纳米陶瓷技术

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

纳米陶瓷技术

摘要:纳米陶瓷粉体是介于固体与分子之间的具有纳米数量级尺寸的亚稳态中间物质。随着粉体的超细化,其表面电子结构和晶体结构发生变化,产生了块状材料所不具有的特殊的效应。纳米陶瓷的超细晶粒、高浓度晶界以及晶界原子邻近状况决定了它们具有明显区别于普通陶瓷的特异性能。本文对纳米陶瓷的这些主要的特异性能及其制备进行了阐述。

关键词:纳米陶瓷;性能;制备

陶瓷材料作为材料的三大支柱之一,在日常生活及工业生产中起着举足轻重的作用。但是,由于传统陶瓷材料质地较脆,韧性、强度较差,因而使其应用受到了较大的限制。所以随着纳米技术的广泛应用,纳米陶瓷随之产生,希望以此来克服陶瓷材料的脆性,使陶瓷具有像金属一样的柔韧性和可加工性。

一、纳米陶瓷

纳米陶瓷是80年代中期发展起来的先进材料。利用纳米技术开发的纳米陶瓷材料是指在陶瓷材料的显微结构中,晶粒、晶界以及它们之间的结合都处在纳米水平,使得材料的强度、韧性和超塑性大幅度提高,克服了工程陶瓷的许多不足,并对材料的力学、电学、热学、磁学、光学等性能产生重要影响,为替代工程陶瓷的应用开拓了新领域。

二、纳米陶瓷材料的性能研究

2.1 力学性能

研究表明当陶瓷材料成为纳米材料后,材料的力学性能得到极大改善,主要表现在以下三个方面: 1)断裂强度大大提高;2)断裂韧性大大提高;3)耐高温性能大大提高。与此同时,材料的硬度、弹性模量、热膨胀系数都会发生改变。

不少纳米陶瓷材料的硬度和强度比普通陶瓷材料高出4~5倍。在陶瓷基体中引入纳米分散相并进行复合,不仅可大幅度提高其断裂强度和断裂韧性,明显改善其耐高温性能,而且也能提高材料的硬度、弹性模量和抗热震、抗高温蠕变的性能。

2.2 低温超塑性

陶瓷的超塑性是由扩散蠕变引起的晶格滑移所致,扩散蠕变率与扩散系数成正比,与晶粒尺寸的3次方成反比,普通陶瓷只有在很高的温度下才表现出明显的扩散蠕变。而纳米陶瓷的扩散系数提高了3个数量级,晶粒尺寸下降了3个数量级,因而其扩散蠕变率较高,在较低的温度下,因其较高的扩散蠕变速率而对外界应力做出迅速反应,造成晶界方向的平移,表现出超塑性,使其韧性大为提高。

2.3 扩散与烧结性能

由于纳米陶瓷材料存在着大量的界面,这些界面为原子提供了短程扩散途径,与单晶材料相比,纳米陶瓷材料具有较高的扩散率。增强扩散能力的同时又使纳米陶瓷的烧结温度大为降低。实验也表明烧结温度降低是纳米材料的普遍现象。

2.4 磁学性能

晶粒中的磁各向异性与颗粒的形状、晶体结构、内应力以及晶粒表面的原子状况有关。由于纳米颗粒尺寸超细,其磁学性能与粗晶粒材料有着显著的区别,表现出明显的小尺寸效应。另外在纳米材料中存在大量的界面成分。当晶粒尺寸减小到纳米级时,晶粒之间的铁磁相互作用开始对材料的宏观磁性有着重要影响。与铁磁原子类似,根据相互作用的大小,纳米晶粒体可表现出超顺磁性、超铁磁性、超自旋玻璃态等特性。

2.5 电学性能

高性能的电子陶瓷材料一个重要的发展趋势是:用纳米粉体作为原材料生产诸如陶瓷电容器、压电陶瓷,将纳米材料应用到陶瓷工艺中去,生产纳米复合或纳米改性的高技术陶瓷。化学沉淀法制备了锆钛酸铅(PZT)超微细粉,用此超微细粉制备的PZT 压电陶瓷与传统的压电陶瓷比较发现: 压电电压常数、介电常数都比普通PZT数值有很大提高,同时材料的密度较传统低,具有优良的压电、介电、声电等电学性能。

纳米陶瓷不仅具有塑性强、硬度高、耐高温、耐腐蚀、耐磨的性能,还具有高磁化率、高矫顽力、低饱和磁矩、低磁耗和光吸收效应等性能。这些独特的性能都有待于人们的进一步研究和应用。

与传统的材料相比,纳米陶瓷材料除具有优良的力学性能和热物理性能外,由于结构特殊,使它在制备吸波材料方面具有其他常规材料所不具备的优点,如矫顽力比较高,可引起磁滞损耗,界面极化,多重散射,这些都是吸波材料所必需的,因此纳米陶瓷材料可用来制备吸波材料,用于武器装备高温部位的隐身。

三.纳米陶瓷的制备

对于纳米陶瓷来说,它与常规陶瓷烧结的不同之处在于,普通陶瓷的烧结一般不必过多考虑晶粒的生长,而在纳米陶瓷的烧结过程中必须采取一切措施控制晶粒长大。纳米陶瓷的特殊烧结方法可控制纳米陶瓷晶粒的大小,以防长大后严重影响纳米陶瓷所具有的独特性能,主要有以下几种方法:

3.1传统烧结法

传统烧结法是在室温下压实粉末,进行烧结,最终的烧结性能取决于纳米材料压实母体,如微孔尺寸微小而且分布均匀,烧结后才可得到高密度纳米材料。

3.2压力烧结法

此法对压制成型母体中的气孔的要求不像无压力烧结严格,压力的施加有效地消除了大尺寸的气孔。

3.3特种烧结法

特种烧结法是利用高压和高温的交替作用(高压力、低温或低压力、高温)对成型的纳米块体进行烧结,这种温度和压力交替的烧结作用可阻止其粒子长大,使组织致密,主要有微波烧结法等。

3.4两步烧结法

一般的无压烧结是采用等速烧结进行的,即控制一定的升温速度,到达预定温度后保温一定时间获得烧结体。在无压烧结中,由于温度是唯一可以控制的因素,因此如何选择最佳的烧结温度,从而在控制晶粒的长大的前提下实现坯体的致密化,是纳米陶瓷制备中最需要研究的问题。两步烧结法的目的是要避开烧结后期的晶粒生长过程,其基本做法是:首先,将烧结温度升至较高的温度,使坯体的相对密度达到70%左右;然后,将烧结温度降到较低的温度下保温较长的时间使烧结继续进行而实现完全的致密化。

由于纳米陶瓷烧成的研究时间不长,目前应用到纳米陶瓷烧结中的方法不多,主要是把某些普通陶瓷的烧成方法加以改进用到纳米陶瓷的烧成中。根据烧成条件的不同,我们将现有的烧成方法按图分类。

四、结束语

纳米陶瓷作为一种新型高性能陶瓷,是近年发展起来的一门全新的科学技术,它将成为新世纪最重要的高新技术,将越来越受到世界各国科学家的关注。纳米陶瓷的研究与发展必将引起陶瓷工业的发展与变革,以及引起陶瓷学理论上的发展乃至建立新理论体系,以适应纳米尺度的研究需要,使纳米陶瓷材料具有更佳的性能以致使新的性能、功能的出现成为可

相关文档
最新文档