中考数学复习专题33 探索规律问题

合集下载

2019年全国各地中考数学解析汇编33 规律探索型问题

2019年全国各地中考数学解析汇编33 规律探索型问题

2019年全国各地中考数学解析汇编33 规律探索型问题12.(2018山东省滨州,12,3分)求1+2+22+23+…+22018的值,可令S=1+2+22+23+…+22018,则2S=2+22+23+24+…+22018,因此2S ﹣S=22018﹣1.仿照以上推理,计算出1+5+52+53+…+52018的值为( )A .52018﹣1 B .52018﹣1 C .D .【解析】设S=1+5+52+53+…+52018,则5S=5+52+53+54+…+52018,因此,5S ﹣S=52018﹣1,S=.【答案】选C .【点评】本题考查同底数幂的乘法,以及类比推理的能力.两式同时乘以底数,再相减可得s的值. (2018广东肇庆,15,3)观察下列一组数:32,54,76,98,1110,…… ,它们是按一定规律排列的,那么这一组数的第k 个数是 ▲ .【解析】通过观察不难发现,各分数的分子与分母均相差1,分子为连续偶数,分母为连续奇数. 【答案】122 k k【点评】本题是一道规律探索题目,考查了用代数式表示一般规律,难度较小.18. ( 2019年四川省巴中市,18,3)观察下列面一列数:1,-2,3,-4,5,-6,…根据你发现的规律,第2018个数是___________【解析】观察知: 下列面一列数中,它们的绝对值是连续正整数,第2018个数的绝对值是2018,值偶数项是负数,故填-2018. 【答案】-2018【点评】本题是找规律的问题,确定符号是本题的难点.20.(2018贵州省毕节市,20,5分)在下图中,每个图案均由边长为1的小正方形按一定的规律堆叠而成,照此规律,第10个图案中共有 个小正方形。

解析:观察图案不难发现,图案中的正方形按照从上到下成奇数列排布,写出第n 个图案的正方形的个数,然后利用求和公式写出表达式,再把n=10代入进行计算即可得解.答案:解:第1个图案中共有1个小正方形,第2个图案中共有1+3=4个小正方形,第3个图案中共有1+3+5=9个小正方形,…,第n 个图案中共有1+3+5+…+(2n-1)=2)121(-+n n =n 2个小正方形,所以,第10个图案中共有102=100个小正方形.故答案为:100.点评:本题是对图形变化规律的考查,根据图案从上到下的正方形的个数成奇数列排布,得到第n 个图案的正方形的个数的表达式是解题的关键.18.(2018贵州六盘水,18,4分)图7是我国古代数学家杨辉最早发现的,称为“杨辉三角形”.它的发现比西方要早五百年左右,由此可见我国古代数学的成就是非常值得中华民族自豪的!“杨辉三角形”中有许多规律,如它的每一行的数字正好对应了()n a b +(n 为非负整数)的展开式中a 按次数从大到小排列的项的系数.例如222()2a b a ab b +=++展开式中的系数1、2、1恰好对应图中第三行的数字;再入,33223()33a b a a b ab b +=+++展开式中的系数1、3、3、1恰好对应图中第四行的数字.请认真观察此图,写出4()a b +的展开式.4()a b += ▲ .分析:该题属规律型,通过观察可发现第五行的系数是:1、4、6、4、1,再根据例子中字母的排列规律即得到答案.解答:解:由题意,4432234()464a b a a b a b ab b +=++++,故填432234464a a b a b ab b ++++.点评:本题考查了数字的变化规律,从整体观察还要考虑字母及字母指数的变化规律,从而得到答案.17. (2018山东莱芜, 17,4分) 将正方形ABCD 的各边按如图所示延长,从射线AB 开始,分别在各射线上标记点321,,A A A ….,按此规律,则点A 2018在射线 上. 【解析】根据表格中点的排列规律,可以得到点的坐标是每16个点排列的位置一循环,2018=16×125+12,所以点A2018所在的射线和点12A所在的直线一样。

如何做中考探索(规律)题第33讲

如何做中考探索(规律)题第33讲

第33讲:如何做中考探索(规律)题随着课程改革的不断深入,规律探索型试题自近几年出现以来,正受到越来越多的省市所青睐.因此,这就需要我们在平时的学习及复习时注重进行观察能力、分析能力、探索研究能力、归纳能力和创新能力的训练与培养.规律探索型题包括探索数字规律型、探索运算规律型、探索等式的规律型、探索几何图形排列规律型等等试题,因为涉及的知识点较多,并且能够综合考查学生的探索、归纳、概括、类比等等能力,因此是中考的热点题型.解决这类问题的一般思路是:首先认真阅读所给出的条件,从中发现其变化规律,大胆猜想,由特殊的情况总结出一般性的结论,最后再进行验证以确保所归纳结论的正确性.题型一探索数字规律探索数字规律的题目在中考中经常出现,做这类试题,要认真分析所给出的数字之间的关系以及每个数字与所处的数位的关系,找出规律性,推测出所要求填写的项或者通项公式。

例1、(2007辽宁沈阳)有一组数:1,2,5,10,17,26,……,请观察这组数的构成规律,用你发现的规律确定第8个数为.解析:仔细分析数字的特征,1=02+1,2=12+1,5=22+1,10=32+1,17=42+1,26=52+1…,容易推测出第8个数为72+1=50。

例2、(2007重庆)将正整数按如图所示的规律排列下去。

若用有序实数对(n,m)表示第n排,从左到右第m个数,如(4,3)表示实数9,则(7,2)表示的实数是。

解析:到第6排最后共有1+2+3+4+5+6=21个数,则第7排第2个数为23。

题型二探索运算规律根据已经提供的数字之间的运算规律,探究出一般性的结论或者推测出某些算式,是解决探究运算规律试题的基本解法。

例3、(2007山东烟台)观察下列各式:===请你将发现的规律用含自然数n(n≥1)的等式表示出来.(n+例4、(2007浙江临安)已知:, ……,若符合前面式子的规律,则a + b = ___ ____.解析:首先可以猜测出a=102-1=99,b=10,所以a+b=109。

中考数学复习专题33-探索规律问题

中考数学复习专题33-探索规律问题

专题33 探索规律问题☞解读考点知识点名师点晴规律类型1.数字猜想型在分析比较的基础上发现题目中所蕴涵的数量关系,先猜想,然后通过适当的计算回答问题.2.数式规律型通过观察、分析、归纳、验证,然后得出一般性的结论,以列代数式即函数关系式为主要内容.3.图形规律型图形规律问题主要是观察图形的组成、分拆等过程中的特点,分析其联系和区别,用相应的算式描述其中的规律,注意对应思想和数形结合.4.数形结合猜想型首先要观察图形,从中发现图形的变化方式,再将图形的变化以数或式的形式反映出来,从而得出图形与数或式的对应关系.5.动态规律型要将图形每一次的变化与前一次变化进行比较,明确哪些结果发生了变化,哪些结果没有发生变化,从而逐步发现规律.☞2年中考【2015年题组】1.(2015绵阳)将一些相同的“○”按如图所示的规律依次摆放,观察每个“龟图”中的“○”的个数,若第n个“龟图”中有245个“○”,则n=()A.14 B.15 C.16 D.17【答案】C .考点:1.规律型:图形的变化类;2.综合题.2.(2015十堰)如图,分别用火柴棍连续搭建正三角形和正六边形,公共边只用一根火柴棍.如果搭建正三角形和正六边形共用了2016根火柴棍,并且正三角形的个数比正六边形的个数多6个,那么能连续搭建正三角形的个数是( )A .222B .280C .286D .292 【答案】D . 【解析】试题分析:设连续搭建三角形x 个,连续搭建正六边形y 个.由题意得,215120166x y x y +++=⎧⎨-=⎩,解得:292286x y =⎧⎨=⎩.故选D . 考点:规律型:图形的变化类.3.(2015荆州)把所有正奇数从小到大排列,并按如下规律分组:(1),(3,5,7),(9,11,13,15,17),(19,21,23,25,27,29,31),…,现有等式Am =(i ,j )表示正奇数m 是第i 组第j 个数(从左往右数),如A 7=(2,3),则A 2015=( ) A .(31,50) B .(32,47) C .(33,46) D .(34,42) 【答案】B . 【解析】试题分析:2015是第201512+=1008个数,设2015在第n 组,则1+3+5+7+…+(2n ﹣1)≥1008,即(121)10082n n+-≥,解得:1008n ≥当n =31时,1+3+5+7+…+61=961;当n =32时,1+3+5+7+…+63=1024;故第1008个数在第32组,第1024个数为:2×1024﹣1=2047,第32组的第一个数为:2×962﹣1=1923,则2015是(2015192312-+)=47个数.故A 2015=(32,47).故选B.考点:1.规律型:数字的变化类;2.综合题;3.压轴题.4.(2015包头)观察下列各数:1,43,97,1615,…,按你发现的规律计算这列数的第6个数为()A.2531B.3635C.47D.6263【答案】C.考点:1.规律型:数字的变化类;2.综合题.5.(2015重庆市)下列图形都是由同样大小的小圆圈按一定规律组成的,其中第①个图形中一共有6个小圆圈,第②个图形中一共有9个小圆圈,第③个图形中一共有12个小圆圈,…,按此规律排列,则第⑦个图形中小圆圈的个数为()A.21 B.24 C.27 D.30【答案】B.【解析】试题分析:观察图形得:第1个图形有3+3×1=6个圆圈,第2个图形有3+3×2=9个圆圈,第3个图形有3+3×3=12个圆圈,…,第n个图形有3+3n=3(n+1)个圆圈,当n=7时,3×(7+1)=24,故选B.考点:1.规律型:图形的变化类;2.综合题.6.(2015泰安)下面每个表格中的四个数都是按相同规律填写的:根据此规律确定x的值为()A.135 B.170 C.209 D.252【答案】C.【解析】试题分析:∵a+(a+2)=20,∴a=9,∵b=a+1,∴b=a+1=9+1=10,∴x=20b+a=20×10+9=200+9=209,故选C.考点:1.规律型:数字的变化类;2.综合题.7.(2015重庆市)下列图形都是由几个黑色和白色的正方形按一定规律组成,图①中有2个黑色正方形,图②中有5个黑色正方形,图③中有8个黑色正方形,图④中有11个黑色正方形,…,依次规律,图⑩中黑色正方形的个数是()A.32 B.29 C.28 D.26【答案】B.考点:1.规律型:图形的变化类;2.综合题.8.(2015崇左)下列图形是将正三角形按一定规律排列,则第4个图形中所有正三角形的个数有()A.160 B.161 C.162 D.163【答案】B.【解析】试题分析:第一个图形正三角形的个数为5,第二个图形正三角形的个数为5×3+2=17,第三个图形正三角形的个数为17×3+2=53,第四个图形正三角形的个数为53×3+2=161,故答案为:161.考点:1.规律型;2.综合题.9.(2015贺州)观察下列等式:21=2,22=4,23=8,24=16,25=32,26=64,27=128,…,解答下面问题:2+22+23+24+…+22015﹣1的末位数字是()A.0 B.3 C.4 D.8【答案】B.考点:1.尾数特征;2.规律型;3.综合题.10.(2015宜宾)如图,以点O为圆心的20个同心圆,它们的半径从小到大依次是1、2、3、4、…、20,阴影部分是由第1个圆和第2个圆,第3个圆和第4个圆,…,第19个圆和第20个圆形成的所有圆环,则阴影部分的面积为()A .231πB .210πC .190πD .171π 【答案】B . 【解析】试题分析:由题意可得:阴影部分的面积和为:222222(21)(32)...(2019)πππ-+-++- =3π+7π+11π+15π+…+39π=5(3π+39π)=210π.故选B . 考点:1.规律型:图形的变化类;2.综合题.11.(2015鄂州)在平面直角坐标系中,正方形A 1B 1C 1D 1、D 1E 1E 2B 2、A 2B 2C 2D 2、D 2E 3E 4B 3、A 3B 3C 3D 3…按如图所示的方式放置,其中点B 1在y 轴上,点C 1、E 1、E 2、C 2、E 3、E 4、C 3…在x 轴上,已知正方形A 1B 1C 1D 1的边长为1,∠B 1C 1O =60°,B 1C 1∥B 2C 2∥B 3C 3…则正方形A 2015B 2015C 2015D 2015的边长是( )A .201421)( B .201521)( C .201533)(D .201433)(【答案】D .考点:1.正方形的性质;2.规律型;3.综合题.12.(2015庆阳)在如图所示的平面直角坐标系中,△OA1B1是边长为2的等边三角形,作△B2A2B1与△OA1B1关于点B1成中心对称,再作△B2A3B3与△B2A2B1关于点B2成中心对称,如此作下去,则△B2nA2n+1B2n+1(n是正整数)的顶点A2n+1的坐标是()A.(4n﹣1,3) B.(2n﹣1,3) C.(4n+1,3) D.(2n+1,3)【答案】C.…,∵1=2×1﹣1,3=2×2﹣1,5=2×3﹣1,7=2×3﹣1,…,∴An的横坐标是2n﹣1,A2n+1的横坐标是2(2n+1)﹣1=4n+1,∵当n为奇数时,An3,当n为偶数时,An的纵坐标是3,∴顶点A2n+1 3∴△B2nA2n+1B2n+1(n是正整数)的顶点A2n+1的坐标是(4n+13.故选C.考点:1.坐标与图形变化-旋转;2.规律型;3.综合题;4.压轴题.13.(2015宁德)如图,在平面直角坐标系中,点A1,A2,A3…都在x轴上,点B1,B2,B 3…都在直线y x =上,△OA 1B 1,△B 1A 1A 2,△B 2B 1A 2,△B 2A 2A 3,△B 3B 2A 3…都是等腰直角三角形,且OA 1=1,则点B 2015的坐标是( )A .(20142,20142)B .(20152,20152)C .(20142,20152)D .(20152,20142)【答案】A .考点:1.一次函数图象上点的坐标特征;2.等腰直角三角形;3.规律型;4.综合题. 14.(2015河南省)如图所示,在平面直角坐标系中,半径均为1个单位长度的半圆O 1、O 2、O 3,…组成一条平滑的曲线,点P 从原点O 出发,沿这条曲线向右运动,速度为每秒2π个单位长度,则第2015秒时,点P 的坐标是( )A .(2014,0)B .(2015,﹣1)C .(2015,1)D .(2016,0) 【答案】B . 【解析】试题分析:半径为1个单位长度的半圆的周长为:121=2ππ⨯⨯,∵点P 从原点O 出发,沿这条曲线向右运动,速度为每秒2π个单位长度,∴点P 1秒走12个半圆,当点P 从原点O 出发,沿这条曲线向右运动,运动时间为1秒时,点P的坐标为(1,1),当点P从原点O出发,沿这条曲线向右运动,运动时间为2秒时,点P的坐标为(2,0),当点P从原点O出发,沿这条曲线向右运动,运动时间为3秒时,点P的坐标为(3,﹣1),当点P从原点O 出发,沿这条曲线向右运动,运动时间为4秒时,点P的坐标为(4,0),当点P从原点O 出发,沿这条曲线向右运动,运动时间为5秒时,点P的坐标为(5,1),当点P从原点O 出发,沿这条曲线向右运动,运动时间为6秒时,点P的坐标为(6,0),…,∵2015÷4=503…3,∴A2015的坐标是(2015,﹣1),故选B.考点:1.规律型:点的坐标;2.规律型;3.综合题;4.压轴题.15.(2015张家界)任意大于1的正整数m的三次幂均可“分裂”成m个连续奇数的和,如:m分裂后其中有=,11523+31343++=,…按此规律,若3+=,19791533++17一个奇数是2015,则m的值是()A.46 B.45 C.44 D.43【答案】B.考点:1.规律型:数字的变化类;2.综合题.16.(2015邵阳)如图,在矩形ABCD中,已知AB=4,BC=3,矩形在直线l上绕其右下角的顶点B向右旋转90°至图①位置,再绕右下角的顶点继续向右旋转90°至图②位置,…,以此类推,这样连续旋转2015次后,顶点A在整个旋转过程中所经过的路程之和是()A.2015π B.π C.3018π D.3024π【答案】D.【解析】试题分析:转动一次A 的路线长是:90331802ππ⨯=,转动第二次的路线长是:90551802ππ⨯=,转动第三次的路线长是:9042180ππ⨯=,转动第四次的路线长是:0,转动五次A 的路线长是:90331802ππ⨯=,以此类推,每四次循环,故顶点A 转动四次经过的路线长为:32π+52π+2π=6π,2015÷4=503余3,顶点A 转动四次经过的路线长为:6π×504=3024π.故选D .考点:1.旋转的性质;2.弧长的计算;3.规律型.17.(2015威海)如图,正六边形A 1B 1C 1D 1E 1F 1的边长为2,正六边形A 2B 2C 2D 2E 2F 2的外接圆与正六边形A 1B 1C 1D 1E 1F 1的各边相切,正六边形A 3B 3C 3D 3E 3F 3的外接圆与正六边形A 2B 2C 2D 2E 2F 2的各边相切,…按这样的规律进行下去,A 10B 10C 10D 10E 10F 10的边长为( )A .92432 B .98132 C .9812 D .88132【答案】D .考点:1.正多边形和圆;2.规律型;3.综合题. 18.(2015日照)观察下列各式及其展开式:222()2a b a ab b +=++; 33223()33a b a a b ab b +=+++; 4432234()464a b a a b a b ab b +=++++;554322345()510105a b a a b a b a b ab b +=+++++;…请你猜想10()a b +的展开式第三项的系数是( )A .36B .45C .55D .66 【答案】B .考点:1.完全平方公式;2.规律型;3.综合题.19.(2015宁波)如图,将△ABC 沿着过AB 中点D 的直线折叠,使点A 落在BC 边上的A 2处,称为第1次操作,折痕DE 到BC 的距离记为h 1;还原纸片后,再将△ADE 沿着过AD 中点D 1的直线折叠,使点A 落在DE 边上的A 2处,称为第2次操作,折痕D 1E 1到BC 的距离记为h 2;按上述方法不断操作下去…,经过第2015次操作后得到的折痕D 2014E 2014到BC 的距离记为h 2015,到BC 的距离记为h 2015.若h 1=1,则h 2015的值为( )A .201521 B .201421 C .2015211-D .2014212-【答案】D .考点:1.相似三角形的判定与性质;2.三角形中位线定理;3.翻折变换(折叠问题);4.规律型;5.综合题.20.(2015常州)数学家歌德巴赫通过研究下面一系列等式,作出了一个著名的猜想. 4=2+2; 12=5+7; 6=3+3; 14=3+11=7+7; 8=3+5; 16=3+13=5+11;10=3+7=5+5 18=5+13=7+11; …通过这组等式,你发现的规律是 (请用文字语言表达).【答案】所有大于2的偶数都可以写成两个素数之和. 【解析】试题分析:此规律用文字语言表达为:所有大于2的偶数都可以写成两个素数之和,故答案为:所有大于2的偶数都可以写成两个素数之和. 考点:规律型:数字的变化类.21.(2015淮安)将连续正整数按如下规律排列:若正整数565位于第a 行,第b 列,则a +b = . 【答案】147.考点:1.规律型:数字的变化类;2.综合题;3.压轴题.22.(2015雅安)若1m ,2m ,…,2015m 是从0,1,2这三个数中取值的一列数,若122015...m m m +++=1525,222122015(1)(1)...(1)1510m m m -+-++-=,则1m ,2m ,…,2015m 中为2的个数是 .【答案】510. 【解析】试题分析:∵1m ,2m ,…,2015m 是从0,1,2这三个数中取值的一列数,∴2(1)i m -的值只能是1或0,∵222122015(1)(1)...(1)1510m m m -+-++-=,∴1m ,2m ,…,2015m 中值为1的个数为:2015-1510=505,∵222122015(1)(1)...(1)1510m m m -+-++-=, ∴2221122201520152121...211510m m m m m m -++-+++-+=, ∴222122015122015...2(...)20151510m m m m m m +++-++++=, ∵122015...m m m +++=1525,∴222122015...m m m +++=2545,∵222122015...m m m +++=2545,200=,211=,224=,∴1m ,2m ,…,2015m 中值为2的个数为:(2545-505)÷4=510. 故答案为:510.考点:1.规律型:数字的变化类;2.规律型;3.综合题;4.压轴题.23.(2015桂林)如图是一个点阵,从上往下有无数多行,其中第一行有2个点,第二行有5个点,第三行有11个点,第四行有23个点,…,按此规律,第n 行有 个点.【答案】1321n -⨯-或(1221n n -+-).考点:1.规律型:图形的变化类;2.综合题.24.(2015梧州)如图是由等圆组成的一组图,第①个图由1个圆组成,第②个图由5个圆组成,第③个图由12个圆组成…按此规律排列下去,则第⑥个图由 个圆组成.【答案】51. 【解析】试题分析:根据图形可得第n 个图形一定有n 排,最上边的一排有n 个,下边的每排比上边的一排多1个,故第⑥个图形中圆的个数是:6+7+8+9+10+11=51.故答案为:51. 考点:规律型:图形的变化类.25.(2015百色)观察下列砌钢管的横截面图:则第n 个图的钢管数是 (用含n 的式子表示) 【答案】23322n n +.考点:1.规律型:图形的变化类;2.规律型;3.综合题.26.(2015北海)如图,直线22y x =-+与两坐标轴分别交于A 、B 两点,将线段OA 分成n 等份,分点分别为P 1,P 2,P 3,…,Pn ﹣1,过每个分点作x 轴的垂线分别交直线AB 于点T 1,T 2,T 3,…,Tn ﹣1,用S 1,S 2,S 3,…,Sn ﹣1分别表示Rt △T 1OP 1,Rt △T 2P 1P 2,…,Rt △Tn ﹣1Pn ﹣2Pn ﹣1的面积,则当n =2015时,S 1+S 2+S 3+…+Sn ﹣1= .【答案】10072015. 【解析】试题分析:∵P 1,P 2,P 3,…,Pn ﹣1是x 轴上的点,且OP 1=P 1P 2=P 2P 3=…=Pn ﹣2Pn ﹣1=1n, 分别过点p 1、p 2、p 3、…、pn ﹣2、pn ﹣1作x 轴的垂线交直线22y x =-+于点T 1,T 2,T 3,…,Tn ﹣1,∴T 1的横坐标为:1n ,纵坐标为:22n -,∴S 1=112(2)2n n ⨯-=11(1)nn -, 同理可得:T 2的横坐标为:2n ,纵坐标为:42n -,∴S 2=12(1)n n-,T 3的横坐标为:3n ,纵坐标为:62n -,S 3=13(1)n n-,…Sn ﹣1=11(1)n n n--), ∴S 1+S 2+S 3+…+Sn ﹣1=11[1(1)]2n n n--- =11(1)2n n⨯-=12n n -,∵n =2015,∴S 1+S 2+S 3+…+S 2014=11201422015⨯⨯=10072015.故答案为:10072015.考点:1.一次函数图象上点的坐标特征;2.规律型;3.综合题.27.(2015南宁)如图,在数轴上,点A 表示1,现将点A 沿x 轴做如下移动,第一次点A 向左移动3个单位长度到达点A 1,第二次将点A 1向右移动6个单位长度到达点A 2,第三次将点A 2向左移动9个单位长度到达点,按照这种移动规律移动下去,第n 次移动到点An,如果点An与原点的距离不小于20,那么n的最小值是.【答案】13.…;则A7表示的数为﹣8﹣3=﹣11,A9表示的数为﹣11﹣3=﹣14,A11表示的数为﹣14﹣3=﹣17,A13表示的数为﹣17﹣3=﹣20,A6表示的数为7+3=10,A8表示的数为10+3=13,A10表示的数为13+3=16,A12表示的数为16+3=19,所以点An与原点的距离不小于20,那么n的最小值是13.故答案为:13.考点:1.规律型:图形的变化类;2.数轴;3.综合题.28.(2015常德)取一个自然数,若它是奇数,则乘以3加上1,若它是偶数,则除以2,按此规则经过若干步的计算最终可得到1.这个结论在数学上还没有得到证明.但举例验证都是正确的.例如:取自然数5.最少经过下面5步运算可得1,即:,如果自然数m最少经过7步运算可得到1,则所有符合条件的m的值为.【答案】128、21、20、3.考点:1.规律型:数字的变化类;2.综合题;3.规律型.29.(2015株洲)“皮克定理”是用来计算顶点在整点的多边形面积的公式,公式表达式为12bS a =+-,孔明只记得公式中的S 表示多边形的面积,a 和b 中有一个表示多边形边上(含顶点)的整点个数,另一个表示多边形内部的整点个数,但不记得究竟是a 还是b 表示多边形内部的整点个数,请你选择一些特殊的多边形(如图1)进行验证,得到公式中表示多边形内部的整点个数的字母是 ,并运用这个公式求得图2中多边形的面积是 .【答案】a ,.考点:1.规律型:图形的变化类;2.综合题.30.(2015内江)填空:()()a b a b -+= ;22()()a b a ab b -++= ; 3223()()a b a a b ab b -+++= .(2)猜想:1221()(...)n n n n a b a a b ab b -----++++= (其中n 为正整数,且2n ≥).(3)利用(2)猜想的结论计算:98732222...222-+-+-+. 【答案】(1) 22a b -,33a b -,44a b -;(2) n n a b -;(3)342. 【解析】试题分析:(1)根据平方差公式与多项式乘以多项式的运算法则运算即可; (2)根据(1)的规律可得结果;(3)原式变形后,利用(2)得出的规律计算即可得到结果. 试题解析:(1)()()a b a b -+=22a b -;3223()()a b a a b ab b -+++=33a b -; 3223()()a b a a b ab b -+++=44a b -;故答案为:22a b -,33a b -,44a b -;考点:1.平方差公式;2.规律型;3.阅读型;4.综合题.31.(2015南平)定义:底与腰的比是512-的等腰三角形叫做黄金等腰三角形. 如图,已知△ABC 中,AB =BC ,∠C =36°,BA 1平分∠ABC 交AC 于A 1. (1)2AB =AA 1•A C ;(2)探究:△ABC 是否为黄金等腰三角形?请说明理由;(提示:此处不妨设AC =1) (3)应用:已知AC =a ,作A 1B 1∥AB 交BC 于B 1,B 1A 2平分∠A 1B 1C 交AC 于A 2,作A 2B 2∥AB 交B 2,B 2A 3平分∠A 2B 2C 交AC 于A 3,作A 3B 3∥AB 交BC 于B 3,…,依此规律操作下去,用含a ,n 的代数式表示An ﹣1An .(n 为大于1的整数,直接回答,不必说明理由)【答案】(1)证明见试题解析;(2)△ABC 是黄金等腰三角形;(3)151n a +-. 【解析】试题分析:(1)由角平分线的性质和相似三角形的判定与性质,得到△ABC ∽△AA 1B ,从而有1AB ACAA AB=,求出即可; (2)设AC =1,则AB 2=1﹣AB ,求出AB 的值,进而得出AB AC =512,即可得出结论;(3)利用(2)中所求进而得出AA 1,A 1A 2的长,进而得出其长度变化规律求出即可.(3)由(2)得;当AC =a ,则AA 1=AC ﹣A 1C =AC ﹣AB =a ﹣AB =512a a --=251()2a -, 同理可得:A 1A 2=A 1C ﹣A 1B 1=AC ﹣AA 1﹣A 1B 1 =215151()22a a A C ----=22515151()[()]222a a a a ------=351()2a -; 故An ﹣1An =151()2n a +-.考点:1.相似形综合题;2.新定义;3.探究型;4.综合题;5.压轴题;6.规律型. 32.(2015六盘水)毕达哥拉斯学派对”数”与”形”的巧妙结合作了如下研究:请在答题卡上写出第六层各个图形的几何点数,并归纳出第n层各个图形的几何点数.【答案】6、11、16、21、n、2n﹣1、3n﹣2、4n﹣3.试题解析:∵前三层三角形的几何点数分别是1、2、3,∴第六层的几何点数是6,第n层的几何点数是n;∵前三层正方形的几何点数分别是:1=2×1﹣1、3=2×2﹣1、5=2×3﹣1,∴第六层的几何点数是:2×6﹣1=11,第n层的几何点数是2n﹣1;三角形数正方形数五边形数六边形数名称及图形几何点数层数第一层几何点数 1 1 1 1第二层几何点数 2 3 4 5第三层几何点数 3 5 7 9……………第六层几何点数 6 11 16 21……………第n层几何点数n 2n﹣1 3n﹣2 4n﹣3故答案为:6、11、16、21、n、2n﹣1、3n﹣2、4n﹣3.考点:1.规律型:图形的变化类;2.综合题.33.(2015重庆市)如果把一个自然数各数位上的数字从最高位到个位依次排出的一串数字,与从个位到最高位依次排出的一串数字完全相同,那么我们把这样的自然数称为“和谐数”.例如自然数12321,从最高位到个位依次排出的一串数字是:1,2,3,2,1,从个位到最高位依次排出的一串数字仍是:1,2,3,2,1,因此12321是一个“和谐数”,再加22,545,3883,345543,…,都是“和谐数”.(1)请你直接写出3个四位“和谐数”;请你猜想任意一个四位“和谐数”能否被11整除?并说明理由;(2)已知一个能被11整除的三位“和谐数”,设其个位上的数字x(1≤x≤4,x为自然数),十位上的数字为y,求y与x的函数关系式.【答案】(1)四位“和谐数”:1221,1331,1111,6666…(答案不唯一),能;(2)y=2x (1≤x≤4,x为自然数).【解析】试题分析:(1)根据“和谐数”的定义(把一个自然数各数位上的数字从最高位到个位依次排出的一串数字,与从个位到最高位依次排出的一串数字完全相同)写出四个“和谐数”,设任意四位“和谐数”形式为:abcd,根据和谐数的定义得到a=d,b=c,则考点:1.因式分解的应用;2.规律型:数字的变化类;3.新定义;4.综合题;5.压轴题.【2014年题组】1.(2014年南平中考)如图,将1、2、3三个数按图中方式排列,若规定(a,b)表示第a排第b列的数,则(8,2)与(2014,2014)表示的两个数的积是()A . 6B . 3C . 2D . 1【答案】B . 【解析】试题分析:每三个数一循环,1、2、3,(8,2)在数列中是第(1+7)×7÷2+2=30个,30÷3=10,(8,2)表示的数正好是第10轮的最后一个,即(8,2)表示的数是3,(2014,2014)在数列中是第(1+2014)×2014÷2=2029105个,2029105÷3=676368……1,(2014,2014)表示的数正好是第676369轮的一个数,即(2014,2014)表示的数是1,3×1=3,故选B .考点:1.规律型:数字的变化类;2.算术平方根.2.(2014年株洲中考)在平面直角坐标系中,孔明做走棋的游戏,其走法是:棋子从原点出发,第1步向右走1个单位,第2步向右走2个单位,第3步向上走1个单位,第4步向右走1个单位……依此类推,第n 步的走法是:当n 能被3整除时,则向上走1个单位;当n 被3除,余数为1时,则向右走1个单位;当n 被3除,余数为2时,则向右走2个单位,当走完第100步时,棋子所处位置的坐标是( )A . (66,34)B . (67,33)C . (100,33)D . (99,34) 【答案】C .考点:1.坐标确定位置;2.规律型:点的坐标.3.(2014年宜宾中考)如图,将n 个边长都为2的正方形按如图所示摆放,点A 1,A 2,……An 分别是正方形的中心,则这n 个正方形重叠部分的面积之和是( )A .nB .n -1C .n 11()4D .n1()4【答案】B.【解析】试题分析:由题意可得一个阴影部分面积等于正方形面积的14,即是14×4=1,5个这样的正方形重叠部分(阴影部分)的面积和为:1×4,n个这样的正方形重叠部分(阴影部分)的面积和为:1×(n-1)=n-1.故选B.考点:1.正方形的性质;2.全等三角形的判定与性质.4.(2014年崇左中考)如图,在平面直角坐标系中,A(1,1),B(﹣1,1),C(﹣1,﹣2),D(1,﹣2).把一条长为2014个单位长度且没有弹性的细线(线的粗细忽略不计)的一端固定在点A处,并按A﹣B﹣C﹣D﹣A……的规律绕在四边形ABCD的边上,则细线另一端所在位置的点的坐标是()A.(﹣1,0) B.(1,﹣2) C.(1,1) D.(﹣1,﹣1)【答案】D.考点:1.探索规律题(图形的变化类型----循环问题);2.点的坐标.5.(2014年百色中考)观察以下等式:32﹣12=8,52﹣12=24,72﹣12=48,92﹣12=80,……由以上规律可以得出第n个等式为.【答案】(2n+1)2﹣(2n﹣1)2=8n.【解析】试题分析:通过观察可发现两个连续奇数的平方差是8的倍数,第n个等式为:(2n+1)2﹣(2n ﹣1)2=8n .故答案为:(2n +1)2﹣(2n ﹣1)2=8n . 考点:规律型问题.6.(2014年衡阳中考) 如图,在平面直角坐标系xOy 中,已知点0M 的坐标为()10,,将线段0OM 绕原点O 逆时针方向旋转45,再将其延长至点1M ,使得100M M OM ⊥,得到线段1OM ;又将线段1OM 绕原点O 逆时针方向旋转45,再将其延长至点2M ,使得211M M OM ⊥,得到线段2OM ;如此下去,得到线段3OM 、4OM 、5OM 、…….根据以上规律,请直接写出线段2014OM 的长度为 .【答案】2014(2).考点:等腰直角三角形的性质.7.(2014年抚顺中考)如图,已知CO 1是△ABC 的中线,过点O 1作O 1E 1∥AC 交BC 于点E 1,连接AE 1交CO 1于点O 2;过点O 2作O 2E 2∥AC 交BC 于点E 2,连接AE 2交CO 1于点O 3;过点O 3作O 3E 3∥AC 交BC 于点E 3,……,如此继续,可以依次得到点O 4,O 5,……,On 和点E 4,E 5,……,En .则OnEn = A C .(用含n 的代数式表示)【答案】11n +. 【解析】试题分析:∵O 1E 1∥AC ,∴△BO 1E 1∽△BAC ,∴111BO O E BA AC=,∵CO 1是△ABC 的中线,∴11112BO O E BA AC ==,∵O 1E 1∥AC ,∴△O 2O 1E 1∽△ACO 2,∴1121212O E O E AC O A ==,由O 2E 2∥AC ,可得:1222113E O O E AE AC ==,……,可得:OnEn =11n +A C . 考点:1.相似三角形的判定与性质;2.三角形中位线定理.8.(2014年资阳中考)如图,以O (0,0)、A (2,0)为顶点作正△OAP 1,以点P 1和线段P 1A 的中点B 为顶点作正△P 1BP 2,再以点P 2和线段P 2B 的中点C 为顶点作△P 2CP 3,……,如此继续下去,则第六个正三角形中,不在第五个正三角形上的顶点P 6的坐标是【答案】(6332,21332).考点:规律题.9.(2014年宜宾中考)在平面直角坐标系中,若点P (x ,y )的坐标x 、y 均为整数,则称点P 为格点,若一个多边形的顶点全是格点,则称该多边形为格点多边形.格点多边形的面积记为S ,其内部的格点数记为N ,边界上的格点数记为L ,例如图中△ABC 是格点三角形,对应的S =1,N =0,L =4.(1)求出图中格点四边形DEFG对应的S,N,L的值.(2)已知格点多边形的面积可表示为S=N+aL+b,其中a,b为常数,若某格点多边形对应的N=82,L=38,求S的值.【答案】(1)S=3,N=1,L=6;(2)100.考点:1.规律型:图形的变化类; 2.二元一次方程组的应用.10.(2014年凉山中考)实验与探究:三角点阵前n行的点数计算如图是一个三角点阵,从上向下数有无数多行,其中第一行有1个点,第二行有2个点……第n行有n个点……容易发现,10是三角点阵中前4行的点数约和,你能发现300是前多少行的点数的和吗?如果要用试验的方法,由上而下地逐行的相加其点数,虽然你能发现1+2+3+4+……+23+24=300.得知300是前24行的点数的和,但是这样寻找答案需我们先探求三角点阵中前n行的点数的和与n的数量关系前n行的点数的和是1+2+3+……+(n﹣2)+(n﹣1)+n,可以发现.2×[1+2+3+……+(n﹣2)+(n﹣1)+n]=[1+2+3+……+(n﹣2)+(n﹣1)+n]+[n+(n﹣1)+(n﹣2)+……3+2+1]把两个中括号中的第一项相加,第二项相加……第n项相加,上式等号的后边变形为这n 个小括号都等于n+1,整个式子等于n(n+1),于是得到1+2+3+……+(n﹣2)+(n﹣1)+n=12n(n+1)这就是说,三角点阵中前n项的点数的和是12n(n+1)下列用一元二次方程解决上述问题设三角点阵中前n行的点数的和为300,则有12n(n+1)整理这个方程,得:n2+n﹣600=0解方程得:n1=24,n2=25根据问题中未知数的意义确定n=24,即三角点阵中前24行的点数的和是300.请你根据上述材料回答下列问题:(1)三角点阵中前n行的点数的和能是600吗?如果能,求出n;如果不能,试用一元二次方程说明道理.(2)如果把图中的三角点阵中各行的点数依次换成2、4、6、……、2n、……,你能探究处前n行的点数的和满足什么规律吗?这个三角点阵中前n行的点数的和能使600吗?如果能,求出n;如果不能,试用一元二次方程说明道理.【答案】(1)600;(2)24.试题解析:(1)由题意可得:12n (n +1)=600,整理得n 2+n ﹣1200=0, 此方程无正整数解,∴三角点阵中前n 行的点数的和不可能是600.(2)由题意可得:2+4+6+……+2n =2(1+2+3+……+n )=2×12n (n +1)= n (n +1),依题意,得n (n +1)=600,整理得n 2+n ﹣600=0,(n +25)(n ﹣24)=0,∴n 1=﹣25,n 2=24. ∵n 为正整数,∴n =24.∴n 的值是24.考点:1.探索规律题(图形的变化类);2.阅读理解型问题;3.一元二次方程的应用.☞考点归纳 归纳 1:数字猜想型 基础知识归纳:数字规律问题主要是在分析比较的基础上发现题目中所蕴涵的数量关系,先猜想,然后通过适当的计算回答问题. 注意问题归纳:要认真分析比较,从而发现题中蕴涵的数量关系,通过猜想,再通过计算解决问题. 【例1】一列数:0,-1,3,-6,10,-15,21,……,按此规律第n 个数为 【答案】1(1)(1)2n n n ---.考点:规律型. 归纳 2:数式规律型 基础知识归纳:数式规律问题主要是通过观察、分析、归纳、验证,然后得出一般性的结论,以列代数式即函数关系式为主要内容. 注意问题归纳:要注意观察、分析、归纳、并验证得出结论.【例2】有一个计算程序,每次运算都是把一个数先乘以2,再除以它与1的和,多次重复进行这种运算的过程如下:则第n 次运算的结果yn = (用含字母x 和n 的代数式表示).【答案】)21(21n x n x -+.考点:规律型. 归纳 3:图形规律型 基础知识归纳:图形规律问题主要是观察图形的组成、分拆等过程中的特点,分析其联系和区别,用相应的算式描述其中的规律,要注意对应思想和数形结合.注意问题归纳:要注意分析图形的组成与分拆过程中的特点,要注意数形结合.【例3】如图,是由一些点组成的图形,按此规律,在第n 个图形中,点的个数为 .【答案】n 2+2.【解析】第1个图形中点的个数为3; 第2个图形中点的个数为3+3; 第3个图形中点的个数为3+3+5; 第4个图形中点的个数为3+3+5+7; ……第n 个图形中小圆的个数为3+3+5+7+……+(2n ﹣1)=n 2+2. 故答案为:n 2+2. 考点:规律型.归纳 4:数形结合猜想型基础知识归纳:数形结合猜想型问题首先要观察图形,从中发现图形的变化方式,再将图形的变化以数或式的形式反映出来,从而得出图形与数或式的对应关系,数形结合总结出图形的变化规律,进而解决相关问题.注意问题归纳:要注意观察图形,发现图形的变化方式,用好数形结合思想解决问题.【例4】如图,等腰Rt△ABC中,∠ACB=90°,AC=BC=1,且AC边在直线a上,将△ABC绕点A顺时针旋转到位置①可得到点P1,此时AP1=;将位置①的三角形绕点P1顺时针旋转到位置②,可得到点P2,此时AP2=1+;将位置②的三角形绕点P2顺时针旋转到位置③,可得到点P3,此时AP3=2+;……,按此规律继续旋转,直至得到点P2014为止.则AP2014= .【答案】1342+6722.考点:规律型.归纳5:动态规律型基础知识归纳:动态规律问题是探求图形在运动变换过程中的变化规律,解答此类问题时,要将图形每一次的变化与前一次变化进行比较,明确哪些结果发生了变化,哪些结果没有发生变化,从而逐步发现规律.注意问题归纳:要注意探求图形的变化规律,明确发生变化的与没有发生变化的量,从而逐步发现规律.【例5】如图,在x轴的正半轴上依次间隔相等的距离取点A1,A2,A3,A4,……,An分别过这些点做x轴的垂线与反比例函数y=1x的图象相交于点P1,P2,P3,P4,……Pn作P2B1⊥A1P1,P3B2⊥A2P2,P4B3⊥A3P3,……,PnBn﹣1⊥An﹣1Pn﹣1,垂足分别为B1,B2,B3,B4,……,Bn﹣1,连接P1P2,P2P3,P3P4,……,Pn﹣1Pn,得到一组Rt△P1B1P2,Rt△P2B2P3,Rt△P3B3P4,……,Rt△Pn﹣1Bn﹣1Pn,则Rt△Pn﹣1Bn﹣1Pn的面积为.【答案】12(1)n n.考点:规律型.☞1年模拟1.(2015届山东省济南市平阴县中考二模)在平面直角坐标系xOy中,对于点P(x,y),我们把点P(-y+1,x+1)叫做点P的伴随点.已知点A1的伴随点为A2,点A2的伴随点为A3,点A3的伴随点为A4,…,这样依次得到点A1,A2,A3,…,An,….例如:点A1的坐标为(3,1),则点A2的坐标为(0,4),…;若点A1的坐标为(a,b),则点A2015的坐标为()A.(-b+1,a+1) B.(-a,-b+2) C.(b-1,-a+1) D.(a,b)【答案】B.【解析】试题分析:∵点A1的坐标为(a,b),∴A2(-b+1,a+1),A3(-a,-b+2),A4(b-1,-a+1),A5(a,b),…,依此类推,每4个点为一个循环组依次循环,∵2015÷4=503余3,∴点。

中考数学二轮专题复习:探索规律

中考数学二轮专题复习:探索规律

35.猜想、探索规律型一、选择题1.如图,小陈从O 点出发,前进5米后向右转20O , 再前进5米后又向右转20O ,……,这样一直走下去, 他第一次回到出发点O 时一共走了( )A .60米B .100米C .90米D .120米 【答案】C.2.某校生物教师李老师在生物实验室做试验时,将水稻种子分组进行发芽试验;第1组取3粒,第2组取5粒,第3组取7粒……即每组所取种子数目比该组前一组增加2粒,按此规律,那么请你推测第n 组应该有种子数( )粒。

A 、12+nB 、12-nC 、n 2D 、2+n【关键词】探索规律型【答案】A3.下面是按一定规律排列的一列数: 第1个数:11122-⎛⎫-+ ⎪⎝⎭; 第2个数:2311(1)(1)1113234⎛⎫⎛⎫---⎛⎫-+++ ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭; 第3个数:234511(1)(1)(1)(1)11111423456⎛⎫⎛⎫⎛⎫⎛⎫-----⎛⎫-+++++ ⎪⎪⎪⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭; ……第n 个数:232111(1)(1)(1)111112342n n n -⎛⎫⎛⎫⎛⎫----⎛⎫-++++ ⎪⎪ ⎪ ⎪+⎝⎭⎝⎭⎝⎭⎝⎭.那么,在第10个数、第11个数、第12个数、第13个数中,最大的数是( )A .第10个数B .第11个数C .第12个数D .第13个数【答案】A4.(对于每个非零自然数n ,抛物线2211(1)(1)n n n n n y x x +++=-+与x 轴交于A n 、B n 两点,以n n A B 表示这两点间的距离,则112220092009A B A B A B +++ 的值是A .20092008 B .20082009C .20102009D .20092010【答案】DO 20o20o5.观察下列图形,则第n 个图形中三角形的个数是( )A .22n +B .44n +C .44n -D .4n【答案】D .6.古希腊著名的毕达哥拉斯学派把1、3、6、10 … 这样的数称为“三角形数”,而把1、4、9、16 … 这样的数称为“正方形数”. 从图7中可以发现,任何一个大于1的“正方形数”都可以看作两个相邻“三角形数”之和.下列等式中,符合这一规律的是( )A .13 = 3+10B .25 = 9+16C .36 = 15+21D .49 = 18+31 【答案】C二、填空题1.把一张纸片剪成4块,再从所得的纸片中任取若干块,每块又剪成4块,像这样依次地进行下去,到剪完某一次为止。

中考数学专题复习— 探索规律问题 完整版 后附真题剖析

中考数学专题复习— 探索规律问题 完整版 后附真题剖析

解:(1)观察图 1 可知:中间的每个正方形都对应了两个等腰直角三角形, 所以每增加一块正方形地砖,等腰直角三角形地砖就增加 2 块.故答案 为 2. (2)观察图形 2 可知:中间一个正方形的左上、左边、左下共有 3 个等 腰直角三角形,它右上和右下各对应了一个等腰直角三角形,右边还有 1 个等腰直角三角形,即 6=3+2×1+1=4+2×1;图 3 和图 1 中间正方形右 上和右下都对应了两个等腰直角三角形,均有与图 2 一样的规律,图 3:8=3+2×2+1=4+2×2;归纳得:4+2n(即 2n+4); ∴若一条这样的人行道一共有 n(n 为正整数)块正方形地砖,则等腰直
中考数学专题复习
许多事物都存在着一定的规律性,只 要我们善于观察、勤于思考,就可以发现 它们,并利用它们来丰富我们的生活。
●解题思路
一、数字规律
例1
请你按照如下的数字规律,分别
写出第n个数字:(n为正整数)
① ②③ ④ ⑤
n
(1)2,4,6,8,10, … , _2_n__;
(2)1,3,5,7,9, … , 2n-1
一、选择题
1.平面上不重合的两点确定一条直线,不同三点最多可确定 3 条直线,
若平面上不同的 n 个点最多可确定 21 条直线,则 n 的值为 ( C )
A.5
B.6 C.7 D.8
2.(2021 山东临沂)实验证实,放射性物质在放出射线后,质量将减少,
减少的速度开始较快,后来较慢,实际上,物质所剩的质量与时间成某
•即时演练•
1.(2020 天水)观察等式:2+22=23-2;2+22+23=24-2;2+22+23+24=25-2;…已

中考数学探索规律题分类及解析

中考数学探索规律题分类及解析

中考数学探索规律题分类及解析中考数学探索规律题是指通过观察一组数或一组图形,发现其中存在的规律或者推导出下一个数字或图形的解题方法。

这类题目不是通过直接计算或者运用公式来得到答案,而是通过观察和推理来寻找规律并进行推导。

这类题目在中考数学中比较常见,考察学生的观察力、逻辑推理能力和发现规律的能力。

中考数学探索规律题可以分为数列规律、形状规律和操作规律等几个分类。

数列规律题是指给出一组数字,要求学生根据已知数字的特点推导出下一个数字或者补全数列。

这类题目常常通过给出一定的条件或者变化规律,让学生去寻找数字之间的关系。

学生可以通过计算差值、比值等方式来找到规律。

比如,给出一个数列1,3,5,7,要求学生推导出下一个数字。

学生可以发现,每两个数字之间差值都是2,所以下一个数字应该是9。

形状规律题是指给出一组图形,要求学生根据已知图形的特点推导出下一个图形或者补全图形。

这类题目常常通过给出一定的条件或者变化规律,让学生去寻找图形之间的关系。

学生可以通过观察图形边长、角度、对称性等特点找到规律。

比如,给出一个图形如下:1 2 34 5 67 8 ?要求学生填空。

学生可以发现,每一行的数字是依次递增的,所以下一个数字应该是9。

操作规律题是指通过一系列操作或者变换,让学生来探索操作之间的关系从而推导出答案。

这类题目常常通过给出一系列数字或者图形的变化过程,让学生去寻找变化之间的规律。

比如,给出一系列数字1,4,9,16,要求学生推导下一个数字。

学生可以发现,每一个数字都是前一个数字的平方,所以下一个数字应该是25。

总之,中考数学探索规律题要求学生通过观察和推理来寻找规律,需要学生具备较强的观察力、逻辑推理能力和发现规律的能力。

在解题过程中,学生可以采用数列差值、比值等方式来寻找数列规律;可以通过观察图形的边长、角度、对称性等特点来寻找形状规律;可以通过寻找操作之间的关系来寻找操作规律。

通过不断的练习和思考,可以提高解决这类问题的能力。

中考数学规律探索题(整理全,含答案).doc

中考数学规律探索题(整理全,含答案).doc

A. M=mnD.M=m(n+1)规律探索7选择题1. 观察下列等式:31=3, 32=9, 33=27, 34=81, 3—243, 36=729, 37=2187...解答下列问题:3 + 32 + 33 + 34...+32013的末位数字是( )A. 0B. 1C. 3D. 72. 把所有正奇数从小到大排列,并按如下规律分组:(1), (3, 5, 7), (9, 11, 13, 15, 17), (19, 21, 23, 25, 27,29, 31),…,现用等式A M = (i, j)表示正奇数M 是第i 组第j 个数(从左往右数),如A7= (2, 3),则A 20I 3=() A. (45, 77) B. (45, 39) C. (32, 46) D. (32, 23)3. 下表中的数字是按一定规律填写的,表中a 的值应是 ________ . 12 3 5 813a・2 358 13 21 34・4. 下列图形都是由同样大小的矩形按一定的规律组成,其中第(1)个图形的面积为2“?,第(2)个图形的面积为8 cm 2,5. 如图,动点P 从(0, 3)出发,沿所示的方向运动,每当碰到矩形的边时反弹,反弹时反射角等于入射角,当点P 第2013次碰到矩形的边时,点P 的坐标为()A 、(1, 4)B 、(5, 0)C 、(6, 4)D 、(8, 3) 6.如图,下列各图形中的三个数之间均具有相同的规律.根据此规律,图形中M 与m 、n 的关系是7. 我们知道,一元二次方程x 2 =-1没有实数根,即不存在一个实数的平方等于-1,若我们规定一个新数“”,使其满足第(3)个图形的面积为18 cm 2,……,第(10)个图形的面积为(B.M=n(m+1) C.M=mn+1i + Z 2 + Z 3 + 广 + ..严12 + /2013 的值为A. 0B. 1C. -1 D .•• • •• • •• • • •• •• • •图①图②图③(第8题图)A. 51 C.76 D. 81厂= -1(即方程X 2 =-1有一个根为),并且进一步规定:一切实数可以与新数进行四则运算,且原有的运算律和运算法则 仍然成立,于是有z 1 = z, i 2= -1 , z 3 = i 2-i = (-1).1 = -i, i 4 = (z 2)2 = (-1)2 = 1.从而对任意正整数n,我们可得到 严”+1 = j4” j =(严)” j = i,同理可得严”+2 = _1,严”+3 = =1,那么,&下列图形都是由同样大小的棋子按一定的规律组成,其中第①个图形有1颗棋子,第②个图形一共有6颗棋子,第③ 个图形一共有16颗棋子,…,则第⑥个图形中棋子的颗数为()填空题1. ________________________________________________________________________________ 观察下列图形中点的个数,若按其规律再画下去,可以得到第"个图形中所有的个数为 _________________________________ (用含"的代数式表(第11题)2. 如图,在直角坐标系中,已知点A (-3, 0)、B (0, 4),对△OAB 连续作旋转变换,依次得到△】、△?、△?、A 4...,则△2013的直角顶点的坐标为 ___________________ .3. 如图,正方形ABCD 的边长为1,顺次连接正方形ABCD 四边的中点得到第一个正方形AiBiCiD”由顺次连接正方形AjBiCiDi 四边的中点得到第二个正方形A2B2C2D2...,以此类推,则第六个正方形A6B 6C 6D6周长是 ________ •B. 70& 1 图2 图3 D4. _________________________________________________________________________________________________ 直线上有2013个点,我们进行如下操作:在每相邻两点间插入1个点,经过3次这样的操作后,直线上共有 ________________ 个点.5.如图,古希腊人常用小石子在沙滩上摆成各种形状来研究数.例如:称图中的数1, 5, 12, 22...为五边形数,则第6个五边形数是 __________将C1绕点山旋转180。

33规律探索(含解答)

33规律探索(含解答)

规律探索一、数字规律数字规律探索反映了由特殊到一般的数学方法,同时能考查学生的分析、归纳、抽象、概括能力,因此,它成为近几年中考试题的命题热点。

例1、(2005年锦州)观察下面的几个算式: 1+2+1=4, 1+2+3+2+1=9, 1+2+3+4+3+2+1=16, 1+2+3+4+5+4+3+2+1=25,…根据你所发现的规律,请你直接写出下面式子的结果:1+2+3+…+99+100+99+…+3+2+1=____.分析:这是一道数字探索性题,解这一类型题目,要用到归纳推理,它是一种重要的数学思想方法,数学史上有很多重要的发现如哥德巴赫猜想、四色猜想、费尔玛大定理等就是由数学家的探索,猜想而得,学习数学必须不断去探索、猜想、不断总结规律,才会有所发现有所创造。

答案:10000或1002 ; 练习一 1.(2005年青岛),,,,已知:24552455154415448338333223222222⨯=+⨯=+⨯=+⨯=+…,若符合前面式子的规律,则。

10102+=⨯+=b a baa b2.(2005年日照)已知下列等式:① 13=12; ② 13+23=32; ③ 13+23+33=62;④ 13+23+33+43=102 ; …… ……由此规律知,第⑤个等式是 . 3.(2005年陕西)观察下列等式:221 2111222222223332 ⨯⨯⨯⨯⨯⨯2+=(+)+=(+)3+=(+)……则第n 个等式可以表示为 。

4.(2005年深圳)212212+=⨯,323323+=⨯,434434+=⨯,……,若10b a 10b a +=⨯(a 、b 都是正整数),则a+b 的最小值是 _ 。

5. (2005年内江)有若干个数,依次记为,,,,,321n a a a a 若211-=a , 从第2个数起,每个数都等于1与它前面的那个数的差的倒数,则=2005a 。

二、图形规律例题2、(2005年泸州)如图是用火柴棍摆成边长分别是1、2、3根火柴棍时的正方形,当边长为n 根火柴棍时,若摆出的正方形所用的火柴棍的根数为S ,则S = (用含n 的代数式表示,n 为正整数).分析:此题是图形规律,解决这类问题的方法有两种,一种是数图形,将图形转化成数字规律,再用数字规律的解决问题,一种是通过图形的直观性,从图形中直接寻找规律。

2024年中考数学复习重难点题型训练—规律探索题(含答案解析)

2024年中考数学复习重难点题型训练—规律探索题(含答案解析)

2024年中考数学复习重难点题型训练—规律探索题(含答案解析)类型一数式规律1.(2023·云南·统考中考真题)按一定规律排列的单项式:2345,a ,第n 个单项式是()AB1n -CnD1n -【答案】Ca ,指数为1开始的自然数,据此即可求解.【详解】解:按一定规律排列的单项式:2345,a ,第nn ,故选:C .【点睛】本题考查了单项式规律题,找到单项式的变化规律是解题的关键.2.(2023·山东·统考中考真题)已知一列均不为1的数123n a a a a ,,,,满足如下关系:1223121111a a a a a a ++==--,34131111n n na a a a a a +++==-- ,,,若12a =,则2023a 的值是()A .12-B .13C .3-D .2【答案】A【分析】根据题意可把12a =代入求解23a =-,则可得312a =-,413a =,52a =……;由此可得规律求解.【详解】解:∵12a =,∴212312a +==--,3131132a -==-+,411121312a -==+,51132113a +==-,…….;由此可得规律为按2、3-、12-、13四个数字一循环,∵20234505.....3÷=,∴2023312a a ==-;故选A .【点睛】本题主要考查数字规律,解题的关键是得到数字的一般规律.3.(2023·湖南常德·统考中考真题)观察下边的数表(横排为行,竖排为列),按数表中的规律,分数202023若排在第a 行b 列,则a b -的值为()11122113223114233241……A .2003B .2004C .2022D .2023【答案】C【分析】观察表中的规律发现,分数的分子是几,则必在第几列;只有第一列的分数,分母与其所在行数一致.【详解】观察表中的规律发现,分数的分子是几,则必在第几列;只有第一列的分数,分母与其所在行数一致,故202023在第20列,即20b =;向前递推到第1列时,分数为201912023192042-=+,故分数202023与分数12042在同一行.即在第2042行,则2042a =.∴2042202022.a b -=-=故选:C .【点睛】本题考查了数字类规律探索的知识点,解题的关键善于发现数字递变的周期性和趋向性.4.(2023·四川内江·统考中考真题)对于正数x ,规定2()1xf x x =+,例如:224(2)213f ⨯==+,1212212312f ⨯⎛⎫== ⎪⎝⎭+,233(3)312f ⨯==+,1211313213f ⨯⎛⎫== ⎪⎝⎭+,计算:11111(1)1011009932f f f f f f ⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫+++++++ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭(2)(3)(99)(100)(101)f f f f f +++++= ()A .199B .200C .201D .202【答案】C【分析】通过计算11(1)1,(2)2,(3)223f f f f f ⎛⎫⎛⎫=+=+= ⎪ ⎪⎝⎭⎝⎭,⋯可以推出11111(1)(2)(3)(99)(100)(101)1011009932f f f f f f f f f f f ⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫++++++++++++ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭结果.【详解】解:2(1)1,11f ==+ 12441212(2),,(2)2,112323212f f f f ⨯⎛⎫⎛⎫====+= ⎪ ⎪+⎝⎭⎝⎭+122331113(3),,(3)2,113232313f f f f ⨯⨯⎛⎫⎛⎫====+= ⎪ ⎪+⎝⎭⎝⎭+…2100200(100)1100101f ⨯==+,1212100()11001011100f ⨯==+,1(100)(2100f f +=,11111(1)(2)(3)(99)(100)(101)1011009932f f f f f f f f f f f ⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫++++++++++++ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭21001=⨯+201=故选:C .【点睛】此题考查了有理数的混合运算,熟练掌握运算法则,找到数字变化规律是解本题的关键.5.(2021·湖北鄂州市·中考真题)已知1a 为实数﹐规定运算:2111a a =-,3211a a =-,4311a a =-,5411a a =-,……,111n n a a -=-.按上述方法计算:当13a =时,2021a 的值等于()A.23-B.13C.12-D.23【答案】D 【分析】当13a =时,计算出23421,,3,32a a a ==-=⋅⋅⋅⋅⋅⋅,会发现呈周期性出现,即可得到2021a 的值.【详解】解:当13a =时,计算出23421,,3,32a a a ==-=⋅⋅⋅⋅⋅⋅,会发现是以:213,,32-,循环出现的规律,202136732=⨯+ ,2021223a a ∴==,故选:D .【点睛】本题考查了实数运算规律的问题,解题的关键是:通过条件,先计算出部分数的值,从中找到相应的规律,利用其规律来解答.6.(2021·湖北随州市·中考真题)根据图中数字的规律,若第n 个图中的143q =,则p的值为()A.100B.121C.144D.169【答案】B 【分析】分别分析n 的规律、p 的规律、q 的规律,再找n 、p 、q 之间的联系即可.【详解】解:根据图中数据可知:1,2,3,4n =,……22221,2,3,4,p =……222221,31,41,51,q =----……则2p n =,2(1)1q n =+-,∵第n 个图中的143q =,∴2(1)1=143q n =+-,解得:11n =或13n =-(不符合题意,舍去)∴2=121p n =,故选:B .【点睛】本题主要考查数字之间规律问题,将题中数据分组讨论是解决本题的关键.7.(2021·山东济宁市·中考真题)按规律排列的一组数据:12,35,□,717,926,1137,…,其中□内应填的数是()A.23B.511C.59D.12【答案】D 【分析】分子为连续奇数,分母为序号的平方1+,根据规律即可得到答案.【详解】观察这排数据发现,分子为连续奇数,分母为序号的平方1+,∴第n 个数据为:2211n n -+当3n =时W 的分子为5,分母为23110+=∴这个数为51102=故选:D .【点睛】本题考查了数字的探索规律,分子和分母分别寻找规律是解题关键.8.(2021·湖北十堰市·)将从1开始的连续奇数按如图所示的规律排列,例如,位于第4行第3列的数为27,则位于第32行第13列的数是()A.2025B.2023C.2021D.2019【答案】B 【分析】根据数字的变化关系发现规律第n 行,第n 列的数据为:2n(n-1)+1,即可得第32行,第32列的数据为:2×32×(32-1)+1=1985,再依次加2,到第32行,第13列的数据,即可.解:观察数字的变化,发现规律:第n行,第n列的数据为:2n(n-1)+1,∴第32行,第32列的数据为:2×32×(32-1)+1=1985,根据数据的排列规律,第偶数行从右往左的数据一次增加2,∴第32行,第13列的数据为:1985+2×(32-13)=2023,故选:B.【点睛】本题考查了数字的变化类,解决本题的关键是观察数字的变化寻找探究规律,利用规律解决问题.9.(2020•天水)观察等式:2+22=23﹣2;2+22+23=24﹣2;2+22+23+24=25﹣2;…已知按一定规律排列的一组数:2100,2101,2102,…,2199,2200,若2100=S,用含S的式子表示这组数据的和是()A.2S2﹣S B.2S2+S C.2S2﹣2S D.2S2﹣2S﹣2【分析】根据已知条件和2100=S,将按一定规律排列的一组数:2100,2101,2102,…,2199,2200,求和,即可用含S的式子表示这组数据的和.【解析】∵2100=S,∴2100+2101+2102+…+2199+2200=S+2S+22S+…+299S+2100S=S(1+2+22+…+299+2100)=S(1+2100﹣2+2100)=S(2S﹣1)=2S2﹣S.10.(2023·湖南岳阳·统考中考真题)观察下列式子:21110-=⨯;22221-=⨯;23332-=⨯;24443-=⨯;25554-=⨯;…依此规律,则第n (n 为正整数)个等式是.【答案】()21n n n n -=-【分析】根据等式的左边为正整数的平方减去这个数,等式的右边为这个数乘以这个数减1,即可求解.【详解】解:∵21110-=⨯;22221-=⨯;23332-=⨯;24443-=⨯;25554-=⨯;…∴第n (n 为正整数)个等式是()21n n n n -=-,故答案为:()21n n n n -=-.【点睛】本题考查了数字类规律,找到规律是解题的关键.11.(2023·山东临沂·统考中考真题)观察下列式子21312⨯+=;22413⨯+=;23514⨯+=;……按照上述规律,2n =.【答案】()()111n n -++【分析】根据已有的式子,抽象出相应的数字规律,进行作答即可.【详解】解:∵21312⨯+=;22413⨯+=;23514⨯+=;……∴()()2211n n n ++=+,∴()()2111n n n -++=.故答案为:()()111n n -++【点睛】本题考查数字类规律探究.解题的关键是从已有的式子中抽象出相应的数字规律.12.(2023·四川成都·统考中考真题)定义:如果一个正整数能表示为两个正整数m ,n 的平方差,且1m n ->,则称这个正整数为“智慧优数”.例如,221653=-,16就是一个智慧优数,可以利用22()()m n m n m n -=+-进行研究.若将智慧优数从小到大排列,则第3个智慧优数是;第23个智慧优数是.【答案】1545【分析】根据新定义,列举出前几个智慧优数,找到规律,进而即可求解.【详解】解:依题意,当3m =,1n =,则第1个一个智慧优数为22318-=当4m =,2n =,则第2个智慧优数为224214-=当4m =,1n =,则第3个智慧优数为224115-=,当5m =,3n =,则第5个智慧优数为225316-=当5m =,2n =,则第6个智慧优数为225221-=当5m =,1n =,则第7个智慧优数为225324-=……6m =时有4个智慧优数,同理7m =时有5个,8m =时有6个,12345621+++++=第22个智慧优数,当9m =时,7n =,第22个智慧优数为2297814932-=-=,第23个智慧优数为9,6m n ==时,2296813645-=-=,故答案为:15,45.【点睛】本题考查了新定义,平方差公式的应用,找到规律是解题的关键.13.(2023·山东聊城·统考中考真题)如图,图中数字是从1开始按箭头方向排列的有序数阵.从3开始,把位于同一列且在拐角处的两个数字提取出来组成有序数对:()3,5;()7,10;()13,17;()21,26;()31,37…如果单把每个数对中的第一个或第二个数字按顺序排列起来研究,就会发现其中的规律.请写出第n 个数对:.【答案】()221,22n n n n ++++【分析】根据题意单另把每个数对中的第一个或第二个数字按顺序排列起来研究,可发现第n 个数对的第一个数为:()11n n ++,第n 个数对的第二个位:()211n ++,即可求解.【详解】解:每个数对的第一个数分别为3,7,13,21,31,…即:121⨯+,231⨯+,341⨯+,451⨯+,561⨯+,…则第n 个数对的第一个数为:()2111n n n n ++=++,每个数对的第二个数分别为5,10,17,26,37,…即:221+;231+;241+;251+;261+…,则第n 个数对的第二个位:()221122n n n ++=++,∴第n 个数对为:()221,22n n n n ++++,故答案为:()221,22n n n n ++++.【点睛】此题考查数字的变化规律,找出数字之间的排列规律,利用拐弯出数字的差的规律解决问题.14.(2023·内蒙古通辽·统考中考真题)点Q 的横坐标为一元一次方程37322x x +=-的解,纵坐标为a b +的值,其中a ,b 满足二元一次方程组2428a b a b -=⎧⎨-+=-⎩,则点Q 关于y 轴对称点Q '的坐标为___________.【答案】()5,4--【分析】先分别解一元一次方程37322x x +=-和二元一次方程组2428a b a b -=⎧⎨-+=-⎩,求得点Q的坐标,再根据直角坐标系中点的坐标的规律即可求解.【详解】解:37322x x +=-,移项合并同类项得,525x =,系数化为1得,5x =,∴点Q 的横坐标为5,∵2428a b a b -=⎧⎨-+=-⎩①②,由2+⨯①②得,3=12b -,解得:4b =-,把4b =-代入①得,24=4a +,解得:0a =,∴=04=4a b +--,∴点Q 的纵坐标为4-,∴点Q 的坐标为()5,4-,又∴点Q 关于y 轴对称点Q '的坐标为()5,4--,故答案为:()5,4--.【点睛】本题考查解一元一次方程和解二元一次方程组、代数值求值、直角坐标系中点的坐标的规律,熟练掌握解一元一次方程和解二元一次方程组的方法求得点Q 的坐标是解题的关键.15.(2023·湖北恩施·统考中考真题)观察下列两行数,探究第②行数与第①行数的关系:2-,4,8-,16,32-,64,……①0,7,4-,21,26-,71,……②根据你的发现,完成填空:第①行数的第10个数为;取每行数的第2023个数,则这两个数的和为.【答案】1024202422024-+【分析】通过观察第一行数的规律为(2)n -,第二行数的规律为(2)1n n -++,代入数据即可.【详解】第一行数的规律为(2)n -,∴第①行数的第10个数为10(2)1024-=;第二行数的规律为(2)1n n -++,∴第①行数的第2023个数为2023(2)-,第②行数的第2023个数为2023(2)2024-+,∴202422024-+,故答案为:1024;202422024-+.【点睛】本题主要考查数字的变化,找其中的规律,是今年考试中常见的题型.16.(2021·湖南怀化市·中考真题)观察等式:232222+=-,23422222++=-,2345222222+++=-,……,已知按一定规律排列的一组数:1002,1012,1022,……,1992,若1002=m ,用含m 的代数式表示这组数的和是___________.【答案】100(21)m -【分析】根据规律将1002,1012,1022,……,1992用含m 的代数式表示,再计算0199222+++ 的和,即可计算1001011011992222++++ 的和.【详解】由题意规律可得:2399100222222++++=- .∵1002=m∴23991000222222=2m m +++++== ,∵22991001012222222+++++=- ,∴10123991002222222=++++++ 12=2m m m m =+=.102239910010122222222+=++++++ 224=2m m m m m =++=.1032399100101102222222222=++++++++ 3248=2m m m m m m =+++=.……∴1999922m =.故10010110110199992222222m m m ++++=+++ .令012992222S ++++= ①12310022222S ++++= ②②-①,得10021S-=∴10010110110199992222222m m m ++++=+++ =100(21)m -故答案为:100(21)m -.【点睛】本题考查规律问题,用含有字母的式子表示数、灵活计算数列的和是解题的关键.17.(2022·湖南怀化)正偶数2,4,6,8,10,……,按如下规律排列,2468101214161820……则第27行的第21个数是______.【答案】744【分析】由图可以看出,每行数字的个数与行数是一致的,即第一行有1个数,第二行有2个数,第三行有3个数••••••••第n行有n个数,则前n行共有(1)2n n+个数,再根据偶数的特征确定第几行第几个数是几.【详解】解:由图可知,第一行有1个数,第二行有2个数,第三行有3个数,•••••••第n行有n个数.∴前n行共有1+2+3+⋯+n=(1)2n n+个数.∴前26行共有351个数,∴第27行第21个数是所有数中的第372个数.∵这些数都是正偶数,∴第372个数为372×2=744.故答案为:744.【点睛】本题考查了数字类的规律问题,解决这类问题的关键是先根据题目的已知条件找出其中的规律,再结合其他已知条件求解.18.(2021·四川眉山市·中考真题)观察下列等式:1311 212x===+⨯;2711623x ===+⨯;313111234x ===+⨯;……根据以上规律,计算12320202021x x x x ++++-= ______.【答案】12016-【分析】根据题意,找到第n 个等式的左边为1与1n(n 1)+的和;利用这个结论得到原式=112+116+1112+…+1120202021⨯﹣2021,然后把12化为1﹣12,16化为12﹣13,120152016⨯化为12015﹣12016,再进行分数的加减运算即可.【详解】11(1)n n =++,20201120202021x =+⨯12320202021x x x x ++++- =112+116+1112+…+1120202021⨯﹣2021=2020+1﹣12+12﹣13+…+12015﹣12016﹣2021=2020+1﹣12016﹣2021=12016-.故答案为:12016-.【点睛】本题考查了二次根式的化简和找规律,解题关键是根据算式找的规律,根据数字的特征进行简便运算.19.(2022·安徽)观察以下等式:第1个等式:()()()22221122122⨯+=⨯+-⨯,第2个等式:()()()22222134134⨯+=⨯+-⨯,第3个等式:()()()22223146146⨯+=⨯+-⨯,第4个等式:()()()22224158158⨯+=⨯+-⨯,……按照以上规律.解决下列问题:(1)写出第5个等式:________;(2)写出你猜想的第n 个等式(用含n 的式子表示),并证明.【答案】(1)()()()2222516101610⨯+=⨯+-⨯(2)()[][]22221(1)21(1)2n n n n n +=+⋅+-+⋅,证明见解析【分析】(1)观察第1至第4个等式中相同位置的数的变化规律即可解答;(2)观察相同位置的数变化规律可以得出第n 个等式为()[][]22221(1)21(1)2n n n n n +=+⋅+-+⋅,利用完全平方公式和平方差公式对等式左右两边变形即可证明.(1)解:观察第1至第4个等式中相同位置数的变化规律,可知第5个等式为:()()()2222516101610⨯+=⨯+-⨯,故答案为:()()()2222516101610⨯+=⨯+-⨯;(2)解:第n 个等式为()[][]22221(1)21(1)2n n n n n +=+⋅+-+⋅,证明如下:等式左边:()2221441n n n +=++,等式右边:[][]22(1)21(1)2n n n n +⋅+-+⋅[][](1)21(1)2(1)21(1)2n n n n n n n n =+⋅+++⋅⋅+⋅+-+⋅[](1)411n n =+⋅+⨯2441n n =++,故等式()[][]22221(1)21(1)2n n n n n +=+⋅+-+⋅成立.【点睛】本题考查整式规律探索,发现所给数据的规律并熟练运用完全平方公式和平方差公式是解题的关键.20.(2021·贵州铜仁市·中考真题)观察下列各项:112,124,138,1416,…,则第n 项是______________.【答案】12nn +【分析】根据已知可得出规律:第一项:1111122=+,第二项:2112242=+,第三项:3113382=+…即可得出结果.【详解】解:根据题意可知:第一项:1111122=+,第二项:2112242=+,第三项:3113382=+,第四项:41144162=+,…则第n 项是12n n +;故答案为:12nn +.【点睛】此题属于数字类规律问题,根据已知各项的规律得出结论是解决此类题目的关键.0.618≈这个数叫做黄金比,著名数学家华罗庚优选法中的“0.618法”就应用了黄金比.设12a =,b =11111S a b =+++,2222211S a b =+++,…,10010010010010011S a b=+++,则12100S S S +++= _______.【答案】5050【分析】利用分式的加减法则分别可求S 1=1,S 2=2,S 100=100,•••,利用规律求解即可.【详解】解: 12a =,b =11122ab =⨯=∴,1112211112a ba ba b b ba bS a a ++++=+==+++++++ ,222222222222222222221112a b a b S a b a b a b a b ++++=+=⨯=⨯=+++++++,…,10101001001001010101010010011100100111a b S a b a b a b +++=+=⨯=+++++∴12100S S S +++= 121005050++⋯⋯+=故答案为:5050【点睛】本题考查了分式的加减法,二次根式的混合运算,求得1ab =,找出的规律是本题的关键.22.(2021·江西中考真题)下表在我国宋朝数学家杨辉1261年的著作《详解九章算法》中提到过,因而人们把这个表叫做杨辉三角,请你根据杨辉三角的规律补全下表第四行空缺的数字是______.【答案】3【分析】通过观察每一个数字等于它上方相邻两数之和.【详解】解:通过观察杨辉三角发现每一个数字等于它上方相邻两数之和的规律,例如:第3行中的2,等于它上方两个相邻的数1,1相加,即:211=+;第4行中的3,等于它上方两个相邻的数2,1相加,即:321=+;⋅⋅⋅⋅⋅⋅由此规律:故空缺数等于它上方两个相邻的数1,2相加,即空缺数为:3,故答案是:3.【点睛】本题考查了杨辉三角数的规律,解题的关键是:通过观察找到数与数之间的关系,从来解决问题.23.(2022·山东泰安)将从1开始的连续自然数按以下规律排列:若有序数对(),n m 表示第n 行,从左到右第m 个数,如()3,2表示6,则表示99的有序数对是_______.【答案】()10,18【分析】分析每一行的第一个数字的规律,得出第n 行的第一个数字为211n +-(),从而求得最终的答案.【详解】第1行的第一个数字:()2111=+-1第2行的第一个数字:()22121=+-第3行的第一个数字:()25131=+-第4行的第一个数字:()210141=+-第5行的第一个数字:()217151=+-…..,设第n 行的第一个数字为x ,得()211x n =+-设第1n +行的第一个数字为z ,得21z n =+设第n 行,从左到右第m 个数为y 当99y =时221(1)991n n +-≤<+∴22(1)98n n -≤<∵n 为整数∴10n =∴21182x n =+-=()∴9982118m =-+=故答案为:()10,18.【点睛】本题考查数字规律的性质,解题的关键是熟练掌握数字规律的相关性质.24.(2022·浙江舟山)观察下面的等式:111236=+,1113412=+,1114520=+,……(1)按上面的规律归纳出一个一般的结论(用含n 的等式表示,n 为正整数)(2)请运用分式的有关知识,推理说明这个结论是正确的.【答案】(1)1111(1)n n n n =+++(2)见解析【分析】(1)根据所给式子发现规律,第一个式子的左边分母为2,第二个式子的左边分母为3,第三个式子的左边分母为4,…;右边第一个分数的分母为3,4,5,…,另一个分数的分母为前面两个分母的乘积;所有的分子均为1;所以第(n+1)个式子为1111(1)n n n n =+++.(2)由(1)的规律发现第(n+1)个式子为1111(1)n n n n =+++,用分式的加法计算式子右边即可证明.(1)解:∵第一个式子()1111123621221=+=+++,第二个式子()11111341231331=+=+++,第三个式子()11111452041441=+=+++,……∴第(n+1)个式子1111(1)n n n n =+++;(2)解:∵右边=111111(1)(1)(1)(1)n n n n n n n n n n n n ++=+==+++++=左边,∴1111(1)n n n n =+++.【点睛】此题考查数字的变化规律,分式加法运算,解题关键是通过观察,分析、归纳发现其中各分母的变化规律.类型二图形规律25.(2023·重庆·统考中考真题)用长度相同的木棍按如图所示的规律拼图案,其中第①个图案用了9根木棍,第②个图案用了14根木棍,第③个图案用了19根木棍,第④个图案用了24根木棍,……,按此规律排列下去,则第⑧个图案用的木棍根数是()A .39B .44C .49D .54【答案】B 【分析】根据各图形中木棍的根数发现计算的规律,由此即可得到答案.【详解】解:第①个图案用了459+=根木棍,第②个图案用了45214+⨯=根木棍,第③个图案用了45319+⨯=根木棍,第④个图案用了45424+⨯=根木棍,……,+⨯=根,第⑧个图案用的木棍根数是45844故选:B.【点睛】此题考查了图形类规律的探究,正确理解图形中木棍根数的变化规律由此得到计算的规律是解题的关键.25.(2023·重庆·统考中考真题)用圆圈按如图所示的规律拼图案,其中第①个图案中有2个圆圈,第②个图案中有5个圆圈,第③个图案中有8个圆圈,第④个图案中有11个圆圈,…,按此规律排列下去,则第⑦个图案中圆圈的个数为()A.14B.20C.23D.26【答案】B【分析】根据前四个图案圆圈的个数找到规律,即可求解.=⨯-;【详解】解:因为第①个图案中有2个圆圈,2311=⨯-;第②个图案中有5个圆圈,5321=⨯-;第③个图案中有8个圆圈,8331=⨯-;第④个图案中有11个圆圈,11341…,⨯-=;所以第⑦个图案中圆圈的个数为37120故选:B.【点睛】本题考查了图形类规律探究,根据前四个图案圆圈的个数找到第n个图案的规律为31n -是解题的关键.27.(2023·山东日照·统考中考真题)数学家高斯推动了数学科学的发展,被数学界誉为“数学王子”,据传,他在计算1234100+++++ 时,用到了一种方法,将首尾两个数相加,进而得到100(1100)12341002⨯++++++= .人们借助于这样的方法,得到(1)12342n n n ++++++= (n 是正整数).有下列问题,如图,在平面直角坐标系中的一系列格点(),i i i A x y ,其中1,2,3,,,i n = ,且,i i x y 是整数.记n n n a x y =+,如1(0,0)A ,即120,(1,0)a A =,即231,(1,1)a A =-,即30,a = ,以此类推.则下列结论正确的是()A .202340a =B .202443a =C .2(21)26n a n -=-D .2(21)24n a n -=-【答案】B 【分析】利用图形寻找规律()211,1n A n n ---,再利用规律解题即可.【详解】解:第1圈有1个点,即1(0,0)A ,这时10a =;第2圈有8个点,即2A 到()91,1A ;第3圈有16个点,即10A 到()252,2A ,;依次类推,第n 圈,()211,1n A n n ---;由规律可知:2023A 是在第23圈上,且()202522,22A ,则()202320,22A 即2023202242a =+=,故A 选项不正确;2024A 是在第23圈上,且()202421,22A ,即2024212243a =+=,故B 选项正确;第n 圈,()211,1n A n n ---,所以2122n a n -=-,故C 、D 选项不正确;故选B .【点睛】本题考查图形与规律,利用所给的图形找到规律是解题的关键.28.(2022·江西)将字母“C”,“H”按照如图所示的规律摆放,依次下去,则第4个图形中字母“H”的个数是()A.9B.10C.11D.12【答案】B 【分析】列举每个图形中H 的个数,找到规律即可得出答案.【详解】解:第1个图中H 的个数为4,第2个图中H 的个数为4+2,第3个图中H 的个数为4+2×2,第4个图中H 的个数为4+2×3=10,故选:B.【点睛】本题考查了规律型:图形的变化类,通过列举每个图形中H 的个数,找到规律:每个图形比上一个图形多2个H 是解题的关键.29.(2022·重庆)用正方形按如图所示的规律拼图案,其中第①个图案中有5个正方形,第②个图案中有9个正方形,第③个图案中有13个正方形,第④个图案中有17个正方形,此规律排列下去,则第⑨个图案中正方形的个数为()A.32B.34C.37D.41【答案】C 【分析】第1个图中有5个正方形,第2个图中有9个正方形,第3个图中有13个正方形,……,由此可得:每增加1个图形,就会增加4个正方形,由此找到规律,列出第n 个图形的算式,然后再解答即可.【详解】解:第1个图中有5个正方形;第2个图中有9个正方形,可以写成:5+4=5+4×1;第3个图中有13个正方形,可以写成:5+4+4=5+4×2;第4个图中有17个正方形,可以写成:5+4+4+4=5+4×3;...第n 个图中有正方形,可以写成:5+4(n-1)=4n+1;当n=9时,代入4n+1得:4×9+1=37.故选:C.【点睛】本题主要考查了图形的变化规律以及数字规律,通过归纳与总结结合图形得出数字之间的规律是解决问题的关键.30.(2021·广西玉林市·中考真题)观察下列树枝分杈的规律图,若第n 个图树枝数用n Y 表示,则94Y Y -=()A.4152⨯B.4312⨯C.4332⨯D.4632⨯【答案】B【分析】根据题目中的图形,可以写出前几幅图中树枝分杈的数量,从而可以发现树枝分杈的变化规律,进而得到规律21nn Y =-,代入规律求解即可.【详解】解:由图可得到:11223344211213217211521n n Y Y Y Y Y =-==-==-==-==-则:9921Y =-,∴944942121312Y Y -=--+=⨯,故答案选:B.【点睛】本题考查图形规律,解答本题的关键是明确题意,利用数形结合的思想解答31.(2021·黑龙江大庆市·中考真题)如图,3条直线两两相交最多有3个交点,4条直线两两相交最多有6个交点,按照这样的规律,则20条直线两两相交最多有______个交点【答案】190【分析】根据题目中的交点个数,找出n 条直线相交最多有的交点个数公式:1(1)2n n -.【详解】解:2条直线相交有1个交点;3条直线相交最多有1123322+==⨯⨯个交点;4条直线相交最多有11236432++==⨯⨯个交点;5条直线相交最多有1123410542+++==⨯⨯个交点;⋯20条直线相交最多有120191902⨯⨯=.故答案为:190.【点睛】本题考查的是多条直线相交的交点问题,解答此题的关键是找出规律,即n 条直线相交最多有1(1)2n n -.32.(2023·四川遂宁·统考中考真题)烷烃是一类由碳、氢元素组成的有机化合物,在生产生活中可作为燃料、润滑剂等原料,也可用于动、植物的养护.通常用碳原子的个数命名为甲烷、乙烷、丙烷、……、癸烷(当碳原子数目超过10个时即用汉文数字表示,如十一烷、十二烷……)等,甲烷的化学式为4CH ,乙烷的化学式为26C H ,丙烷的化学式为38C H ……,其分子结构模型如图所示,按照此规律,十二烷的化学式为.【答案】1226C H 【分析】根据碳原子的个数,氢原子的个数,找到规律,即可求解.【详解】解:甲烷的化学式为4CH ,乙烷的化学式为26C H ,丙烷的化学式为38C H ……,碳原子的个数为序数,氢原子的个数为碳原子个数的2倍多2个,十二烷的化学式为1226C H ,故答案为:1226C H .【点睛】本题考查了规律题,找到规律是解题的关键.33.(2023·山西·统考中考真题)如图是一组有规律的图案,它由若干个大小相同的圆片组成.第1个图案中有4个白色圆片,第2个图案中有6个白色圆片,第3个图案中有8个白色圆片,第4个图案中有10个白色圆片,…依此规律,第n 个图案中有个白色圆片(用含n 的代数式表示)【答案】()22n +【分析】由于第1个图案中有4个白色圆片4221=+⨯,第2个图案中有6个白色圆片6222=+⨯,第3个图案中有8个白色圆片8223=+⨯,第4个图案中有10个白色圆片10224=+⨯,⋯,可得第(1)n n >个图案中有白色圆片的总数为22n +.【详解】解:第1个图案中有4个白色圆片4221=+⨯,第2个图案中有6个白色圆片6222=+⨯,第3个图案中有8个白色圆片8223=+⨯,第4个图案中有10个白色圆片10224=+⨯,⋯,∴第(1)n n >个图案中有()22n +个白色圆片.故答案为:()22n +.【点睛】此题考查图形的变化规律,通过从一些特殊的数字变化中发现不变的因素或按规律变化的因素,然后推广到一般情况.解题关键是总结归纳出图形的变化规律.34.(2023·黑龙江绥化·统考中考真题)在求123100++++ 的值时,发现:1100101+=,299101+= ,从而得到123100++++= 101505050⨯=.按此方法可解决下面问题.图(1)有1个三角形,记作11a =;分别连接这个三角形三边中点得到图(2),有5个三角形,记作25a =;再分别连接图(2)中间的小三角形三边中点得到图(3),有9个三角形,记作39a =;按此方法继续下去,则123n a a a a ++++= .(结果用含n 的代数式表示)【答案】22n n -/22n n -+【分析】根据题意得出()14143n a n n =+-=-,进而即可求解.【详解】解:依题意,()1231,5,9,14143n a a a a n n ===⋅⋅⋅=+-=-,,∴123n a a a a ++++= ()21432122n n n n n n +-==-=-,故答案为:22n n -.【点睛】本题考查了图形类规律,找到规律是解题的关键.35.(2022·山东泰安)观察下列图形规律,当图形中的“○”的个数和“.”个数差为2022时,n 的值为____________.【答案】不存在【分析】首先根据n=1、2、3、4时,“•”的个数分别是3、6、9、12,判断出第n 个图形中“•”的个数是3n;然后根据n=1、2、3、4,“○”的个数分别是1、3、6、10,判断出第n 个“○”的个数是()12n n +;最后根据图形中的“○”的个数和“.”个数差为2022,列出方程,解方程即可求出n 的值是多少即可.【详解】解:∵n=1时,“•”的个数是3=3×1;n=2时,“•”的个数是6=3×2;n=3时,“•”的个数是9=3×3;n=4时,“•”的个数是12=3×4;……∴第n 个图形中“•”的个数是3n;又∵n=1时,“○”的个数是1=1(11)2⨯+;n=2时,“○”的个数是2(21)32⨯+=,n=3时,“○”的个数是3(31)62⨯+=,n=4时,“○”的个数是4(41)102⨯+=,……∴第n 个“○”的个数是()12n n +,由图形中的“○”的个数和“.”个数差为2022()1320222n n n +∴-=①,()1320222n n n +-=②解①得:无解解②得:12n n ==故答案为:不存在【点睛】本题考查了图形类规律,解一元二次方程,找到规律是解题的关键.36.(2022·四川遂宁)“勾股树”是以正方形一边为斜边向外作直角三角形,再以该直角三角形的两直角边分别向外作正方形,重复这一过程所画出来的图形,因为重复数次后的形状好似一棵树而得名.假设如图分别是第一代勾股树、第二代勾股树、第三代勾股树,按照勾股树的作图原理作图,则第六代勾股树中正方形的个数为______.【答案】127【分析】由已知图形观察规律,即可得到第六代勾股树中正方形的个数.【详解】解:∵第一代勾股树中正方形有1+2=3(个),第二代勾股树中正方形有1+2+22=7(个),第三代勾股树中正方形有1+2+22+23=15(个),......∴第六代勾股树中正方形有1+2+22+23+24+25+26=127(个),故答案为:127.【点睛】本题考查图形中的规律问题,解题的关键是仔细观察图形,得到图形变化的规律.37.(2021·湖南常德市·中考真题)如图中的三个图形都是边长为1的小正方形组成的网格,其中第一个图形有11⨯个正方形,所有线段的和为4,第二个图形有22⨯个小正方形,所有线段的和为12,第三个图形有33⨯个小正方形,所有线段的和为24,按此规律,则第n 个网格所有线段的和为____________.(用含n 的代数式表示)【答案】2n 2+2n【分析】本题要通过第1、2、3和4个图案找出普遍规律,进而得出第n 个图案的规律为S n =4n+2n ×(n-1),得出结论即可.【详解】解:观察图形可知:第1个图案由1个小正方形组成,共用的木条根数141221,S =⨯=⨯⨯第2个图案由4个小正方形组成,共用的木条根数262232,S =⨯=⨯⨯第3个图案由9个小正方形组成,共用的木条根数383243,S =⨯=⨯⨯第4个图案由16个小正方形组成,共用的木条根数4104254,S =⨯=⨯⨯…由此发现规律是:第n 个图案由n 2个小正方形组成,共用的木条根数()22122,n S n n n n =+=+ 故答案为:2n 2+2n.【点睛】本题考查了规律型-图形的变化类,熟练找出前四个图形的规律是解题的关键.38.(2021·黑龙江绥化市·中考真题)下面各图形是由大小相同的三角形摆放而成的,图①中有1个三角形,图②中有5个三角形,图③中有11个三角形,图④中有19个三角形…,依此规律,则第n 个图形中三角形个数是_______.【答案】21n n +-【分析】此题只需分成上下两部分即可找到其中规律,上方的规律为(n-1),下方规律为n 2,结合两部分即可得出答案.【详解】解:将题意中图形分为上下两部分,则上半部规律为:0、1、2、3、4……n-1,下半部规律为:12、22、32、42……n 2,∴上下两部分统一规律为:21n n +-.故答案为:21n n +-.【点睛】本题主要考查的图形的变化规律,解题的关键是将图形分为上下两部分分别研究.类型三与函数有关规律39.(2023·山东烟台·统考中考真题)如图,在直角坐标系中,每个网格小正方形的边长均为1个单位长度,以点P 为位似中心作正方形123PA A A ,正方形456,PA A A ⋯,按此规律作下去,所作正方形的顶点均在格点上,其中正方形123PA A A 的顶点坐标分别为()()()123,0,2,1,1,0P A A ---,()32,1A --,则顶点100A 的坐标为()。

中考数学复习指导:探索规律型问题归类解析

中考数学复习指导:探索规律型问题归类解析

探索规律型问题归类解析探索规律型问题是历年中考数学试题中的重要题型之一,其特点是给出一组变化了的数字、式子、表格、图形等,要求学生通过观察、归纳、猜想、验证、类比,探求其内在规律.1.通用的解题策略解答规律型问题一般要从特殊情况入手→探索发现规律→综合归纳→猜想得出结论→验证结论.这种“特殊——一般——特殊”的解题模式,体现了总结归纳的数学思想,也正是人们认识新事物的一般过程.具体来说,就是先写出开头几个数式的基本结构,然后通过横比或纵比找出各部分的特征,写出符合要求的结果.例1 如图1,房间地面的图案是用大小相同的黑、白正方形镶嵌而成.图中,第1个黑色“L”形由3个正方形组成,第2个黑色“L”形由7个正方形组成,…那么组成第6个黑色“L”形的正方形个数是( )(A)22 (B)23 (C)24 (D)25解析从特例入手:如图1.纵比正方形的个数3,7,11,15中,后一个数比前一个大4(即相邻两数的差为4),猜想与4有关.横比3与1,7与2,11与3,15与4之间有何关系?联想到与4有关,故改写为:3=4×1-1,7=4×2-1.11=4×3-1,15=4×4-1.猜想组成第6个黑色L形的正方形个数是4 ×6-1=23个.故选B.点评考察相邻两数的差(或商)是探究数字规律的常用手段.常见的类型有:相邻两数的差(或商)相等或成倍数关系,相邻两数的差相等与商相等交替出现等.2.关注特殊数列(1)斐波那契数列:1,1,2,3,5,8,13,21…(其规律为:从第三项开始,每一项都等于前两项之和);(2)平方数数列:1,4,9,16,25,36…(其规律为:n2,即每一项都等于项数的平方).例2 有一组数:1,2,5,10,17,26…请观察这组数的构成规律,用你发现的规律确定第8个数为_______.解析规律为:n2+1(n=0,1,2…).答案:50.点评此类题要注意n2,n2+1,n2-1等(3)三角形数列:1,3,6,10,15,21,…(其规律为1+2+3+…+n)例3 世界上著名的莱布尼茨三角形如图2所示,则排在第10行从左边数第3个位置上的数是:( )(A)(B)(C)(D)解析从第3行起,从左边数第3位置上的数分别为,,,,…它们的分母可分别改写为:1×3,3×4,6×5,10×6,15×7,21×8,…,而1,3,6,10,15,21,…,正是三角形数,故答案为:.选B.(4)杨辉三角形,杨辉三角形斜边上1以外的各数,都等于它“肩上”的两数之和,如图3.(5)与等差等比数列有关的数列.如例1中3,7,11,15…就是一个等差数列.例4 数字解密:第一个数是3=2+1,第二个数是5=3+2,第三个数是9=5+4,第四个数是17=9+8,……观察并猜想第六个数应是_______.解析第二个加数1,2,4,8…规律为2n(为一等比数列,也要关注这一数列),第一个加数2,3,5,9…比第二个加数大1.所以第六个数为(25+1)+25=65.例5 一组按规律排列的数:…请你推断第9个数是________.解析这列数的分母为2,3,4,5,6…的平方数,分子形成二阶等差数列,依次相差2,4,6,8…故第9个数分子为1+2+4+6+8+10+12+14+16=73,分母为100,故答案为.(6)与循环有关的问题例6 让我们轻松一下,做一个数字游戏:第一步:取一个自然数n1=5,计算n12+1得a1;第二步:算出a1的各位数字之和得n2,计算n22+1得a3;第三步:算出a2的各位数字之和得n3,再计算n32+1得a3;……依此类推,则a2008=_______.解析根据题意可算出a1=26,a2=65,a3=122,a4=26,a5=65,a6=122,…发现每3个数就出现一次循环.所以由2008=669×3+1,可得a2008=a1=26.点评一列数由某m个数循环出现组成,可依据同余等值(由n=p·m+r得a n=a r)实施转换.(7)分奇数项偶数项的问题例7 一组按规律排列的式子:,…(a b≠0),其中第7个式子是________,第n个式子是_(n为正整数).解析6的指数2,5,8,11…,相邻两数差为3,是等差数列,其规律为3n-1;再注意到奇数项为负,偶数项为正,则第n个式子为第七个式子为3.特殊数列的迁移例8 把数字按如图4所示排列起来,从上开始,依次为第一行、第二行、第三行、…,中间用虚线围的一列,从上至下依次为1.5.13.25.…,则第10个数为_______.解析1 中间框出的一列数的规律为:第n个数为1+4+8+12+…+4(n-1).所以第10个数为1+4+8+12+…+36=.解析2 用虚线圈出的一列数1,5,13,25可改写为:02+12,12+22,22+32,32+42,猜想第10个数为92+102=181.点评此列数可看成是平方数数列的迁移.例9 图5中是与杨辉三角有类似性质的三角形数垒.a,b,c,d是相邻两行的前四个数,那么当a=8时,c=_______,d=_______.解析除两边外,中间的每个数等于肩上两数的和.答案:9;32.点评此列数可看成是杨辉三角形的迁移.4.关注中考新题型例10 观察图6所示表格,依据表格数据排列的规律,数2008在表格中出现的次数共有_______次.解析从特例入手,通过扩充表格可得:数1,2,3,4,5,6,7,8,9,10出现次数分别为1,2,2,3,2,4,2,4,3,4.出现的次数恰为给定数的所有因数的个数,而2008的因数为1,2,4,8,251,502,1004,2008等8个.故答案为8.点评本例中新产生的数为自然数的倍数,因此,其出现的次数与其因数的多少有关,仔细观察便会发现,其出现次数就是给定数所有因数的个数,本题规律的隐蔽性较强,因而有一定的难度.。

中考数学必考题型《规律探索》分类专项练习含答案

中考数学必考题型《规律探索》分类专项练习含答案

中考数学必考题型《规律探索》分类专项练习类型一 数式规律1. 我国战国时期提出了“一尺之棰,日取其半,万世不竭”这一命题,用所学知识来解释可理解为:设一尺长的木棍,第一天折断一半,其长为12尺,第二天再折断一半,其长为14尺,…,第n 天折断一半后得到的木棍长应为________尺. 12n2. 如图,是按一定规律排成的三角形数阵,按图中数阵的排列规律,第9行从左至右第5个数是________.第2题图41【解析】由图形可知,第n 行最后一个数为1+2+3+…+n =n (n +1)2,∴第8行最后一个数为8×92=36=6,则第9行从左至右第5个数是36+5=41.3. 观察下列关于自然数的式子:第一个式子:4×12-12 ① 第二个式子:4×22-32 ② 第三个式子:4×32-52 ③ …根据上述规律,则第2019个式子的值是______.8075 【解析】∵4×12-12=3①,4×22-32=7②,4×32-52=11③,…,4n 2-(2n -1)2=4n -1,∴第2019个式子的值是4×2019-1=8075. 4. 将数1个1,2个12,3个13,…,n 个1n (n 为正整数)顺次排成一列:1,12,12,13,13,13,…,1n ,1n ,…,记a 1=1,a 2=12,a 3=12,…,S 1=a 1,S 2=a 1+a 2,S 3=a 1+a 2+a 3,…,S n =a 1+a 2+…+a n ,则S 2019=________.63364 【解析】根据题意,将该数列分组,1个1的和为1,2个12的和为1,3个13的和为1,…;∵1+2+3+…+63=2016个数,则第2019个数为64个164的第3个数,则此数列中,S 2019=1×63+3×164=63364. 类型二 图形规律5. 如图,在平面直角坐标系中,第一次将△OAB 变换成△OA 1B 1,第二次将△OA 1B 1变换成△OA 2B 2,第三次将△OA 2B 2变换成△OA 3B 3,…,已知A (1,3),A 1(2,3),A 2(4,3),A 3(8,3),B (2,0),B 1(4,0),B 2(8,0),B 3(16,0).观察每次变换前后的三角形的变化,按照变换规律,则点A n 的坐标是________.第5题图(2n,3)【解析】∵A(1,3),A1(2,3),A2(4,3),A3(8,3),…,∴纵坐标不变,为3,横坐标都和2有关,为2n,即点An的坐标是(2n,3).6. 如图,把正方形铁片OABC置于平面直角坐标系中,顶点A的坐标为(3,0),点P(1,2)在正方形铁片上,将正方形铁片绕其右下角的顶点按顺时针方向依次旋转90°,第一次旋转至图①位置,第二次旋转至图②位置,…,则正方形铁片连续旋转2019次后,点P的坐标为________.第6题图(6058,1)【解析】∵铁片OABC为正方形,A(3,0),P(1,2),∴正方形铁片OABC 的边长为3,如解图第一个循环周期内的点P1,P2,P3,P4的坐标分别为(5,2),(8,1),(10,1),(13,2),每增加一个循环,对应的点的横坐标就增加12.而2019÷4=504……3,即504个循环周期后点P2016的横坐标为504×12+1=6049,纵坐标为2,所以点P2019的横坐标为6049+9=6058,纵坐标为1.故P2019(6058,1).第6题解图7. 如图,在平面直角坐标系中,半径均为1个单位长度的半圆O 1,O 2,O 3,…,组成一条平滑的曲线,点P 从原点O 出发,沿这条曲线向右运动,速度为每秒π2个单位长度,则第2019秒时,点P 的坐标是________.第7题图(2019,-1) 【解析】∵圆的半径都为1,∴半圆的周长=π,以时间为点P 的下标.观察发现规律:P 0(0,0),P 1(1,1),P 2(2,0),P 3(3,-1),P 4(4,0),P 5(5,1),…,∴P 4n (4n ,0),P 4n +1(4n +1,1),P 4n +2(4n +2,0),P 4n +3(4n +3,-1).∵2019÷4=504……3,∴第2019秒时,点P 的坐标为(2019,-1).8. 如图,已知菱形OABC 的顶点O (0,0),B (2,2),若菱形绕点O 逆时针旋转,每秒旋转45°,则第60秒时,菱形的对角线交点D 的坐标为________.第8题图(-1,-1) 【解析】∵菱形OABC 的顶点O (0,0),B (2,2),∴BO 与x 轴的夹角为45°,∵菱形的对角线互相垂直平分,∴点D是线段OB的中点,∴点D的坐标是(1,1),∵菱形绕点O逆时针旋转,每秒旋转45°,360°÷45°=8,∴每旋转8秒,菱形的对角线交点就回到原来的位置(1,1),∵60÷8=7……4,∴第60秒时是把菱形绕点O 逆时针旋转了7周回到原来位置后,又旋转了4秒,即又旋转了4×45°=180°,∴点D 的对应点落在第三象限,且对应点与点D关于原点O成中心对称,∴第60秒时,菱形的对角线交点D的坐标为(-1,-1).9. 如图,∠MON=60°,作边长为1的正六边形A1B1C1D1E1F1,边A1B1、F1E1分别在射线OM、ON上,边C1D1所在的直线分别交OM、ON于点A2、F2,以A2F2为边作正六边形A2B2C2D2E2F2,边C2D2所在的直线分别交OM、ON于点A3、F3,再以A3F3为边作正六边形A3B3C3D3E3F3,…,依此规律,经第n次作图后,点B n到ON的距离是________.第9题图3n-13【解析】由题可知,∠MON=60°,设B n到ON的距离为h n,∵正六边形A1B1C1D1E1F1的边长为1,∴A1B1=1,易知△A1OF1为等边三角形,∴A1B1=OA1=1,∴OB1=2,则h1=2×32=3,又∵OA2=A2F2=A2B2=3,∴OB2=6,则h2=6×32=33,同理可得:OB3=18,则h3=18×32=93,…,依此可得OB n=2×3n-1,则h n=2×3n -1×32=3n -1 3.∴B n 到ON 的距离h n = 3n -1 3.10. 如图,正方形AOBO 2的顶点A 的坐标为A (0,2),O 1为正方形AOBO 2的中心;以正方形AOBO 2的对角线AB 为边,在AB 的右侧作正方形ABO 3A 1,O 2为正方形ABO 3A 1的中心;再以正方形ABO 3A 1的对角线A 1B 为边,在A 1B 的右侧作正方形A 1BB 1O 4,O 3为正方形A 1BB 1O 4的中心;再以正方形A 1BB 1O 4的对角线A 1B 1为边,在A 1B 1的右侧作正方形A 1B 1O 5A 2,O 4为正方形A 1B 1O 5A 2的中心;…;按照此规律继续下去,则点O 2018的坐标为________.第10题图(21010-2,21009) 【解析】由A (0,2)和A 1(2,4)可知直线AA 1的解析式为y =x +2,由图可知点A 1,A 2,…,A n 的纵坐标分别为22,23,…,2n +1,将y =2n +1代入y =x +2,得2n +1=x +2,∴x =2n +1-2,∴点A n 的坐标为(2n +1-2,2n +1),由图可知O 2n 横坐标与A n 的横坐标相同,O 2n 纵坐标是A n 的纵坐标的12,∴O 2n 的坐标为(2n +1-2,2n),∴当n =1009时,O 2018的坐标为(21010-2,21009). 真题反馈:1. 观察下列一组数:,,,,,…,它们是按一定规律排列的,那么这一组数的第n个数是.2. 如图,用黑白两种颜色的菱形纸片,按黑色纸片数逐渐增加1的规律拼成下列图案,若第n个图案中有2017个白色纸片,则n的值为( )A.671 B.672 C.673 D.6743. 观察下列一组图形,其中图形①中共有2颗星,图形②中共有6颗星,图形③中共有11颗星,图形④中共有17颗星,…,按此规律,图形⑧中星星的颗数是( )A.43 B.45 C.51 D.534. 请你计算:(1-x)(1+x),(1-x)(1+x+x2),…,猜想(1-x)(1+x+x2+…+x n)的结果是( ).A. 1-x n+1B. 1+x n+1C. 1-x nD. 1+x n5. 如图,已知正方形ABCD,顶点A(1,3),B(1,1),C(3,1).规定“把正方形ABCD先沿x轴翻折,再向左平移1个单位”为一次变换,如此这样,连续经过2019次变换后,正方形ABCD的对角线交点M的坐标变为().A. (-2012,2)B. (-2012,-2)C. (-2013,-2)D. (-2013,2)6. 观察下列数据:-2,52,-103,174,-265,…,它们是按一定规律排列的,依照此规律,第11个数据是.7. 观察下列数据:-2,52,-103,174,-265,…,它们是按一定规律排列的,依照此规律,第11个数据是.8. 正方形A1B1C1O,A2B2C2C1,A3B3C3C2,…按如图的方式放置.点A1,A2,A3,…和点C1,C2,C3,…分别在直线y=x+1和x轴上,则点B6的坐标是.9. 如图,将若干个正三角形、正方形和圆按一定规律从左向右排列,那么第2015个图形是.10. 如图,弹性小球从点P(0,3)出发,沿所示方向运动,每当小球碰到矩形OABC的边时反弹,反弹时反射角等于入射角,当小球第1次碰到矩形的边时的点为P1,第2次碰到矩形的边时的点为P2,…,第n 次碰到矩形的边时的点为P n,则点P3的坐标是;点P2 019的坐标是.11.观察下列关于自然数的等式:32-4×12=5 ①52-4×22=9 ②72-4×32=13 ③…根据上述规律解决下列问题:(1)完成第四个等式:(2)写出你猜想的第n个等式(用含n的式子表示),并验证其正确性.12.(1)证明三角形中位线定理:三角形的中位线平行于第三边,且等于第三边的一半;[要求根据图(1)写出已知、求证、证明;在证明过程中,至少有两处写出推理依据(“已知”除外)(2)如图(2),在▱ABCD中,对角线焦点为O,A1,B1,C1,D1分别是OA,OB,OC,OD的中点,A2,B2,C2,D2分别是OA1,OB1,OC1,OD1的中点,…,以此类推.若▱ABCD的周长为1,直接用算式表示各四边形的周长之和l;(3)借助图形(3)反映的规律,猜猜l可能是多少?(1)(2) (3)。

2024中考数学复习专题 规律探索题 (含答案)

2024中考数学复习专题 规律探索题 (含答案)

2024中考数学复习专题规律探索题类型一数式规律1. (2023鄂州)生物学中,描述、解释和预测种群数量的变化,常常需要建立数学模型.在营养和生存空间没有限制的情况下,某种细胞可通过分裂来繁殖后代,我们就用数学模型2n 来表示.即:21=2,22=4,23=8,24=16,25=32,…,请你推算22023的个位数字是()A. 8B. 6C. 4D. 22. (2023泰安)将从1开始的连续自然数按以下规律排列:…若有序数对(n,m)表示第n行,从左到右第m个数,如(3,2)表示6,则表示99的有序数对是________.3. (2022怀化)观察等式:2+22=23-2,2+22+23=24-2,2+22+23+24=25-2,…,已知按一定规律排列的一组数:2100,2101,2102,…,2199,若2100=m,用含m的代数式表示这组数的和是________.4. (2023张家界)有一组数据:a1=31×2×3,a2=52×3×4,a3=73×4×5,…,a n=2n+1n(n+1)(n+2).记S n=a1+a2+a3+…+a n,则S12=________.5. (2023达州)人们把5-12≈0.618这个数叫做黄金比,著名数学家华罗庚优选法中的“0.618法”就应用了黄金比.设a=5-12,b=5+12,记S1=11+a+11+b,S2=21+a2+2 1+b2,…,S100=1001+a100+1001+b100,则S1+S2+…+S100=________.6. (2023安徽)观察以下等式:第1个等式:(2×1+1)2=(2×2+1)2-(2×2)2,第2个等式:(2×2+1)2=(3×4+1)2-(3×4)2,第3个等式:(2×3+1)2=(4×6+1)2-(4×6)2,第4个等式:(2×4+1)2=(5×8+1)2-(5×8)2,…按照以上规律,解决下列问题:(1)写出第5个等式:____________________;(2)写出你猜想的第n个等式(用含n的式子表示),并证明.类型二图形规律考向1累加型7. (2023重庆B卷)把菱形按如图所示的规律拼图案,其中第①个图案中有1个菱形,第①个图案中有3个菱形,第①个图案中有5个菱形,…,按此规律排列下去,则第①个图案中菱形的个数为()第7题图A. 15B. 13C. 11D. 98. (2023济宁)如图,用相同的圆点按照一定的规律拼出图形.第一幅图4个圆点,第二幅图7个圆点,第三幅图10个圆点,第四幅图13个圆点…按照此规律,第一百幅图中圆点的个数是()第8题图A. 297B. 301C. 303D. 4009. (2023青海省卷)木材加工厂将一批木料按如图所示的规律依次摆放,则第n个图中共有木料________根.第9题图源自人教七上P70第10题10. (2022常德)如图中的三个图形都是边长为1的小正方形组成的网格,其中第一个图形有1×1个小正方形,所有线段的和为4,第二个图形有2×2个小正方形,所有线段的和为12,第三个图形有3×3个小正方形,所有线段的和为24,按此规律,则第n个网格中所有线段的和为________.(用含n的代数式表示)第10题图11. (2023遂宁)“勾股树”是以正方形一边为斜边向外作直角三角形,再以该直角三角形的两直角边分别向外作正方形,重复这一过程所画出来的图形,因为重复数次后的形状好似一棵树而得名.假设下图分别是第一代勾股树、第二代勾股树、第三代勾股树,按照勾股树的作图原理作图,则第六代勾股树中正方形的个数为________.第11题图12. (2023德阳)古希腊的毕达哥拉斯学派对整数进行了深入的研究,尤其注意形与数的关系,“多边形数”也称为“形数”,就是形与数的结合物.用点排成的图形如下:第12题图其中:图①的点数叫做三角形数,从上至下第一个三角形数是1,第二个三角形数是1+2=3,第三个三角形数是1+2+3=6,…图①的点数叫做正方形数,从上至下第一个正方形数是1,第二个正方形数是1+3=4,第三个正方形数是1+3+5=9,……由此类推,图①中第五个正六边形数是________.考向2成倍递变型13. (2023威海)由12个有公共顶点O 的直角三角形拼成如图所示的图形,①AOB =①BOC =①COD =…=①LOM =30°.若S ①AOB =1,则图中与①AOB 位似的三角形的面积为( )第13题图A. (43 )3B. (43 )7C. (43 )6D. (34)6 14. (2023荆州)如图,已知矩形ABCD 的边长分别为a ,b ,进行如下操作:第一次,顺次连接矩形ABCD 各边的中点,得到四边形A 1B 1C 1D 1;第二次,顺次连接四边形A 1B 1C 1D 1各边的中点,得到四边形A 2B 2C 2D 2;…如此反复操作下去,则第n 次操作后,得到四边形A n B n C n D n 的面积是( )A. ab 2nB. ab 2n -1C. ab 2n +1 D. ab22n第14题图15. (2023烟台)如图,正方形ABCD 边长为1,以AC 为边作第2个正方形ACEF ,再以CF 为边作第3个正方形FCGH ,…,按照这样的规律作下去,第6个正方形的边长为( ) A. (22 )5 B. (22 )6 C. (2 )5 D. (2 )6第15题图16. (2023广安)如图,四边形ABCD 是边长为12的正方形,曲线DA 1B 1C 1D 1A 2…是由多段90°的圆心角所对的弧组成的.其中,弧DA 1的圆心为A ,半径为AD ;弧A 1B 1的圆心为B ,半径为BA1;弧B1C1的圆心为C,半径为CB1;弧C1D1的圆心为D,半径为DC1….弧DA1、弧A1B1、弧B1C1、弧C1D1…的圆心依次按点A、B、C、D循环,则弧C2023D2023的长是________(结果保留π).第16题图17. (2023绥化)如图,①AOB=60°,点P1在射线OA上,且OP1=1,过点P1作P1K1①OA 交射线OB于K1,在射线OA上截取P1P2,使P1P2=P1K1;过点P2作P2K2①OA交射线OB 于K2,在射线OA上截取P2P3,使P2P3=P2K2;…;按照此规律,线段P2023K2023的长为________.第17题图考向3周期变化型18. (2023玉林)如图的电子装置中,红黑两枚跳棋开始放置在边长为2的正六边形ABCDEF 的顶点A处.两枚跳棋跳动规则是:红跳棋按顺时针方向1秒钟跳1个顶点,黑跳棋按逆时针方向3秒钟跳1个顶点,两枚跳棋同时跳动,经过2023秒钟后,两枚跳棋之间的距离是()A. 4B. 23C. 2D. 0第18题图19. (2023河南)如图,在平面直角坐标系中,边长为2的正六边形ABCDEF的中心与原点O 重合,AB①x轴,交y轴于点P.将①OAP绕点O顺时针旋转,每次旋转90°,则第2023次旋转结束时,点A的坐标为()A. (3,-1)B. (-1,-3)C. (-3,-1)D. (1,3)第19题图20. (2023毕节)如图,在平面直角坐标系中,把一个点从原点开始向上平移1个单位,再向右平移1个单位,得到点A1(1,1);把点A1向上平移2个单位,再向左平移2个单位,得到点A2(-1,3);把点A2向下平移3个单位,再向左平移3个单位,得到点A3(-4,0);把点A3向下平移4个单位,再向右平移4个单位,得到点A4(0,-4);…;按此做法进行下去,则点A10的坐标为________.第20题图类型三与函数图象结合21. (2023龙东地区)如图,在平面直角坐标系中,点A1,A2,A3,A4…在x轴上且OA1=1,OA2=2OA1,OA3=2OA2,OA4=2OA3…按此规律,过点A1,A2,A3,A4…作x轴的垂线分别与直线y=3x交于点B1,B2,B3,B4…记①OA1B1,①OA2B2,①OA3B3,①OA4B4…的面积分别为S1,S2,S3,S4…则S2023=________.第21题图22. (2022菏泽)如图,一次函数y =x 与反比例函数y =1x(x >0)的图象交于点A ,过点A 作AB ①OA ,交x 轴于点B ;作BA 1①OA ,交反比例函数图象于点A 1;过点A 1作A 1B 1①A 1B 交x 轴于点B 1;再作B 1A 2①BA 1,交反比例函数图象于点A 2,依次进行下去…,则点A 2022的横坐标为________.第22题图23. (2023盐城)《庄子·天下篇》记载“一尺之棰,日取其半,万世不竭”.如图,直线l 1:y =12x +1与y 轴交于点A ,过点A 作x 轴的平行线交直线l 2:y =x 于点O 1,过点O 1作y 轴的平行线交直线l 1于点A 1,以此类推,令OA =a 1,O 1A 1=a 2,…,O n -1A n -1=a n ,若a 1+a 2+…+a n ≤S 对任意大于1的整数n 恒成立,则S 的最小值为________.第23题图类型四 与实际问题结合24. (2022安徽)某矩形人行道由相同的灰色正方形地砖与相同的白色等腰直角三角形地砖排列而成,图①表示此人行道的地砖排列方式,其中正方形地砖为连续排列.【观察思考】当正方形地砖只有1块时,等腰直角三角形地砖有6块(如图①);当正方形地砖有2块时,等腰直角三角形地砖有8块(如图①);以此类推.第24题图【规律总结】(1)若人行道上每增加1块正方形地砖,则等腰直角三角形地砖增加________块;(2)若一条这样的人行道一共有n(n为正整数)块正方形地砖,则等腰直角三角形地砖的块数为______(用含n的代数式表示);【问题解决】(3)现有2022块等腰直角三角形地砖,若按此规律再建一条人行道,要求等腰直角三角形地砖剩余最少,则需要正方形地砖多少块?参考答案与解析1. C 【解析】21=2,22=4,23=8,24=16,25=32,则2的1,2,3,4次方的个位上的数分别为2,4,8,6,每4个一次循环,而22022中2022÷4=550……2,∴个位上的数为4.2. (10,18) 【解析】按照规律可得每一行的最后一个数为行数的平方,第n 行有(2n -1)个数.∵92=81,102=100,∴99是第10行,第18个数,∴表示99的有序数对是(10,18).3. m 2-m4.201182 【解析】∵a n =2n +1n (n +1)(n +2) =n +n +1n (n +1)(n +2) =n n (n +1)(n +2) +n +1n (n +1)(n +2) =1(n +1)(n +2) +1n (n +2) =1n +1 -1n +2 +12 (1n -1n +2),∴S 12=12 -13 +13 -14 +…+113 -114 +12 ×(1-13 +12 -14 +…+112 -114 )=12 -114 +12 ×(1+12 -113 -114 )=12 +12 +14 -126 -114 -128 =201182. 5. 5050 【解析】∵a =5-12 ,b =5+12 ,∴ab =1,∵S 1=11+a +11+b =2+a +b 1+a +b +ab =2+a +b 2+a +b =1,S 2=21+a 2 +21+b 2 =2(2+a 2+b 2)1+a 2+b 2+a 2b 2 =2(2+a 2+b 2)2+a 2+b 2=2,…,S 100=1001+a 100 +1001+b 100 =100(2+a 100+b 100)1+a 100+b 100+a 100b 100 =100(2+a 100+b 100)2+a 100+b 100=100,∴S 1+S 2+…+S 100=1+2+…+100=100×(100+1)2=5050. 6. 解:(1)(2×5+1)2=(6×10+1)2-(6×10)2;(2)(2n +1)2=[2n (n +1)+1]2-[2n (n +1)]2.证明:等式左边=4n 2+4n +1,等式右边=4n 2(n +1)2+1+4n (n +1)-4n 2(n +1)2=4n (n +1)+1=4n 2+4n +1,∴左边=右边,∴等式成立.7. C 【解析】经分析可得,第个图案的菱形个数为2n -1,∴第⑥个图案中菱形个数为2×6-1=11(个).8. B 【解析】第一幅图中圆点的个数是4=1×3+1;第二幅图中圆点的个数是7=2×3+1;第三幅图中圆点的个数是10=3×3+1;第四幅图中圆点的个数是13=4×3+1;…;按照此规律,第n 幅图中圆点的个数是3n +1,∴第一百幅图中圆点的个数是3×100+1=301.9. n (n +1)2【解析】∵第1个图中有木料1根,第2个图中有木料1+2=3根,第3个图中有木料1+2+3=6根,第4个图中有木料1+2+3+4=10根,…,∴第n 个图中有木料1+2+3+4+…+n =n (n +1)2根. 10. 2n 2+2n 【解析】观察图形可知:第一个图形由1个小正方形组成,所有线段的和为4×1=2×2×1, 第二个图形由4个小正方形组成,所有线段的和为6×2=2×3×2, 第三个图形由9个小正方形组成,所有线段的和为8×3=2×4×3, 第4个图形由16个小正方形组成,所有线段的和为10×4=2×5×4,…由此发现规律是:第n 个图形由n 2个小正方形组成,所有线段的和为2(n +1)·n =2n 2+2n .11. 127 【解析】第一代勾股树中正方形个数=20+21;第二代勾股树中正方形个数=20+21+22;第三代勾股树中正方形个数=20+21+22+23;第四代勾股树中正方形个数=20+21+22+23+24,…,∴第六代勾股树中正方形个数=20+21+22+23+24+25+26=127.12. 45 【解析】由题图可知,题图④前三层点数分别是:1=4×1-3,5=4×2-3,9=4×3-3,…,∴第n 层的点数是4n -3,∴第n 个正六边形数是1+5+9+…+4n -3=4×1-3+4×2-3+4×3-3+…+4n -3=2n 2-n ,∴题图④中第五个正六边形数是2×52-5=45.13. C 【解析】在Rt △AOB 中,∠AOB =30°,∵cos ∠AOB =OA OB ,∴OB =23OA .同理可得OC =23 OB ,∴OC =(23 )2OA ,…,∴OG =(23)6OA ,由题图可知△GOH 与△AOB 位似且位似比为(23 )6.∵S △AOB =1,∴S △GOH =[(23 )6]2=(43 )6. 14. A 【解析】第一次操作后S 四边形A 1B 1C 1D 1=12 S 矩形ABCD =12ab ,第二次操作后S 四边形A 2B 2C 2D 2=12 S 四边形A 1B 1C 1D 1=12 ×12 ab =ab 22 ,第三次操作后S 四边形A 3B 3C 3D 3=12S 四边形A 2B 2C 2D 2=ab 23 ,…,第n 次操作后S 四边形A n B n C n D n =ab 2n . 15. C 【解析】∵正方形ABCD 边长为1,∴AB =BC =1,∴AC =2 ,∴以AC 为边作第2个正方形ACEF 的边长为2 ;∵CF 是正方形ACEF 的对角线,∴CF =2 ×2 =(2 )2=2,∴以CF 为边作第3个正方形FCGH 的边长为2;又∵GF 是正方形FCGH 的对角线,∴GF =2 ×2 ×2 =(2 )3=22 ,以GF 为边作第4个正方形FGMN 的边长为22 ,…∴依此规律可知下一个正方形的边长是原来正方形边长的2 倍,即第n 个正方形的边长为(2 )n -1,∴第6个正方形的边长为(2 )5.16. 2022π 【解析】由题图可知,题图中由一段90°的弧组成的,弧所在圆的半径每次增加12 ,则弧C 1D 1的半径=12 ×4=12 ×4×1,弧C 2D 2的半径=12 ×8=12×4×2,弧C 3D 3的半径=12 ×12=12 ×4×3…,弧C 2022D 2022的半径=12×4×2022=4044,∴弧C 2022D 2022的长=90π180×4044=2022π. 17. 3 (1+3 )2022 【解析】∵∠AOB =60°,OP 1=1,∴P 1K 1=3 OP 1=3 ,∴P 1P 2=P 1K 1=3 ,∴OP 2=1+3 .∵P 2K 2=3 OP 2,∴P 2K 2=3 (1+3 ),∴OP 3=(1+3 )2,∴P 3K 3=3 OP 3=3 (1+3 )2,…,∴依此规律可得P 2023K 2023=3 (1+3 )2022.18. B 【解析】根据两枚跳棋跳动规则可知,红跳棋每过6秒钟跳动回顶点A ,黑跳棋每过18秒钟跳动回顶点A ,∵2022÷6=337,∴经过2022秒后,红跳棋在顶点A 处;∵2022÷18=112……6,6÷3=2,∴经过2022秒钟后,黑跳棋在顶点E 处.如解图,连接AE ,过点F 作FG ⊥AE 于点G ,∵六边形ABCDEF 是边长为2的正六边形,∴∠AFE =120°,FE =AF ,∴∠F AE =30°,∴AG =EG =AF ·cos 30°=2×32 =3 ,∴AE =23 ,即两枚跳棋之间的距离是23 .第18题解图19. B 【解析】如解图,连接OB ,∵AB ∥x 轴,∴AB ⊥y 轴,∵六边形ABCDEF 是正六边形,点O 是中心,∴OB =OA ,∠AOB =60°,∴∠AOP =30°,AP =12AB =1,∴OP =3 ,∴点A (1,3 ),将△AOP 绕点O 顺时针每次旋转90°,则第1次结束点A 的坐标为(3 ,-1),第2次结束点A 的坐标为(-1,-3 ),第3次结束点A 的坐标为(-3 ,1),第4次结束点A 的坐标为(1,3 ),…,∴每4次一个循环,∵2022=4×505+2,∴第2022次旋转结束时,相当于第2次结束,∴点A 的坐标为(-1,-3 ).第19题解图20. (-1,11) 【解析】由图象可知,A 5(5,1),将点A 5向左平移6个单位,再向上平移6个单位,可得A 6(-1,7),将点A 6向左平移7个单位,再向下平移7个单位,可得A 7(-8,0),将点A 7向右平移8个单位,再向下平移8个单位,可得A 8(0,-8),将点A 8向右平移9个单位,再向上平移9个单位,可得A 9(9,1),将点A 9向左平移10个单位,再向上平移10个单位,可得A 10(-1,11).21. 240433 【解析】∵S 1=1×32 = 20×32 ,S 2=2×232 = 22×32,… ,依此规律可得S n = 22(n -1)×32 ,∴S 2023= 22×(2023-1)×32= 240433 . 22. 2021 +2022 【解析】∵点A 是函数y =x 与y =1x的图象在第一象限的交点,∴点A 的坐标为(1,1),又∵AB 垂直于直线y =x ,∴点B 坐标为(2,0),又∵BA 1∥OA ,∴BA 1的解析式为y =x -2,与y =1x 联立,解得x =1+2 (负值已舍),即点A 1的横坐标为1+2 ;同理可得B 1的横坐标为22 ,∵B 1A 2∥BA 1,∴B 1A 2的解析式为y =x -22 ,与y =1x 联立,解得A 2的横坐标为2 +3 (负值已舍);…;依此按规律可得A 2021的横坐标为2021 +2022 .23. 2 【解析】由题可得a 1=OA =1,而y =x 与y 轴的正方向的夹角是45°,O 1A ⊥y 轴,∴O 1A =OA =1,∴ 点O 1的横坐标是1,对于y =12 x +1,当x =1时,y =32,∴a 2=O 1A 1=12 ,∴tan ∠A 1AO 1=O 1A 1O 1A =12 ,依次得出A 1O 2=A 1O 1=12 ,a 3=A 2O 2=12 A 1O 2=(12)2,…,可以得出A n -1O n -1=(12 )n -1,∴a 1+a 2+…+a n -1+a n =1+12 +…+(12 )n -2+(12)n -1①,①×2得2×(a 1+a 2+…+a n -1+a n )=2+1+12 +…+(12 )n -3+(12)n -2②,②-①得a 1+a 2+…+a n -1+a n =2-(12 )n -1,∴S ≥2-(12)n -1,∴S 的最小值是2. 24. 解:(1)2;【解法提示】观察题图②与题图③,每增加1块正方形地砖,则增加2块等腰直角三角形地砖.(2)2n +4;【解法提示】在题图②中,正方形地砖1块,等腰直角三角形地砖(4+2)块;在题图③中,正方形地砖2块,等腰直角三角形地砖(4+2×2)块;正方形地砖若有3块,则等腰直角三角形地砖(4+2×3)块;…;依此按规律可得正方形地砖若有n 块,则等腰直角三角形地砖有(4+2n )块.(3)设需要正方形地砖n块,∴2n+4≤2021,解得n≤1008.5,∵n为正整数,∴n最大取1008,答:需要正方形地砖1008块.。

中考数学:探索规律型问题(图形类)含答案

中考数学:探索规律型问题(图形类)含答案

中考数学:探索规律型问题(图形类)一、选择题1. 下列图形都是由同样大小的五角星按一定的规律组成,其中第①个图形一共有2个五角星,第②个图形一共有8个五角星,第③个图形一共有18个五角星,…,则第⑥个图形中五角星的个数为【】A.50B.64C.68D.72【答案】D。

【分析】寻找规律:每一个图形左右是对称的,第①个图形一共有2=2×1个五角星,第②个图形一共有8=2×(1+3)=2×22个五角星,第③个图形一共有18=2×(1+3+5)=2×32个五角星,…,则第⑥个图形中五角星的个数为2×62=72。

故选D。

2. 小明用棋子摆放图形来研究数的规律.图1中棋子围城三角形,其棵数3,6,9,12,…称为三角形数.类似地,图2中的4,8,12,16,…称为正方形数.下列数中既是三角形数又是正方形数的是【】A.2010B.2012C.2014D.2016【答案】D。

【分析】观察发现,三角数都是3的倍数,正方形数都是4的倍数,所以既是三角形数又是正方形数的一定是12的倍数,然后对各选项计算进行判断即可得解:∵2010÷12=167…6,2012÷12=167…8,2014÷12=167…10,2016÷12=168,∴2016既是三角形数又是正方形数。

故选D。

3.边长为a的等边三角形,记为第1个等边三角形。

取其各边的三等分点,顺次连接得到一个正六边形,记为第1个正六边形。

取这个正六边形不相邻的三边中点顺次连接,又得到一个等边三角形,记为第2个等边三角形。

取其各边的三等分点,顺次连接又得到一个正六边形,记为第2个正六边形(如图)…,按此方式依次操作。

则第6个正六边形的边长是【】A.511a32⎛⎫⨯ ⎪⎝⎭B.511a23⎛⎫⨯ ⎪⎝⎭C.611a32⎛⎫⨯ ⎪⎝⎭D.611a23⎛⎫⨯ ⎪⎝⎭【答案】A。

(新)中考数学规律探索问题的探究详解课件(PPT)

(新)中考数学规律探索问题的探究详解课件(PPT)

(新)中考数学规律探索问题的探究详解课件
(1)根据题意可得出第一次变换前的边长(面积) 为b; (2)通过计算得到第一次变换后的边长(面积), 第二次变换后的边长(面积),第三次变换后的边长 (面积),第四次变换后的边长(面积),归纳出后 一个边长(面积)与前一个边长(面积)之间存在的 倍分关系是n; (3)第M次变换后,求得线段的长度(面积)为nMb.
120
【答案】 1 nn 1n 2n 3.n 4
120
(新)中考数学规律探索问题的探究详解课件
满分技法
数式规律探索主要有以下3类: 1.数字规律探索: (1)当所给的一组数是整数时,先观察这组数字是自然 数列、正整数列、奇数列、偶数列还是正整数数列经过平 方、平方加1或减1等运算后的数列,然后再看这组数字的 符号,判断数字符号的正负是交替出现还是只出现一种符 号,如果是交替出现的可用(-1)n或(-1)n-1表示数字的符号, 最后把数字规律和符号规律结合起来从而得到结果;
(新)中考数学规律探索问题的探究详解课件
例4题图 【思维教练】要得到第n个正六角星形的面积,通过观 察前一个正六角星形与后一个正六角星形之间的面积关 系,由于前后两个正六角星形相似,可根据相似图形面 积之比等于相似比的平方得到面积关系,找出规律即可.
(新)中考数学规律探索问题的探究详解课件
【解析】很容易知道正六角星形A1F1B1D1C1E1与正六角星 形AFBDCE相似,且相似比是1∶2,所以它们的面积比为
(新)中考数学规律探索问题的探究详解课件
3.等式规律探索: 第一步:标序数; 第二步:对比式子与序数,即分别比较等式中各部分与 序数(1,2,3,4,…,n)之间的关系,把其蕴含的规 律用含序数的式子表示出来.通常方法是将式子进行拆分, 观察式子中数字与序数是否存在倍数或者乘方的关系; 第三步:根据找出的规律得出第n个等式,并进行检验.

(word完整版)中考数学规律探索专题复习

(word完整版)中考数学规律探索专题复习

中考数学规律探索专题复习一、典例精析类型之一 数字规律型例1. (2011丽江)下面是按一定规律排列的一列数:23,45-,87,169-,…那么第n 个数是 . 【简析】根据题意,首先从各个数开始分析,n=1时,分子:2=(﹣1)2•21,分母:3=2×1+1;n=2时,分子:﹣4=(﹣1)3•22,分母:5=2×2+1;…,即可推出第n 个数为12(1)21nn n +-•+。

【答案】解:∵n=1时,分子:2=(-1)2•21,分母:3=2×1+1;n=2时,分子:﹣4=(—1)3•22,分母:5=2×2+1; n=3时,分子:8=(—1)4•23,分母:7=2×3+1;n=4时,分子:﹣16=(-1)5•24,分母:9=2×4+1;…,∴第n 个数为:12(1)21n n n +-•+ 故答案为:12(1)21n n n +-•+. 例2:(2010深圳) 观察下列算式,用你所发现的规律得出22010的末位数字是( )。

21=2,22=4,23=8,24=16,25=32,26=64,27=128,28=256,… A .2 B .4 C .6 D .8【简析】有些题目包含着事物的循环规律,找到了事物的循环规律,其他问题就可以迎刃而解.通过观察可以发现,本题中的数字从第1个到第4个为一个循环节,以此规律总结下来,第2010个图形应该就是一个循环节中的第2个数字,故选B.【答案】B对应练习1。

有一组数:1,2,5,10,17,26,……,请观察这组数的构成规律,用你发现的规律确定第8个数为 .2.(2011湛江)若:A 32=3×2=6,A 53=5×4×3=60,A 54=5×4×3×2=120,A 64=6×5×4×3=360,…,观察前面计算过程,寻找计算规律计算A 73= (直接写出计算结果),并比较A 103 A 104(填“>”或“<”或“=”) 类型之二 图形规律型例3:(2011•临沂)如图,上面各图都是用全等的等边三角形拼成的一组图形.则在第10个这……样的图形中共有 个等腰梯形.【简析】本题考查了图形的变化,解题的关键是按照一定的顺序依次找到符合条件的等腰梯形,做到不重复不遗漏.由于图②4个=2+1+1,图③8个3+2+2+1+1,图④16=4+3+3+2+2+1+1,由此即可得到第10个图形中等腰梯形的个数为:10+9+9+8+8+7+7+6+6+5+5+4+4+3+3+2+2+1+1=100. 【答案】100.例4: (2011兰州)如图,依次连结第一个矩形各边的中点得到一个菱形,再依次连结菱形各边的中点得到第二个矩形,按照此方法继续下去。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

专题33 探索规律问题☞【2015 年题组】1.(2015 绵阳)将一些相同的“○”按如图所示的规律依次摆放,观察每个“龟图”中的“○”的个数,若第n个“龟图”中有245个“○”,则n=()A.14B.15C.16D.172答案】C .考点:1.规律型:图形的变化类;2.综合题.2.( 2015 十堰)如图,分别用火柴棍连续搭建正三角形和正六边形,公共边只用一根火柴 棍.如果搭建正三角形和正六边形共用了2016 根火柴棍,并且正三角形的个数比正六边形【答案】D . 【解析】试 题分析:设连续搭建 三角形 x 个,连 续搭建正六边形 y 个 .由题意得 ,2x +1+ 5y +1 = 2016,解得:x -y = 6考点:规律型:图形的变化类.3.( 2015 荆州)把所有正奇数从小到大排列,并按如下规律分组:(1),(3,5,7),( 9, 11,13,15,17),(19,21,23,25,27,29,31), …,现有等式 Am =(i ,j )表示正奇 数m 是第i 组第j 个数(从左往右数),如A 7=(2,3),则A 2015=( )A .( 31,50)B .( 32,47)C .( 33,46)D .( 34,42)答案】B .解析】 试题分析:2015是第20125+1=1008个数,设2015在第n 组,则1+3+5+7+…+(2n ﹣1)≥1008,即(1+ 2n-1)n1008,解得:n 1008 ,当 n =31 时,1+3+5+7+…+61=961 ;当 n =32时,1+3+5+7+…+63=1024;故第 1008 个数在第 32 组,第 1024 个数为:2×1024﹣1=2047,2015 -1923第 32 组的第一个数为:2×962﹣1=1923,则2015 是( 2015 -1923 +1)=47 个数.故A2015=x = 292 x y==229826.故选D .(32,47).故选B.考点:1.规律型:数字的变化类;2.综合题;3.压轴题.9 169,16,…,按你发现的规律计算这列数的第67 15考点:1.规律型:数字的变化类;2.综合题.5.(2015 重庆市)下列图形都是由同样大小的小圆圈按一定规律组成的,其中第①个图形中一共有6 个小圆圈,第②个图形中一共有9 个小圆圈,第③个图形中一共有12 个小圆圈,…,按此规律排列,则第⑦个图形中小圆圈的个数为()A.21 B.24 C.27 D.30【答案】B.【解析】试题分析:观察图形得:第1个图形有3+3×1=6 个圆圈,第2 个图形有3+3×2=9个圆圈,第 3 个图形有3+3×3=12 个圆圈,…,第n个图形有3+3n=3(n+1)个圆圈,当n=7 时,3×(7+1)=24,故选B.考点:1.规律型:图形的变化类;2.综合题.4.(2015 包头)观察下列各数:1,43个数为()25364A. B .C.31357【答案】C.D.62632根据此规律确定 x 的值为( ) A .135 B .170C .209D .252【答案】C . 【解析】试 题 分 析 : ∵ a + ( a +2 ) =20 , ∴ a =9 , ∵ b = a +1 , ∴ b = a +1=9+1=10 , ∴x =20b +a =20×10+9=200+9=209,故选 C . 考点:1.规律型:数字的变化类;2.综合题.7.( 2015 重庆市)下列图形都是由几个黑色和白色的正方形按一定规律组成,图①中有 2【答案】B .考点:1.规律型:图形的变化类;2.综合题.8.( 2015 崇左)下列图形是将正三角形按一定规律排列,则第 4 个图形中所有正三角形的 个数有( )A .160B .161C .162D .163 答案】B . 解析】试题分析:第一个图形正三角形的个数为 5,A .32 C .28B . 29 D .26图④中有11个黑色第二个图形正三角形的个数为5×3+2=17,第三个图形正三角形的个数为17×3+2=53,第四个图形正三角形的个数为53×3+2=161,故答案为:161.考点:1.规律型;2.综合题.9.(2015 贺州)观察下列等式:21=2,22=4,23=8,24=16,25=32,26=64,27=128,…,解答下面问题:2+22+23+24+…+22015﹣1 的末位数字是()A.0 B.3 C.4 D.8【答案】B.考点:1.尾数特征;2.规律型;3.综合题.10.(2015宜宾)如图,以点O为圆心的20个同心圆,它们的半径从小到大依次是1、2、3、4、…、20,阴影部分是由第1个圆和第2 个圆,第3 个圆和第4 个圆,…,第19个圆和第20个圆形成的所有圆环,则阴影部分的面积为()答案】B.解析】试题分析:由题意可得:阴影部分的面积和为:(22-12)+(32-22)+...+(202-192)=3π+7π+11π+15π+…+39π=5(3π+39π)=210π.故选B.考点:1.规律型:图形的变化类;2.综合题.11.( 2015 鄂州)在平面直角坐标系中,正方形A1B1C1D1、D1E1E2B2、A2B2C2D2、D2E3E4B3、A3B3C3D3…按如图所示的方式放置,其中点B1在y轴上,点C1、E1、E2、C2、E3、E4、C3…在x轴上,已知正方形A1B1C1D1 的边长为1,∠B1C1O=60°,B1C1∥B2C2∥B3C3…则正方形A2015B2015C2015D2015 的边长是( )A.(1)2014B.(1)2015C.(3)2015 D.(3)20142 23 3A.231πB.210πC.190πD.171π答案】D.考点:1.正方形的性质;2.规律型;3.综合题.12.(2015 庆阳)在如图所示的平面直角坐标系中,△OA1B1 是边长为2 的等边三角形,作△B2A2B1 与△OA1B1 关于点B1 成中心对称,再作△B2A3B3 与△B2A2B1 关于点B2 成中心对称,如此作下去,则△B2nA2n+1B2n+1(n是正整数)的顶点A2n+1 的坐标是()A.(4n﹣1,3 )B.(2n﹣1,3)C.(4n+1,3)D.(2n+1,3)【答案】C.…,∵1=2×1﹣1,3=2×2﹣1,5=2×3﹣1,7=2×3﹣1,…,∴An的横坐标是2n﹣1,A2n+1 的横坐标是2(2n+1)﹣1=4n+1,∵当n为奇数时,An的纵坐标是3,当n为偶数时,An的纵坐标是- 3 ,∴顶点A2n+1 的纵坐标是3 ,∴△B2nA2n+1B2n+1(n是正整数)的顶点A2n+1 的坐标是(4n+1,3 ).故选C.考点:1.坐标与图形变化-旋转;2.规律型;3.综合题;4.压轴题.13.(2015宁德)如图,在平面直角坐标系中,点A1,A2,A3…都在x轴上,点B1,B2,B3…都在直线y= x上,△OA1B1,△B1A1A2,△B2B1A2,△B2A2A3,△B3B2A3…都是等腰直角三角形,且OA1=1,则点B2015 的坐标是(),22015 )【答案】A.考点:1.一次函数图象上点的坐标特征;2.等腰直角三角形;3.规律型;4.综合题.14.(2015 河南省)如图所示,在平面直角坐标系中,半径均为 1 个单位长度的半圆O1、O2、O3,…组成一条平滑的曲线,点P从原点O出发,沿这条曲线向右运动,速度为每秒个单位长度,则第2015 秒时,点P的坐标是()2A.(2014,0)B.(2015,﹣1)C.(2015,1)D.(2016,0)【答案】B.【解析】试题分析:半径为 1 个单位长度的半圆的周长为:121=,∵点P从原点O出发,21 沿这条曲线向右运动,速度为每秒个单位长度,∴点P1秒走1个半圆,当点P从原点O22 出发,沿这条曲线向右运动,运动时间为1 秒时,点P的坐标为(1,1),当点P从原点O 出发,沿这条曲线向右运动,运动时间为 2 秒时,点P的坐标为(2,0),当点P从原点O 出发,沿这条曲线向右运动,运动时间为3秒时,点P的坐标为(3,﹣1),当点P从原点O出发,沿这条曲线向右运动,运动时间为 4 秒时,点P的坐标为( 4 ,0),当点P从原点O 出发,沿这条曲线向右运动,运动时间为 5 秒时,点P的坐标为( 5 ,1),当点P从原点O 出发,沿这条曲线向右运动,运动时间为 6 秒时,点P的坐标为(6,0),… ,∵2015÷4=503…3,∴A2015 的坐标是(2015,﹣1),故选B.考点:1.规律型:点的坐标;2.规律型;3.综合题;4.压轴题.15.(2015张家界)任意大于1的正整数m的三次幂均可“分裂”成m个连续奇数的和,如:23=3+5,33=7+9+11,43= 13 +15 +17 +19 ,…按此规律,若m3分裂后其中有一个奇数是2015,则m的值是()A.46 B.45 C.44 D.43【答案】B.考点:1.规律型:数字的变化类;2.综合题.16.(2015 邵阳)如图,在矩形ABCD中,已知AB=4,BC=3,矩形在直线l上绕其右下角的顶点B向右旋转90°至图①位置,再绕右下角的顶点继续向右旋转90°至图②位置,…,以此类推,这样连续旋转2015 次后,顶点A在整个旋转过程中所经过的路程之和是()A.2015πB.3019.5πC.3018πD.3024π答案】D.解析】903 3 90 5 5试题分析:转动一次A 的路线长是:903= 3,转动第二次的路线长是:905 = 5,1802 180 290 4转动第三次的路线长是:904= 2,转动第四次的路线长是:0,转动五次A 的路线长 18090 3 3是:903= 3,以此类推,每四次循环,故顶点 A 转动四次经过的路线长为: 180 23 5++2π =6π ,2015÷4=503 余 3 ,顶点 A 转动四次经过的路线长为:6 π ×504=3024 π.故22考点:1.旋转的性质;2.弧长的计算;3.规律型.17.( 2015 威海)如图,正六边形 A 1B 1C 1D 1E 1F 1 的边长为 2,正六边形 A 2B 2C 2D 2E 2F 2 的外接圆与正六边形 A 1B 1C 1D 1E 1F 1 的各边相切,正六边形 A 3B 3C 3D 3E 3F 3 的外接圆与正 六边形 A 2B 2C 2D 2E 2F 2 的各边相切,…按这样的规律进行下去,A 10B 10C 10D 10E 10F 10 的【答案】D.A .22493B .81293C . 812981 328边长为( )考点:1.正多边形和圆;2.规律型;3.综合题.18.( 2015 日照)观察下列各式及其展开式:(a+b)2=a2+2ab+b2;(a + b)3=a3+3a2b+3ab2+b3;(a + b)4=a4+ 4a3b + 6a2b2+ 4ab3+b4;(a + b)5= a5+5a4b+10a3b2+10a2b3+5ab4+b5;请你猜想(a + b)10的展开式第三项的系数是( ) A.36 B.45 C.55 D.66【答案】B.考点:1.完全平方公式;2.规律型;3.综合题.19.( 2015 宁波)如图,将△ABC 沿着过 AB 中点 D 的直线折叠,使点 A 落在 BC 边上的 A 2 处,称为第 1 次操作,折痕 DE 到 BC 的距离记为 h 1;还原纸片后,再将△ADE 沿着过 AD 中点 D 1 的 直线折叠,使点 A 落在 DE 边上的 A 2 处,称为第 2 次操作,折痕 D 1E 1 到 BC 的距离记为 h 2;按上述方法不断操作下去…,经过第 2015 次操作后得到的折痕 D 2014E 2014 到 BC 的距离记为 h 2015,到 BC 的距离记为 h 2015.若 h 1=1,则 h 2015 的值为答案】D .考点:1.相似三角形的判定与性质;2.三角形中位线定理;3.翻折变换(折叠问题);4.规 律型;5.综合题.20.( 2015 常州)数学家歌德巴赫通过研究下面一系列等式,作出了一个著名的猜想. 4=2+2;12=5+7;C . 1-12015D . 2-120146=3+3;14=3+11=7+7; B . 2014A20158=3+5;16=3+13=5+11;10=3+7=5+5 18=5+13=7+11;通过这组等式,你发现的规律是 (请用文字语言表达).【答案】所有大于2的偶数都可以写成两个素数之和.【解析】试题分析:此规律用文字语言表达为:所有大于2的偶数都可以写成两个素数之和,故答案为:所有大于 2 的偶数都可以写成两个素数之和.考点:规律型:数字的变化类.21.( 2015 淮安)将连续正整数按如下规律排列:若正整数565 位于第a行,第b列,则a+b=答案】147.考点:1.规律型:数字的变化类;2.综合题;3.压轴题.22.( 2015 雅安)若m1,m2 ,…,m2015是从0,1,2 这三个数中取值的一列数,若m1+ m2+ ... + m2015=1525,(m -1)2+ (m -1)2+...+(m -1)2= 1510 ,则m1,m2,…,m2015中为2的个数是.【答案】510.【解析】试题分析:∵ m1 ,m2 ,…,m2015是从0,1,2 这三个数中取值的一列数,∴(m i -1)2的值只能是1或0,∵(m1-1)2+(m2-1)2+...+(m2015-1)2= 1510 ,∴ m1 ,m2 ,…,m2015 中值为1的个数为:2015-1510=505,∵(m1-1)2+(m2-1)2+...+(m2015-1)2= 1510 ,∴ m - 2m +1+ m - 2m +1+...+ m- 2m +1=1510 ,∴ m2+ m2+ ... + m2- 2( m + m + ... + m ) + 2015 = 1510 ,∵m +m +...+m =1525,∴ m2+ m2+...+m2=2545,∵m12+m22+...+m20152=2545,02=0,12=1,22= 4 ,∴ m1 ,m2 ,…,m2015中值为2 的个数为:( 2545-505 ) ÷4=510 .故答案为:510.考点:1.规律型:数字的变化类;2.规律型;3.综合题;4.压轴题.23.( 2015 桂林)如图是一个点阵,从上往下有无数多行,其中第一行有2个点,第二行有5个点,第三行有11个点,第四行有23个点,…,按此规律,第n行有个点.【答案】32n-1-1或(2n+2n-1-1).考点:1.规律型:图形的变化类;2.综合题.24.( 2015 梧州)如图是由等圆组成的一组图,第①个图由1 个圆组成,第②个图由5 个圆组成,第③个图由12个圆组成…按此规律排列下去,则第⑥个图由个圆组成.【答案】51.【解析】试题分析:根据图形可得第n个图形一定有n排,最上边的一排有n个,下边的每排比上边的一排多1个,故第⑥个图形中圆的个数是:6+7+8+9+10+11=51.故答案为:51.考点:规律型:图形的变化类.25.(2015 百色)观察下列砌钢管的横截面图:32 3 【答案】 n 2+ n .22考点:1.规律型:图形的变化类;2.规律型;3.综合题.26.( 2015 北海)如图,直线 y = -2x + 2与两坐标轴分别交于 A 、B 两点,将线段 OA 分成 n 等份,分点分别为 P 1,P 2,P 3,…,Pn ﹣1,过每个分点作 x 轴的垂线分别交直线 AB 于 点 T 1,T 2,T 3,…,Tn ﹣1,用S 1,S 2,S 3,…,Sn ﹣1 分别表示 Rt △T 1OP 1,Rt △T 2P 1P 2,…, Rt △Tn ﹣1Pn ﹣2Pn ﹣1 的面积,则当 n =2015 时,S 1+S 2+S 3+…+Sn ﹣1=.则第 n 个图的钢管数是用含n 的式子表示)解析】 试题分析:∵P 1,P 2,P 3,…,Pn ﹣1 是x 轴上的点,且OP 1=P 1P 2=P 2P 3=…=Pn ﹣2Pn ﹣1 1= ,n分别过点 p 1、p 2、p 3、…、pn ﹣2、pn ﹣1作 x 轴的垂线交直线y = -2 x + 2于点 T 1,T 2, T 3,…,Tn ﹣1,∴T 1 的横坐标为: ,纵坐标为: 2 - ,∴S 1=(2 -)= (1 - ) , n n 2 nnnn2 4 12同理可得:T 2 的横坐标为: ,纵坐标为: 2 - ,∴S 2= (1 - ) ,n n nnT 3 的横坐标为: ,纵坐标为: 2 - ,S 3= (1 - ) ,n n nnSn ﹣1= 1 (1- n-1) ), nn∴S 1+S 2+S 3+…+Sn ﹣1= [n -1- (n -1)] =(n -1)= n 2 2 n 2 n11 1007∵n =2015,∴S 1+S 2+S 3+…+S 2014= 2014= . 2 2015 2015考点:1.一次函数图象上点的坐标特征;2.规律型;3.综合题.27.( 2015南宁)如图,在数轴上,点 A 表示 1,现将点 A 沿 x 轴做如下移动,第一次点 A 向左移动 3 个单位长度到达点 A 1,第二次将点 A 1向右移动 6 个单位长度到达点 A 2,第三1007 2015故答案为:10072015 答案】次将点A2 向左移动9 个单位长度到达点,按照这种移动规律移动下去,第n次移动到点An,如果点An与原点的距离不小于20,那么n的最小值是.【答案】13.则A 7 表示的数为﹣8﹣3=﹣11,A9 表示的数为﹣11﹣3=﹣14,A11 表示的数为﹣14﹣3=﹣17,A13 表示的数为﹣17﹣3=﹣20,A6 表示的数为7+3=10,A8 表示的数为10+3=13,A10 表示的数为13+3=16,A12 表示的数为16+3=19,所以点An与原点的距离不小于20,那么n的最小值是13.故答案为:13.考点:1.规律型:图形的变化类;2.数轴;3.综合题.28.(2015 常德)取一个自然数,若它是奇数,则乘以3 加上1,若它是偶数,则除以2,按此规则经过若干步的计算最终可得到1.这个结论在数学上还没有得到证明.但举例验证都是正确的.例如:取自然数5.最少经过下面5步运算可得1,即:,如果自然数m最少经过7 步运算可得到1,则所有符合条件的m的值为【答案】128、21、20、3.考点:1.规律型:数字的变化类;2.综合题;3.规律型.29.( 2015 株洲)“皮克定理”是用来计算顶点在整点的多边形面积的公式,公式表达式为 S = a + b-1,孔明只记得公式中的 S 表示多边形的面积,a 和 b 中有一个表示多边形边上2 (含顶点)的整点个数,另一个表示多边形内部的整点个数,但不记得究竟是 a 还是b 表示 多边形内部的整点个数,请你选择一些特殊的多边形(如图 1)进行验证,得到公式中表示 多边形内部的整点个数的字母是 ,并运用这个公式求得图 2 中多边形的面积 是 .答案】a ,17.5.考点:1.规律型:图形的变化类;2.综合题.30.( 2015内江)填空:(a - b)(a + b) = ;( a - b)( a + ab + b )= ;(a-b)(a3+a2b+ab2+b3)= .(2)猜想:(a-b)(a n-1+a n-2b+...+ab n-2+b n-1)= (其中n为正整数,且n2).(3)利用(2)猜想的结论计算:29- 28+27-...+23-22+2.【答案】(1) a2-b2,a3-b3,a4-b4;(2) a n -b n;( 3)342.【解析】试题分析:(1)根据平方差公式与多项式乘以多项式的运算法则运算即可; (2)根据(1)的规律可得结果;(3)原式变形后,利用(2)得出的规律计算即可得到结果.试题解析:(1)(a-b)(a+b)=a2-b2;(a-b)(a3+a2b+ab2+b3)=a3-b3;(a-b)(a3+a2b+ab2+b3)=a4-b4;故答案为:a2-b2,a3-b3,a4-b4;考点:1.平方差公式;2.规律型;3.阅读型;4.综合题.31.(2015南平)定义:底与腰的比是52-1的等腰三角形叫做黄金等腰三角形.如图,已知△ABC中,AB=BC,∠C=36°,BA1 平分∠ABC交AC于A1.(1)AB2=AA1•A C;(2)探究:△ABC是否为黄金等腰三角形?请说明理由;(提示:此处不妨设AC=1)(3)应用:已知AC=a,作A1B1∥AB交BC于B1,B1A2 平分∠A1B1C交AC于A2,作A2B2∥AB交B2,B2A3 平分∠A2B2C交AC于A3,作A3B3∥AB交BC于B3,…,依此规律操作下去,用含a,n的代数式表示An﹣1An.(n为大于1 的整数,直接回答,不必说明答案】(1)证明见试题解析;【解析】试题分析:(1)由角平分线的性质和相似三角形的判定与性质,得到△ABC∽△AA1B,从AA AB 求出即可;而有AB=AC2)设AC =1,则AB 2=1﹣AB ,求出AB 的值,进而得出 AB= 5 -1 ,即可得出结论;AC 23)利用(2)中所求进而得出 AA 1,A 1A 2的长,进而得出其长度变化规律求出即可.同理可得:A 1A 2=A 1C ﹣A 1B 1=AC ﹣AA 1﹣A 1B 1 =a -( 5-1)2a - 5-1A 1C =a -( 5-1)2a - 5-1[a -( 5-1)2a ]=( 5-1)3a考点:1.相似形综合题;2.新定义;3.探究型;4.综合题;5.压轴题;6.规律型. 32.( 2015 六盘水)毕达哥拉斯学派对”数”与”形”的巧妙结合作了如下研究:3)由(2)得;当 AC =a ,则 AA 1=AC ﹣A 1C =AC ﹣AB =a ﹣AB = a -5-1 2故 An ﹣ 1An =a .请在答题卡上写出第六层各个图形的几何点数,并归纳出第n层各个图形的几何点数.【答案】6、11、16、21、n、2n﹣1、3n﹣2、4n﹣3.试题解析:∵前三层三角形的几何点数分别是1、2、3,∴第六层的几何点数是6,第n层的几何点数是n;∵前三层正方形的几何点数分别是:1=2×1﹣1、3=2×2﹣1、5=2×3﹣1,∴第六层的几何点数是:2×6﹣1=11,第n层的几何点数是2n﹣1;故答案为:6、11、16、21、n、2n﹣1、3n﹣2、4n﹣3.考点:1.规律型:图形的变化类;2.综合题.33.(2015 重庆市)如果把一个自然数各数位上的数字从最高位到个位依次排出的一串数字,与从个位到最高位依次排出的一串数字完全相同,那么我们把这样的自然数称为“和谐数”.例如自然数12321,从最高位到个位依次排出的一串数字是:1,2,3,2,1,从个位到最高位依次排出的一串数字仍是:1,2,3,2,1,因此12321 是一个“和谐数”,再加22,545,3883,345543,…,都是“和谐数”.(1)请你直接写出3个四位“和谐数”;请你猜想任意一个四位“和谐数”能否被11整除?并说明理由;(2)已知一个能被11 整除的三位“和谐数”,设其个位上的数字x(1≤x≤4,x为自然数),十位上的数字为y,求y与x的函数关系式.【答案】(1)四位“和谐数”:1221,1331,1111,6666…(答案不唯一),能;(2)y=2x(1≤x≤4,x为自然数).【解析】试题分析:(1)根据“和谐数”的定义(把一个自然数各数位上的数字从最高位到个位依次排出的一串数字,与从个位到最高位依次排出的一串数字完全相同)写出四个“和谐数”,设任意四位“和谐数”形式为:abcd,根据和谐数的定义得到a=d,b=c,则考点:1.因式分解的应用;2.规律型:数字的变化类;3.新定义;4.综合题;5.压轴题.【2014 年题组】1.(2014年南平中考)如图,将1、2 、3三个数按图中方式排列,若规定(a,b)表示第a排第b列的数,则(8,2)与(2014,2014)表示的两个数的积是()A .6 B.3 C.2 D.1【答案】B.【解析】试题分析:每三个数一循环,1、2 、3 ,(8,2)在数列中是第(1+7)×7÷2+2=30 个,30÷3=10,(8,2)表示的数正好是第10 轮的最后一个,即(8,2)表示的数是3 ,(2014,2014)在数列中是第(1+2014)×2014÷2=2029105 个,2029105÷3=676368……1,(2014,2014)表示的数正好是第676369 轮的一个数,即(2014,2014)表示的数是1, 3×1= 3 ,故选B.考点:1.规律型:数字的变化类;2.算术平方根.2.(2014 年株洲中考)在平面直角坐标系中,孔明做走棋的游戏,其走法是:棋子从原点出发,第1 步向右走 1 个单位,第 2 步向右走 2 个单位,第 3 步向上走 1 个单位,第 4 步向右走 1 个单位……依此类推,第n 步的走法是:当n能被 3 整除时,则向上走 1 个单位;当n被 3 除,余数为 1 时,则向右走 1 个单位;当n 被 3 除,余数为 2 时,则向右走 2 个单位,当走完第100 步时,棋子所处位置的坐标是()A .(66,34)B.(67,33)C.(100,33)D.(99,34)【答案】C.考点:1.坐标确定位置;2.规律型:点的坐标.3.(2014 年宜宾中考)如图,将n个边长都为2 的正方形按如图所示摆放,点A1,A2,……An 分别是正方形的中心,则这n个正方形重叠部分的面积之和是()A.n B.n-1 C. ()n-1D.答案】B.解析】试题分析:由题意可得一个阴影部分面积等于正方形面积的1,即是1 ×4=1,5 个这样的44 正方形重叠部分(阴影部分)的面积和为:1×4,n个这样的正方形重叠部分(阴影部分)的面积和为:1×(n-1)=n-1.故选B.考点:1.正方形的性质;2.全等三角形的判定与性质.4.(2014 年崇左中考)如图,在平面直角坐标系中,A(1,1),B(﹣1,1),C(﹣1,﹣2),D(1,﹣2).把一条长为2014个单位长度且没有弹性的细线(线的粗细忽略不计)的一端固定在点A 处,并按A﹣B﹣C﹣D﹣A……的规律绕在四边形ABCD的边上,则细线另一端所在位置的点的坐标是()B.(1,﹣2)C.(1,1)D.(﹣1,﹣1)答案】D.考点:1.探索规律题(图形的变化类型---- 循环问题);2.点的坐标.5.(2014 年百色中考)观察以下等式:32﹣12=8,52﹣12=24,72﹣12=48,92﹣12=80,…… 由以上规律可以得出第n个等式为.【答案】(2n+1)2﹣(2n﹣1)2=8n.【解析】试题分析:通过观察可发现两个连续奇数的平方差是8 的倍数,第n个等式为:(2n+1)2﹣(2n﹣1)2=8n.故答案为:(2n+1)2﹣(2n﹣1)2=8n.考点:规律型问题.6.(2014 年衡阳中考)如图,在平面直角坐标系xOy中,已知点M0的坐标为(1,0),将线段OM 0绕原点O逆时针方向旋转45o,再将其延长至点M1 ,使得M1M0 ⊥OM0 ,得到线段OM1;又将线段OM1绕原点O逆时针方向旋转45o,再将其延长至点M2 ,使得M2M1 ⊥OM1,得到线段OM2;如此下去,得到线段OM3、OM4、OM5 、…….根据以上规律,请直接写出线段OM2014的长度为.【答案】( 2)2014.考点:等腰直角三角形的性质.7.(2014 年抚顺中考)如图,已知CO1 是△ABC的中线,过点O1 作O1E1∥AC交BC于点E1,连接AE1 交CO1 于点O 2;过点O2 作O2E2∥AC交BC于点E2,连接AE2 交CO1 于点O3;过点O3 作O3E3∥AC交BC于点E3,……,如此继续,可以依次得到点O4,O5,……,On和点E4,E5,……,En.则OnEn= A C.(用含n的代数式表示)1BO OE试题分析:∵O 1E 1∥AC ,∴△BO 1E 1∽△BAC ,∴B B O A1 = O 1 E 1,∵CO 1 是△ABC 的中线,ACBO1 =O 1E 1=1 ,∵O 1E 1∥AC ,∴△O 2O 1E 1∽△ACO 2,∴O 1E 1=O 2E 1=1 ,由BAAC 2 AC O 2 A 2E O O E 1 1O 2E 2∥AC ,可得: 1 2=2 2= ,……,可得:OnEn =A C .AE 1 AC 3 n +1考点:1.相似三角形的判定与性质;2.三角形中位线定理.8.( 2014 年资阳中考)如图,以 O (0,0)、 A (2,0)为顶点作正△OAP 1,以点 P 1 和线 段 P 1A 的中点 B 为顶点作正 △P 1BP 2,再以点 P 2 和线段 P 2B 的中点 C 为顶点作△P 2CP 3,……,如此继续下去,则第六个正三角形中,不在第五个正三角形上的顶点 P 6考点:规律题.9.( 2014年宜宾中考)在平面直角坐标系中,若点P (x ,y )的坐标 x 、y 均为整数,则称 点 P 为格点,若一个多边形的顶点全是格点,则称该多边形为格点多边形.格点多边形的 面积记为 S ,其内部的格点数记为 N ,边界上的格点数记为 L ,例如图中△ABC 是格点三角答案】 n +1解析】32 32形,对应的S=1,N=0,L=4.(1)求出图中格点四边形DEFG对应的S,N,L的值.(2)已知格点多边形的面积可表示为S=N+aL+b,其中a,b为常数,若某格点多边形对应的N=82,L=38,求S的值.【答案】(1)S=3,N=1,L=6;(2)100.考点:1.规律型:图形的变化类;2.二元一次方程组的应用.10.(2014 年凉山中考)实验与探究:三角点阵前n行的点数计算如图是一个三角点阵,从上向下数有无数多行,其中第一行有 1 个点,第二行有2个点…… 第n行有n个点……容易发现,10 是三角点阵中前 4 行的点数约和,你能发现300 是前多少行的点数的和吗?如果要用试验的方法,由上而下地逐行的相加其点数,虽然你能发现1+2+3+4+……+23+24=300.得知300 是前24 行的点数的和,但是这样寻找答案需我们先探求三角点阵中前n行的点数的和与n的数量关系前n行的点数的和是1+2+3+……+ (n﹣2)+ (n﹣1 )+ n,可以发现.2×[1+2+3+……+(n﹣2)+(n﹣1)+n]=[1+2+3+……+(n﹣2)+(n﹣1)+n]+[n+(n﹣1)+(n﹣2)+……3+2+1] 把两个中括号中的第一项相加,第二项相加……第n项相加,上式等号的后边变形为这n 个小括号都等于n+1,整个式子等于n(n+1),于是得到1+2+3+……+(n﹣2)+(n﹣1)+n= 1n(n+1)2这就是说,三角点阵中前n项的点数的和是1n(n+1)2下列用一元二次方程解决上述问题设三角点阵中前n行的点数的和为300,则有1n(n+1)2整理这个方程,得:n2+n﹣600=0 解方程得:n1=24,n2=25 根据问题中未知数的意义确定n=24,即三角点阵中前24行的点数的和是300.请你根据上述材料回答下列问题:(1)三角点阵中前n行的点数的和能是600 吗?如果能,求出n;如果不能,试用一元二次方程说明道理.(2)如果把图中的三角点阵中各行的点数依次换成2、4、6、……、2n、……,你能探究处前n行的点数的和满足什么规律吗?这个三角点阵中前n行的点数的和能使600 吗?如果能,求出n;如果不能,试用一元二次方程说明道理.答案】(1)600;(2)24.试题解析:(1)由题意可得:1n(n+1)=600,整理得n2+n﹣1200=0,此方程无正整数2解,∴三角点阵中前n行的点数的和不可能是600.(2)由题意可得:2+4+6+……+2n=2(1+2+3+……+n)=2×1n(n+1)= n(n+1),依题意,2得n(n+1)=600,整理得n 2+n﹣600=0,(n+25)(n﹣24)=0,∴n1=﹣25,n2=24.∵n为正整数,∴n=24.∴n的值是24.考点:1.探索规律题(图形的变化类);2.阅读理解型问题;3.一元二次方程的应用.☞考点归纳归纳1:数字猜想型基础知识归纳:数字规律问题主要是在分析比较的基础上发现题目中所蕴涵的数量关系,先猜想,然后通过适当的计算回答问题.注意问题归纳:要认真分析比较,从而发现题中蕴涵的数量关系,通过猜想,再通过计算解决问题.【例1】一列数:0,-1,3,-6,10,-15,21,……,按此规律第n个数为【答案】(-1)n-1 n(n-1).2考点:规律型.归纳2:数式规律型基础知识归纳:数式规律问题主要是通过观察、分析、归纳、验证,然后得出一般性的结论,以列代数式即函数关系式为主要内容.注意问题归纳:要注意观察、分析、归纳、并验证得出结论.例 2】有一个计算程序,每次运算都是把一个数先乘以 2 ,再除以它与 1 的和,多次重复答案】 2 x(2n -1) x +1考点:规律型.归纳 3:图形规律型基础知识归纳: 图形规律问题主要是观察图形的组成、分拆等过程中的特点,分析其联系和区别,用相应的 算式描述其中的规律,要注意对应思想和数形结合.注意问题归纳:要注意分析图形的组成与分拆过程中的特点,要注意数形结合.【例 3】如图,是由一些点组成的图形,按此规律,在第 n 个图形中,点的个数为【答案】n 2+2.【解析】第 1 个图形中点的个数为 3; 第 2 个图形中点的个数为 3+3 ;第 3 个图形中点的个数为 3+3+5;第 4 个图形中点的个数为 3+3+5+7;第 n 个图形中小圆的个数为 3+3+5+7+……+ ( 2 n ﹣1 ) = n 2+2 .故答案为:n 2+2.考点:规律型.进行这种运算的过程如下:则第 n 次运算的结果yn =用含字母 x 和n 的代数式表示).归纳4:数形结合猜想型基础知识归纳:数形结合猜想型问题首先要观察图形,从中发现图形的变化方式,再将图形的变化以数或式的形式反映出来,从而得出图形与数或式的对应关系,数形结合总结出图形的变化规律,进而解决相关问题.注意问题归纳:要注意观察图形,发现图形的变化方式,用好数形结合思想解决问题.【例4】如图,等腰Rt△ABC中,∠ACB=90°,AC=BC=1,且AC边在直线a上,将△ABC 绕点A顺时针旋转到位置①可得到点P1,此时AP1= ;将位置①的三角形绕点P1顺时针旋转到位置②,可得到点P2,此时AP2=1+ ;将位置②的三角形绕点P2 顺时针旋转到位置③,可得到点P3,此时AP3=2+ ;……,按此规律继续旋转,直至得到点P2014 为止.则AP2014= .【答案】1342+672 2 .考点:规律型.归纳5:动态规律型基础知识归纳:动态规律问题是探求图形在运动变换过程中的变化规律,解答此类问题时,要将图形每一次的变化与前一次变化进行比较,明确哪些结果发生了变化,哪些结果没有发生变化,从而逐步发现规律.注意问题归纳:要注意探求图形的变化规律,明确发生变化的与没有发生变化的量,从而逐步发现规律.【例5】如图,在x轴的正半轴上依次间隔相等的距离取点A1,A2,A3,A4,……,An分别过这些点做x轴的垂线与反比例函数y= 1的图象相交于点P1,P2,P3,P4,……Pn作x P2B1⊥A1P1,P3B2⊥A2P2,P4B3⊥A3P3,……,PnBn﹣1⊥An ﹣1Pn﹣1,垂足分别为B1,B2,B3,B4,……,Bn﹣1,连接P1P2,P2P3,P3P4,……,Pn﹣1Pn,得到一组Rt△P1B1P2,Rt△P2B2P3,Rt△P3B3P4,……,Rt△Pn﹣1Bn﹣1Pn,则Rt△Pn﹣1Bn﹣1Pn的面积为答案】2n(n-1).☞1 年模拟1.(2015届山东省济南市平阴县中考二模)在平面直角坐标系xOy中,对于点P(x,y),我们把点P(-考点:规律型.y+1,x+1)叫做点P的伴随点.已知点A1的伴随点为A2,点A2的伴随点为A3,点A3 的伴随点为A4,…,这样依次得到点A1,A2,A3,…,An,….例如:点A1 的坐标为(3,1),则点A2 的坐标为(0,4),…;若点A1的坐标为(a,b),则点A2015 的坐标为()A.(-b+1,a+1)B.(-a,-b+2)C.(b-1,-a+1)D.(a,b)【答案】B.【解析】试题分析:∵点A1 的坐标为(a,b),∴A2(-b+1,a+1),A3(-a,-b+2),A4(b-1,-a+1),A5(a,b),…,依此类推,每4 个点为一个循环组依次循环,∵2015÷4=503 余3,∴点A2015 的坐标与A3 的坐标相同,为(-a,-b+2);故选B.考点:规律型:点的坐标.2.(2015 届山东省潍坊市昌乐县中考一模)如图,下面是按照一定规律画出的“树形图”,经观察可以发现:图A2比图A1多出2个“树枝”,图A3比图A2多出4个“树枝”,图A4比图A3 多出8 个“树枝”,…,照此规律,图A6 比图A2 多出“树枝”()A.32 B.56 C.60 D.64答案】C.考点:规律型:图形的变化类.3.(2015届山西省晋中市平遥县九年级下学期4 月中考模拟)如图,四边形ABCD中,AC=a,BD=b,且AC⊥BD,顺次连接四边形ABCD各边中点,得到四边形A1B1C1D1,再顺次连接四边形A1B1C1D1 各边中点,得到四边形A2B2C2D2,如此进行下去,得到四边形AnBnCnDn.下列结论正确的是()①四边形A4B4C4D4 是菱形;②四边形A3B3C3D3 是矩形;③四边形A7B7C7D7 周长为;④四边形AnBnCnDn面积为.答案】A . ③ 根 据 中 位 线 的 性 质 易 知 , A 7B 7═ 12 A 5B 5= 14 A 3B 3= 18 A 1B 1= 116 AC ,B 7C 7= 1 B 5C 5= 1 B 3C 3= 1 B 1C 1= 1 BD ,∴四边形 A 7B 7C 7D 7 的周长是 2×1 (a +b ) 2 4 8 16 16a +b= ,故③正确; 8④∵四边形 ABCD 中,AC =a ,BD =b ,且 AC 丄 BD ,∴S 四边形 ABCD =ab ÷ 2 ;由三角形的中位线的性质可以推知,每得到一次四边形,它的面积变为原来的一半,四边形abAnBnCnDn 的面积是,故④错误;2n +1综上所述,①②③正确.故选 A .A .①②③B .②③④C .①③④D .①②③④4.( 2015届广东省深圳市龙华新区中考二模)如图,已知直线y =- 1 x +2与x 轴交于点B , 2与 y 轴交于点 A .过线段 AB 的中点 A 1 做 A 1B 1⊥x 轴于点 B 1,过线段 A 1B 的中点 A 2 作A 2B 2⊥x 轴于点B 2,过线段 A 2B 的中点A 3作A 3B 3⊥x 轴于点B 3…,以此类推,则△AnBnBn -1答案】C .考点:1.一次函数图象上点的坐标特征;2.规律型.5.( 2014-2015 学年山东省潍坊市诸城市实验中学中考三模)如图放置的△OAB 1,△B 1A 1B 2,△B 2A 2B 3,…都是边长为 2 的等边三角形,边AO 在 y 轴上,点 B 1,B 2,B 3,…都在直线 y = 3 x 上,则 A 2015 的坐标是 3【答案】(2015 3 ,2017).【解析】1 2n C . 14n -1 D . 14n的面积为( )A . 1n -1 B .。

相关文档
最新文档