作为各向异性弹性体的特殊情况,横切各向同性弹性模型需要5中弹性常量:E 1, E 3, ν12,ν13和G 13;正交各向异性弹性模型有9个弹性模量E 1,E 2,E 3, ν12,ν13,ν23,G 12,G 13和G 23。

这些常量的定义见理论篇。

均质的节理或是层状的岩石一般表现出横切各向同性弹性特性。

一些学者已经给出了用各向同性弹性特性参数、节理刚度和空间参数来表示的弹性常数的公式。

表3.7给出了各向异性岩石的一些典型的特性值。

横切各向同性弹性岩石的弹性常数(实验室) 表7.37.3 固有的强度特性在FLAC 3D 中,描述材料破坏的基本准则是摩尔-库仑准则,这一准则把剪切破坏面看作直线破坏面:s 13N f φσσ=-+ (7.7)其中 )sin 1/()sin 1(N φφφ-+=1σ——最大主应力 (压缩应力为负); 3σ——最小主应力φ——摩擦角c ——粘聚力当0f s <时进入剪切屈服。

岩土物理参数指标

岩土物理参数指标
330
中砂
0.4~0.5
15~18
2.05
0.03
0
40
460
0.5~0.6
19~22
1.95
0.02
0
38
400
0.6~0.7
23~25
1.90
0.01
0
35
330
细砂
0.4~0.5
15~18
2.05
0.06
0
38
370
0.5~0.6
19~22
1.95
0.04
0
36
280
0.6~0.7
23~25
1.90
砂岩(白垩纪)
砂岩(侏罗纪)
砂岩(三迭纪)
砂岩新鲜的
风化的
石英砂岩
石英砂岩新鲜的
风化的
页岩
砂质页岩
泥质页岩
煤质页岩
泥灰岩
石灰石
石灰岩(第三纪)
石灰岩(中生代)
石灰岩(古生代)
白垩
石膏
硬石膏
片麻岩
大理岩
白云岩
石英岩
石英片岩
角闪石片岩
云母片岩
绿泥石片岩
千枚岩
板岩
0.04~2.80
1.10~3.40
0.25~3.00
0.8~0.9
3.0~34
26.5~30.4
1.85
0.94
0.65
16
240
0.9~1.1
3.5~40
1.75
0.47
0.35
15
140
注:1.平均比重取:砂为2.65;轻亚粘土为2.70;亚粘土为2.71;粘土2.74。
2.粗砂与中砂的Eo值适用于不均系数Cu=3时,当Cu>5时应按表中所列值减少2/3。Cu为中间值时,Eo值按内插法确定。

岩土体物理力学参数

岩土体物理力学参数

岩土体物理力学参数在边坡稳定性定量分析中,岩土体的物理力学参数往往直接控制着稳定系数和支护工程量。

常规的获取参数的方法主要有试验法、经验法、工程地质类比法、反演分析法等。

此外,当边坡稳定受成组结构面和岩桥共同控制时,仍常采用结构面连通率,即采用结构面和岩桥强度进行加权平均来求取潜在滑移面的综合抗剪强度。

以下对两种参数获取方法进行简单介绍。

1.试验法试验法一般可分为室内试验和现场试验两类。

现场试验试件尺寸一般较大,多为(50~70)cm×(50~70)cm,它能保持岩土体的原始状态,并能反映结构面二、三级起伏差对强度的影响,但加工困难,周期长,试验费用相对较高。

室内试验试件一般较小,多为扰动样,存在尺寸效应问题,但取样简单,可以开展各种不同工况下的试验,如三轴直剪试验、饱和固结快剪试验、饱和固结排水剪试验、慢剪试验等。

室内试验由于试验周期短,费用相对较低,可以大量开展。

目前,随着取样技术的发展,已具备取原状样的条件,且可在刚性伺服机上开展试验,能有效地确定有效正应力,控制剪切速度,试验成果较为真实可靠。

2.经验估算法可根据一些经验公式,如利用Hoek-Brown强度准则确定岩体的综合抗剪强度。

一般是在工程前期和缺乏试验的地区应用,该方法存在的问题是岩石强度权重偏大,应用在坚硬和极坚硬岩石中时,确定的抗剪强度常常偏高。

8.5.2 选择原则对于一些不重要或者工程前期缺乏试验资料的边坡,可通过经验法和工程地质类比法,初步确定岩土体的物理力学参数,以此估算边坡的稳定性和支护工程量。

对于一些已经失稳或正在变形的边坡,采用反演分析法来获取岩土体的物理力学参数是一种最有效的办法,但由于此时的抗剪强度已不是常规物理意义上的抗剪强度,而是岩土体抗剪强度参数、边界条件、地下水条件等因素的综合反映,因此,在应用时应严格注意条件的相似性。

同时,应考虑在工程有效期内工作条件的可能变化趋势对强度参数的影响,并适当进行调整。

岩土参数计算

岩土参数计算

n11i m i n ϕϕ==∑根据《岩土工程勘察规范》(GB50021-2001),表征岩土工程性质的主要参数的特征值:⑴ 岩土参数的算术平均值:根据公式:∑=Φ=Φni i n m 11 (3-1)⑵ 岩土参数的标准差:根据公式:⎥⎥⎦⎤⎢⎢⎣⎡⎪⎪⎭⎫ ⎝⎛--=∑∑=n i i i fn n 122111φφσ (3-2) ⑶ 岩土参数的变异系数:根据公式:mfφσδ= (3-3)上几式中: Φm -算术平均值,σf -标准差,δ-变异系数Φi ——岩土的物理力学指标数据;n-参加统计的数据个数。

① 先用公式(3-1)和《物理力学指标统计表》求含水比αw 、液塑比Ir 的平均值a w 、r ;② 根据a w ,I r 查《建筑地基基础设计规范》(GB50007-2002)(用线性插值法)得f 0;③ 根据公式(3-2)和(3-3)分别求w a , Ir 的标准差f σ和变异系数δ; ④ 求综合变异系数δ和回归修正系数f ψ,查表得第二指标的折算系数ξ,根据公式:21ξδδδ+=得δ,根据公式:δψ⎪⎪⎭⎫⎝⎛+-=2918.7884.21n nf 得f ψ。

④ 根据公式:fak f f ψ⨯=0求承载力ak f 。

预估单桩竖向承载力如下:⑴ 静压预制桩:据勘察成果,按预制桩规格为450mm ×450mm 的方桩,桩端进入圆砾⑥层2m 。

取ZK10号钻孔估算静压预制桩单桩竖向极限承载力Q u =4651.3kN (《高层建筑岩土工程勘察规程》(JGJ72—2004)中式 D.0.1p ps i sis u A q l q u Q ⋅+⋅=∑s β)。

单桩竖向承载力特征值R a = Q u /K=2326kN (K=2) 最终单桩竖向承载力应通过现场静载荷试验确定。

⑵ 钻(冲)孔灌注桩:据勘察成果,桩径按2000mm ,桩端进入泥岩⑦层1.5m 。

取ZK10号钻孔估算单桩竖向极限承载力Q u =195722kN (《高层建筑岩土工程勘察规程》(JGJ72—2004)中8.3.12条∑∑==++=ni ni p pr ri sir r i sis s A q h q u l q u Q 11u )。

岩土工程数值计算方法

岩土工程数值计算方法

岩土工程数值计算方法报告学院:土木与环境工程学院姓名:xxxxxx学号:xxxxxxxx三维有限差分稳定性分析一、FLAC3D基本原理FLAC(Fast Lagrangian Analysis of Continua)是由美国Itasca 咨询公司研究开发的显式有限差分程序,可用于工程力学计算,模拟岩石、土等材料的力学行为。

由于其采用了显式拉格朗日算法及混合离散划分单元技术,使得该程序能较好地模拟地质材料在达到强度极限或屈服极限时发生的破坏和塑性流动,分析渐进破坏和失稳,特别适用于模拟大变形。

材料通过单元和区域表示,根据计算对象的形状构成相应的网格。

每个单元在外载和边界约束条件下,按照给出的本构关系产生力学响应。

FLAC 软件主要是为岩土工程稳定性分析开发的岩石力学计算程序,它包括了反映地质材料力学效应的特殊计算功能,能够计算地质类材料的高度非线性(包括应变硬化/软化)、不可逆剪切破坏和压密、粘弹(蠕变)、空隙介质的应力—渗流耦合及动力学行为等。

FLAC 提供了多种材料本构模型:各向同性弹性模型、横观各向同性弹性模型、摩尔-库仑塑性模型、应变硬化/软化塑性模型、德鲁克-普拉格塑性模型、遍布节理模型、双屈服塑性模型、霍克-布朗模型、空单元模型等。

另外,程序设有界面单元,可以模拟断层、节理和摩擦边界的滑动、张开和闭和行为。

支护结构,如砌衬、锚杆、支架等与围岩的相互作用也可以在FLAC 中进行模拟。

同时,用户可根据自己的需要在FLAC 中创建自己的本构模型,进行各种特殊修正和补充。

FLAC 采用显式算法来获得模型全部运动方程的时间步长解,从而可以追踪材料的渐进破坏和跨落,这对研究开采的时间效应和空间效应是非常重要的。

此外,程序允许输入多种材料类型,亦可在计算过程中改变某个局部的材料参数,增强了程序使用的灵活性,用来提供采动区域的跨落过程和开采中的充填过程。

FLAC 具有强大的后处理功能,用户可以直接在屏幕上绘制图形,或以文件形式创建和输出打印多种形式的图形。

岩土计算示例

岩土计算示例

岩土工程计算示例一、承载力验算1、建筑物荷载估算P k =Fk+Gk=29(含地下室)层×(16.5~17)KN/m2层+25 KN/m3×1.5m(基础厚度)=KPa (框剪结构)P k =Fk+Gk=6(含地下室)层×(17~17.5)KN/m2层+25 KN/m3×1.5m(基础厚度)= KPa(砖混结构)2、地基承载力的确定(1)天然地基①确定天然地基承载力:目前方法确定fak②按《建筑地基基础设计规范》(GB50007-2002)5.2.4条式5.2.4进行修正(P21-22),由fak 修正为fa依据《GB50007-2002》中第5.2.4条公式f a =fak+ηbγ(b-3)+ηdγm(d-0.5)对持力层承载力进行修正。

式中:fa——修正后的地基承载力特征值;fak——地基承载力特征值;ηb 、ηd——基础宽度和埋深的地基承载力修正系数,按基底下土的类别查表5.2.4;γ——基础底面以下土的重度;b——基础底面宽度(m);γm——基础底面以上土的加权平均重度;d——基础埋置深度(m);将上述数值代入公式,得出修正后持力层地基承载力特征值:fa= KPa③按土的抗剪强度确定承载力:(GB50007-2002)5.2.5条式5.2.5进行 (P23),不修正直接为fak c m d b a c M d M b M f ++=γγa f ---由土的剪强度指标确定的地基承载力特征值; c db M M M 、、---承载力系数,b ---基础底面宽度,大于6m 时按6m 取值,对于砂土小于3m 时按3m 取值; k c ---基底下一倍短边宽深度内土的粘聚力标准值。

④岩石地基承载力特征值:(GB50007-2002)5.2.6条式5.2.6和附录J 进行 (P23-24),不修正直接为f avk r a f f .ϕ=rm rk f f .ϕ=(平均值)δϕ⎪⎪⎭⎫⎝⎛+-=2678.4704.11n n式中 a f ---岩石地基承载力特征值(KPa );rk f ---岩石饱和单轴抗压强度标准值(KPa ),可按规范附录J 确定;v ϕ---折减系数。

岩土主要物理力学指标参考值

岩土主要物理力学指标参考值

岩土主要物理力学指标参考值(2)溢洪道工程地质条件坝址溢洪道位于左坝肩斜坡顶部,进口段至坡顶地形较平缓,坡顶至出口段为降坡段,斜坡坡度25~28°。

浅表层为全、强风化石英闪长岩,工程地质条件与大坝左坝肩基本一致,但全、强风化石英闪长岩风化严重,抗冲刷能力较弱。

(3)放水、冲沙洞工程地质条件①隧洞地质条件洞区地形、地质条件较简单,主要物理地质作用为自然风化、剥蚀,无滑坡、崩塌、泥石流等不良地质作用,未见断裂构造通过,整体稳定。

隧洞进口段为第四系冲洪积砾砂土覆盖层,结构松散,强度低,对洞口边坡需进行加固护坡。

隧洞洞身前段主要由弱风化石英闪长岩组成,岩体较破碎,岩体基本质量等级为Ⅳ级,自稳能力较差,成洞后稳定性差,隧洞开挖容易产生局部塌方、掉块等挤压形式变形破坏;隧洞中段主要由微风化石英闪长岩组成,岩体较完整,自稳能力较好,开挖后可基本稳定,局部可能会出现岩块位移错动掉块;隧洞出口段主要由弱风化石英闪长岩组成,岩体较破碎,自稳能力较差,隧洞开挖容易产生局部塌方、掉块等挤形式压变形破坏。

隧洞出口段该段地层为第四系冲洪积漂石土覆盖层,结构松散,强度低,开挖易产生塌方。

②隧洞岩土物理力学特性隧洞岩土物理力学特性主要物理力学指标参考前表。

工程岩体分级标准(上)2010-04-15 | 作者:| 来源:中国地质环境信息网| 【大中小】【打印】【关闭】1 总则1.0.1 为建立统一的评价工程岩体稳定性的分级方法;为岩石工程建设的勘察、设计、施工和编制定额提供必要的基本依据,制定本标准。

1.0.2 本标准适用于各类型岩石工程的岩体分级。

1.0.3 工程岩体分级,应采用定性与定量相结合的方法,并分两步进行,先确定岩体基本质量,再结合具体工程的特点确定岩体级别。

1.0.4 工程岩体分级所必需的地质调查和岩石试验,除应符合本标准外,尚应符合有关现行国家标准的规定。

2 术语、符号2.l 术语2.1.1 岩石工程rock engineering以岩体为工程建筑物地甚或环境,并对岩体进行开挖或加固的工程,包括地下工程和地面工程。

(完整版)岩土力学参数大全

(完整版)岩土力学参数大全

综合上面分析,最终确定的本文计算分析采用的各土层参数见表4-1表4-1土层主要力学指标和计算参数层号土层名称土层体积模量/Pa剪切模量/Pa粘聚力/Pa摩擦角/,膨胀角/。

抗拉强度/Pa厚度/m密度∕kg.m'3I 杂填土10 1800 7.0E6 3.2e6 5E3 5 0 IE52 粉质粘土 4.8 2000 I.86E7 9e6 1.8E4 22 0 IE53 强风化砾岩 2.5 2050 I.38E8 5.96e7 4.2E4 30 0 1E54 中风化砾岩 6.3 2100 6.3E8 3.86e8 1.5E5 35 0 1E5表4-2支护桩主要计算参数密度∕kg.m*3直径/m截面积∕m2弹性模量/Pa泊松比惯性矩XCI1Zm4惯性矩XCl√m42500 0.8 0.5024 2.8E10 0.2 0.02 0.02表4-3锚索主要计算参数编号钢胶线根数、直径弹性模量/Pa截面积∕m2屈服强度/Pa钻孔周长/m摩用力/N.m∙,水泥体剪切刚度/Paid=I 3×7φ5I.95E1I 420E-6 1.86E9 0.47] 2.5E4 3.37E9 id=2 5x7"5 1.95Eil 700E-6 1.86E9 0.471 2.5E4 3.37E9各层上的力学参数表5-2参数第一层土第一层十第二层土第四层十.泥岩厚度/m7 7 2 7 23 密度/(kgΛ113)1750 2000 1800 2000 2350 体枳模量/MPa0 38.9 8.0 83.3 136.5 切变模量/MPa0 13.0 4.8 17.9 20.0 内聚力ZkPa 3 5 0 5 14000 摩擦角/(。

)20 40 25 45 361.08 抗拉强度/MPa表4-1本次模拟中涉及到的土体的体积模量和剪切模■计算值常用岩土材料力学参数(E,V)与(K,G)的转换关系如下:E一E3(l-2v)(7.2)当V值接近0.5的时候不能盲目的使用公式3.5,因为计算的K值将会非常的高,偏离实际值很多。

岩土工程数值计算方法

岩土工程数值计算方法

岩土工程数值计算方法
岩土工程数值计算方法牛不牛?那绝对超厉害!咱先说说这步骤哈。

首先得收集岩土工程的各种数据,就像大厨准备食材一样,一点都不能马虎。

然后建立数学模型,这就好比给房子搭框架,得结实。

接着进行计算求解,这过程就像赛车冲刺,紧张又刺激。

注意事项可不少呢!数据得准确呀,要是数据错了,那不就像在沙漠里找大海,瞎忙活嘛!模型选择也得合适,不然就像穿小鞋走路,难受得很。

再说说安全性和稳定性。

这可太重要啦!要是不稳定,那不是像在摇摇欲坠的桥上走,提心吊胆嘛!所以在计算过程中一定要确保结果的可靠性,不然出了问题可不得了。

应用场景那可多了去了。

比如在建筑工程中,可以预测地基的沉降,这就像给大楼安了个保险。

在隧道工程中,能分析围岩的稳定性,就像给隧道穿上了铠甲。

优势也很明显啊,省时省力还精准,比起传统方法,那简直是鸟枪换炮。

举个实际案例,有个大型建筑项目,用了岩土工程数值计算方法,提前预测了各种问题,及时调整方案,最后顺利完工。

这效果,杠杠的!
岩土工程数值计算方法就是这么厉害,能解决实际问题,让工程更安全、更高效。

咱就该大胆地用起来,让它为我们的工程建设助力。

岩土专业考试常用地质计算(视倾角真倾角换算,钻孔中矿体厚度计算)

岩土专业考试常用地质计算(视倾角真倾角换算,钻孔中矿体厚度计算)

1. 真倾角与视倾角换算真倾向与视倾向之间夹角在倾斜面上斜交走向线所引的任一直线均为视倾斜线,视倾斜线(HD,HC)与其在水平面的投影线(DO,CO)的夹角,叫视倾角。

视倾角总是小于真倾角真倾角与视倾角之间的关系, 可由下列公式表示和换算:tanβ=tanα cosω tga= tg β/cos ωβ为视倾角,α为真倾角,ω真倾向与视倾向间的夹角例题:现场量取岩层产状为倾向85度,真倾角a 为30度,剖面方向110度,则剖图面上绘制的视倾角β是多少?视倾角真倾角视倾角ω= 12+17=29tanβ=tanα cosω=tan 43 cos 27=0.816Β=39.2解:真倾向与视倾向间的夹角 ω =110-85=25视倾角tg β = tg a × cos ω = tg 30 × cos 25 β=27.62①垂直钻孔求岩层真厚度矿体真厚度M=视厚度L ×cos (倾角α)a 岩层真倾角 θ岩芯倾角 ②钻孔方位与矿体倾向一致,且钻孔倾角大于矿体倾角,钻孔方位与矿体走向垂直矿体真厚度M=视厚度L ×cos (顶角γ+ 倾角α)③钻孔方位与矿体倾向一致,且钻孔倾角α小于矿体倾角β 钻孔方位与矿体走向垂直α=90-γ θ=β-α矿体真厚度M=视厚度L ×sin θ ④钻孔方位与矿体倾向相反,钻孔方位与矿体走向垂直矿体倾角大于钻孔天顶角时:矿体真厚度M=视厚度L ×cos (倾角α-顶角γ)矿体倾角大于钻孔 天顶角时: 矿体真厚度M=视厚度L ×cos(倾角α-顶角γ)水平厚度=视水平厚度×sinβ真厚度=水平厚度×sinα垂直厚度=水平厚度×tgα=真厚度÷ cosα(α为矿体倾角)(β为矿体走向与穿脉方向的锐夹角)例:某金矿3号矿体走向100 °,穿脉CM18方位45 °,从4.2米至13.3米为矿层,(由编录资料结合勘探线剖面得知)该处矿体倾角为65 °,计算矿体的真厚度、水平厚度、垂直厚度为多少?解:水平厚度=视水平厚度×sinβ=(13.3-4.2)×sin(100-45)=7.45米真厚度=水平厚度×sinα= (13.3-4.2)×sin(100-45)×sin65=6.76米垂直厚度=真厚度÷cosα=6.76 ÷cos65=15.99米4.勘探线剖面(探槽)真厚度计算真厚度计算公式:D = L(Sinα×Cosβ×Sinγ±Cosα×Sinβ)式中D:地层真厚度(m)L:斜距(m)α:岩层(矿体)真倾角(°)β:地形坡度角(±°)γ:剖面导线与地层(矿体)走向线的锐夹角(°)(注:当坡向与岩层倾向相反时,公式中用加号计算;当坡向与岩层倾向相同时,公式中用减号计算。

贵州注册岩土工程师公式

贵州注册岩土工程师公式

贵州注册岩土工程师公式岩土工程是土壤力学和岩石力学的应用领域,专注于研究土壤和岩石的力学性质以及其在工程建设中的应用。

作为一名注册岩土工程师,我们需要掌握一些常用的公式和计算方法,以便在实际工作中进行土壤和岩石相关参数的计算。

下面是一些常见的贵州注册岩土工程师所需掌握的公式:1. 土壤容重公式:土壤容重(γ)表示单位体积土壤的质量。

常用的土壤容重公式为:γ = Gs * γw / (1 + e),其中,Gs为土壤颗粒的比重(一般为2.65),γw为水的单位体积质量(一般为1000 kg/m³),e为土壤的孔隙度。

2. 土壤孔隙水压力公式:土壤孔隙水压力(u)表示土壤中孔隙水的压力。

常用的土壤孔隙水压力公式为:u = γw * h,其中,γw为水的单位体积质量(一般为1000 kg/m³),h为土壤中水的高度。

3. 杨氏模量计算公式:杨氏模量(E)表示岩土材料的刚度。

常用的杨氏模量计算公式为:E = σ / ε,其中,σ为应力(单位为N/m²或Pa),ε为应变。

4. 岩石抗拉强度公式:岩石抗拉强度(σt)表示岩石材料的抗拉能力。

常用的岩石抗拉强度公式为:σt = F / A,其中,F为施加在岩石上的拉力(单位为N),A为岩石的横截面积(单位为m²)。

以上仅是岩土工程中的一部分公式,实际工作中还会有更多的公式和计算方法。

作为一名注册岩土工程师,我们需要熟练掌握这些公式,并根据实际情况进行计算和分析。

这将有助于我们进行合理的设计和施工,并确保工程的安全性与可靠性。

岩土力学参数计算

岩土力学参数计算
岩土力学参数计算书
序号 1 2 3 4 5 6 7 测试手段 岩土层代号 岩土层类型 统计后数据 数据类型 计算所用公式 结果 适用范围 静力触探ps(Mpa) ③ 淤泥质粉质粘土 0.496 标准值 f0=104ps+25.9 78.5 f0=84ps+25 66.7 0.35≤ps≤5.7,南京粘性 土 江苏建筑设计院 f0=83ps+54.6 95.8 f0=50ps+73 97.8 1.5≤ps≤6,一般粘性 土 建材部综勘院 f0=97ps+76 124.1 6≤ps≤6,老粘土 f0=2.39(1000ps)0.55 72.6 一般粘性土,淤泥质土 武汉勘察院 f0=5.25(1000ps)0.5-103 13.9 1≤ps≤10,中粗砂 Es=3.72Ps+1.26 3.11 淤泥,淤泥质粘性土,一 般粘性土 武汉联合试验组 f0=20ps+59.5 69.4 1≤ps≤15,粉细砂
0.3≤ps≤6,淤泥质土, 0.3≤ps≤3,淤泥质土,一 一般粘性土,老粘土 般粘性土 武汉联合试验组 武汉联合试验组 f0=0.89(1000ps)0.63+14.4 58.8 ps≤24,Ip<10一般粘性土 及饱和砂土 铁道部静力触探技术规则
8 5 6 7
公式出处
武汉联合试验组 f0=112ps+5 60.6 软土
武汉联合试验组
武汉联合试验组
计算所用公式 f0=5.8(1000ps)0.5-46 结果 适用范围 83.2 0.35≤ps≤5,Ip>10一 般粘性土 铁道部静力触探技术 规则
f0=1.4817(1000ps)0.602 f0=0.9993(1000ps)0.629 62.5 49.6

岩土力学重要参数取值大全

岩土力学重要参数取值大全

常用岩土材料力学重要参数(E, ν) 与(K, G)的转换关系如下:)21(3ν-=E K )1(2ν+=E G (7.2) 当ν值接近0.5的时候不能盲目的使用公式3.5,因为计算的K 值将会非常的高,偏离实际值很多。

最好是确定好K 值(利用压缩试验或者P 波速度试验估计),然后再用K 和ν来计算G 值。

表7.1和7.2分别给出了岩土体的一些典型弹性特性值。

岩石的弹性(实验室值)(Goodman,1980)表7.1土的弹性特性值(实验室值)(Das,1980)表7.2各向异性弹性特性——作为各向异性弹性体的特殊情况,横切各向同性弹性模型需要5中弹性常量:E 1, E 3,ν12,ν13和G 13;正交各向异性弹性模型有9个弹性模量E 1,E 2,E 3,ν12,ν13,ν23,G 12,G 13和G 23。

这些常量的定义见理论篇。

均质的节理或是层状的岩石一般表现出横切各向同性弹性特性。

一些学者已经给出了用各向同性弹性特性参数、节理刚度和空间参数来表示的弹性常数的公式。

表3.7给出了各向异性岩石的一些典型的特性值。

横切各向同性弹性岩石的弹性常数(实验室)表7.3流体弹性特性——用于地下水分析的模型涉及到不可压缩的土粒时用到水的体积模量K f ,如果土粒是可压缩的,则要用到比奥模量M 。

纯净水在室温情况下的K f 值是2 Gpa 。

其取值依赖于分析的目的。

分析稳态流动或是求初始孔隙压力的分布状态(见理论篇第三章流体-固体相互作用分析),则尽量要用比较低的K f ,不用折减。

这是由于对于大的K f 流动时间步长很小,并且,力学收敛性也较差。

在FLAC 3D 中用到的流动时间步长,∆ tf 与孔隙度n ,渗透系数k 以及K f 有如下关系:'f f kK n t ∝∆ (7.3) 对于可变形流体(多数课本中都是将流体设定为不可压缩的)我们可以通过获得的固结系数νC 来决定改变K f 的结果。

f 'K n m k C +=νν(7.4)其中3/4G K 1m +=ν f 'k k γ=其中,'k ——FLAC 3D 使用的渗透系数 k ——渗透系数,单位和速度单位一样(如米/秒)f γ——水的单位重量考虑到固结时间常量与νC 成比例,我么可以将K f 的值从其实际值(Pa 9102⨯)减少,利用上面得表达式看看其产生的误差。

注册岩土考试专用用—土三相指标换算

注册岩土考试专用用—土三相指标换算
Ws饱和含水量
可取Vs=1 Vv=e V=Vs+Vv=1+e可得ms=GsVsρw=ρd(1+e)m=ms(1+w)Gs=ρd(1+e)/Vsρw
公式1: 根据公式9 =ρd(1+w)/ρd—1=w
公式2: 根据公式9 GS=Sre/w
公式3: =ms(1+w)/v=ρdv(1+w)/v ρ=GsVsρw(1+w)/( 1+e)= Gsρw(1+w)/(1+e)
e=V-Vs/Vs=V/Vs—1=(m/ρ)/Vs—1=(GsVsρw(1+w)/ρ)/Vs—1
公式8: n=e/1+e
公式9: Sr=mw/Vvρw×100%=0.01wms/Vv×100%=0.01wGsVsρw/Vvρw×100% =wρd(1+e)/eρw
1.8~2.3
公式6
有效密度(g/cm3)
0.8~1.3
公式7
孔隙比
e
e=GSw/Sr
e=n/1-n
20~6020~60
公式8
孔隙率(%)
n
黏性土和粉土:0.40~1.20
砂土:25~45
公式9
饱和度(%)
Sr
0~100
公式10
最大干密度(g/cm3)
ρmax
ρmax=ηρwds/1+0.01wopds
公式4: ρd= m/(1+w)/v=ρ/(1+w)
ρd= GsVsρw/(1+e)= Gsρw/(1+e)
公式5: ρsat=(GsVsρw+Vvρw)/(1+e)
公式6: —ρw

岩土力学参数大全

岩土力学参数大全

常用岩土材料力学参数(E, ν) 与(K, G)的转换关系如下:)21(3ν-=EK)1(2ν+=EG (7.2)当ν值接近0.5的时候不能盲目的使用公式3.5,因为计算的K 值将会非常的高,偏离实际值很多。

最好是确定好K 值(利用压缩试验或者P 波速度试验估计),然后再用K 和ν来计算G 值。

表7.1和7.2分别给出了岩土体的一些典型弹性特性值。

岩石的弹性(实验室值)(Goodman,1980) 表7.1土的弹性特性值(实验室值)(Das,1980) 表7.2各向异性弹性特性——作为各向异性弹性体的特殊情况,横切各向同性弹性模型需要5中弹性常量:E 1, E 3, ν12,ν13和G 13;正交各向异性弹性模型有9个弹性模量E 1,E 2,E 3, ν12,ν13,ν23,G 12,G 13和G 23。

这些常量的定义见理论篇。

均质的节理或是层状的岩石一般表现出横切各向同性弹性特性。

一些学者已经给出了用各向同性弹性特性参数、节理刚度和空间参数来表示的弹性常数的公式。

表3.7给出了各向异性岩石的一些典型的特性值。

横切各向同性弹性岩石的弹性常数(实验室) 表7.37.3 固有的强度特性在FLAC 3D 中,描述材料破坏的基本准则是摩尔-库仑准则,这一准则把剪切破坏面看作直线破坏面:s 13N f φσσ=-+ (7.7)其中 )sin 1/()sin 1(N φφφ-+=1σ——最大主应力 (压缩应力为负);3σ——最小主应力φ——摩擦角c ——粘聚力当0f s <时进入剪切屈服。

这里的两个强度常数φ和c 是由实验室的三轴实验获得的。

当主应力变为拉力时,摩尔-库仑准则就将失去其物理意义。

简单情况下,当表面的在拉应力区域发展到3σ等于单轴抗拉强度的点时,tσ ,这个次主应力不会达到拉伸强度—例如;t 3t f σσ-= (7.8)当0f t >时进入拉伸屈服。

岩石和混凝土的抗拉强度通常有由西实验获得。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

n 1
1i m i n ϕϕ==∑
根据《岩土工程勘察规范》(GB50021-2001),表征岩土工程性质的主要参数的特征值:
⑴ 岩土参数的算术平均值: 根据公式:∑=Φ=Φn
i i n m 1
1 (3-1) ⑵ 岩土参数的标准差: 根据公式:⎥⎥⎦⎤⎢⎢⎣⎡⎪⎪⎭⎫ ⎝⎛--=
∑∑=n i i i f n n 122111φφσ (3-2) ⑶ 岩土参数的变异系数: 根据公式:m f φσδ= (3-3)
上几式中: Φm -算术平均值,σf -标准差,δ-变异系数
Φi ——岩土的物理力学指标数据;n-参加统计的数据个数。

① 先用公式(3-1)和《物理力学指标统计表》求含水比αw 、液塑比Ir 的平均值a w 、I r ;
② 根据a w ,I r 查《建筑地基基础设计规范》(GB50007-2002)(用线性插值法)
得f 0;
③ 根据公式(3-2)和(3-3)分别求w a , Ir 的标准差f σ和变异系数δ; ④ 求综合变异系数δ和回归修正系数f ψ,查表得第二指标的折算系数ξ,根据公式:21ξδδδ+=得δ,根据公式:δψ⎪⎪⎭⎫ ⎝⎛+-=2918.7884.21n n
f 得f ψ。

④ 根据公式:
f
ak f f ψ⨯=0求承载力ak f 。

预估单桩竖向承载力如下:
⑴ 静压预制桩:据勘察成果,按预制桩规格为450mm ×450mm 的方桩,桩端进入圆砾⑥层2m 。

取ZK10号钻孔估算静压预制桩单桩竖向极限承载力Q u =4651.3kN (《高层建筑岩土工程勘察规程》(JGJ72—2004)中式 D.0.1
p ps i sis u A q l q u Q ⋅+⋅=∑s β)。

单桩竖向承载力特征值R a = Q u /K=2326kN (K=2)
最终单桩竖向承载力应通过现场静载荷试验确定。

⑵ 钻(冲)孔灌注桩:据勘察成果,桩径按2000mm ,桩端进入泥岩⑦层1.5m 。

取ZK10号钻孔估算单桩竖向极限承载力Q u =195722kN (《高层建筑岩土工程勘察
规程》(JGJ72—2004)中8.3.12条∑∑==++=n i n
i p pr ri sir r i sis s A q h q u l q u Q 11u )。

单桩竖向承载力特征值R a = Q u /K=9786kN (K=2)
根据压缩试验结果,计算各级压力下的ei ,计算压缩系数和压缩模量。

根据剪切试验结果,绘制τ-σ曲线,直接求得内摩擦角φ、粘聚力C
直剪试验:用直接剪切仪来测定土的抗剪强度的试验,直剪仪一般分为:应力式和应变式,一般我们国家应用较多的都是应变式的。

根据加荷的速率的快慢将直剪试验划分为:1、快剪,本方法适用于渗透系数小于10的-6次方的细粒土,试验时在施加垂直力以后,拔去固定销钉,立即以0.8mm/min 的剪切速度进行剪切,使试样3~5分钟剪破,试样每产生0.2~0.4mm 剪切位移时,记录测力计和位移读数,直到出现峰值或者剪切位移达到4mm 记录破坏值,试样得的抗剪强度为快剪强度。

2、固结快剪,本方法适用于渗透系数小于10的-6次方的细粒土,试验时在施加垂直力后,每小时读一次变形,直至固结稳定,然后拔去销钉,进行与快剪同样的剪切过程,所得抗剪强度为固结快剪强度。

慢剪:试验时加垂直力后,待固结稳定后,再拔去销钉,以小于0.2mm/min 的速度使试样充分在排水条件下剪切,得到的是慢剪强度。

对于三种试验所得结果:粘聚力快剪>固快>慢剪,内摩擦角快剪<固快<慢剪
三轴试验:直接量测的是试样在不同恒定围压下的抗压强度,然后根据摩尔库伦原理推求土的抗剪强度。

三轴根据固结和排水条件分为:不固结不排水(uu )固结不排水(Cu )固结排水(CD ),在进行三种不同方法试验时,都要先使试样在一定的围压下固结稳定,若是UU 就是在不排水条件下围压增加一个增量,然后在不允许水进出的条件下逐渐施加轴向力q 直至试样破坏;若是CU 在允许排水条件下围压增加一个增量固结稳定,然后再不允许水进出的条件下逐渐施加轴向力直至试样破坏;若是CD 在允许排水条件下围压增加一个增量固结稳定,然后在排水条件下逐渐施加轴向力直至试样破坏。

所以固结不固结是相对于围压增量来说的,排水不排水是相对于轴向力来说的。

根据压缩试验结果,计算各级压力下的ei ,计算压缩系数和压缩模量 压缩系数:a= (e1-e2)/(p2-p1)
压缩模量:ES1-2=(1+e1/a
根据剪切试验结果,绘制τ-σ曲线,直接求得内摩擦角φ、粘聚力C
回弹模量可以通过回弹再压缩试验曲线,求得各个压力段下的回弹模量。

勘察报告一般应该给出。

对于粉质粘土,粉土,有时可简单地取压缩模量的2倍来估算回弹再压缩变形。

相关文档
最新文档