大数据数据结构和算法_图_单源最短路径Dijkstra
单源最短路径dijkstra算法c语言
单源最短路径dijkstra算法c语言单源最短路径问题是图论中的经典问题之一,指的是在图中给定一个起始节点,求出该节点到其余所有节点之间的最短路径的算法。
其中,Dijkstra 算法是一种常用且高效的解决方案,可以在有向图或无向图中找到起始节点到其余所有节点的最短路径。
本文将逐步介绍Dijkstra算法的思想、原理以及C语言实现。
一、Dijkstra算法的思想和原理Dijkstra算法的思想基于贪心算法,通过逐步扩展当前已知路径长度最短的节点来逐步构建最短路径。
算法维护一个集合S,初始时集合S只包含起始节点。
然后,选择起始节点到集合S之外的节点的路径中长度最小的节点加入到集合S中,并更新其他节点的路径长度。
具体来说,算法分为以下几个步骤:1. 初始化:设置起始节点的路径长度为0,其他节点的路径长度为无穷大。
2. 选择最小节点:从集合S之外的节点中选择当前路径长度最短的节点加入到集合S中。
3. 更新路径长度:对于新加入的节点,更新与其相邻节点的路径长度(即加入新节点后的路径长度可能更小)。
4. 重复步骤2和3,直到集合S包含所有节点。
二、Dijkstra算法的C语言实现下面我们将逐步讲解如何用C语言实现Dijkstra算法。
1. 数据结构准备首先,我们需要准备一些数据结构来表示图。
我们可以使用邻接矩阵或邻接表来表示图。
这里,我们选择使用邻接矩阵的方式来表示权重。
我们需要定义一个二维数组来表示图的边权重,以及一个一维数组来表示起始节点到各个节点的路径长度。
c#define MAX_NODES 100int graph[MAX_NODES][MAX_NODES];int dist[MAX_NODES];2. 初始化在使用Dijkstra算法之前,我们需要对数据进行初始化,包括路径长度、边权重等信息。
cvoid initialize(int start_node, int num_nodes) {for (int i = 0; i < num_nodes; i++) {dist[i] = INT_MAX; 将所有节点的路径长度初始化为无穷大}dist[start_node] = 0; 起始节点到自身的路径长度为0初始化边权重for (int i = 0; i < num_nodes; i++) {for (int j = 0; j < num_nodes; j++) {if (i == j) {graph[i][j] = 0; 自身到自身的边权重为0} else {graph[i][j] = INT_MAX; 其他边权重初始化为无穷大}}}}3. 主要算法接下来是Dijkstra算法的主要逻辑。
dijkstra最短路径算法详解
dijkstra最短路径算法详解
Dijkstra最短路径算法是一种常用的图算法,用于求解带权图中的单源最短路径问题,即从一个固定的源节点到图中的其他节点的最
短路径。
以下是详细的算法步骤:
1. 初始化
一开始,将源节点的距离设为0,其余节点的距离设置为正无穷,在未访问的节点集合中把源节点压入堆中。
2. 确定最短路径
从堆中取出未访问节点集合中距离源节点最近的节点v,标记其
为已访问。
之后,对于v的邻居节点w,计算从源节点到v再到w的距离,如果经过v的路径比已经计算得到的路径短,则更新路径。
更新
后的距离先暂时放入堆中,如果后边有更短的路径,则更新。
3. 重复第2步
重复第2步,直到取出的节点为终点节点,或者堆为空。
4. 算法结束
算法结束后,各节点的距离就是从源节点到它们的最短距离。
Dijkstra算法的复杂度是O(NlogN),其中N是节点个数。
其优
势在于只需要算一次即可得到所有最短路径,但是要求所有边的权值
必须非负,否则会导致算法不准确。
总之,Dijkstra算法是一种简单有效的最短路径算法,其实现也比较直观。
在处理如飞机和火车等交通路径规划问题中有较好的应用。
最短路dijkstra算法详解
最短路dijkstra算法详解最短路问题是图论中的一个经典问题,其目标是在给定图中找到从一个起点到其他所有节点的最短路径。
Dijkstra算法是解决最短路问题的一种常用算法,本文将详细介绍Dijkstra算法的原理、实现以及时间复杂度等相关内容。
一、Dijkstra算法的原理Dijkstra算法是一种贪心算法,其基本思想是从起点开始,逐步扩展到其他节点。
具体而言,Dijkstra算法通过维护一个集合S来记录已经找到了最短路径的节点,以及一个数组dist来记录每个节点到起点的距离。
初始时,S集合为空,dist数组中除了起点外所有节点都被初始化为无穷大。
接下来,重复以下步骤直到所有节点都被加入S集合:1. 从dist数组中选择距离起点最近的未加入S集合的节点u;2. 将u加入S集合;3. 更新与u相邻的未加入S集合的节点v的距离:如果从起点出发经过u可以得到更短的路径,则更新v对应位置上dist数组中存储的值。
重复以上步骤直至所有节点都被加入S集合,并且dist数组中存储了每个节点到起点的最短距离。
最后,根据dist数组中存储的信息可以得到起点到任意节点的最短路径。
二、Dijkstra算法的实现在实现Dijkstra算法时,需要使用一个优先队列来维护未加入S集合的节点,并且每次从队列中选择距离起点最近的节点。
由于C++标准库中没有提供优先队列,因此需要手动实现或者使用第三方库。
以下是一个基于STL堆实现的Dijkstra算法代码示例:```c++#include <iostream>#include <vector>#include <queue>using namespace std;const int INF = 0x3f3f3f3f;vector<pair<int, int>> adj[10001];int dist[10001];void dijkstra(int start) {priority_queue<pair<int, int>, vector<pair<int, int>>, greater<pair<int, int>>> pq;pq.push(make_pair(0, start));dist[start] = 0;while (!pq.empty()) {int u = pq.top().second;pq.pop();for (auto v : adj[u]) {if (dist[u] + v.second < dist[v.first]) {dist[v.first] = dist[u] + v.second;pq.push(make_pair(dist[v.first], v.first));}}}}int main() {int n, m, start;cin >> n >> m >> start;for (int i = 1; i <= n; i++) {dist[i] = INF;}for (int i = 1; i <= m; i++) {int u, v, w;cin >> u >> v >> w;adj[u].push_back(make_pair(v, w));}dijkstra(start);for (int i = 1; i <= n; i++) {if (dist[i] == INF) {cout << "INF" << endl;} else {cout << dist[i] << endl;}}return 0;}```以上代码中,adj数组用于存储图的邻接表,dist数组用于存储每个节点到起点的最短距离。
求解单源最短路径问题的算法
求解单源最短路径问题的算法
求解单源最短路径问题的算法有多种,下面列举了几种常见的算法:
1. Dijkstra算法:通过维护一个距离数组,不断更新起始点到其他节点的最短路径长度。
核心思想是每次选择距离起始点最近的节点,并逐步更新距离数组。
该算法适用于无负权边的情况。
2. Bellman-Ford算法:通过迭代更新距离数组,每次都扫描所有的边,更新路径长度。
该算法适用于存在负权边的情况。
3. Floyd-Warshall算法:通过一个二维矩阵来存储任意两个节点之间的最短路径长度,通过尝试经过不同的中间节点来更新路径长度。
该算法适用于有向图或无向图,且适用于任意权重的情况。
4. A*算法:在Dijkstra算法的基础上引入启发函数,通过启发函数估计从起始点到目标节点的距离,并按照估计值进行优先级队列的排序。
该算法适用于图中存在目标节点的情况。
以上算法适用于不同的情况,具体选择哪个算法要根据问题的特点来决定。
离散数学 最短路径dijkstra算法
离散数学是数学的一个分支,研究离散对象和不连续对象的数量关系及其结构的数学学科。
离散数学对于计算机科学和信息技术领域有着重要的应用,其中最短路径dijkstra算法是离散数学中的一个重要算法,它被广泛应用于计算机网络、交通规划、电路设计等领域,在实际应用中发挥着重要的作用。
一、最短路径dijkstra算法的基本原理最短路径dijkstra算法是由荷兰计算机科学家艾兹赫尔·达斯提出的,用于解决带权图中的单源最短路径问题。
该算法的基本原理是:从一个源点出发,按照权值递增的顺序依次求出到达其它各个顶点的最短路径。
具体来说,最短路径dijkstra算法的实现步骤如下:1. 初始化:将源点到图中各个顶点的最短路径估计值初始化为无穷大,将源点到自身的最短路径估计值初始化为0;2. 确定最短路径:从源点开始,选择一个离源点距离最近的未加入集合S中的顶点,并确定从源点到该顶点的最短路径;3. 更新距离:对于未加入集合S中的顶点,根据新加入集合S中的顶点对其进行松弛操作,更新源点到其它顶点的最短路径的估计值;4. 重复操作:重复步骤2和步骤3,直到集合S中包含了图中的所有顶点为止。
二、最短路径dijkstra算法的实现最短路径dijkstra算法的实现可以采用多种数据结构和算法,比较常见的包括邻接矩阵和邻接表两种表示方法。
在使用邻接矩阵表示图的情况下,最短路径dijkstra算法的时间复杂度为O(n^2),其中n表示图中顶点的个数;而在使用邻接表表示图的情况下,最短路径dijkstra 算法的时间复杂度为O(nlogn)。
三、最短路径dijkstra算法的应用最短路径dijkstra算法可以应用于计算机网络中路由选择的最短路径计算、交通规划中的最短路径选择、电路设计中的信号传输最短路径计算等领域。
在实际应用中,最短路径dijkstra算法通过寻找起始点到各个顶点的最短路径,为网络通信、交通规划、电路设计等问题提供有效的解决方案。
最短路径dijkstra算法例题
最短路径dijkstra算法例题最短路径问题是图论中的一个重要问题,它的解决方法有很多种,其中最著名的算法之一就是Dijkstra算法。
本文将介绍Dijkstra算法的基本思想和实现过程,并通过一个例题来展示其具体应用。
一、Dijkstra算法的基本思想Dijkstra算法是一种贪心算法,它以起点为中心向外扩展,每次选择当前距离起点最短的点作为下一个扩展点,并更新其周围节点到起点的距离。
这个过程不断重复直至所有节点都被扩展完毕。
具体实现时,可以使用一个数组dist来存储每个节点到起点的距离,初始时所有节点到起点的距离都设为无穷大(表示不可达),起点到自己的距离设为0。
同时还需要使用一个visited数组来记录每个节点是否已经被扩展过。
在每次扩展时,从未被扩展过且与当前扩展节点相邻的节点中选择距离起点最短的节点作为下一个扩展节点,并更新其周围节点到起点的距离。
这个过程可以使用优先队列来实现。
二、Dijkstra算法实现例题下面我们通过一个例题来演示Dijkstra算法的具体实现过程。
例题描述:给定一个有向带权图,求从起点s到终点t的最短路径。
解题思路:根据Dijkstra算法的基本思想,我们可以使用一个优先队列来实现。
具体实现步骤如下:1. 初始化dist数组和visited数组。
2. 将起点s加入优先队列,并将其距离起点的距离设为0。
3. 重复以下步骤直至优先队列为空:(1)取出优先队列中距离起点最近的节点u。
(2)如果该节点已经被扩展过,则跳过此节点,否则将其标记为已扩展。
(3)如果该节点就是终点t,则返回其到起点的距离。
(4)否则,遍历该节点的所有邻居节点v,并更新它们到起点的距离。
如果某个邻居节点v之前未被扩展过,则将其加入优先队列中。
更新dist[v]后,需要将v加入优先队列中以便后续扩展。
4. 如果经过以上步骤仍然没有找到终点t,则表示不存在从起点s到终点t的路径。
代码实现:```#include <iostream>#include <queue>#include <vector>using namespace std;const int INF = 0x3f3f3f3f;const int MAXN = 1005;int n, m, s, t;int dist[MAXN], visited[MAXN];vector<pair<int, int>> graph[MAXN];void dijkstra() {priority_queue<pair<int, int>, vector<pair<int, int>>, greater<pair<int, int>>> pq;pq.push(make_pair(0, s));dist[s] = 0;while (!pq.empty()) {pair<int, int> p = pq.top();pq.pop();int u = p.second;if (visited[u]) {continue;}visited[u] = 1;if (u == t) {return;}for (int i = 0; i < graph[u].size(); i++) {int v = graph[u][i].first;int w = graph[u][i].second;if (!visited[v] && dist[v] > dist[u] + w) {dist[v] = dist[u] + w;pq.push(make_pair(dist[v], v));}}}}int main() {cin >> n >> m >> s >> t;for (int i = 1; i <= m; i++) {int u, v, w;cin >> u >> v >> w;graph[u].push_back(make_pair(v, w));}memset(dist, INF, sizeof(dist));memset(visited, 0, sizeof(visited));dijkstra();if (dist[t] == INF) {cout << "No path from " << s << " to " << t << endl;} else {cout << "Shortest path from " << s << " to " << t << ": " << dist[t] << endl;}}```代码解析:首先定义了一些常量和全局变量,其中n表示节点数,m表示边数,s 表示起点,t表示终点。
dijkstra算法最短路径
《求解最短路径:应用迪杰斯特拉算法》一、介绍Dijkstra算法的概念和基本原理Dijkstra算法是一种用于解决最短路径问题的算法,它由荷兰计算机科学家Edsger Dijkstra在1959年发明,用于求解从源点到其他所有结点的最短路径。
它的基本原理是:在一张图中,从源点到每一个结点的最短路径是从源点开始,经过最少的边到达每一个结点的路径。
Dijkstra算法的实现过程中,首先要建立一个有向图,该图由顶点和边组成,每条边都有一个权值,表示从一个顶点到另一个顶点的距离。
然后,从源点开始,每次选择最小权值的边,继续查找下一个顶点,直到找到终点。
最后,将所有路径之和求出,即为源点到目标点的最短路径。
举例来说,假如有一张有向图,其中有A,B,C,D四个结点,以及AB,AC,BD,CD四条边,其中AB,AC,BD边的权值分别为2,3,1,CD边的权值为4。
如果要求求出从A到D的最短路径,则可以使用Dijkstra算法,首先从A出发,选择权值最小的边,即BD,则A-B-D的路径长度为3,接着从B出发,选择权值最小的边,即CD,则A-B-D-C的路径长度为7,因此,从A到D的最短路径为A-B-D,路径长度为3。
Dijkstra算法的优点是算法简单,实现方便,时间复杂度低,它可以用于解决路径规划,车辆调度,网络路由等问题,同时,它也可以用于解决复杂的最短路径问题。
因此,Dijkstra算法在计算机科学中有着重要的应用价值。
二、讨论Dijkstra算法的应用及其优势Dijkstra算法是一种用于解决最短路径问题的算法,它的应用和优势非常广泛。
首先,Dijkstra算法可以用于解决交通路网中的最短路径问题。
例如,在一个城市的交通路网中,如果一个乘客要从一个地方到另一个地方,那么他可以使用Dijkstra算法来查找最短的路径。
这样可以节省乘客的时间和金钱,也可以减少拥堵。
此外,Dijkstra算法还可以用于解决计算机网络中的最短路径问题。
迪杰斯特拉算法求单源最短路径
迪杰斯特拉算法是一种用于求解单源最短路径的经典算法,它被广泛应用于网络路由、电信领域以及各种其他实际问题中。
本文将从以下几个方面详细介绍迪杰斯特拉算法的原理、实现以及应用,以帮助读者深入理解并掌握该算法。
一、迪杰斯特拉算法的原理迪杰斯特拉算法的核心思想是通过逐步确定从起点到其他顶点的最短路径来求解单源最短路径问题。
其具体原理包括以下几个步骤:1. 初始化:将起点到所有其他顶点的距离初始化为无穷大,起点到自身的距离为0,并建立一个空的集合S来存放已确定最短路径的顶点。
2. 选择最近顶点:从未确定最短路径的顶点中选择距离起点最近的顶点u加入集合S。
3. 更新距离:对于顶点集合V-S中的每个顶点v,如果通过顶点u可以找到一条比当前最短路径更短的路径,则更新起点到顶点v的距离。
4. 重复步骤2和步骤3,直到集合S包含所有顶点。
通过上述步骤,迪杰斯特拉算法可以求解出起点到图中所有其他顶点的最短路径。
二、迪杰斯特拉算法的实现迪杰斯特拉算法可以通过多种数据结构来实现,其中最常见的是使用优先队列来存储未确定最短路径的顶点,并通过松弛操作来更新顶点的距离。
下面将介绍一种基于优先队列的迪杰斯特拉算法实现方法:1. 初始化距离数组dist[],其中dist[i]表示起点到顶点i的最短距离,将所有顶点初始化为无穷大,起点初始化为0。
2. 将起点加入优先队列,并将其距离更新为0。
3. 循环执行以下步骤直到优先队列为空:(1)从优先队列中取出距离起点最近的顶点u。
(2)遍历顶点u的所有邻接顶点v,对于每个邻接顶点v,如果通过顶点u可以找到一条更短的路径,则更新顶点v的距离,并将其加入优先队列。
通过上述实现,我们可以得到起点到所有其他顶点的最短路径。
三、迪杰斯特拉算法的应用迪杰斯特拉算法在实际应用中有着广泛的应用场景,其中最典型的应用包括网络路由、电信领域以及地图路径规划等。
1. 网络路由:在计算机网络中,迪杰斯特拉算法被用于寻找最短路径,以确保数据包以最短的路径到达目的地,提高网络传输效率。
最短路径之Dijkstra算法详细讲解(C#)
最短路径之Dijkstra算法详细讲解1最短路径算法在日常生活中,我们如果需要常常往返A地区和B地区之间,我们最希望知道的可能是从A地区到B地区间的众多路径中,那一条路径的路途最短。
最短路径问题是图论研究中的一个经典算法问题,旨在寻找图(由结点和路径组成的)中两结点之间的最短路径。
算法具体的形式包括:(1)确定起点的最短路径问题:即已知起始结点,求最短路径的问题。
(2)确定终点的最短路径问题:与确定起点的问题相反,该问题是已知终结结点,求最短路径的问题。
在无向图中该问题与确定起点的问题完全等同,在有向图中该问题等同于把所有路径方向反转的确定起点的问题。
(3)确定起点终点的最短路径问题:即已知起点和终点,求两结点之间的最短路径。
(4)全局最短路径问题:求图中所有的最短路径。
用于解决最短路径问题的算法被称做“最短路径算法”,有时被简称作“路径算法”。
最常用的路径算法有:Dijkstra算法、A*算法、Bellman-Ford算法、Floyd-Warshall算法、Johnson算法。
本文主要研究Dijkstra算法的单源算法。
2Dijkstra算法2.1 Dijkstra算法Dijkstra算法是典型最短路算法,用于计算一个节点到其他所有节点的最短路径。
主要特点是以起始点为中心向外层层扩展,直到扩展到终点为止。
Dijkstra算法能得出最短路径的最优解,但由于它遍历计算的节点很多,所以效率低。
Dijkstra算法是很有代表性的最短路算法,在很多专业课程中都作为基本内容有详细的介绍,如数据结构,图论,运筹学等等。
2.2 Dijkstra算法思想Dijkstra算法思想为:设G=(V,E)是一个带权有向图,把图中顶点集合V分成两组,第一组为已求出最短路径的顶点集合(用S表示,初始时S中只有一个源点,以后每求得一条最短路径, 就将加入到集合S中,直到全部顶点都加入到S中,算法就结束了),第二组为其余未确定最短路径的顶点集合(用U 表示),按最短路径长度的递增次序依次把第二组的顶点加入S中。
Dijkstra算法求解单源最短路径问题
Dijkstra算法求解单源最短路径问题一、单源最短路径问题描述给定一个带权有向图G=(V,E),其中每条边的权都是非负数。
给定V中的一个顶点,称为源。
计算从源到所有其他定点的最短路径长度。
这里的路径长度就是指各边权之和。
该问题称为单源最短路径问题(Single-Source Shortest Paths)。
二、Dijkstra算法思想将图G中所有的顶点V分成两个顶点集合S和T。
以v为源点已经确定了最短路径的终点并入S集合中,S初始时只含顶点v, T则是尚未确定到源点v最短路径的顶点集合。
然后每次从T集合中选择S集合点中到T路径最短的那个点,并加入到集合S中,并把这个点从集合T删除。
直到T集合为空为止。
三、算法描述(步骤)1、选一顶点v为源点,并视从源点v出发的所有边为到各顶点的最短路径:①记录从源点v到其它各顶点的路径长度数组dist[],开始时,dist是源点v到顶点i的直接边长度,即dist中记录的是邻接阵的第v行。
②设一个用来记录从源点到其它顶点的路径数组path[],path中存放路径上第i个顶点的前驱顶点。
2、在上述的最短路径dist[]中选一条最短的,并将其终点(即<v,k>)k加入到集合s中。
3、调整T中各顶点到源点v的最短路径。
因为当顶点k加入到集合s中后,源点v到T中剩余的其它顶点j就又增加了经过顶点k到达j的路径,这条路径可能要比源点v到j原来的最短的还要短。
调整方法是比较dist[k]+g[k,j]与dist[j],取其中的较小者。
4、再选出一个到源点v路径长度最小的顶点k,从T中删去后加入S中,再回去到第三步,如此重复,直到集合S中的包含图G的所有顶点。
四、算法实现(数据结构)1、算法实现输入:一个大于1的整数n.输出:●一个随机生成的有向图G=(V,E),对于每一条边,有一个非负数字c(u,v)与之相关。
●对于每个顶点v∈V,得到从v0到v的最短路径的长度。
单源最短路径算法
单源最短路径算法常见的单源最短路径算法有迪杰斯特拉算法(Dijkstra's algorithm)和贝尔曼-福特算法(Bellman-Ford algorithm)。
本文将详细介绍这两种算法的实现原理和特点。
1.迪杰斯特拉算法:迪杰斯特拉算法是一种用于求解带权重图的单源最短路径的算法。
它的基本思想是,维护一个集合S,初始时包含源节点,不断地向集合S中加入离源节点最近的节点,直到所有节点都加入了集合S。
在每次加入节点的过程中,更新源节点到集合S中每个节点的最短距离。
迪杰斯特拉算法的步骤如下:1)初始化源节点的最短距离为0,其他节点的最短距离为无穷大。
2)将源节点加入集合S。
3)对于源节点的每个邻居节点,更新从源节点到邻居节点的最短距离。
如果更新后的距离更短,更新邻居节点的最短距离。
4)从集合S中选择一个离源节点最近的节点加入集合S,并重复步骤35)重复步骤4,直到所有节点都加入了集合S。
迪杰斯特拉算法的时间复杂度为O(V^2),其中V是节点的数量。
在稠密图中,即边的数量接近节点的数量平方时,迪杰斯特拉算法表现较好。
2.贝尔曼-福特算法:贝尔曼-福特算法是一种用于求解带有负权重边的单源最短路径的算法。
与迪杰斯特拉算法不同的是,贝尔曼-福特算法可以处理负权重边。
贝尔曼-福特算法的基本思想是,通过对边进行松弛操作,不断地更新节点的最短距离,直到找到所有节点的最短距离。
算法的步骤如下:1)初始化源节点的最短距离为0,其他节点的最短距离为无穷大。
2)对于边的数量-1次迭代,做以下操作:a)遍历所有边,对每条边(u,v),如果源节点u的最短距离加上边的权重w小于目标节点v的最短距离,则更新目标节点v的最短距离。
3)再进行一次遍历,如果仍然存在可以松弛的边,则说明存在负权重环。
贝尔曼-福特算法的时间复杂度为O(V*E),其中V是节点的数量,E 是边的数量。
相较于迪杰斯特拉算法,贝尔曼-福特算法的时间复杂度更高,但是它可以处理带有负权重边的图。
dijkstra算法过程
dijkstra算法过程Dijkstra算法是一种图论算法,用于求解单源最短路径问题。
它是由荷兰计算机科学家艾伦迪科斯特拉在1959年开发的,可以在多重图中找到从某个节点(以及节点之间的边)到其他所有节点的最短路径。
Dijkstra算法的基本原理是,从源节点出发,沿着图中的每条边,从一个节点移动到另一个节点。
它试图找出从源节点到目标节点的最短路径。
因此,它不会停留在一个未知的节点上花费太长时间,而是会沿着已知节点将其最短路径记录下来。
Dijkstra算法运行时,需要两个数据结构。
第一个是图结构,也称为路网,用来储存图中的边和节点。
第二个是长度表,用来储存源节点到其他所有节点的距离(即边的权重)。
Dijkstra算法的步骤如下:第一步:将图中所有节点的距离初始化为无穷大,表示当前不可达。
第二步:将源节点的距离初始化为0。
第三步:遍历所有节点,找出源节点到当前节点之间的最短路径,并更新距离表中的值。
第四步:如果当前节点的距离被更新,则重复第二步和第三步,直到所有节点的距离都被更新完毕。
第五步:距离表中的值就是源节点到其他节点的最短路径距离。
至此,Dijkstra算法的过程结束。
它是一种十分有效的算法,可以在多重图中迅速求解最短路径问题。
此外,Dijkstra算法也适用于复杂网络,比如电路设计和计算机网络等。
在近年来,随着计算复杂度的提升,许多Dijkstra算法的改进和变体被提出,如A*算法、D*算法、遗传算法、蚁群算法等,以提高求解最短路径问题的运行效率。
总的来说,Dijkstra算法是一种有效的图论算法,在解决最短路径问题时具有重要的应用价值,它也是无穷多改进变体和改进算法的基础。
最短路径算法―Dijkstra(迪杰斯特拉)算法分析与实现(
Dijkstra( 迪杰斯特拉算法是典型的最短路径路由算法,用于计算一个节点到其他所有节点的最短路径。
主要特点是以起始点为中心向外层层扩展,直到扩展到终点为止。
Dijkstra 算法能得出最短路径的最优解,但由于它遍历计算的节点很多,所以效率低。
Dijkstra 算法是很有代表性的最短路算法,在很多专业课程中都作为基本内容有详细的介绍,如数据结构,图论,运筹学等等。
其基本思想是,设置顶点集合S并不断地作贪心选择来扩充这个集合。
一个顶点属于集合S当且仅当从源到该顶点的最短路径长度已知。
初始时,S中仅含有源。
设u是G的某一个顶点,把从源到u且中间只经过S中顶点的路称为从源到u的特殊路径,并用数组dist记录当前每个顶点所对应的最短特殊路径长度。
Dijkstra 算法每次从V-S中取出具有最短特殊路长度的顶点u,将u添加到S 中,同时对数组dist作必要的修改。
一旦S包含了所有V中顶点,dist就记录了从源到所有其它顶点之间的最短路径长度。
例如,对下图中的有向图,应用Dijkstra 算法计算从源顶点1到其它顶点间最短路径的过程列在下表中。
Dijkstra 算法的迭代过程:主题好好理解上图!以下是具体的实现(C/C++:A ]***************************************2.* About: 有向图的Dijkstra 算法实现3. * Author: Tanky Woo4. * Blog: 6.7. #i nclude8. using n amespace std;9.9. con st i nt maxnum = 100;10. con st i nt maxi nt = 999999;12.13.11. void Dijkstra(i nt n, int v, int *dist, int *prev, int c[max nu m][max num]12. {13. bool s[maxnum]; // 判断是否已存入该点到 S 集合中14. for(i nt i=1; i<=n; ++i15. {16. dist[i] = c[v][i];17. s[i] = 0; // 初始都未用过该点18. if(dist[i] == maxi nt19. prev[i] = 0;20. else21. prev[i] = v;22. }23. dist[v] = 0;24. s[v] = 1;28.29. // 依次将未放入S 集合的结点中,取 dist[] 最小值的结点,放入结合 S 中5. *************************************30. // 一旦S包含了所有V中顶点,dist就记录了从源点到所有其他顶点之间的最短路径长度31.for(i nt i=2; i<=n; ++i32.{33.i nt tmp = maxi nt;34.i nt u = v;35.// 找出当前未使用的点j的dist[j] 最小值36.for(int j=1; j<=n; ++j37.if((!s[j] && dist[j]38.{39.u = j; // u 保存当前邻接点中距离最小的点的号码40.tmp = dist[j];41.}42.s[u] = 1; // 表示u点已存入S集合中43.43.// 更新dist44.for(i nt j=1; j<=n; ++j45.if((!s[j] && c[u][j]46.{47.int newdist = dist[u] + c[u][j];48.if( newdist < dist[j]49.{50.dist[j] = n ewdist;51.prev[j] = u;52.}53.}54.}55.}58.void searchPath(i nt *prev,i nt v, int u59.{60.int que[max nu m];61.i nt tot = 1;62.que[tot] = u;63.tot++;64.int tmp = prev[u];65.while(tmp != v66.{67.que[tot] = tmp;68.tot++;69.tmp = prev[tmp];70.}71.que[tot] = v;72.for(int i=tot; i>=1; --i73.if(i != 174.cout << que[i] << "-> ";75.else76.cout << que[i] << en dl;77.}78.78.int main(79.{80.freopen("input.txt", "r", stdin;81.II各数组都从下标1开始82.i nt dist[max num]; II 表示当前点到源点的最短路径长度83.i nt prev[max nu m]; II 记录当前点的前一个结点记录图的两点间路径长度84.i nt c[max nu m][max nu m]; II87.88. II输入结点数89. cin >> n;90. II输入路径数91. cin >> line;92. i nt p, q, le n; II 输入p, q93.94. II 初始化c[][] 为maxi nt95. for(i nt i=1; i<=n; ++i96. for(i nt j=1; j<=n; ++j97. c[i][j] = maxi nt;98.99. for(i nt i=1; i<=li ne; ++i100. {101. cin >> p >> q >> len;102. if(len < c[p][q] II 有重边103. {104. c[p][q] = le n; II p 指向q 105. c[q][p] = le n; II q指向p,106. }107. }108.109. for(int i=1; i<=n; ++i110. dist[i] = maxi nt;111. for(i nt i=1; i<=n; ++i112. {113. for(i nt j=1; j<=n; ++j 两点及其路径长度这样表示无向图114.printf("%8d", c[i][j];115.prin tf("\n";116.}117.117.Dijkstra(n, 1, dist, prev, c;119.118.// 最短路径长度119.cout << " 源点到最后一个顶点的最短路径长度:"<< dist[ n] << endl;122.120.// 路径121.cout << " 源点到最后一个顶点的路径为:";122.searchPath(prev, 1, n;123.}复制代码输入数据:571 2 101 4 301 5 1002 3 503 5 104 3 204 5 60输出数据:999999 10 999999 30 10010 999999 50 999999 999999 999999 50 999999 20 1030 999999 20 999999 60100 999999 10 60 999999源点到最后一个顶点的最短路径长度: 60 源点到最后一个顶点的路径为: 1 -> 4 -> 3 -> 5。
离散数学中的图的最短路径与迪杰斯特拉算法
在离散数学中,图论是一个重要的研究领域,涉及到许多与图有关的概念和算法。
其中,最短路径和迪杰斯特拉算法被广泛应用于图中节点之间最短路径的计算与查找。
首先,我们来了解一下最短路径的概念。
在一个有向或无向图中,最短路径是指从起始节点到目标节点的路径中,具有最小权重的路径。
权重可以表示为两个节点之间的距离、成本或代价等。
在现实生活中,最短路径问题可以应用到许多场景中,比如寻找两个城市之间的最短路线或者确定网络中两台计算机之间的最短连接。
要计算图中的最短路径,其中一种经典的算法是迪杰斯特拉算法。
迪杰斯特拉算法是一种贪心算法,通过逐步更新节点的距离值来找到最短路径。
它的基本思想是从起始节点开始,首先将起始节点的距离值设置为0,然后将所有其他节点的距离值设置为无穷大。
接下来,算法根据每条边的权重更新节点的距离值,直到找到目标节点或者遍历完所有节点为止。
具体来说,迪杰斯特拉算法可以分为以下几个步骤:1.初始化:将起始节点的距离值设为0,将其他节点的距离值设为无穷大。
2.遍历:从起始节点开始,逐一考察与当前节点相邻的节点。
3.更新距离:对于每一个相邻节点,计算通过当前节点到达该节点的距离,并将其与该节点存储的当前最短距离进行比较。
如果通过当前节点的路径更短,就更新该节点的最短距离值。
4.标记节点:在遍历的过程中,通过节点之间的最短路径更新,我们可以逐渐标记节点为“已访问”,确保每一个节点的最短路径都已计算。
5.终止条件:当遍历完成或者找到目标节点时,算法终止。
迪杰斯特拉算法的时间复杂度为O(N^2),其中N是图中的节点数量。
尽管在大规模图中可能会出现效率问题,但对于中小规模的图,该算法具有较高的实用价值。
总结来说,离散数学中的图的最短路径与迪杰斯特拉算法密不可分。
通过迪杰斯特拉算法,我们可以在图中找到从起始节点到目标节点的最短路径。
该方法的基本思想是贪心的,通过逐步更新节点的距离值,从而逐渐找到最短路径。
无论是用于寻找城市间最短路线还是网络中最短连接,这个算法都具有广泛的应用前景。
最短路径算法——Dijkstra算法
最短路径算法——Dijkstra算法摘要:数据结构作为计算机科学的核心,已经成为人们必须掌握的一切信息知识。
作为经典的最短路径算法,Dijkstra算法数据结构被在生活中的各方面都有所体现。
本文从数据结构和最短路径算法的定义入手,介绍了Dijkstra算法的算法优缺点和算法实例,最后阐述了最短路径算法在现实生活中的作用,说明该算法的重要意义。
关键词:最短路径;Dijkstra算法;应用一、数据结构与算法1.1 数据结构数据结构是解释数据之间关系的科学。
典型的数据结构包括数组、链表、树和图[1]。
如何准确地使用各种数据结构至关重要。
这种数据结构就是图表,它是“树型”数据结构的扩展。
节点是一个节点(单独的节点),不能连接或连接到另一个节点。
结果,图中节点之间的关系变得更加复杂,并且通过计算机从一个节点到另一个节点的路径变得更加困难。
数据结构彼此具有一个或多个某种联系的元素数据汇总。
一般情况下,经过筛选的数据结构可以让用户感受到良好的体验或使用效率。
数据逻辑结构、数据存储结构和数据操作三部分是数据结构研究的主要内容。
线性结构和非线性结构一起组成了数据结构中的逻辑结构。
对线性结构的解释是:简单的一个表就是一种线性结构,这个表中所有的节点都符合线性关系。
除此之外,线性表是一种典型的线性结构,栈、队列、字符串都是线性结构。
对非线性结构的解释是:在一个简单表中的节点之间存在若干个对应关系是非线性结构。
在现实应用中,非线性结构主要包括了数组、树结构、图结构等数据结构。
1.2最短路径算法最短路径在图论中定义为在有向图中两结点间找一条权值最小的路径。
最短路径算法是对图状结构进行分析,找到需要的、合适的结点及路径,在交通、路径规划、城市建设、灾难逃生等领域广泛应用[2]。
最短路径法是一种机器学习技术,用于搜索连通图中结点之间的最短路径,是计算复杂系统中发现最优路径的有效方法。
最短路径法可以应用于许多不同类型的问题,包括路由算法、资源分配问题、最优布线、交通规划等,还可以被用于搜索引擎中搜索优化的相关工作。
最短路径算法——Dijkstra 算法
最短路径算法——Dijkstra算法一、最短路径问题最短路问题是图论理论的一个经典问题。
寻找最短路径就是在指定网络中两结点间找一条距离最小的路。
最短路不仅仅指一般地理意义上的距离最短,还可以引申到其它的度量,如时间、费用、线路容量等。
最短路径算法的选择与实现是通道路线设计的基础,最短路径算法是计算机科学与地理信息科学等领域的研究热点,很多网络相关问题均可纳入最短路径问题的范畴之中。
经典的图论与不断发展完善的计算机数据结构及算法的有效结合使得新的最短路径算法不断涌现。
在带权图(即网络)G=(V,E)中,若顶点v i,v j是图G的两个顶点,从顶点v i到v j 的路径长度定义为路径上各条边的权值之和。
从顶点v i到v j可能有多条路径,其中路径长度最小的一条路径称为顶点v i到v j的最短路径。
求最短路径具有很高的实用价值,在各类竞赛中经常遇到。
一般有两类最短路径问题:一类是求从某个顶点(即源点)到其他顶点(即终点)的最短路径;另一类是求图中每一对顶点间的最短路径。
本讲主要讲述一种单源最短路径(Single source shortest path)算法——Dijkstra 算法,用于解决非负权有向图的单源最短路径问题。
二、Dijkstra算法2.1 Dijkstra算法Dijkstra算法是典型最短路算法,用于计算一个节点到其他所有节点的最短路径。
主要特点是以起始点为中心向外层层扩展,直到扩展到终点为止。
Dijkstra算法能得出最短路径的最优解,但由于它遍历计算的节点很多,所以效率偏低。
Dijkstra算法是很有代表性的最短路算法,在很多专业课程中都作为基本内容有详细的介绍,如数据结构,图论,运筹学等等。
2.2 Dijkstra算法思想对于图G=(V,E),假设(u,v)是E中的边,c u,v是边的长度(即边权)。
如果把顶点集合V划分为两个集合S和T:S中所包含的顶点,他们到u的距离已经确定;T中所包含的顶点,他们到u的距离尚未确定。
单源最短路径算法
单源最短路径算法这篇文章将介绍两种常用的单源最短路径算法,Dijkstra算法和Bellman-Ford算法,它们分别使用了贪心法和动态规划的思想来解决该问题。
一、Dijkstra算法:Dijkstra算法是一种贪心法的算法,以其发明者荷兰计算机科学家Edsger W. Dijkstra的名字命名。
它的基本思想是通过逐步扩展已知最短路径集合,直到找到从起始节点到目标节点的最短路径为止。
算法步骤如下:1.初始化距离数组,将起始节点到所有其他节点的距离初始化为无限大。
2.将起始节点的距离设置为0。
3.对于与起始节点直接相连的节点,更新距离数组的值为起始节点到这些节点的距离。
4.选择距离数组中值最小且未访问过的节点作为下一个当前节点。
5.更新从起始节点到当前节点经过未访问过的节点的距离,并更新距离数组中的值。
6.重复步骤4和5,直到所有节点都被访问过或者无法再找到更短的路径。
Dijkstra算法的时间复杂度为O(V^2),其中V为图中节点的数量。
使用优先队列或堆数据结构可以将时间复杂度降低到O((V+E)logV)。
二、Bellman-Ford算法:Bellman-Ford算法是一种动态规划的算法,它以其发明者Richard Bellman和Leslie Ford的名字命名。
与Dijkstra算法不同的是,Bellman-Ford算法可以处理含有负权边的图。
算法步骤如下:1.初始化距离数组,将起始节点到所有其他节点的距离初始化为无限大。
2.将起始节点的距离设置为0。
3.对于每条边,更新距离数组的值为起始节点到目标节点的距离。
4.重复步骤3,直到所有节点的距离不再改变。
5.检查是否存在负权回路,如果存在,说明不存在最短路径。
Bellman-Ford算法的时间复杂度为O(VE),其中V为图中节点的数量,E为图中边的数量。
总结:Dijkstra算法和Bellman-Ford算法是解决单源最短路径问题的两种常用算法。
DIJKSTRA算法详细讲解
DIJKSTRA算法详细讲解DIJKSTRA算法是一种用于解决加权有向图中单源最短路径问题的算法。
它由荷兰计算机科学家Edsger W. Dijkstra在1956年提出。
DIJKSTRA算法的基本思想是通过维护一个当前已知最短路径集合,不断更新起点到各个顶点的最短距离。
下面将详细讲解DIJKSTRA算法的步骤:1.初始化:设置一个集合S,用来保存已经确定最短路径的顶点;同时设置一个数组D,用来存放起点到各个顶点的当前最短距离。
初始时,将起点到自身的距离设置为0,其他顶点的距离设置为无穷大。
2.选择起点:从起点开始,将其加入集合S,并更新起点到各个邻接顶点的距离值。
首先选择起点的距离值为0,所以起点会被选入集合S。
3.更新距离:从集合S中取出一个顶点v,并遍历与v相邻的顶点。
如果从起点经过v到达相邻顶点w的距离比起点直接到达顶点w的距离要短,则更新起点到顶点w的距离,并将顶点w加入集合S。
重复这个步骤,直到集合S包含所有顶点。
4.重复步骤3:再次从集合S中取出距离最小的顶点,重复步骤3、这样不断更新起点到各个顶点的最短距离,直到集合S为空。
5.输出最短路径:最终得到每个顶点最短距离的数组D。
根据D数组中的值,可以得到起点到各个顶点的最短路径。
下面以一个示例来说明DIJKSTRA算法的具体过程:假设有以下加权有向图,起点为A:AD/\/\3214/\/\B-1-C-5-E初始化时,起点A到自身的距离为0,到其他顶点的距离为无穷大。
将集合S设为空。
开始计算:1.选择起点A,并加入集合S。
2.更新距离:起点A到B的距离为3,将其更新为1;起点A到C的距离为无穷大,将其更新为33.选择到达B距离最短的顶点B,并加入集合S。
4.更新距离:起点A到C的距离为3,将起点B到C的距离2与之相加,更新为3;起点A到D的距离为无穷大,更新为45.选择到达C距离最短的顶点C,并加入集合S。
6.更新距离:起点A到D的距离为4,将起点C到D的距离1与之相加,更新为3;起点A到E的距离为无穷大,更新为87.选择到达D距离最短的顶点D,并加入集合S。
最短路径dijkstra 邻接矩阵 邻接表
最短路径算法Dijkstra是一种常用的图论算法,用于求解一个节点到其他所有节点的最短路径。
它采用了一种贪心的策略,通过逐步扩展已找到的最短路径集合来逐步逼近所有节点的最短路径。
在这篇文章中,我将从最短路径算法的基本概念开始,逐步深入介绍Dijkstra算法的原理和具体实现,并对邻接矩阵和邻接表两种表示图的方式进行详细的比较和分析。
1. 最短路径算法的基本概念最短路径算法是图论中的一个重要问题,它的核心任务就是寻找图中两个节点之间的最短路径。
这个问题在实际生活中有着广泛的应用,比如交通规划、网络路由等领域。
在这个问题中,最短路径通常指的是路径上的权重之和最小,也就是从一个起点节点到其他节点的距离最短。
2. Dijkstra算法的原理和实现Dijkstra算法是一种经典的最短路径算法,它的核心思想是通过维护一个集合,逐步扩展已找到的最短路径集合来获得所有节点的最短路径。
具体实现时,Dijkstra算法使用了一个优先队列来维护待选节点和其对应的最短距离,然后逐步从优先队列中选取最短距离的节点进行扩展,直到所有节点都被扩展。
3. 邻接矩阵和邻接表的比较在实际应用中,图的存储方式有很多种,其中最常用的是邻接矩阵和邻接表。
邻接矩阵是一种二维数组,其元素表示了图中节点之间的关系,而邻接表则是通过链表等数据结构来表示图的边。
在实际应用中,邻接矩阵具有更快的边查询速度,而邻接表则更适合稀疏图的存储。
总结回顾通过本文的介绍,相信读者对最短路径算法Dijkstra有了更深入的理解。
我们从最短路径算法的基本概念开始,介绍了Dijkstra算法的原理和实现,并对邻接矩阵和邻接表进行了详细的比较和分析。
在实际应用中,我们需要根据具体情况来选择最适合的图的表示方式,以便更高效地解决最短路径问题。
个人观点和理解作为一种经典的最短路径算法,Dijkstra算法在实际应用中有着广泛的价值。
通过对图的逐步扩展,Dijkstra算法能够高效地求解出图中节点之间的最短路径,可应用于交通规划、网络路由等众多领域。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
8 15 4 5 0.35 5 4 0.35 4 7 0.37 5 7 0.28 7 5 0.28 5 1 0.32 0 4 0.38 0 2 0.26 7 3 0.39 1 3 0.29 2 7 0.34 6 2 0.40 3 6 0.52 6 0 0.58 6 4 0.93
图
迪杰斯特拉算法(Dijkstra’s algorithm) -目前已知的求有向带权图的单源最短路径最有效的算法 -不能处理权值为负、为零的边 -它非常简单,算法用一句话可以说明:
邻 接 表
边数:15 0:4 0.38,2 1:3 0.29, 2:7 0.34, 3:6 0.52, 4:5 0.35,7 5:4 0.35,7
0.26,
0.37, 0.28,1
0.32,
图 的 数 据 来 源
6:2 0.40,0 0.58,4 0.93,
6
7:5 0.28,3 0.39,
有向带权图 Edge-weighted digraph
图
点7出队 考察点7的邻接表 边(7,5)无法松弛 边(7,3)被松弛,distanceTo[3] = 0.99,lastEdgeTo[3] = (7,3)
图 迪杰斯特拉算法伪代码
图 使用优先队列的迪杰斯特拉算法伪代码
图
1
5
7
0
4
3 2
6
1
5
7
0
4
3 2
6
1
5
7
0
4
3 2
6
1
5
7
0
4
3 2
6
1
5
7
0
4
3 2
6
1
5
7
0
4
3 2
6
1
5
7
0
4
3 2
6
1
5
7
0
4
3 2
6
0-6的最短路 径: 0-2 0.26 2-7 0.34 7-3 0.39 3-6 0.52
lastEdgeTo
Null Null 0-2 0.26 Null 0-4 0.38 Null Null Null
图
点2出队 考察点2的邻接表 边(2,7)被松弛,distanceTo[7] = 0.60,lastEdgeTo[7] = (2,7)
1
5
7
0
4
3 2
6
distanceTo
0 = 0.0 1 = Infinity 2 = 0.26 3 = Infinity 4 = 0.38 5 = Infinity 6 = Infinity 7 = 0.60
图
图的存储方式
adjacency-lists 邻接表法: 用一个数组存储所有的顶点. 对每个顶点,用一个链表存储该点的 邻接点.
0
6
2
1
3
4
8
7
5
9
10
11
12
图
最 短 路 径
0-6的最短路径 (SP): 0-2 0.26 2-7 0.34 7-3 0.39
3-6 0.52
1
5
7
0
4
顶点数:8
3 2
图
如果你想解决那5个问题,你必须学习一种数据结构,这就是图. 本课时目标: ✓基础环节*:了解图的含义 ✓实操环节**:了解图的存储方式和图的遍历 ✓实操环节***:了解最小生成树、最短路径的意义和算法思想 ✓实操扩展环节***:讲述图论经典TSP(旅行商)问题,并利 用智能搜索算法中的遗传算法求TSP问题的近似解。这是一个综 合了图中最优路径、NP难题及智能算法的扩展。
数据结构和算法
第11课 非线性结构-图-有向图的单源最短路径
图
问题1:网页和链接之间、路口和路之间是一种什么关系? 网页之间靠链接连通,路口靠路来连通. 问题2:如果你是市长,你想打通所有城市间的道路,而城市间 已经有很多路都相通了,你想用最小代价去做这件事,你怎么做? 连通性问题.找出所有连通的路,看还需要修几条路. 问题3:你还是那个市长,不过给你一个全新的城市,这个城市 将会有学校、医院、生活区,你现在需要打通这些地点,你怎么 用最小的代价修路? 最小生成树问题.
图
点0出队 考察点0的邻接表 边(0,4)被松弛,distanceTo[4] = 0.38,lastEdgeTo[4] = (0,4) 边(0,2)被松弛,distanceTo[2] = 0.26,lastEdgeTo[2] = (0,2)
1
5
7
0
4
3 2
6
distanceTo
0 = 0.0 1 = Infinity 2 = 0.26 3 = Infinity 4 = 0.38 5 = Infinity 6 = Infinity 7 = Infinity
遍历所有的边,对每个边进行松弛操作. 边的松弛(Edge relaxation) -预估距离:distance_to(v) 当前已知的到v的最短距离 -前驱域:last_edge_to(v) 当前已知的到v的最短路径中,v的一个 前驱顶点或前驱边
图
迪杰斯特拉算法(Dijkstra’s algorithm) 边的松弛(Edge relaxation) 对一条边v->w进行松弛,是指: 当前已知的s->w的最短路径,是否在经过v->w这条边后,依 然保持是一条已知的最短路径.如果是,则选择这条边,更新相 关数据结构.
lastEdgeTo
Null Null 0-2 0.26 Null 0-4 0.38 Null Null 2-7 0.34
图
点4出队 考察点4的邻接表
请思考:为什么是点4出 队?
边(4,5)被松弛,distanceTo[5] = 0.73,lastEdgeTo[5] = (4,5)
边(4,7)无法松弛
图
问题4:你想去其它市长的城市参观以学习经验,现在你在机场, 而你要去城市尽头的医院,你想走最少的路过去,你怎么办? 有向图的最短路径问题. 问题5:你想环游整个中国,假设你从北京出发,最后又回到北 京。对于每个省的省会,你只想游玩一次,而你又不想错过任何 一个省会。追求效率的你当然希望旅游的总路线是最短的,你怎 么规划旅游方案? 你想到了对所有城市做全排列,然后算出每个排列的城市之间的 距离之和,挑一个最短的城市排列作为你的方案.但是你有那么 多时间吗?位数 : 39 34! = 295232799039604140847618609643520000000
1
5
0
4
3 2
6
distanceTo
0 = 0.0 1 = Infinity 2 = 0.26 3 = Infinity 4 = 0.38 5 = 0.73 6 = Infinity 7 = 0.60
lastEdgeTo
Null Null 0-2 0.26 Null 0-4 0.38 4-5 0.35 Null 2-7 0.34