三角形的证明练习题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1.等腰三角形
一、主要知识点
1、证明三角形全等的判定方法(SSS,SAS,ASA,AAS,证直角三角形全等除上述外还有HL)及全等三角形的性
质是对应边相等,对应角相等。
2、等腰三角形的有关知识点。
等边对等角;等角对等边;等腰三角形顶角的平分线、底边上的中线、底边上的高互相重合。(三线合一)
3、等边三角形的有关知识点。
判定:有一个角等于60°的等腰三角形是等边三角形;
三条边都相等的三角形是等边三角形;
三个角都是60°的三角形是等边三角形;
有两个叫是60°的三角形是等边三角形。
性质:等边三角形的三边相等,三个角都是60°。
4、反证法:先假设命题的结论不成立,然后推导出与定义、公理、已证定理或已知条件相矛盾的结果,从
而证明命题的结论一定成立。这种证明方法称为反证法
2.直角三角形
一、主要知识点
1、直角三角形的有关知识。
直角三角形两条直角边的平方和等于斜边的平方;
如果三角形两边的平方和等于第三边的平方,那么这个三角形是直角三角形;
在直角三角形中,如果一个锐角等于30°,那么它所对的直角边等于斜边的一半;
在直角三角形中,斜边上的中线等于斜边的一半。
2、互逆命题、互逆定理
在两个命题中,如果一个命题的条件和结论分别是另一个命题的结论和条件,那么这两个命题称为互逆命题,其中一个命题称为另一个命题的逆命题.
如果一个定理的逆命题经过证明是真命题,那么它也是一个定理,这两个定理称为互逆定理,其中一个定理称为另一个定理的逆定理.
3.线段的垂直平分线
4.角平分线
一、主要知识点
1、线段的垂直平分线。
线段垂直平分线上的点到这条线段两个端点的距离相等;
到一条线段两个端点距离相等的点,在这条线段的垂直平分线上。
三角形三条边的垂直平分线相交于一点,并且这一点到三个顶点的距离相等。
2、角平分线。
角平分线上的点到这个角的两边的距离相等。
在一个角的内部,且到角的两边距离相等的点,在这个角的平分线上。
三角形三条角平分线相交于一点,并且这一点到三条边的距离相等。
3、逆命题、互逆命题的概念及反证法
如果一个命题的条件和结论分别是另一个命题的结论和条件,那么这两个命题称为互逆命题,其中一个命题称为另一个命题的逆命题。
第一章 《三角形的证明》练习题
1、如图,在△ABC 内有一点O ,且OA=OB=OC ,∠OBA=400,∠OAC=300。求∠OBC 的度数。
2、把两个含有
450角的直角三角板按如图所示的位置放置,点
D 在BC 上,连接B
E 、AD ,AD 的延长线交BE 于点
F 。求证:A F ⊥BE 。
3、如图,已知△ABC 是等边三角形,点B 、C 、D 、E 在同一条直线上,且CG=CD,DF=DE,求∠E 的度数。
4、如图,在等边△ABC 中,D 、E 分别是AB 、AC 上的点,且AD=CE ,连接BE 、CD 交于点P ,求∠BPD 的度数。
5、如图,在△ABC 中,∠BAC=1200,AB=AC ,以BC 为边作等边△BCD ,再以A 为顶点作一个600的角,角的两边分别与BD 、CD 边交于点E 、F ,连接EF 。猜想线段BE 、CF 与EF 的关系,并加以证明。
A
B C O
A C D
E F A
B C D E F
G
B