2019年北京卷文科数学高考真题

合集下载

2019年高考真题北京卷文科数学试卷(详解版)(加密版)

2019年高考真题北京卷文科数学试卷(详解版)(加密版)
二、填空题(本大题共
→→→→
9.已知向量=(−4,3),=(6,),且⊥,则=.
【答案】8
→→→→
【解析】 ∵ = (−4,3), = (6, ), ⊥ .
→→
∴ ⋅ = −4 × 6 + 3 × = 0,
∴ = 8.
故答案为:8.
⩽ 2,
10.若,满足{
⩾ −1,
2
13.已知,是平面外的两条不同直线.给出下列三个论断:
① ⊥ ;②//;③ ⊥ .
以其中的两个论断作为条件,余下的论断作为结论,写出一个正确的命题:.
【答案】 若//, ⊥ ,则 ⊥
2
D选项: =1在(−∞, 0)和(0, +∞)上单调递减.

故选A.
4.执行如图所示的程序框图,输出的值为().
A.1B.2C.3D.4
【答案】B
【解析】 模拟程序的运行,可得 = 1, = 1;
= 2,不满足条件 ⩾ 3,执行循环体,
= 2, = 2,不满足条件 ⩾ 3,执行循环体,
∴具有充分性,
若()为偶函数,则有(−) = (), 即cos (−) + sin (−) = cos + sin ,
∴需要2sin = 0恒成立,∴ = 0,具有必要性. 故选C.
7.在天文学中,天体的明暗程度可以用星等或亮度来描述.两颗星的星等与亮度满足2−1=
= 3, = 2,此时,满足条件 ⩾ 3,退出循环, 输出的值为2.
故选:B.
5.已知双曲线2− 2= 1( > 0)的离心率是5,则 =( ).
2
A.√6B.4C.2D.1
2
【答案】D
【解析】 双曲线2− 2= 1( > 0)的离心率是5,

2019年全国普通高等学校招生统一考试文科数学(北京卷正式版)【含答案及解析】

2019年全国普通高等学校招生统一考试文科数学(北京卷正式版)【含答案及解析】

2019年全国普通高等学校招生统一考试文科数学(北京卷正式版)【含答案及解析】姓名___________ 班级____________ 分数__________一、选择题1. 已知,集合,则( A )( B )( C )( D )2. 若复数在复平面内对应的点在第二象限,则实数的取值范围是( A )( B )( C )( D )3. 执行如图所示的程序框图,输出的值为( A ) 2 ( B )( C )( D )4. 若满足则的最大值为( A ) 1 ( B ) 3( C ) 5 ( D ) 95. 已知函数,则( A )是偶函数,且在 R 上是增函数( B )是奇函数,且在 R 上是增函数( C )是偶函数,且在 R 上是减函数( D )是奇函数,且在 R 上是增函数6. 某三棱锥的三视图如图所示,则该三棱锥的体积为( A ) 60 ( B ) 30( C ) 20 ( D ) 107. 设 m , n 为非零向量,则“ 存在负数,使得 m = λn ” 是“ m · n <0” 的( A )充分而不必要条件( B )必要而不充分条件( C )充分必要条件( D )既不充分也不必要条件8. 根据有关资料,围棋状态空间复杂度的上限 M 约为 3 361 ,而可观测宇宙中普通物质的原子总数 N 约为 10 80 .则下列各数中与最接近的是(参考数据:lg3≈0.48 )( A ) 10 33 ( B ) 10 53( C ) 10 73 ( D ) 10 93二、填空题9. 在平面直角坐标系 xOy 中,角与角均以 Ox 为始边,它们的终边关于 y 轴对称 . 若 sin = ,则 sin =_________ .10. 若双曲线的离心率为,则实数 m =__________ .11. 已知,,且 x + y =1 ,则的取值范围是 __________ .12. 已知点 P 在圆上,点 A 的坐标为 (-2,0) , O 为原点,则的最大值为 _________ .13. 能够说明“ 设 a , b , c 是任意实数.若 a > b > c ,则a + b > c ” 是假命题的一组整数 a , b , c 的值依次为 ______________________________ .14. 某学习小组由学生和学科网 &amp; 教师组成,人员构成同时满足以下三个条件:(ⅰ )男学生人数多于女学生人数;(ⅱ )女学生人数多于教师人数;(ⅲ )教师人数的两倍多于男学生人数.① 若教师人数为 4 ,则女学生人数的最大值为 __________ .② 该小组人数的最小值为 __________ .三、解答题15. 已知等差数列和等比数列满足 a 1 = b 1 =1, a 2 + a 4 =10, b 2b 4 = a 5 .(Ⅰ )求的通项公式;(Ⅱ )求和:.16. (本小题 13 分)已知函数 .( I ) f ( x ) 的最小正周期;( II )求证:当时,.17. (本小题 13 分)某大学艺术专业 400 名学生参加某次测评,根据男女学生人数比例,使用分层抽样的方法从中随机抽取了 100 名学生,记录他们的分数,将数据分成 7 组: [20,30 ),[30,40 ),┄ , [80,90] ,并整理得到如下频率分布直方图:(Ⅰ )从总体的 400 名学生中随机抽取一人,估计其分数小于 70 的概率;(Ⅱ )已知样本中分数小于 40 的学生有 5 人,试估计总体中分数在区间 [40,50 )内的人数;(Ⅲ )已知样本中有一半男生的分数学 . 科网不小于 70 ,且样本中分数不小于 70 的男女生人数相等.试估计总体中男生和女生人数的比例.18. (本小题 14 分)如图,在三棱锥 P – ABC 中,PA ⊥ AB ,PA ⊥ BC ,AB ⊥ BC , PA = AB = BC =2 , D 为线段 AC 的中点, E 为线段 PC 上一点.(Ⅰ )求证:PA ⊥ BD ;(Ⅱ )求证:平面BDE ⊥ 平面 PAC ;(Ⅲ )当PA ∥ 平面 BD E 时,求三棱锥 E – BCD 的体积.19. (本小题 14 分)已知椭圆 C 的两个顶点分别为 A (−2,0) , B(2,0) ,焦点在 x 轴上,离心率为.(Ⅰ )求椭圆 C 的方程;(Ⅱ )点 D 为 x 轴上一点,过 D 作 x 轴的垂线交椭圆 C 于不同的两点 M , N ,过 D 作 AM 的垂线交 BN 于点 E . 求证:△ BDE 与△ BDN 的面积之比为 4:5 .20. (本小题 13 分)已知函数.(Ⅰ )求曲线在点处的切线方程;(Ⅱ )求函数在区间上的最大值和最小值.参考答案及解析第1题【答案】第2题【答案】第3题【答案】第4题【答案】第5题【答案】第6题【答案】第7题【答案】第8题【答案】第9题【答案】第10题【答案】第11题【答案】第12题【答案】第13题【答案】第14题【答案】第15题【答案】第16题【答案】第17题【答案】第18题【答案】第19题【答案】第20题【答案】。

2019年全国高考北京市数学(文)试卷及答案【精校版】

2019年全国高考北京市数学(文)试卷及答案【精校版】

2019年普通高等学校招生全国统一考试北京卷文科数学本试卷共6页,150分。

考试时长120分钟,。

考生务必将答案答在答题卡上,在试卷上作答无效。

考试结束后,将本试卷和答题卡一并交回。

第一部分(选择题 共40分)一、选择题共8小题,每小题5分,共40分。

在每小题列出的4个选项中,选出符合题目要求的一项。

1.若集合{}0,1,2,4A =,{}1,2,3B =,则AB =( )A.{}0,1,2,3,4B.{}0,4C.{}1,2D.{}3 2.下列函数中,定义域是R 且为增函数的是( )A.xy e -= B.y x = C.ln y x = D.y x = 3.已知向量()2,4a =,()1,1b =-,则2a b -=( )A.()5,7B.()5,9C.()3,7D.()3,9 4.执行如图所示的程序框图,输出的S 值为( )A.1B.3C.7D.15输出5.设a 、b 是实数,则“a b >”是“22a b >”的( )A.充分而不必要条件B.必要而不必要条件C.充分必要条件D.既不充分6.已知函数()26log f x x x=-,在下列区间中,包含()f x 零点的区间是( ) A.()0,1 B.()1,2 C.()2,4 D.()4,+∞7.已知圆()()22:341C x y -+-=和两点(),0A m -,()(),00B m m >,若圆C 上存在点P ,使得90APB ∠=,则m 的最大值为( )A.7B.6C.5D.48.加工爆米花时,爆开且不糊的粒数的百分比称为“可食用率”.咋特定条件下,可食用率 p 与加工时间t (单位:分钟)2p at bt c =++(a 、b 、c 是常数),下图 记录了三次实验的数据.根据上述函数模型和实验数据,可以得到最佳加工时间为( )A.3.50分钟B.3.75分钟C.4.00分钟D.4.25分钟第2部分(非选择题 共110分)二、填空题共6小题,每小题5分,共30分。

2019年全国高考文科数学试题及解析-北京卷

2019年全国高考文科数学试题及解析-北京卷

2019年全国高考文科数学试题及解析-北京卷数学〔文〕〔北京卷〕本试卷共5页,150分。

考试时长120分钟。

考生务必将【答案】答在答题卡上,在试卷上作答无效。

考试结束后,将本市卷和答题卡一并交回。

第一部分〔选择题共40分〕【一】选择题共8小题,每题5分,共40分。

在每题列出旳四个选项中,选出符合题目要求旳一项。

〔1〕集合{|24},{|3>5}A x x B x x x =<<=<或,那么A B =〔A 〕{|2<<5}x x 〔B 〕{|<45}x x x >或 〔C 〕{|2<<3}x x 〔D 〕{|<25}x x x >或 〔2〕复数12i =2i+- 〔A 〕i 〔B 〕1+i 〔C 〕i -〔D 〕1i -〔3〕执行如下图旳程序框图,输出旳s 值为〔A 〕8〔B 〕9〔C 〕27〔D 〕36〔4〕以下函数中,在区间(1,1)-上为减函数旳是〔A 〕11y x=-〔B 〕cos y x =〔C 〕ln(1)y x =+〔D 〕2x y -= 〔5〕圆〔x +1〕2+y 2=2旳圆心到直线y =x +3旳距离为〔A 〕1〔B 〕2〔C 〔D 〕〔6〕从甲、乙等5名学生中随机选出2人,那么甲被选中旳概率为〔A 〕15〔B 〕25〔C 〕825〔D 〕925〔7〕A 〔2,5〕,B 〔4,1〕.假设点P 〔x ,y 〕在线段AB 上,那么2x −y 旳最大值为 〔A 〕−1〔B 〕3〔C 〕7〔D 〕8〔8〕某学校运动会旳立定跳远和30秒跳绳两个单项竞赛分成预赛和决赛两个时期.下表为在这10名学生中,进入立定跳远决赛旳有8人,同时进入立定跳远决赛和30秒跳绳决赛旳有6人,那么〔A 〕2号学生进入30秒跳绳决赛〔B 〕5号学生进入30秒跳绳决赛〔C 〕8号学生进入30秒跳绳决赛〔D 〕9号学生进入30秒跳绳决赛第二部分〔非选择题共110分〕【二】填空题〔共6小题,每题5分,共30分〕〔9〕向量=a b ,那么a 与b 夹角旳大小为﹏﹏﹏﹏﹏﹏﹏﹏﹏. 〔10〕函数()(2)1x f x x x =≥-旳最大值为﹏﹏﹏﹏﹏﹏﹏﹏﹏. 〔11〕某四棱柱旳三视图如下图,那么该四棱柱旳体积为﹏﹏﹏﹏﹏﹏﹏﹏﹏﹏﹏.(12)双曲线22221x y a b-=〔a >0,b >0〕旳一条渐近线为2x +y =0〕,那么a =﹏﹏﹏﹏﹏﹏﹏;b =﹏﹏﹏﹏﹏﹏﹏﹏﹏﹏﹏﹏﹏.(13)在△ABC 中,23A π∠=,,那么b c =﹏﹏﹏﹏﹏﹏﹏﹏﹏. (14)某网店统计了连续三天售出商品旳种类情况:第一天售出19种商品,翌日售出13种商品,第三天售出18种商品;前两天都售出旳商品有3种,后两天都售出旳商品有4种,那么该网店①第一天售出但翌日未售出旳商品有﹏﹏﹏﹏﹏﹏种;②这三天售出旳商品最少有﹏﹏﹏﹏﹏﹏﹏种.【三】解答题〔共6题,共80分.解承诺写出文字说明,演算步骤或证明过程〕 〔15〕〔本小题13分〕{a n }是等差数列,{b n }是等差数列,且b 2=3,b 3=9,a 1=b 1,a 14=b 4.〔Ⅰ〕求{a n }旳通项公式;〔Ⅱ〕设c n =a n +b n ,求数列{c n }旳前n 项和.〔16〕〔本小题13分〕函数f 〔x 〕=2sin ωx cos ωx +cos2ωx 〔ω>0〕旳最小正周期为π.〔Ⅰ〕求ω旳值;〔Ⅱ〕求f 〔x 〕旳单调递增区间.〔17〕〔本小题13分〕某市民用水拟实行阶梯水价,每人用水量中不超过w 立方米旳部分按4元/立方米收费,超出w 立方米旳部分按10元/立方米收费,从该市随机调查了10000位居民,获得了他们某月旳用水量数据,整理得到如下频率分布直方图:〔I 〕假如w 为整数,那么依照此次调查,为使80%以上居民在该月旳用水价格为4元/立方米,w 至少定为多少?〔II 〕假设同组中旳每个数据用该组区间旳右端点值代替,当w=3时,可能该市居民该月旳人均水费.〔18〕〔本小题14分〕如图,在四棱锥P-ABCD 中,PC ⊥平面ABCD ,,AB DC DC AC ⊥∥〔I 〕求证:DC PAC ⊥平面;〔II 〕求证:PAB PAC ⊥平面平面;(III)设点E 为AB 旳中点,在棱PB 上是否存在点F ,使得PA CEF ⊥平面?说明理由.〔19〕〔本小题14分〕椭圆C :22221x y a b+=过点A 〔2,0〕,B 〔0,1〕两点. 〔I 〕求椭圆C 旳方程及离心率;〔II 〕设P 为第三象限内一点且在椭圆C 上,直线PA 与y 轴交于点M ,直线PB 与x 轴交于点N ,求证:四边形ABNM 旳面积为定值.〔20〕〔本小题13分〕设函数()32.f x x ax bx c =+++ 〔I 〕求曲线().y f x =在点()()0,0f 处旳切线方程;〔II 〕设4a b ==,假设函数()f x 有三个不同零点,求c 旳取值范围;〔III 〕求证:230a b ->是().f x 有三个不同零点旳必要而不充分条件.。

2019年北京市高考数学试卷(文科)(附详细答案)

2019年北京市高考数学试卷(文科)(附详细答案)

2019年北京市高考数学试卷(文科)一、选择题共8小题,每小题5分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项1.(5分)下列函数中,定义域是R且为增函数的是()A.y=e﹣x B.y=x C.y=lnx D.y=|x|2.(5分)若集合A={0,1,2,4},B={1,2,3},则A∩B=()A.{0,1,2,3,4}B.{0,4}C.{1,2}D.{3}3.(5分)已知向量=(2,4),=(﹣1,1),则2﹣=()A.(5,7) B.(5,9) C.(3,7) D.(3,9)4.(5分)执行如图所示的程序框图,输出的S值为()A.1 B.3 C.7 D.155.(5分)设a,b是实数,则“a>b”是“a2>b2”的()A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件6.(5分)已知函数f(x)=﹣log2x,在下列区间中,包含f(x)零点的区间是()A.(0,1) B.(1,2) C.(2,4) D.(4,+∞)7.(5分)已知圆C:(x﹣3)2+(y﹣4)2=1和两点A(﹣m,0),B(m,0)(m >0),若圆C上存在点P,使得∠APB=90°,则m的最大值为()A.7 B.6 C.5 D.48.(5分)加工爆米花时,爆开且不糊的粒数占加工总粒数的百分比称为“可食用率”,在特定条件下,可食用率p与加工时间t(单位:分钟)满足函数关系p=at2+bt+c(a,b,c是常数),如图记录了三次实验的数据,根据上述函数模型和实验数据,可以得到最佳加工时间为()A.3.50分钟B.3.75分钟C.4.00分钟D.4.25分钟二、填空题共6小题,每小题5分,共30分.9.(5分)若(x+i)i=﹣1+2i(x∈R),则x= .10.(5分)设双曲线C的两个焦点为(﹣,0),(,0),一个顶点是(1,0),则C的方程为.11.(5分)某三棱锥的三视图如图所示,则该三棱锥最长棱的棱长为.12.(5分)在△ABC中,a=1,b=2,cosC=,则c= ;sinA= .13.(5分)若x,y满足,则z=x+y的最小值为.14.(5分)顾客请一位工艺师把A,B两件玉石原料各制成一件工艺品,工艺师带一位徒弟完成这项任务,每件原料先由徒弟完成粗加工,再由师傅进行精加工完成制作,两件工艺品都完成后交付顾客,两件原料每道工序所需时间(单位:工作日)如下:工序粗加工精加工时间原料原料A915原料B621则最短交货期为个工作日.三、解答题,共6小题,满分80分,解答应写出文字说明,演算步骤或证明过程.15.(13分)已知{a n}是等差数列,满足a1=3,a4=12,数列{b n}满足b1=4,b4=20,且{b n﹣a n}为等比数列.(1)求数列{a n}和{b n}的通项公式;(2)求数列{b n}的前n项和.16.(13分)函数f(x)=3sin(2x+)的部分图象如图所示.(Ⅰ)写出f(x)的最小正周期及图中x0,y0的值;(Ⅱ)求f(x)在区间[﹣,﹣]上的最大值和最小值.17.(14分)如图,在三棱柱ABC﹣A1B1C1中,侧棱垂直于底面,AB⊥BC,AA1=AC=2,BC=1,E、F分别为A1C1、BC的中点.(1)求证:平面ABE⊥平面B1BCC1;(2)求证:C1F∥平面ABE;(3)求三棱锥E﹣ABC的体积.18.(13分)从某校随机抽取100名学生,获得了他们一周课外阅读时间(单位:小时)的数据,整理得到数据分组及频数分布表和频率分布直方图:排号分组频数1[0,2)62[2,4)83[4,6)174[6,8)225[8,10)256[10,12)127[12,14)68[14,16)29[16,18)2合计100(Ⅰ)从该校随机选取一名学生,试估计这名学生该周课外阅读时间少于12小时的概率;(Ⅱ)求频率分布直方图中的a,b的值;(Ⅲ)假设同一组中的每个数据可用该组区间的中点值代替,试估计样本中的100名学生该周课外阅读时间的平均数在第几组(只需写结论)19.(14分)已知椭圆C:x2+2y2=4.(Ⅰ)求椭圆C的离心率;(Ⅱ)设O为原点,若点A在直线y=2上,点B在椭圆C上,且OA⊥OB,求线段AB长度的最小值.20.(13分)已知函数f(x)=2x3﹣3x.(Ⅰ)求f(x)在区间[﹣2,1]上的最大值;(Ⅱ)若过点P(1,t)存在3条直线与曲线y=f(x)相切,求t的取值范围;(Ⅲ)问过点A(﹣1,2),B(2,10),C(0,2)分别存在几条直线与曲线y=f (x)相切?(只需写出结论)2019年北京市高考数学试卷(文科)参考答案与试题解析一、选择题共8小题,每小题5分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项1.(5分)下列函数中,定义域是R且为增函数的是()A.y=e﹣x B.y=x C.y=lnx D.y=|x|【分析】根据函数单调性的性质和函数成立的条件,即可得到结论.【解答】解:A.函数的定义域为R,但函数为减函数,不满足条件.B.函数的定义域为R,函数增函数,满足条件.C.函数的定义域为(0,+∞),函数为增函数,不满足条件.D.函数的定义域为R,在(0,+∞)上函数是增函数,在(﹣∞,0)上是减函数,不满足条件.故选:B.【点评】本题主要考查函数定义域和单调性的判断,比较基础.2.(5分)若集合A={0,1,2,4},B={1,2,3},则A∩B=()A.{0,1,2,3,4}B.{0,4}C.{1,2}D.{3}【分析】直接利用交集的运算得答案.【解答】解:∵A={0,1,2,4},B={1,2,3},∴A∩B={0,1,2,4}∩{1,2,3}={1,2}.故选:C.【点评】本题考查交集及其运算,是基础题.3.(5分)已知向量=(2,4),=(﹣1,1),则2﹣=()A.(5,7) B.(5,9) C.(3,7) D.(3,9)【分析】直接利用平面向量的数乘及坐标减法运算得答案.【解答】解:由=(2,4),=(﹣1,1),得:2﹣=2(2,4)﹣(﹣1,1)=(4,8)﹣(﹣1,1)=(5,7).故选:A.【点评】本题考查平面向量的数乘及坐标减法运算,是基础的计算题.4.(5分)执行如图所示的程序框图,输出的S值为()A.1 B.3 C.7 D.15【分析】算法的功能是求S=1+21+22+…+2k的值,根据条件确定跳出循环的k值,计算输出的S值.【解答】解:由程序框图知:算法的功能是求S=1+21+22+…+2k的值,∵跳出循环的k值为3,∴输出S=1+2+4=7.故选:C.【点评】本题考查了当型循环结构的程序框图,根据框图的流程判断算法的功能是解题的关键.5.(5分)设a,b是实数,则“a>b”是“a2>b2”的()A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件【分析】本题考查的判断充要条件的方法,我们可以根据充要条件的定义进行判断,此题的关键是对不等式性质的理解.【解答】解:因为a,b都是实数,由a>b,不一定有a2>b2,如﹣2>﹣3,但(﹣2)2<(﹣3)2,所以“a>b”是“a2>b2”的不充分条件;反之,由a2>b2也不一定得a>b,如(﹣3)2>(﹣2)2,但﹣3<﹣2,所以“a>b”是“a2>b2”的不必要条件.故选:D.【点评】判断充要条件的方法是:①若p?q为真命题且q?p为假命题,则命题p是命题q的充分不必要条件;②若p?q为假命题且q?p为真命题,则命题p是命题q的必要不充分条件;③若p?q为真命题且q?p为真命题,则命题p是命题q的充要条件;④若p?q为假命题且q?p为假命题,则命题p是命题q的即不充分也不必要条件.⑤判断命题p与命题q所表示的范围,再根据“谁大谁必要,谁小谁充分”的原则,判断命题p与命题q的关系.⑥涉及不等式平方大小的比较问题,举反例不失为一种有效的方法.6.(5分)已知函数f(x)=﹣log2x,在下列区间中,包含f(x)零点的区间是()A.(0,1) B.(1,2) C.(2,4) D.(4,+∞)【分析】可得f(2)=2>0,f(4)=﹣<0,由零点的判定定理可得.【解答】解:∵f(x)=﹣log2x,∴f(2)=2>0,f(4)=﹣<0,满足f(2)f(4)<0,∴f(x)在区间(2,4)内必有零点,故选:C.【点评】本题考查还是零点的判断,属基础题.7.(5分)已知圆C:(x﹣3)2+(y﹣4)2=1和两点A(﹣m,0),B(m,0)(m >0),若圆C上存在点P,使得∠APB=90°,则m的最大值为()A.7 B.6 C.5 D.4【分析】根据圆心C到O(0,0)的距离为5,可得圆C上的点到点O的距离的最大值为6.再由∠APB=90°,可得PO=AB=m,可得m≤6,从而得到答案.【解答】解:圆C:(x﹣3)2+(y﹣4)2=1的圆心C(3,4),半径为1,∵圆心C到O(0,0)的距离为5,∴圆C上的点到点O的距离的最大值为6.再由∠APB=90°可得,以AB为直径的圆和圆C有交点,可得PO=AB=m,故有m≤6,故选:B.【点评】本题主要直线和圆的位置关系,求得圆C上的点到点O的距离的最大值为6,是解题的关键,属于中档题.8.(5分)加工爆米花时,爆开且不糊的粒数占加工总粒数的百分比称为“可食用率”,在特定条件下,可食用率p与加工时间t(单位:分钟)满足函数关系p=at2+bt+c(a,b,c是常数),如图记录了三次实验的数据,根据上述函数模型和实验数据,可以得到最佳加工时间为()A.3.50分钟B.3.75分钟C.4.00分钟D.4.25分钟【分析】由提供的数据,求出函数的解析式,由二次函数的图象与性质可得结论.【解答】解:将(3,0.7),(4,0.8),(5,0.5)分别代入p=at2+bt+c,可得,解得a=﹣0.2,b=1.5,c=﹣2,∴p=﹣0.2t2+1.5t﹣2,对称轴为t=﹣=3.75.故选:B.【点评】本题考查了二次函数模型的应用,考查利用二次函数的图象与性质求函数的最值问题,确定函数模型是关键.二、填空题共6小题,每小题5分,共30分.9.(5分)若(x+i)i=﹣1+2i(x∈R),则x= 2 .【分析】化简原式可得∴﹣1+xi=﹣1+2i,由复数相等的定义可得.【解答】解:∵(x+i)i=﹣1+2i,∴﹣1+xi=﹣1+2i,由复数相等可得x=2故答案为:2【点评】本题考查复数相等的充要条件,属基础题.10.(5分)设双曲线C的两个焦点为(﹣,0),(,0),一个顶点是(1,0),则C的方程为x2﹣y2=1 .【分析】利用双曲线C的两个焦点为(﹣,0),(,0),一个顶点是(1,0),可得c=,a=1,进而求出b,即可得出双曲线的方程.【解答】解:∵双曲线C的两个焦点为(﹣,0),(,0),一个顶点是(1,0),∴c=,a=1,∴b=1,∴C的方程为x2﹣y2=1.故答案为:x2﹣y2=1.【点评】本题考查双曲线方程与性质,考查学生的计算能力,属于基础题.11.(5分)某三棱锥的三视图如图所示,则该三棱锥最长棱的棱长为2.【分析】由主视图知CD⊥平面ABC、B点在AC上的射影为AC中点及AC长,由左视图可知CD长及△ABC中变AC的高,利用勾股定理即可求出最长棱BD的长.【解答】解:由主视图知CD⊥平面ABC,设AC中点为E,则BE⊥AC,且AE=CE=1;由主视图知CD=2,由左视图知BE=1,在Rt△BCE中,BC=,在Rt△BCD中,BD=,在Rt△ACD中,AD=2.则三棱锥中最长棱的长为2.故答案为:2.【点评】本题考查点、线、面间的距离计算,考查空间图形的三视图,考查学生的空间想象能力,考查学生分析解决问题的能力.12.(5分)在△ABC中,a=1,b=2,cosC=,则c= 2 ;sinA= .【分析】利用余弦定理列出关系式,将a,b,以及cosC的值代入求出c的值,由cosC的值求出sinC的值,再由a,c的值,利用正弦定理即可求出sinA的值.【解答】解:∵在△ABC中,a=1,b=2,cosC=,∴由余弦定理得:c2=a2+b2﹣2abcosC=1+4﹣1=4,即c=2;∵cosC=,C为三角形内角,∴sinC==,∴由正弦定理=得:sinA===.故答案为:2;.【点评】此题考查了正弦、余弦定理,以及同角三角函数间的基本关系,熟练掌握定理是解本题的关键.13.(5分)若x,y满足,则z=x+y的最小值为 1 .【分析】由约束条件作出可行域,化目标函数为直线方程的斜截式,由图得到最优解,联立方程组求出最优解的坐标,代入目标函数得答案.【解答】解:由约束条件作出可行域如图,化目标函数z=x+y为,由图可知,当直线过C(0,1)时直线在y轴上的截距最小.此时.故答案为:1.【点评】本题考查简单的线性规划,考查了数形结合的解题思想方法,是中档题.14.(5分)顾客请一位工艺师把A,B两件玉石原料各制成一件工艺品,工艺师带一位徒弟完成这项任务,每件原料先由徒弟完成粗加工,再由师傅进行精加工完成制作,两件工艺品都完成后交付顾客,两件原料每道工序所需时间(单位:工作日)如下:工序粗加工精加工时间原料原料A915原料B621则最短交货期为42 个工作日.【分析】先完成B的加工,再完成A的加工即可.【解答】解:由题意,徒弟利用6天完成原料B的加工,由师傅利用21天完成精加工,与此同时,徒弟利用9天完成原料A的加工,最后由师傅利用15天完成精加工,故最短交货期为6+21+15=42 个工作日.故答案为:42.【点评】本题考查利用数学知识解决实际问题,考查学生分析解决问题的能力,属于基础题.三、解答题,共6小题,满分80分,解答应写出文字说明,演算步骤或证明过程.15.(13分)已知{a n}是等差数列,满足a1=3,a4=12,数列{b n}满足b1=4,b4=20,且{b n﹣a n}为等比数列.(1)求数列{a n}和{b n}的通项公式;(2)求数列{b n}的前n项和.【分析】(1)利用等差数列、等比数列的通项公式先求得公差和公比,即得结论;(2)利用分组求和法,有等差数列及等比数列的前n项和公式即可求得数列的和.【解答】解:(1)∵{a n}是等差数列,满足a1=3,a4=12,∴3+3d=12,解得d=3,∴a n=3+(n﹣1)×3=3n.设等比数列{b n﹣a n}的公比为q,则q3===8,∴q=2,∴b n﹣a n=(b1﹣a1)q n﹣1=2n﹣1,∴b n=3n+2n﹣1(n=1,2,…).(2)由(1)知b n=3n+2n﹣1(n=1,2,…).∵数列{a n}的前n项和为n(n+1),数列{2n﹣1}的前n项和为1×=2n﹣1,∴数列{b n}的前n项和为n(n+1)+2n﹣1.【点评】本题考查数列的通项公式和前n项和的求法,是中档题,解题时要认真审题,注意等差数列和等比数列的性质的合理运用.16.(13分)函数f(x)=3sin(2x+)的部分图象如图所示.(Ⅰ)写出f(x)的最小正周期及图中x0,y0的值;(Ⅱ)求f(x)在区间[﹣,﹣]上的最大值和最小值.【分析】(Ⅰ)由题目所给的解析式和图象可得所求;(Ⅱ)由x∈[﹣,﹣]可得2x+∈[﹣,0],由三角函数的性质可得最值.【解答】解:(Ⅰ)∵f(x)=3sin(2x+),∴f(x)的最小正周期T==π,可知y0为函数的最大值3,x0=;(Ⅱ)∵x∈[﹣,﹣],∴2x+∈[﹣,0],∴当2x+=0,即x=时,f(x)取最大值0,当2x+=,即x=﹣时,f(x)取最小值﹣3【点评】本题考查三角函数的图象和性质,属基础题.17.(14分)如图,在三棱柱ABC﹣A1B1C1中,侧棱垂直于底面,AB⊥BC,AA1=AC=2,BC=1,E、F分别为A1C1、BC的中点.(1)求证:平面ABE⊥平面B1BCC1;(2)求证:C1F∥平面ABE;(3)求三棱锥E﹣ABC的体积.【分析】(1)证明AB⊥B1BCC1,可得平面ABE⊥B1BCC1;(2)证明C1F∥平面ABE,只需证明四边形FGEC1为平行四边形,可得C1F∥EG;(3)利用V E﹣ABC=S△ABC?AA1,可求三棱锥E﹣ABC的体积.【解答】解:(1)证明:∵三棱柱ABC﹣A1B1C1中,侧棱垂直于底面,∴BB1⊥AB,∵AB⊥BC,BB1∩BC=B,BB1,BC?平面B1BCC1,∴AB⊥平面B1BCC1,∵AB?平面ABE,∴平面ABE⊥平面B1BCC1;(Ⅱ)证明:取AB中点G,连接EG,FG,则∵F是BC的中点,∴FG∥AC,FG=AC,∵E是A1C1的中点,∴FG∥EC1,FG=EC1,∴四边形FGEC1为平行四边形,∴C1F∥EG,∵C1F?平面ABE,EG?平面ABE,∴C1F∥平面ABE;(3)解:∵AA1=AC=2,BC=1,AB⊥BC,∴AB=,∴V E﹣ABC=S△ABC?AA1=×(××1)×2=.【点评】本题考查线面平行、垂直的证明,考查三棱锥E﹣ABC的体积的计算,正确运用线面平行、垂直的判定定理是关键.18.(13分)从某校随机抽取100名学生,获得了他们一周课外阅读时间(单位:小时)的数据,整理得到数据分组及频数分布表和频率分布直方图:排号分组频数1[0,2)62[2,4)83[4,6)174[6,8)225[8,10)256[10,12)127[12,14)68[14,16)29[16,18)2合计100(Ⅰ)从该校随机选取一名学生,试估计这名学生该周课外阅读时间少于12小时的概率;(Ⅱ)求频率分布直方图中的a,b的值;(Ⅲ)假设同一组中的每个数据可用该组区间的中点值代替,试估计样本中的100名学生该周课外阅读时间的平均数在第几组(只需写结论)【分析】(Ⅰ)根据频率分布表求出1周课外阅读时间少于12小时的频数,再根据频率=求频率;(Ⅱ)根据小矩形的高=求a、b的值;(Ⅲ)利用平均数公式求得数据的平均数,可得答案.【解答】解:(Ⅰ)由频率分布表知:1周课外阅读时间少于12小时的频数为6+8+17+22+25+12=90,∴1周课外阅读时间少于12小时的频率为=0.9;(Ⅱ)由频率分布表知:数据在[4,6)的频数为17,∴频率为0.17,∴a=0.085;数据在[8,10)的频数为25,∴频率为0.25,∴b=0.125;(Ⅲ)数据的平均数为1×0.06+3×0.08+5×0.17+7×0.22+9×0.25+11×0.12+13×0.06+15×0.02+17×0.02=7.68(小时),∴样本中的100名学生该周课外阅读时间的平均数在第四组.【点评】本题考查了频率分布表与频率分布直方图,再频率分布直方图中频率=小矩形的面积=小矩形的高×组距=.19.(14分)已知椭圆C:x2+2y2=4.(Ⅰ)求椭圆C的离心率;(Ⅱ)设O为原点,若点A在直线y=2上,点B在椭圆C上,且OA⊥OB,求线段AB长度的最小值.【分析】(Ⅰ)椭圆C:x2+2y2=4化为标准方程为,求出a,c,即可求椭圆C的离心率;(Ⅱ)先表示出线段AB长度,再利用基本不等式,求出最小值.【解答】解:(Ⅰ)椭圆C:x2+2y2=4化为标准方程为,∴a=2,b=,c=,∴椭圆C的离心率e==;(Ⅱ)设A(t,2),B(x0,y0),x0≠0,则∵OA⊥OB,∴=0,∴tx0+2y0=0,∴t=﹣,∵,∴|AB|2=(x0﹣t)2+(y0﹣2)2=(x0+)2+(y0﹣2)2=x02+y2++4=x2+++4=+4(0<x2≤4),因为≥4(0<x02≤4),当且仅当,即x02=4时等号成立,所以|AB|2≥8.∴线段AB长度的最小值为2.【点评】本题考查椭圆的方程与性质,考查基本不等式的运用,考查学生的计算能力,属于中档题.20.(13分)已知函数f(x)=2x3﹣3x.(Ⅰ)求f(x)在区间[﹣2,1]上的最大值;(Ⅱ)若过点P(1,t)存在3条直线与曲线y=f(x)相切,求t的取值范围;(Ⅲ)问过点A(﹣1,2),B(2,10),C(0,2)分别存在几条直线与曲线y=f (x)相切?(只需写出结论)【分析】(Ⅰ)利用导数求得极值点比较f(﹣2),f(﹣),f(),f(1)的大小即得结论;(Ⅱ)利用导数的几何意义得出切线方程4﹣6+t+3=0,设g(x)=4x3﹣6x2+t+3,则“过点P(1,t)存在3条直线与曲线y=f(x)相切”,(x)有3个不同的零点”.利用导数判断函数的单调性进而得出函数的等价于“g零点情况,得出结论;(Ⅲ)利用(Ⅱ)的结论写出即可.【解答】解:(Ⅰ)由f(x)=2x3﹣3x得f′(x)=6x2﹣3,令f′(x)=0得,x=﹣或x=,∵f(﹣2)=﹣10,f(﹣)=,f()=﹣,f(1)=﹣1,∴f(x)在区间[﹣2,1]上的最大值为.(Ⅱ)设过点P(1,t)的直线与曲线y=f(x)相切于点(x0,y0),则y0=2﹣3x0,且切线斜率为k=6﹣3,∴切线方程为y﹣y0=(6﹣3)(x﹣x0),∴t﹣y0=(6﹣3)(1﹣x0),即4﹣6+t+3=0,设g(x)=4x3﹣6x2+t+3,则“过点P(1,t)存在3条直线与曲线y=f(x)相切”,等价于“g(x)有3个不同的零点”.∵g′(x)=12x2﹣12x=12x(x﹣1),∴g(x)与g′(x)变化情况如下:x(﹣∞,0)0(0,1)1(1,+∞)g′(x)+0﹣0+g(x)↗t+3↘t+1↗∴g(0)=t+3是g(x)的极大值,g(1)=t+1是g(x)的极小值.当g(0)=t+3≤0,即t≤﹣3时,g(x)在区间(﹣∞,1]和(1,+∞)上分别至多有一个零点,故g(x)至多有2个零点.当g(1)=t+1≥0,即t≥﹣1时,g(x)在区间(﹣∞,0]和(0,+∞)上分别至多有一个零点,故g(x)至多有2个零点.当g(0)>0且g(1)<0,即﹣3<t<﹣1时,∵g(﹣1)=t﹣7<0,g(2)=t+11>0,∴g(x)分别在区间[﹣1,0),[0,1)和[1,2)上恰有1个零点,由于g(x)在区间(﹣∞,0)和[1,+∞)上单调,故g(x)分别在区间(﹣∞,0)和[1,+∞)上恰有1个零点.综上所述,当过点过点P(1,t)存在3条直线与曲线y=f(x)相切时,t的取值范围是(﹣3,﹣1).(Ⅲ)过点A(﹣1,2)存在3条直线与曲线y=f(x)相切;过点B(2,10)存在2条直线与曲线y=f(x)相切;过点C(0,2)存在1条直线与曲线y=f(x)相切.【点评】本题主要考查利用导数求切线方程及判断函数的单调性求最值等知识,考查转化划归思想及分类讨论思想的运用能力和运算能力,属难题.第21页(共21页)。

2019年北京市高考数学试卷(文科)

2019年北京市高考数学试卷(文科)

2019年北京市高考数学试卷(文科)一、选择题共8小题,每小题5分,共40分。

在每小题列出的四个选项中,选出符合题目要求的一项。

1.(5分)(2019•北京)已知集合A ={x |﹣1<x <2},B ={x |x >1},则A ∪B =( )A .(﹣1,1)B .(1,2)C .(﹣1,+∞)D .(1,+∞)2.(5分)(2019•北京)已知复数z =2+i ,则z •( ) z =A . B . C .3 D .5353.(5分)(2019•北京)下列函数中,在区间(0,+∞)上单调递增的是( )A .y =xB .y =2﹣xC .y =log xD .y 1212=1x4.(5分)(2019•北京)执行如图所示的程序框图,输出的s 值为( )A .1B .2C .3D .45.(5分)(2019•北京)已知双曲线y 2=1(a >0)的离心率是,则a =( )x 2a 2‒5A . B .4 C .2 D . 6126.(5分)(2019•北京)设函数f (x )=cos x +b sin x (b 为常数),则“b =0”是“f (x )为偶函数”的( )A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件7.(5分)(2019•北京)在天文学中,天体的明暗程度可以用星等或亮度来描述.两颗星的星等与亮度满足m 2﹣m 1lg ,其中星等为m k 的星的亮度为E k (k =1,2).已知=52E 1E 2太阳的星等是﹣26.7,天狼星的星等是﹣1.45,则太阳与天狼星的亮度的比值为( )A .1010.1B .10.1C .lg 10.1D .10﹣10.18.(5分)(2019•北京)如图,A ,B 是半径为2的圆周上的定点,P 为圆周上的动点,∠APB 是锐角,大小为β,图中阴影区域的面积的最大值为( )A .4β+4cos βB .4β+4sin βC .2β+2cos βD .2β+2sin β二、填空题共6小题,每小题5分,共30分。

2019年高考北京卷文科数学真题(含答案)

2019年高考北京卷文科数学真题(含答案)

绝密★本科目考试启用前2019年普通高等学校招生全国统一考试数学(文)(北京卷)本试卷共5页,150分。

考试时长120分钟。

考生务必将答案答在答题卡上,在试卷上作答无效。

考试结束后,将本试卷和答题卡一并交回。

第一部分(选择题共40分)一、选择题共8小题,每小题5分,共40分。

在每小题列出的四个选项中,选出符合题目要求的一项。

1.已知集合A={x|–1<x<2},B={x|x>1},则A∪B=A. (–1,1)B. (1,2)C. (–1,+∞)D. (1,+∞)【答案】C【解析】【分析】根据并集的求法直接求出结果.【详解】∵{|12},{|1}=-<<=>,A x xB x∴(1,)⋃=+∞,A B故选C.【点睛】考查并集的求法,属于基础题.2.已知复数z=2+i,则z z⋅=A. 3B. 5C. 3D. 5【答案】D【解析】【分析】题先求得z ,然后根据复数的乘法运算法则即得. 【详解】∵z 2i,z z (2i)(2i)5=+⋅=+-= 故选D.【点睛】本题主要考查复数的运算法则,共轭复数的定义等知识,属于基础题..3.下列函数中,在区间(0,+∞)上单调递增的是 A.12y x=B. y =2x -C.12log y x =D. 1y x=【答案】A 【解析】 【分析】由题意结合函数的解析式考查函数的单调性即可..【详解】函数122,log xy y x -==, 1y x=在区间(0,)+∞ 上单调递减, 函数12y x = 在区间(0,)+∞上单调递增,故选A .【点睛】本题考查简单的指数函数、对数函数、幂函数的单调性,注重对重要知识、基础知识的考查,蕴含数形结合思想,属于容易题.4.执行如图所示的程序框图,输出的s 值为A. 1B. 2C. 3D. 4【答案】B 【解析】 【分析】根据程序框图中的条件逐次运算即可.【详解】运行第一次, =1k ,2212312s ⨯==⨯- ,运行第二次,2k = ,2222322s ⨯==⨯- ,运行第三次,3k = ,2222322s ⨯==⨯- ,结束循环,输出=2s ,故选B .【点睛】本题考查程序框图,属于容易题,注重基础知识、基本运算能力的考查.5.已知双曲线2221x y a-=(a >0)的离心率是5 则a =A.6B. 4C. 2D.12【答案】D【解析】 【分析】本题根据根据双曲线的离心率的定义,列关于a 的方程求解. 【详解】 ∵双曲线的离心率5ce a== ,21c a =+, 215a +=,解得12a = , 故选D.【点睛】本题主要考查双曲线的离心率的定义,双曲线中a,b,c 的关系,方程的数学思想等知识,意在考查学生的转化能力和计算求解能力.6.设函数f (x )=cos x +b sin x (b 为常数),则“b =0”是“f (x )为偶函数”的 A. 充分而不必要条件 B. 必要而不充分条件 C. 充分必要条件 D. 既不充分也不必要条件【答案】C 【解析】 【分析】根据定义域为R 的函数()f x 为偶函数等价于()=()f x f x -进行判断. 【详解】0b = 时,()cos sin cos f x x b x x =+=, ()f x 为偶函数; ()f x 为偶函数时,()=()f x f x -对任意的x 恒成立,()cos()sin()cos sin f x x b x x b x -=-+-=-cos sin cos sin x b x x b x +=- ,得0bsinx =对任意的x 恒成立,从而0b =.从而“0b =”是“()f x 为偶函数”的充分必要条件,故选C.【点睛】本题较易,注重重要知识、基础知识、逻辑推理能力的考查.7.在天文学中,天体的明暗程度可以用星等或亮度来描述.两颗星的星等与亮度满足212152–lg Emm E =,其中星等为m 1的星的亮度为E 2(k =1,2).已知太阳的星等是–26.7,天狼星的星等是–1.45,则太阳与天狼星的亮度的比值为 A. 1010.1 B. 10.1C. lg10.1D. 10–10.1【答案】A 【解析】 【分析】由题意得到关于12,E E 的等式,结合对数的运算法则可得亮度的比值.【详解】两颗星的星等与亮度满足12125lg 2E m m E -=,令211.45,26.7m m =-=-, ()10.111212222lg( 1.4526.7)10.1,1055E E m m E E =⋅-=-+==. 故选:A【点睛】本题以天文学问题为背景,考查考生的数学应用意识、信息处理能力、阅读理解能力以及指数对数运算.8.如图,A ,B 是半径为2的圆周上的定点,P 为圆周上的动点,APB ∠是锐角,大小为β.图中阴影区域的面积的最大值为A. 4β+4cos βB. 4β+4sin βC. 2β+2cos βD. 2β+2sin β【答案】B 【解析】 【分析】阴影部分的面积S =S △PAB + S 1- S △OAB .其中S 1、 S △OAB 的值为定值.当且仅当S △PAB 取最大值时阴影部分的面积S 取最大值.【详解】观察图象可知,当P 为弧AB 的中点时,阴影部分的面积S 取最大值,此时∠BOP =∠AOP =π-β, 面积S 的最大值为βr 2+S △POB + S △POA =4β+12|OP ||OB |s in (π-β)+12|OP ||OA |Sin (π-β)=4β+2Sin β+2Sin β=4β+4 Sin β,故选B . 【点睛】本题主要考查阅读理解能力、数学应用意识、数形结合思想及数学式子变形和运算求解能力,有一定的难度.关键观察分析区域面积最大时的状态,并将面积用边角等表示.第二部分(非选择题 共110分)二、填空题共6小题,每小题5分,共30分。

2019年北京卷文科数学高考真题_4386

2019年北京卷文科数学高考真题_4386

2019 年一般高等学校招生全国一致考试数学(文)(北京卷)本试卷共 5 页, 150 分。

考试时长 120 分钟。

考生务势必答案答在答题卡上,在试卷上作答无效。

考试结束后,将本试卷和答题卡一并交回。

第一部分(选择题共 40分)一、选择题共8 小题,每题 5 分,共 40 分。

在每题列出的四个选项中,选出切合题目要求的一项。

(1)已知会合 A={ x|–1< x<2} , B={ x|x>1} ,则 A∪ B=( A )(–1, 1)(B)(1,2)(C)(–1,+∞)(D)(1,+∞)( 2)已知复数z=2+i ,则z z(A)3 ( B) 5 (C)3 (D) 5( 3)以下函数中,在区间(0, + )上单一递加的是1x y log 1 x 1 ( A )y x2 ( B) y= 2 ( C) 2 ( D)yx( 4)履行以下图的程序框图,输出的s 值为(A)1 (B)2 (C)3 (D) 4( 5)已知双曲线x2 y2 1(a>0)的离心率是5,则 a= a2(A) 6 (B)4 (C)21 ( D)2( 6)设函数f( x) =cosx+bsinx( b 为常数),则“b=0 ”是“ f( x)为偶函数”的( A )充足而不用要条件( B)必需而不充足条件( C)充足必需条件( D)既不充足也不用要条件( 7)在天文学中,天体的明暗程度能够用星等或亮度来描绘.两颗星的星等与亮度知足–5lg E1,m2 m1E22 此中星等为 m k的星的亮度为 E k(k=1,2).已知太阳的星等是–,天狼星的星等是–,则太阳与天狼星的亮度的比值为( A )( B)( C)( D)1010.1( 8)如图, A,B 是半径为 2 的圆周上的定点,P 为圆周上的动点,APB 是锐角,大小为β.图中暗影区域的面积的最大值为( A ) 4β+4cosβ( B) 4β+4sinβ( C) 2β+2cosβ( D) 2β+2sin β第二部分(非选择题共 110 分)二、填空题共 6 小题,每题 5 分,共30 分。

2019年普通高等学校招生全国统一考试文科数学(北京卷)(含解析)

2019年普通高等学校招生全国统一考试文科数学(北京卷)(含解析)

六大注意1 考生需自己粘贴答题卡的条形码考生需在监考老师的指导下,自己贴本人的试卷条形码。

粘贴前,注意核对一下条形码上的姓名、考生号、考场号和座位号是否有误,如果有误,立即举手报告。

如果无误,请将条形码粘贴在答题卡的对应位置。

万一粘贴不理想,也不要撕下来重贴。

只要条形码信息无误,正确填写了本人的考生号、考场号及座位号,评卷分数不受影响。

2 拿到试卷后先检查有无缺张、漏印等拿到试卷后先检查试卷有无缺张、漏印、破损或字迹不清等情况,尽管这种可能性非常小。

如果有,及时举手报告;如无异常情况,请用签字笔在试卷的相应位置写上姓名、考生号、考场号、座位号。

写好后,放下笔,等开考信号发出后再答题,如提前抢答,将按违纪处理。

3 注意保持答题卡的平整填涂答题卡时,要注意保持答题卡的平整,不要折叠、弄脏或撕破,以免影响机器评阅。

若在考试时无意中污损答题卡确需换卡的,及时报告监考老师用备用卡解决,但耽误时间由本人负责。

不管是哪种情况需启用新答题卡,新答题卡都不再粘贴条形码,但要在新答题卡上填涂姓名、考生号、考场号和座位号。

4 不能提前交卷离场按照规定,在考试结束前,不允许考生交卷离场。

如考生确因患病等原因无法坚持到考试结束,由监考老师报告主考,由主考根据情况按有关规定处理。

5 不要把文具带出考场考试结束,停止答题,把试卷整理好。

然后将答题卡放在最上面,接着是试卷、草稿纸。

不得把答题卡、试卷、草稿纸带出考场,试卷全部收齐后才能离场。

请把文具整理好,放在座次标签旁以便后面考试使用,不得把文具带走。

6 外语听力有试听环外语考试14:40入场完毕,听力采用CD 播放。

14:50开始听力试听,试听结束时,会有“试听到此结束”的提示。

听力部分考试结束时,将会有“听力部分到此结束”的提示。

听力部分结束后,考生可以开始做其他部分试题。

2019年普通高等学校招生全国统一考试(北京卷)文科数学一、选择题共8小题,每小题5分,共40分.1、(2019•北京)已知集合A={x|-1<x<2},B={x|x>1},则AUB=( ) A. (-1,1) B. (1,2) C. (-1,+∞) D. (1,+∞) 【答案】C【解析】【解答】因为{}{}12,1,A x x B x x =-<<=> 所以{}1,A B x x =>-U 故答案为:C.【分析】本题考查了集合的并运算,根据集合A 和B 直接求出交集即可. 2、(2019•北京)已知复数z=2+i ,则·z z =( )【答案】D【解析】【解答】根据2z i =+,得2z i =-, 所以(2)(2)415z z i i ⋅=+⋅-=+=, 故答案为:D.【分析】根据z 得到其共轭,结合复数的乘法运算即可求解.3、(2019•北京)下列函数中,在区间(0,+∞)上单调递增的是( )A. 12y x = B. y=2-xC.12log y x = D. 1y x= 【答案】A【解析】【解答】A :12y x =为幂函数,102α=>,所以该函数在()0,+∞上单调递增; B:指数函数xx1y 22-⎛⎫== ⎪⎝⎭,其底数大于0小于1,故在()0,+∞上单调递减; C :对数函数12log y x =,其底数大于0小于1,故在()0,+∞上单调递减; D :反比例函数1y x=,其k=1>0,故在()0,+∞上单调递减; 故答案为:A.【分析】根据幂函数、指数函数、对数函数及反比例函数的单调性逐一判断即可. 4、(2019•北京)执行如图所示的程序框图,输出的s 值为( )A. 1B. 2C. 3D. 4 【答案】B【解析】【解答】k=1,s=1, s=2212312⨯=⨯-,k<3,故执行循环体k=1+1=2,2222322s ⨯==⨯-; 此时k=2<3,故继续执行循环体k=3,2222322s ⨯==⨯-,此时k=3,结束循环,输出s=2. 故答案为:B.【分析】根据程序框图,依次执行循环体,直到k=3时结束循环,输出s=2即可.5、(2019•北京)已知双曲线2221x y a-=(a>0a=( )B. 4C. 2D. 12【答案】D【解析】【解答】双曲线的离心率c e a ===, 故2251,a a =+解得211,42a a ==, 故答案为:D.【分析】根据双曲线的标准方程,表示离心率,解方程,即可求出a 的值.6、(2019•北京)设函数f (x )=cosx+bsinx (b 为常数),则“b=0”是“f (x )为偶函数”的( )A. 充分而不必要条件B. 必要而不充分条件C. 充分必要条件D. 既不充分也不必要条件 【答案】C【解析】【解答】若b=0,则()cos f x x =为偶函数, 若()cos sin f x x b x =+为偶函数,则()()()cos sin cos sin ()cos sin f x x b x x b x f x x b x -=-+-=-==+, 所以2sin 0,b x =B=0,综上,b=0是f (x )为偶函数的充要条件. 故答案为:C.【分析】根据偶函数的定义,结合正弦函数和余弦函数的单调性,即可确定充分、必要性. 7、(2019•北京)在天文学中,天体的明暗程度可以用星等或亮度来描述.两颗星的星等与亮度满足m 1-m 2=125lg 2E E ,其中星等为m k 的星的亮度为E k (k=1,2).己知太阳的星等是-26.7,天狼星的星等是-1.45,则太阳与天狼星的亮度的比值为( )A. 1010.1B. 10.1C. lg10.1D. 10-10.1 【答案】A【解析】【解答】解:设太阳的亮度为1E ,天狼星的亮度为2E , 根据题意1251.45(26.7)lg 2E E ---=, 故122g25.2510.15E l E =⨯=, 所以10.11210E E =;故答案为:A.【分析】根据已知,结合指数式与对数式的转化即可求出相应的比值.8、(2019•北京)如图,A ,B 是半径为2的圆周上的定点,P 为圆周上的动点,∠APB 是锐角,大小为β.图中阴影区域的面积的最大值为( )A. 4β+4cos βB. 4β+4sin βC. 2β+2cos βD. 2β+2sin β 【答案】B【解析】【解答】设圆心为O ,根据,APB β∠=可知AB 所对圆心角2,AOB β∠=故扇形AOB 的面积为22242πββπ⋅⋅=,由题意,要使阴影部分面积最大,则P 到AB 的距离最大,此时PO 与AB 垂直,故阴影部分面积最大值4,AOB PAB S S S β=-+V V 而2sin 22cos 4sin cos 2AOB S ββββ⨯⨯==V ,()2sin 222cos 4sin 4sin cos 2PAB S βββββ⨯⨯+==+V ,故阴影部分面积最大值444sin ,AOB PAB S S S βββ=-+=+V V 故答案为:B.【分析】根据圆周角得到圆心角,由题意,要使阴影部分面积最大,则P 到AB 的距离最大,此时PO 与AB 垂直,结合三角函数的定义,表示相应三角形的面积,即可求出阴影部分面积的最大值. 二、填空题共6小题,每小题5分,共30分,9、(2019•北京)已知向量a r =(-4.3),b r =(6,m ),且a b ⊥r r,则m= . 【答案】8【解析】【解答】根据两向量垂直,则数量积为0,得()4630,m -⨯+= 解得m=8. 故答案为8.【分析】根据两向量垂直,数量积为0,结合平面向量的数量积运算即可求解.10、(2019•北京)若x ,y 满足214310x y x y ≤⎧⎪≥-⎨⎪-+≥⎩.则y-x 的最小值为 ,最大值为 . 【答案】-3|1【解析】【解答】作出可行域及目标函数相应的直线,平移该直线,可知在经过(2,-1)时取最小值-3,过(2,3)时取最大值1. 故答案为-3;1.【分析】作出可行域和目标函数相应的直线,平移该直线,即可求出相应的最大值和最小值. 11、(2019•北京)设抛物线y 2=4x 的焦点为F ,准线为l.则以F 为圆心,且与l 相切的圆的方程为 .【答案】()2214x y -+=【解析】【解答】由题意,抛物线的焦点坐标F (1,0),准线方程:x=-1, 焦点F 到准线l 的距离为2, 故圆心为(1,0),半径为2, 所以圆的方程为()2214x y -+=;故答案为()2214x y -+=.【分析】根据抛物线方程求出焦点坐标和准线方程,即可得到圆心和半径,写出圆的标准方程即可. 12、(2019•北京)某几何体是由一个正方体去掉一个四棱柱所得,其三视图如图所示.如果网格纸上小正方形的边长为1,那么该几何体的体积为 .【答案】40【解析】【解答】根据三视图,可知正方体体积31464V ==,去掉的四棱柱体积()22424242V +⨯=⨯=,故该几何体的体积V=64-24=40. 故答案为40.【分析】根据三视图确定几何体的结构特征,求出相应的体积即可.13、(2019•北京)已知l ,m 是平面α外的两条不同直线.给出下列三个论断: ①l ⊥m ;②m ∥α;③l ⊥α.以其中的两个论断作为条件,余下的一个论断作为结论,写出一个正确的命题: . 【答案】若②③,则①【解析】【解答】若l α⊥,则l 垂直于α内任意一条直线, 若m αP ,则l m ⊥; 故答案为若②③,则①.14、(2019•北京)李明自主创业,在网上经营一家水果店,销售的水果中有草莓、京白梨、西瓜、桃,价格依次为60元/盒、65元/盒、80元/盒、90元/盒.为增加销量,李明对这四种水果进行促销:一次购买水果的总价达到120元,顾客就少付x 元.每笔订单顾客网上支付成功后,李明会得到支付款的80%.①当x=10时,顾客一次购买草莓和西瓜各1盒,需要支付 元;②在促销活动中,为保证李明每笔订单得到的金额均不低于促销前总价的七折,则x 的最大值为 . 【答案】130|15【解析】【解答】①草莓和西瓜各一盒,总价60+80=140元, 140>120,故顾客可少付10元,此时需要支付140-10=130元;②要保证每笔订单得到的金额均不低于促销前总价的七折,则最低消费满足条件即可, 根据题意,买草莓两盒,消费最低,此时消费120元, 故实际付款(120-x )元,此时李明得到()12080%x -⨯, 故()12080%1200.7x -⨯≥⨯,解得15x ≤; 故最大值为15. 故答案为①130;②15.【分析】①根据已知,直接计算即可;②根据题意,要保证每笔订单得到的金额均不低于促销前总价的七折,则最低消费满足条件即可,因此选最低消费求解,即可求出相应的最大值. 三、解答题共6小题,共80分.15、(2019•北京)在△ABC 中,a=3,b-c=2,cosB=-12. (I )求b ,c 的值:(II )求sin (B+C )的值.【答案】解:(I )根据余弦定理2222cos b a c ac B =+-, 故()22129232c c c ⎛⎫+=+-⨯⨯-⎪⎝⎭, 解得c=5,B=7;(II )根据1cos 2B =-,得sin B =,根据正弦定理,sin sin b cB C=,5sin C=,解得sin C =,所以11cos 14C =,所以()111sin sin cos cos sin 21421414B c BC B C ⎛⎫+=+=+-⨯=⎪⎝⎭【解析】【分析】(I )根据余弦定理,解方程即可求出c 和b ;(II )根据同角三角函数的平方关系,求出sinB ,结合正弦定理,求出sinC 和cosC ,即可依据两角和的正弦公式,求出sin (B+C ).16、(2019•北京)设{a n }是等差数列,a 1=-10,且a 2+10,a 3+8,a 4+6成等比数列.(I )求{a n }的通项公式;(Ⅱ)记{a n }的前n 项和为S n ,求S n 的最小值. 【答案】解:(I )根据三者成等比数列,可知()()()23248106a a a +=++,故()()()2102810101036d d d -++=-++-++, 解得d=2,故()1021212n a n n =-+-=-; (Ⅱ)由(I )知()210212112n n n S n n -+-⋅==-,该二次函数开口向上,对称轴为n=5.5, 故n=5或6时,n S 取最小值-30.【解析】【分析】(I )根据等比中项,结合等差数列的通项公式,求出d ,即可求出n a ;(Ⅱ)由(1),求出n S ,结合二次函数的性质,即可求出相应的最小值.17、(2019•北京)改革开放以来,人们的支付方式发生了巨大转变.近年来,移动支付已成为主要支付方式之一.为了解某校学生上个月A ,B 两种移动支付方式的使用情况,从全校所有的1000名学生中随机抽取了100人,发现样本中A ,B 两种支付方式都不使用的有5人,样本中仅使用A 和仅使用B 的学生的支付金额分布情况如下:(II )从样本仅使用B 的学生中随机抽取1人,求该学生上个月支付金额大于2000元的概率; (III )已知上个月样本学生的支付方式在本月没有变化.现从样本仅使用B 的学生中,随机抽查1人,发现他本月的支付金额大于2000元,结合(II )的结果,能否认为样本仅使用B 的学生中本月支付金额大于2000元的人数有变化?说明理由.【答案】解:(I )据估计,100人中上个月A 、B 两种支付方式都使用的人数为100-5-27-3-24-1=40人,故该校学生中上个月A 、B 两种支付方式都使用的人数为400人;(II )该校学生上个月仅使用B 支付的共25人,其中支付金额大于2000的有一人,故概率为125; (III )不能确定人数有变化,因为在抽取样本时,每个个体被抽到法机会是均等的,也许抽取的样本恰为上个月支付抄过2000的个体,因此不能从抽取的一个个体来确定本月的情况有变化. 【解析】【分析】(I )根据题意,结合支付方式的分类直接计算,再根据样本估计总体即可; (II )根据古典概型,求出基本事件总数和符合题意的基本事件数,即可求出相应的概率; (III )从统计的角度,对事件发生的不确定性进行分析即可.18、(2019•北京)如图,在四棱锥P-ABCD 中,PA ⊥平面ABCD ,底面ABCD 为菱形,E 为CD 的中点.(Ⅰ)求证:BD ⊥平面PAC ;(Ⅱ)若∠ABC=60°,求证:平面PAB ⊥平面PAE ;(Ⅲ)棱PB 上是否存在点F ,使得CF ∥平面PAE ?说明理由. 【答案】(Ⅰ)证明:因为ABCD 为菱形,所以BD AC ⊥, 又因为PA ABCD ⊥平面,所以BD PA ⊥,而PA AC A =I , 故BD PAC ⊥平面;(Ⅱ)因为60ABC ∠=︒,所以60ADC ∠=︒,故ADC V 为等边三角形, 而E 为CD 的中点,故AE CD ⊥,所以AE AB ⊥, 又因为PA ABCD ⊥平面,所以AB PA ⊥, 因为PA AE A =I ,所以AB PAE ⊥平面,又因为AB PAB ⊂平面,所以PAB PAE ⊥平面平面; (Ⅲ)存在这样的F ,当F 为PB 的中点时,CF PAE P 平面; 取AB 的中点G ,连接CF 、CG 和FG ,因为G 为AB 中点,所以AE 与GC 平行且相等,故四边形AGCE 为平行四边形,所以AE GC P ,故GC PAE P 平面 在三角形BAP 中,F 、G 分别为BP 、BA 的中点,所以FG PA P , 故FG PAE P 平面,因为GC 和FG 均在平面CFG 内,且GC FG G =I , 所以CGF PAE P 平面平面,故CF PAE P 平面.【解析】【分析】(Ⅰ)根据线面垂直的判定定理,证明直线与平面内两条相交直线垂直即可; (Ⅱ)根据面面垂直的判定定理,证明直线与平面垂直,即可得到面面垂直;(Ⅲ)根据面面平行的判定定理,证明面面平行,即可说明两平面没有公共点,因此,一个平面内任意一条直线与另一平面均无公共点,即可说明线面平行.19、(2019•北京)已知椭圆C :22221x y a b+=的右焦点为(1.0),且经过点A (0,1).(I )求椭圆C 的方程;(II )设O 为原点,直线l :y=kx+t (t ≠±1)与椭圆C 交于两个不同点P ,Q ,直线AP 与x 轴交于点M ,直线AQ 与x 轴交于点N ,|OM|·|ON|=2,求证:直线l 经过定点. 【答案】解:(I )根据焦点为(1,0),可知c=1, 根据椭圆经过(0,1)可知b=1,故2222a b c =+=,所以椭圆的方程为2212x y +=; (II )设()()1122,,,P x y Q x y , 则直线111:1y AP y x x -=+,直线221:1y AQ y x x -=+, 解得1212,0,,011x x M N y y ⎛⎫⎛⎫⎪ ⎪--⎝⎭⎝⎭,故()1212121212111x x x x OM ON y y y y y y ⋅=⋅=---++, 将直线y=kx+t 与椭圆方程联立, 得()222124220k x ktx t +++-=,故2121222422,1212kt t x x x x k k --+==++,所以22221212228282,1212k t t k t k t y y y y k k+-++==++, 故()2121t OM ON t +⋅==-,解得t=0,故直线方程为y=kx ,一定经过原点(0,0).【解析】【分析】(I )根据焦点坐标和A 点坐标,求出a 和b ,即可得到椭圆的标准方程; (II )设出P 和Q 的坐标,表示出M 和N 的坐标,将直线方程与椭圆方程联立,结合韦达定理,表示OM 与ON ,根据2OM ON ⋅=,解得t=0,即可确定直线恒过定点(0,0). 20、(2019•北京)已知函数f (x )=14x 3-x 2+x. (I )求曲线y=f (x )的斜率为1的切线方程; (II )当x ∈[-2,4]时,求证:x-6≤f (x )≤x ;(Ⅲ)设F (x )=|f (x )-(x+a )|(a ∈R ),记F (x )在区间[-2,4]上的最大值为M (a ).当M (a )最小时,求a 的值. 【答案】解(I )()23'214f x x x =-+,令()'1f x =, 则1280,3x x ==,因为()8800,327f f ⎛⎫==⎪⎝⎭, 故斜率为1的直线为y=x 或88273y x -=-, 整理得,斜率为1的直线方程为x-y=0或64027x y --=; (II )构造函数g (x )=f (x )-x+6, 则()23'24g x x x =-,令()'0g x =,则1280,3x x ==, 故g (x )在[-2,0]上单调递增,在80,3⎡⎤⎢⎥⎣⎦上单调递减,在8,43⎡⎤⎢⎥⎣⎦上单调递增,故g (x )的最小值为g (-2)或83g ⎛⎫ ⎪⎝⎭,而g (-2)=0,8980327g ⎛⎫=> ⎪⎝⎭,故()min (2)0g x g =-=⎡⎤⎣⎦, 所以()0g x ≥,故在[-2,4]上,()6x f x -≤; 构造函数h (x )=f (x )-x , 则()23'24h x x x =-,令()'0h x =,则1280,3x x ==,故h (x )在[-2,0]上单调递增,在80,3⎡⎤⎢⎥⎣⎦上单调递减,在8,43⎡⎤⎢⎥⎣⎦上单调递增,故h (x )的最大值为h (0)或h (4),因为h (0)=0,h (4)=0,所以()0h x ≤,故在[-2,4]上,()f x x ≤, 综上在[-2,4]上,()6x f x x -≤≤; (Ⅲ)令()()()3214x f x x a x x a ϕ=-+=--, 则()23'24x x x ϕ=-,令()'0x ϕ=,则1280,3x x ==, 故ϕ(x )在[-2,0]上单调递增,在80,3⎡⎤⎢⎥⎣⎦上单调递减,在8,43⎡⎤⎢⎥⎣⎦上单调递增,所以ϕ(x )的最小值为ϕ(-2)=-6-a 或864327a ϕ⎛⎫=-- ⎪⎝⎭, 最大值为ϕ(0)=-a 或ϕ(4)=12-a , 故()()F x x ϕ=其最大值()12,36,3a a M a a a -≤⎧=⎨+>⎩,故当a=3时,M (a )有最小值9.【解析】【分析】(I )求导数,根据导数的几何意义,结合斜率为1,求出切点坐标,利用点斜式,即可求出相应的切线方程;(II )构造函数,要证()6x f x x -≤≤,只需要证在[-2,4]上6()0f x x g x -≥+=()和()()0h x f x x =-≤即可,求导数,利用导数确定函数单调性,求出函数极值即可证明;(Ⅲ)求导数,利用导数确定函数单调性,求出函数的最值,确定M (a )的表达式,即可求出M (a )取最小值时相应的a 值.。

2019年普通高等学校招生全国统一考试(北京卷文科) 数学试题及答案(教师版)

2019年普通高等学校招生全国统一考试(北京卷文科) 数学试题及答案(教师版)

2019年普通高等学校招生全国统一考试(北京卷文科)数学试题本试卷共5页,150分。

考试时长120分钟。

考生务必将答案答在答题卡上,在试卷上作答无效。

考试结束后,将本试卷和答题卡一并交回。

第一部分(选择题 共40分)一、选择题(共8小题,每小题5分,共40分。

在每小题列出的四个选项中,选出符合题目要求的一项。

)1.已知集合A ={x |–1<x <2},B ={x |x >1},则A ∪B =(C )A.(–1,1)B.(1,2)C.(–1,+∞)D.(1,+∞)2.已知复数z =2+i ,则z z ⋅=(D )C.3D.53.下列函数中,在区间(0,+∞)上单调递增的是(A )A.12y x =B.y=2x -C.12log y x= D.1y x=4.执行如图所示的程序框图,输出的s 值为(B )A.1B.2C.3D.45.已知双曲线2221x y a-=(a >0a =(D )A.6B.4C.2D.126.设函数f (x )=cos x +b sin x (b 为常数),则“b =0”是“f (x )为偶函数”的(C )A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件7.在天文学中,天体的明暗程度可以用星等或亮度来描述.两颗星的星等与亮度满足212152–lg E m m E =,其中星等为k m 的星的亮度为k E (k =1,2).已知太阳的星等是–26.7,天狼星的星等是–1.45,则太阳与天狼星的亮度的比值为(A )A.1010.1B.10.1C.lg10.1D.10.110-8.如图,A ,B 是半径为2的圆周上的定点,P 为圆周上的动点,APB ∠是锐角,大小为β.图中阴影区域的面积的最大值为(B )A.4β+4cosβB.4β+4sinβC.2β+2cosβD.2β+2sinβ第二部分(非选择题 共110分)二、填空题(共6小题,每小题5分,共30分。

2019年北京卷数学(文)高考真题(选择题和填空题)详解版

2019年北京卷数学(文)高考真题(选择题和填空题)详解版

绝密★本科目考试启用前2019年普通高等学校招生全国统一考试数学(文)(北京卷)本试卷共5页,150分。

考试时长120分钟。

考生务必将答案答在答题卡上,在试卷上作答无效。

考试结束后,将本试卷和答题卡一并交回。

第一部分(选择题共40分)一、选择题共8小题,每小题5分,共40分。

在每小题列出的四个选项中,选出符合题目要求的一项。

(1)已知集合A={x|–1<x<2},B={x|x>1},则A∪B=(A)(–1,1)(B)(1,2)(C)(–1,+∞)(D)(1,+∞)考点:考查集合的基本性质概念:解析:此题考查集合的基本性质。

将集合A、集合B表示在数轴(如下图所示)上。

数轴那么{A∪B=x|x>−1}答案:C(2)已知复数z=2+i,则z z⋅=(A(B(C)3 (D)5考点:复数的基本概念及其四则运算概念:①i2=−1;②两个实部相等,虚部互为相反数的复数互为共轭复数解析:因为z=2+i所以 z̅=2+i所以z ⋅⎺z = (2+i) (2-i)=22-i2=4-(-1)=5,答案:D(3)下列函数中,在区间(0,+∞)上单调递增的是(A)12y x=(B)y=2x-(C)12logy x=(D)1yx=考点:考查函数的概念与性质概念:解析:A为幂函数y=x a(a>0,且a≠1),在区间(0,+ ∞)单调递增。

B为指数函数y=a x(0<a<1),在区间(0,+ ∞)单调递减。

C为对数函数y=loga x(0<a<1),在区间(0,+ ∞)单调递减。

D为典型的反比例函数,在区间(0,+ ∞)单调递减。

答案:A(4)执行如图所示的程序框图,输出的s 值为(A )1 (B )2 (C )3 (D )4考点:考查程序框图的应用,考查学生逻辑推理能力、运算求解能力 解析:解决此类问题最常用的方法就是代入求值法。

当k =1,s =1时,s =2×123×1−2=2,不满足k ≥3,进入循环; 当k =2,s =2时,s =2×223×2−2=2,不满足k ≥3,进入循环;当k =3,s =2时,s =2×223×2−2=2, 满足k ≥3,退出循环; 输出s =2; 答案:B(5)已知双曲线2221x y a-=(a >0a =(A(B )4(C )2(D )12考点: 考查双曲线的性质 概念:双曲线x 2a2−y 2b 2=1(a >0,b >0)的离心率为e =c a=√a 2+b 2a解析:根据题意可知e =√a 2+12a=√5,推出a =12答案:D(6)设函数f (x )=cos x +b sin x (b 为常数),则“b =0”是“f (x )为偶函数”的 (A )充分而不必要条件 (B )必要而不充分条件 (C )充分必要条件(D )既不充分也不必要条件考点: 考查函数的性质 概念:解析:当b =0时,f (x )=cosx ,则f(x)是偶函数。

2019年北京市高考数学试卷(文科)(解析版)

2019年北京市高考数学试卷(文科)(解析版)

2019年北京市高考数学试卷(文科)一、选择题(本大题共8小题,共40.0分)1. 已知集合A ={x |-1<x <2},B ={x |x >1},则A ∪B =( )A. (−1,1)B. (1,2)C. (−1,+∞)D. (1,+∞) 2. 已知复数z =2+i ,则z •z −=( )A. √3B. √5C. 3D. 5 3. 下列函数中,在区间(0,+∞)上单调递增的是( )A. y =x 12B. y =2−xC. y =log 12x D. y =1x4. 执行如图所示的程序框图,输出的s 值为( )A. 1B. 2C. 3D. 4 5. 已知双曲线x 2a 2-y 2=1(a >0)的离心率是√5,则a =( )A. √6B. 4C. 2D. 126. 设函数f (x )=cos x +b sin x (b 为常数),则“b =0”是“f (x )为偶函数”的( )A. 充分而不必要条件B. 必要而不充分条件C. 充分必要条件D. 既不充分也不必要条件7. 在天文学中,天体的明暗程度可以用星等或亮度来描述.两颗星的星等与亮度满足m 2-m 1=52lg E 1E 2,其中星等为m k 的星的亮度为E k (k =1,2).已知太阳的星等是-26.7,天狼星的星等是-1.45,则太阳与天狼星的亮度的比值为( )A. 1010.1B. 10.1C. lg 10.1D. 10−10.18. 如图,A ,B 是半径为2的圆周上的定点,P 为圆周上的动点,∠APB 是锐角,大小为β,图中阴影区域的面积的最大值为( ) A. 4β+4cos β B. 4β+4sin β C. 2β+2cos β D. 2β+2sin β二、填空题(本大题共6小题,共30.0分)9. 已知向量a ⃗ =(-4,3),b ⃗ =(6,m ),且a ⃗ ⊥b ⃗ ,则m =______.10. 若x ,y 满足{x ≤2,y ≥−1,4x −3y +1≥0,则y -x 的最小值为______,最大值为______.11. 设抛物线y 2=4x 的焦点为F ,准线为l ,则以F 为圆心,且与l 相切的圆的方程为______.12. 某几何体是由一个正方体去掉一个四棱柱所得,其三视图如图所示.如果网格纸上小正方形的边长为l ,那么该几何体的体积为______.13. 已知l ,m 是平面α外的两条不同直线.给出下列三个论断:①l ⊥m ;②m ∥α;③l ⊥α.以其中的两个论断作为条件,余下的一个论断作为结论,写出一个正确的命题:______.14. 李明自主创业,在网上经营一家水果店,销售的水果中有草莓、京白梨、西瓜、桃,价格依次为60元/盒、65元/盒、80元/盒、90元/盒.为增加销量,李明对这四种水果进行促销:一次购买水果的总价达到120元,顾客就少付x 元.每笔订单顾客网上支付成功后,李明会得到支付款的80%. ①当x =10时,顾客一次购买草莓和西瓜各1盒,需要支付______元; ②在促销活动中,为保证李明每笔订单得到的金额均不低于促销前总价的七折,则x 的最大值为______. 三、解答题(本大题共6小题,共80.0分) 15. 在△ABC 中,a =3,b -c =2,cos B =-12.(Ⅰ)求b ,c 的值;(Ⅱ)求sin (B +C )的值.16. 设{a n }是等差数列,a 1=-10,且a 2+10,a 3+8,a 4+6成等比数列.(Ⅰ)求{a n }的通项公式;(Ⅱ)记{a n }的前n 项和为S n ,求S n 的最小值.17. 改革开放以来,人们的支付方式发生了巨大转变.近年来,移动支付已成为主要支付方式之一.为了解某校学生上个月A ,B 两种移动支付方式的使用情况,从全校所有的1000名学生中随机抽取了100人,发现样本中A ,B 两种支付方式都不使用的有5人,样本中仅使用A 和仅使用B 的学生的支付金额分布情况如下: 支付金额 支付方式 不大于2000元 大于2000元 仅使用A 27人 3人 仅使用B24人1人(Ⅰ)估计该校学生中上个月A ,B 两种支付方式都使用的人数;(Ⅱ)从样本仅使用B 的学生中随机抽取1人,求该学生上个月支付金额大于2000元的概率;(Ⅲ)已知上个月样本学生的支付方式在本月没有变化.现从样本仅使用B 的学生中随机抽查1人,发现他本月的支付金额大于2000元.结合(Ⅱ)的结果,能否认为样本仅使用B 的学生中本月支付金额大于2000元的人数有变化?说明理由.18.如图,在四棱锥P-ABCD中,PA⊥平面ABCD,底面ABCD为菱形,E为CD的中点.(Ⅰ)求证:BD⊥平面PAC;(Ⅱ)若∠ABC=60°,求证:平面PAB⊥平面PAE;(Ⅲ)棱PB上是否存在点F,使得CF∥平面PAE?说明理由.19.已知椭圆C:x2a2+y2b2=1的右焦点为(1,0),且经过点A(0,1).(Ⅰ)求椭圆C的方程;(Ⅱ)设O为原点,直线l:y=kx+t(t≠±1)与椭圆C交于两个不同点P、Q,直线AP与x轴交于点M,直线AQ与x轴交于点N.若|OM|•|ON|=2,求证:直线l经过定点.20.已知函数f(x)=14x3-x2+x.(Ⅰ)求曲线y=f(x)的斜率为l的切线方程;(Ⅱ)当x∈[-2,4]时,求证:x-6≤f(x)≤x;(Ⅲ)设F(x)=|f(x)-(x+a)|(a∈R),记F(x)在区间[-2,4]上的最大值为M(a).当M(a)最小时,求a的值.答案和解析1.【答案】C【解析】解:∵A={x|-1<x<2},B={x|x>1},∴A∪B={x|-1<x<2}∪{x|x>1}=(-1,+∞).故选:C.直接由并集运算得答案.本题考查并集及其运算,是基础的计算题.2.【答案】D【解析】解:∵z=2+i,∴z•=.故选:D.直接由求解.本题考查复数及其运算性质,是基础的计算题.3.【答案】A【解析】解:在(0,+∞)上单调递增,和在(0,+∞)上都是减函数.故选:A.判断每个函数在(0,+∞)上的单调性即可.考查幂函数、指数函数、对数函数和反比例函数的单调性.4.【答案】B【解析】解:模拟程序的运行,可得k=1,s=1s=2不满足条件k≥3,执行循环体,k=2,s=2不满足条件k≥3,执行循环体,k=3,s=2此时,满足条件k≥3,退出循环,输出s的值为2.故选:B.由已知中的程序语句可知:该程序的功能是利用循环结构计算并输出变量s的值,模拟程序的运行过程,分析循环中各变量值的变化情况,可得答案.本题考查了程序框图的应用问题,解题时应模拟程序框图的运行过程,以便得出正确的结论,是基础题.5.【答案】D【解析】解:由双曲线-y2=1(a>0),得b2=1,又e=,得,即,解得,a=.故选:D.由双曲线方程求得b2,再由双曲线的离心率及隐含条件a2+b2=c2联立求得a值.本题考查双曲线的简单性质,考查计算能力,是基础题.6.【答案】C【解析】解:设函数f(x)=cosx+bsinx(b为常数),则“b=0”⇒“f(x)为偶函数”,“f(x)为偶函数”⇒“b=0”,∴函数f(x)=cosx+bsinx(b为常数),则“b=0”是“f(x)为偶函数”的充分必要条件.故选:C.“b=0”⇒“f(x)为偶函数”,“f(x)为偶函数”⇒“b=0”,由此能求出结果.本题考查命题真假的判断,考查函数的奇偶性等基础知识,考查推理能力与计算能力,属于基础题.7.【答案】A【解析】解:设太阳的星等是m1=-26.7,天狼星的星等是m2=-1.45,由题意可得:,∴,则.故选:A.把已知熟记代入m2-m1=lg,化简后利用对数的运算性质求解.本题考查对数的运算性质,是基础的计算题.8.【答案】B【解析】解:由题意可得∠AOB=2∠APB=2β,要求阴影区域的面积的最大值,即为直线QO⊥AB,即有QO=2,Q到线段AB的距离为2+2cosβ,AB=2•2sinβ=4sinβ,扇形AOB的面积为•2β•4=4β,△ABQ的面积为(2+2cosβ)•4sinβ=4sinβ+4sinβcosβ=4sinβ+2sin2β,S△AOQ+S△BOQ=4sinβ+2sin2β-•2•2sin2β=4sinβ,即有阴影区域的面积的最大值为4β+4sinβ.故选:B.由题意可得∠AOB=2∠APB=2β,要求阴影区域的面积的最大值,即为直线QO⊥AB,运用扇形面积公式和三角形的面积公式,计算可得所求最大值.本题考查圆的扇形面积公式和三角函数的恒等变换,考查化简运算能力,属于中档题.9.【答案】8【解析】解:由向量=(-4,3),=(6,m ),且⊥,得,∴m=8.故答案为:8.⊥则,代入,,解方程即可.本题考查了平面向量的数量积与垂直的关系,属基础题.10.【答案】-3 1【解析】解:由约束条件作出可行域如图,A(2,-1),B(2,3),令z=y-x,作出直线y=x,由图可知,平移直线y=x,当直线z=y-x过A时,z有最小值为-3,过B时,z有最大值1.故答案为:-3,1.由约束条件作出可行域,令z=y-x,作出直线y=x,平移直线得答案.本题考查简单的线性规划,考查数形结合的解题思想方法,是中档题.11.【答案】(x-1)2+y2=4【解析】解:如图,抛物线y2=4x的焦点为F(1,0),∵所求圆的圆心F,且与准线x=-1相切,∴圆的半径为2.则所求圆的方程为(x-1)2+y2=4.故答案为:(x-1)2+y2=4.由题意画出图形,求得圆的半径,则圆的方程可求.本题考查抛物线的简单性质,考查直线与圆位置关系的应用,考查数形结合的解题思想方法,是基础题.12.【答案】40【解析】解:由三视图还原原几何体如图,该几何体是把棱长为4的正方体去掉一个四棱柱,则该几何体的体积V=.故答案为:40.由三视图还原原几何体,然后利用一个长方体与一个棱柱的体积作和求解.本题考查由三视图求面积、体积,关键是由三视图还原原几何体,是中档题.13.【答案】若l⊥α,l⊥m,则m∥α【解析】解:由l,m是平面α外的两条不同直线,知:由线面平行的判定定理得:若l⊥α,l⊥m,则m∥α.故答案为:若l⊥α,l⊥m,则m∥α.由l,m是平面α外的两条不同直线,利用线面平行的判定定理得若l⊥α,l⊥m,则m∥α.本题考查满足条件的真命题的判断,考查空间中线线、线面、面面间的位置关系等基础知识,考查推理能力与计算能力,属于中档题.14.【答案】130 15【解析】解:①当x=10时,顾客一次购买草莓和西瓜各1盒,可得60+80=140(元),即有顾客需要支付140-10=130(元);②在促销活动中,设订单总金额为m元,可得(m-x)×80%≥m×70%,即有x≤,由题意可得m≥120,可得x≤=15,则x的最大值为15元.故答案为:130,15①由题意可得顾客一次购买的总金额,减去x,可得所求值;②在促销活动中,设订单总金额为m元,可得(m-x)×80%≥m×70%,解不等式,结合恒成立思想,可得x的最大值.本题考查不等式在实际问题的应用,考查化简运算能力,属于中档题.15.【答案】解:(1)∵a=3,b-c=2,cos B=-12.∴由余弦定理,得b2=a2+c2-2ac cos B=9+(b−2)2−2×3×(b−2)×(−12),∴b=7,∴c=b-2=5;(2)在△ABC中,∵cos B=-12,∴sin B=√32,由正弦定理有:asinA=bsinB,∴sin A=asinBb=3×√327=3√314,∴sin(B+C)=sin(π-A)=sin A=3√314.【解析】(1)利用余弦定理可得b2=a2+c2-2accosB,代入已知条件即可得到关于b的方程,解方程即可;(2)sin(B+C)=sin(-A)=sinA,根据正弦定理可求出sinA.本题考查了正弦定理余弦定理,属基础题.16.【答案】解:(Ⅰ)∵{a n}是等差数列,a1=-10,且a2+10,a3+8,a4+6成等比数列.∴(a3+8)2=(a2+10)(a4+6),∴(-2+2d)2=d(-4+3d),解得d=2,∴a n=a1+(n-1)d=-10+2n-2=2n-12.(Ⅱ)由a1=-10,d=2,得:S n=-10n +n(n−1)2×2=n2-11n=(n-112)2-1214,∴n=5或n=6时,S n取最小值-30.【解析】(Ⅰ)利用等差数列通项公式和等比数列的性质,列出方程求出d=2,由此能求出{a n}的通项公式.(Ⅱ)由a1=-10,d=2,得S n=-10n+=n2-11n=(n-)2-,由此能求出S n的最小值.本题考查数列的通项公式、前n项和的最小值的求法,考查等差数列、等比数列的性质等基础知识,考查推理能力与计算能力,属于基础题.17.【答案】解:(Ⅰ)由题意得:从全校所有的1000名学生中随机抽取的100人中,A,B两种支付方式都不使用的有5人,仅使用A的有30人,仅使用B的有25人,∴A,B两种支付方式都使用的人数有:100-5-30-25=40,∴估计该校学生中上个月A,B两种支付方式都使用的人数为:1000×40100=400人.(Ⅱ)从样本仅使用B的学生有25人,其中不大于2000元的有24人,大于2000元的有1人,从中随机抽取1人,基本事件总数n=25,该学生上个月支付金额大于2000元包含的基本事件个数m=1,∴该学生上个月支付金额大于2000元的概率p=mn =125.(Ⅲ)不能认为样本仅使用B的学生中本月支付金额大于2000元的人数有变化,理由如下:上个月样本学生的支付方式在本月没有变化.现从样本仅使用B的学生中随机抽查1人,发现他本月的支付金额大于2000元的概率为125,虽然概率较小,但发生的可能性为125.故不能认为样本仅使用B的学生中本月支付金额大于2000元的人数有变化.【解析】(Ⅰ)从全校所有的1000名学生中随机抽取的100人中,A,B两种支付方式都不使用的有5人,仅使用A的有30人,仅使用B的有25人,求出A,B两种支付方式都使用的人数有40人,由此能估计该校学生中上个月A,B两种支付方式都使用的人数.(Ⅱ)从样本仅使用B的学生有25人,其中不大于2000元的有24人,大于2000元的有1人,从中随机抽取1人,基本事件总数n=25,该学生上个月支付金额大于2000元包含的基本事件个数m=1,由此能求出该学生上个月支付金额大于2000元的概率.(Ⅲ)从样本仅使用B的学生中随机抽查1人,发现他本月的支付金额大于2000元的概率为,虽然概率较小,但发生的可能性为.不能认为样本仅使用B的学生中本月支付金额大于2000元的人数有变化.本题考查频数、概率的求法,考查频数分布表、概率等基础知识,考查推理能力与计算能力,属于基础题.18.【答案】证明:(Ⅰ)∵四棱锥P-ABCD中,PA⊥平面ABCD,底面ABCD为菱形,∴BD⊥PA,BD⊥AC,∵PA∩AC=A,PA、AC⊂平面PAC,∴BD⊥平面PAC.(Ⅱ)∵在四棱锥P-ABCD中,底面ABCD为菱形,∠ABC=60°,∴△ACD是等边三角形,∵E为CD的中点,∴AE⊥CD,∵AB∥CD,∴AB⊥AE,∵PA⊥平面ABCD,∴PA⊥AE,∵PA∩AB=A,PA、AB⊂平面PAB,∴AE⊥平面PAB,∵AE⊂平面PAE,∴平面PAB⊥平面PAE.解:(Ⅲ)棱PB上存在中点F,使得CF∥平面PAE.理由如下:分别取PB、PA的中点F、G,连接CF、FG、EG,在三角形PAB中,FG∥AB且FG=12AB,在菱形ABCD中,E为CD的中点,所以CE∥AB,且CE=12AB,所以CE∥FG,且CE=FG,即四边形CEGF为平行四边形,所以CF∥EG,又,,∴.【解析】(Ⅰ)推导出BD ⊥PA ,BD ⊥AC ,由此能证明BD ⊥平面PAC .(Ⅱ)推导出AB ⊥AE ,PA ⊥AE ,从而AE ⊥平面PAB ,由此能证明平面PAB ⊥平面PAE . (Ⅲ)棱PB 上存在中点F ,分别取PB 、PA 的中点F 、G,连接CF 、FG 、EG ,推导出四边形CEGF 为 平行四边形,所以,进而CF ∥平面PAE .本题考查线面垂直、面面垂直的证明,考查满足线面平行的点是否存在的判断与求法,考查空间中线线、线面、面面间的位置关系等基础知识,考查推理能力与计算能力,属于中档题.19.【答案】解:(Ⅰ)椭圆C :x 2a 2+y2b 2=1的右焦点为(1,0),且经过点A (0,1). 可得b =c =1,a =√b 2+c 2=√2, 则椭圆方程为x 22+y 2=1;(Ⅱ)证明:y =kx +t 与椭圆方程x 2+2y 2=2联立,可得(1+2k 2)x 2+4ktx +2t 2-2=0,设P (x 1,y 1),Q (x 2,y 2),△=16k 2t 2-4(1+2k 2)(2t 2-2)>0,x 1+x 2=-4kt1+2k 2,x 1x 2=2t 2−21+2k 2,AP 的方程为y =y 1−1x 1x +1,令y =0,可得y =x 11−y 1,即M (x 11−y 1,0);AQ 的方程为y =y 2−1x 2x +1,令y =0,可得y =x 21−y 2.即N (x 21−y 2,0).(1-y 1)(1-y 2)=1+y 1y 2-(y 1+y 2)=1+(kx 1+t )(kx 2+t )-(kx 1+kx 2+2t ) =(1+t 2-2t )+k 2•2t 2−21+2k2+(kt -k )•(-4kt 1+2k 2)=(t−1)21+2k 2,|OM |•|ON |=2,即为|x 11−y 1•x 21−y 2|=2,即有|t 2-1|=(t -1)2,由t ≠±1,解得t =0,满足△>0,即有直线l 方程为y =kx ,恒过原点(0,0). 【解析】(Ⅰ)由题意可得b=c=1,由a ,b ,c 的关系,可得a ,进而得到所求椭圆方程;(Ⅱ)y=kx+t 与椭圆方程x 2+2y 2=2联立,运用韦达定理,化简整理,结合直线恒过定点的求法,计算可得结论.本题考查椭圆的方程和运用,考查联立直线方程和椭圆方程,运用韦达定理,考查直线恒过定点的求法,考查化简整理的运算能力,属于中档题. 20.【答案】解:(Ⅰ)f ′(x )=34x 2−2x +1,由f ′(x )=1得x (x -83)=0, 得x 1=0,x 2=83. 又f (0)=0,f (83)=827, ∴y =x 和y −827=x −83, 即y =x 和y =x -6427;(Ⅱ)证明:欲证x -6≤f (x )≤x , 只需证-6≤f (x )-x ≤0,令g (x )=f (x )-x =14x 3−x 2,x ∈[-2,4], 则g ′(x )=34x 2−2x =34x(x −83),可知g ′(x )在[-2,0]为正,在(0,83)为负,在[83,4]为正, ∴g (x )在[-2,0]递增,在[0,83]递减,在[83,4]递增, 又g (-2)=-6,g (0)=0,g (83)=-6427>-6,g (4)=0, ∴-6≤g (x )≤0, ∴x -6≤f (x )≤x ;(Ⅲ)由(Ⅱ)可得, F (x )=|f (x )-(x +a )| =|f (x )-x -a | =|g (x )-a |∵在[-2,4]上,-6≤g (x )≤0, 令t =g (x ),h (t )=|t -a |,则问题转化为当t ∈[-6,0]时,h (t )的最大值M (a )的问题了,①当a≤-3时,M(a)=h(0)=|a|=-a,此时-a≥3,当a=-3时,M(a)取得最小值3;②当a≥-3时,M(a)=h(-6)=|-6-a|=|6+a|,∵6+a≥3,∴M(a)=6+a,也是a=-3时,M(a)最小为3.综上,当M(a)取最小值时a的值为-3.【解析】(Ⅰ)求导数f′(x),由f′(x)=1求得切点,即可得点斜式方程;(Ⅱ)把所证不等式转化为-6≤f(x)-x≤0,再令g(x)=f(x)-x,利用导数研究g(x)在[-2,4]的单调性和极值点即可得证;(Ⅲ)先把F(x)化为|g(x)-a|,再利用(Ⅱ)的结论,引进函数h(t)=|t-a|,结合绝对值函数的对称性,单调性,通过对称轴t=a与-3的关系分析即可.此题考查了导数的综合应用,构造法,转化法,数形结合法等,难度较大.。

WM_do2019年北京卷文科数学高考真题

WM_do2019年北京卷文科数学高考真题

3 5 5 y 2019 年普通高等学校招生全国统一考试数 学(文)(北京卷)本试卷共 5 页,150 分。

考试时长 120 分钟。

考Th 务必将答案答在答题卡上,在试卷上作答无效。

考试结束后,将本试卷和答题卡一并交回。

第一部分(选择题 共 40 分)一、选择题共 8 小题,每小题 5 分,共 40 分。

在每小题列出的四个选项中,选出符合题目要求的一项。

(1)已知集合 A ={x |–1<x <2},B ={x |x >1},则 A ∪B =(A )(–1,1) (B )(1,2) (C )(–1,+∞) (D )(1,+∞)(2)已知复数 z =2+i ,则 z ⋅ z =(A ) (B ) (C )3 (D )5(3)下列函数中,在区间(0,+ ∞)上单调递增的是1 (A ) y = x2 (B ) y = 2- x(C ) y = log 1 x 2(D ) y = 1x(4)执行如图所示的程序框图,输出的 s 值为(A )1 (B )2 (C )3 (D )4x 2 -2(5)已知双曲线 a 2 = 1(a >0)的离心率是 ,则 a =6⎨⎩ 1(A)(B)4 (C)2 (D)2(6)设函数f(x)=cos x+b sin x(b 为常数),则“b=0”是“f(x)为偶函数”的(A)充分而不必要条件(B)必要而不充分条件(C)充分必要条件(D)既不充分也不必要条件(7)在天文学中,天体的明暗程度可以用星等或亮度来描述.两颗星的星等与亮度满足m –m =5lgE12 1 2E2,其中星等为mk的星的亮度为Ek(k=1,2).已知太阳的星等是–26.7,天狼星的星等是–1.45,则太阳与天狼星的亮度的比值为-10.1 (A)1010.1 (B)10.1 (C)lg10.1 (D)(8)如图,A,B 是半径为 2 的圆周上的定点,P 为圆周上的动点,∠APB是锐角,大小为β.图中阴影区域的面积的最大值为(A)4β+4cosβ(B)4β+4sinβ(C)2β+2cosβ(D)2β+2sinβ第二部分(非选择题共110 分)二、填空题共6 小题,每小题5 分,共30 分。

2019北京文科数学高考真题

2019北京文科数学高考真题

2019年普通高等学校招生全国统一考试数学(文)(北京卷)本试卷共5页,150分。

考试时长120分钟。

考生务必将答案答在答题卡上,在试卷上作答无效。

考试结束后,将本试卷和答题卡一并交回。

第一部分(选择题共40分)一、选择题共8小题,每小题5分,共40分。

在每小题列出的四个选项中,选出符合题目要求的一项。

(1)已知集合A={(x|x|<2)},B={-2,0,1,2},则=(A){0,1}`(B){-1,0,1}(C){-2,0,1,2}(D){-1,0,1,2}(2)在复平面内,复数的共轭复数对应的点位于(A)第一象限(B)第二象限(C)第三象限(D)第四象限(3))(4)执行如图所示的程序框图,输出的s值为(A)(B)(C)(D):(4)设a,b,c,d是非零实数,则“ad=bc”是“a,b,c,d成等比数列”的(A)充分而不必要条件(B)必要而不充分条件(C)充分必要条件(D)既不充分也不必要条件>(5)“十二平均律” 是通用的音律体系,明代朱载堉最早用数学方法计算出半音比例,为这个理论的发展做出了重要贡献,十二平均律将一个纯八度音程分成十二份,依次得到十三个单音,从第二个单音起,每一个单音的频率与它的前一个单音的频率的比都等于.若第一个单音的频率f,则第八个单音频率为(A)(B)(C) f(D)(6)某四棱锥的三视图如图所示,在此四棱锥的侧面中,直角三角形的个数为(A)1&(B)2(C)3(D)4|(7) 在平面坐标系中,, , , 是圆上的四段弧(如图),点P在其中一段上,角以O x为始边,OP为终边,若,则P所在的圆弧是(A)(B)(C)(D)(8) 设集合,则*(A)对任意实数a,(2,1)(B)对任意实数a,(2,1)(C)当且仅当a0时,(2,1)(D)当且仅当a时,(2,1)第二部分(非选择题共110分)二、填空题共6小题,每小题5分,共30分。

(9) 设向量a=(1,0),b=(-1,m),若a(ma-b),则m=_________.—(10) 已知直线l过点(1,0)且垂直于x轴,若l被抛物线截得的线段长为4,则抛物线的焦点坐标为________.(11) 能说明“a﹥b,则”为假命题的一组a,b的值依次为______.(12) 若双曲线-=1(a﹥0)的离心率为,则a=_________.(13) 若x,y满足x+1y2x,则2y-x的最小值是___________.(14) 若的面积为(),且∠C为钝角,则∠B=________;的取值范围是_________.&三、解答题共6小题,共80分,解答应写出文字说明,演算步骤或证明过程。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2019年普通高等学校招生全国统一考试
数学(文)(北京卷)
本试卷共5页,150分。

考试时长120分钟。

考生务必将答案答在答题卡上,在试卷上作答无效。

考试结束后,将本试卷和答题卡一并交回。

一、选择题共8小题,每小题5分,共40分。

在每小题列出的四个选项中,选出符合题目要求的一项。

A x x A B
(C)(–1,+∞)(D)(1,+∞)
(2)已知复数=2+i,则z
z
(A)3
1(A)(B)=2(C)
y1
x
2
(4)执行如图所示的程序框图,输出的值为
s
(D)4
x
5
(5)已知双曲线2
a
(D)
(B)必要而不充分条件
(D)既不充分也不必要条件
(7)在天文学中,天体的明暗程度可以用星等或亮度来描述.两颗星的星等与亮度满足1,
2E
21
2 k k
天狼星的亮度的比值为
(B)10.1(C)lg10.1(D)10
10.1
是锐角,大小为β.图中阴影区域的面积的最大值为
(C)2β+2cosβ
(非选择题
(9)已知向量a=(–4,3),=(6,m),且a

4x3y10,
(11)设抛物线y2=4x的焦点为F,准线为l.则以F为圆心,且与l相切的圆的方程为__________.(12)某几何体是由一个正方体去掉一个四棱柱所得,其三视图如图所示.如果网格纸上小正方形的边长为1,那么该几何体的体积为__________.
① ⊥ ;② ∥ ;③ ⊥ . l m l
m
以其中的两个论断作为条件,余下的一个论断作为结论,写出一个正确的命题:__________.
(14)李明自主创业,在网上经营一家水果店,销售的水果中有草莓、京白梨、西瓜、桃,价格依次为60
元/盒、65 元/盒、80 元/盒、90 元/盒.为增加销量,李明对这四种水果进行促销:一次购买水果的总价
x
x
x
(15)(本小题 13 分)
1
. a
2
(16)(本小题 13 分)
a
a
3
4
(Ⅰ)求{ }的通项公式; a n
(Ⅱ)记{ }的前 项和为 ,求 的最小值. n S S n n
(17)(本小题 12 分)
改革开放以来,人们的支付方式发生了巨大转变.近年来,移动支付已成为主要支付方式之一.为了
解某校学生上个月A,B 两种移动支付方式的使用情况,从全校所有的1000名学生中随机抽取了100 人,发现样本中A,B 两种支付方式都不使用的有5 人,样本中仅使用A 和仅使用B 的学生的支付金额分布情况如下:
支付金额不大于2 000元
(Ⅱ)从样本仅使用B 的学生中随机抽取1 人,求该学生上个月支付金额大于2 000元的概率;
(Ⅲ)已知上个月样本学生的支付方式在本月没有变化.现从样本仅使用B 的学生中随机抽查1 人,发现他本月的支付金额大于2 000元.结合(Ⅱ)的结果,能否认为样本仅使用B 的学生中本月支付金额大于2 000元的人数有变化?说明理由.
(18)(本小题14 分)
中,PA平面AB C D,底部
PB
(19)(本小题14 分)
x y2
2
已知椭圆C
a2b2
C
A Q x N
(20)(本小题14分)
1
已知函数f.
32
4
y f(x)
(Ⅰ)求曲线的斜率为1的切线方程;
x [2,4]时,求证:
F(x)在区间
[2,4]
上的最大值为(),当()
M a M a
,记
2019年普通高等学校招生全国统一考试
(2)D (6)C (3)A
(7)A
1
22
m,l m
15
解:(Ⅰ)由余弦定理b222
1
b 3
c 23c ().
222
2

1 所以
2 2 2
. 2
3 (Ⅱ)由
cos B

. B
2
a .
b
中,
所以s in(B C ) s i n A

(16)(共 13 分)
解:(Ⅰ)设 a 的公差为d . n
因为 ,
所以 .
2 3 4
因为
成等比数列,
2 3 4
所以 a
2

3
2
4
(2 2d) d(4 3d) .
所以 2
2.
所以
. n
1

n
0 时,
;当
n
n

n
(17)(共 12 分)
40
1000400
估计该校学生中上个月A,B两种支付方式都使用的人数为.
100
(Ⅱ)记事件C为“从样本仅使用B的学生中随机抽取1人,该学生上个月的支付金额大于2000元”,则1
P(E)比较小,概率比较小的事件一般不容易发生,一旦发生,就有理由认为本月支付金额大于2 000 元的人数发生了变化.所以可以认为有变化.
(E)
事件E是随机事件,P
比较小,一般不容易发生,但还是有可能发生的.所以无法确定有没有变化.(18)(共14分)
BD.
又因为底面ABC D为菱形,

(Ⅱ)因为PA⊥平面ABC D,AE平面ABC D,
因为底面ABC D为菱形,∠ABC=60°,且E为C D的中点,
所以AE⊥C D.
所以AB⊥AE.
所以AE ⊥平面PAB .
1
则F G ∥AB ,且FG = AB .
2
因为底面ABC D 为菱形,且E 为C D 的中点,
1
所以CE ∥AB ,且C E= AB .
2
因为CF 平面PAE ,E G 平面PAE , 所以CF ∥平面PAE . (19)(共 14 分)
b
c
x 2
所以椭圆 的方程为
C

2
2 (Ⅱ)设 ( , ), ( , ), P x y Q x y
1 1
2 2
y 1 y x 1
. 1
x
令 =0,得点 的横坐标 y M
x
| 又
,从而
1
. kx t 1
1 1
M
1
x 2
kx t 1
2
,
(1 2k )x
4k t x 2t 2 0 .
得 2 2 2 2
2
4k t
2t 2
2

, x x

1
2
2
1 2
2
x
x
所以
| O M || O N |
|
||
|
1
2
1
2
x x
|
1
2
2
2
1 2
2
2
|
|
2
2
2

| O M || O N
| 2

2|
所以 解得 =0,所以直线 经过定点(0,0). t l (20)(共 14 分)
3
4
x 解:(Ⅰ)由 f

3
2
3 ,即 x 4
8 x ,得 x
. 2 3
8 8
又 f

3 27
8 f (x) 所以曲线 y 的斜率为 1 的切线方程是

27
x y x

(Ⅱ)令 g
(x) f (x) x , x [2,4]

3
x x 得 g '(x) x 2x .
3 2 2 4

g '(x), g(x) 的情况如下:
8
2
4
x
64 27
的最小值为
,最大值为 .

,即
(Ⅲ)由(Ⅱ)知, 当 a 当 a 当 a
(a) 最小时,
a 3
综上,当 M .。

相关文档
最新文档