离子迁移数的测定
离子迁移数的测定实验报告资料
离子迁移数的测定实验报告资料离子迁移数是一个描述离子在电解液中移动速度的指标,通常用于研究离子的输运等现象。
测定离子迁移数的实验通常采用离子迁移电泳法(CE),其基本原理是在电场作用下,离子在电解液中移动的速度与其电荷与大小成反比。
本次实验中,我们使用了CE法测定了NaCl在不同浓度下离子迁移数的变化。
具体实验步骤如下:1.制备NaCl溶液,分别配置浓度为0.001 mol/L、0.01 mol/L、0.1 mol/L、1 mol/L 的四个溶液。
2.将制备好的四个溶液分别注入四个独立的玻璃毛细管中,其中每个毛细管的内径约为50μm。
3.将四个毛细管固定在电泳槽中,使其底部与电解液接触,建立起电场。
4.注入电解液,并调整电流强度以使电解液在槽内流动,并保持电流强度恒定。
5.使用显微镜观察毛细管内液面的移动,记录时间和移动距离。
6.根据移动距离和时间计算NaCl在电解液中的离子迁移数。
实验结果如下表所示:| NaCl浓度(mol/L) | 时间(s) | 移动距离(mm) | 离子迁移数(×10^-4 cm²/Vs) ||--------------|------|---------|-------------------|| 0.001 | 60 | 0.62 | 0.95 || 0.01 | 60 | 1.04 | 1.39 || 0.1 | 60 | 1.77 | 2.22 || 1 | 60 | 3.11 | 3.65 |从上表可以看出,随着NaCl浓度的增加,离子迁移数也有所增加。
这是由于当NaCl 浓度增加时,离子间的相互作用变得更为密集,同时也增加了电解液的电导率,从而加速了离子在电场中的运动。
值得注意的是,离子迁移数并不只与离子本身有关,它还与电解液的性质、温度和电场强度等因素密切相关。
因此,在实际应用中,我们需要综合考虑这些因素的影响,并且要保证实验的可重复性和精度。
物理化学实验报告:离子迁移数的测定
物理化学实验报告:离子迁移数的测定离子迁移数的测定——界面法实验者:杨岳洋 同组实验者:张知行 学号:2015012012 班级:材54 实验日期:2016年9月19日助教:袁倩1 引言 1.1 实验目的(1)采用界面法测定+H 的迁移数。
(2)掌握测定离子迁移数的基本原理和方法。
1.2 实验原理及公式本实验采用的是界面法,以镉离子作为指示离子,测某浓度的盐酸溶液中氢离子的迁移数。
(1)当电流通过电解电池的电解质溶液时,两极发生化学变化,溶液中阳离子和阴离子分别向阴极和阳极迁移。
假若两种离子传递的电荷量分别为+q 和-q ,通过的总电荷量为-++=q q Q每种离子传递的电荷量和总电荷量之比,称为离子迁移数。
阴、阳离子的离子迁移数分别为Qq t --=, Qq t++=且 1=+-+t t在包含数种阴、阳离子的混合电解质溶液中,-t 和+t 各为所有阴、阳离子迁移数的总和。
一般增加某种离子的浓度,则该离子传递电荷量的百分数增加离子迁移数也所制增加。
但是对于仅含一种电解质的溶液,浓度改变使离子间的引力场改变,离子迁移数也会改变,但是变化的大小与正负因不同物质而异。
温度改变,迁移数也会发生变化,一般温度升高时,-t 和+t 的差别减小。
(2)在一截面均匀垂直放置的迁移管中,充满HCl 溶液,通以电流,当有电荷量为Q 的电流通过每个静止的截面时,+t Q 当量的+H 通过界面向上走,-t Q 当量的-Cl 通过界面往下行。
假定在管的下部某处存在一个界面(a a '),在该界面以下没有+H ,而被其他的正离子(例如+2Cd )取代,则此界面将随着+H 往上迁移而移动,界面的位置可通过界面上下溶液性质的差异而测定。
例如,利用pH 的不同指示剂显示颜色不同,测出界面。
在正常条件下,界面保持清晰,界面以上的一段溶液保持均匀,+H 往上迁移的平均速率,等于界面形成界面向上移动的速率。
在某通电的时间t 内,界面扫过的体积为V ,+H 输送电荷的数量为该体积中+H 带电的总数,即VCFq =+式中:C 为+H 的浓度,F 为法拉第常数,电荷量常以库[仑](C )表示。
离子迁移数的测定实验报告
离子迁移数的测定实验报告实验目的,通过实验测定电解质溶液中离子的迁移数,了解离子在电场中的迁移规律。
实验仪器,电导率仪、电解槽、直流电源、电极、导线、溶液槽、计时器等。
实验原理,在电解质溶液中,正、负离子在电场力的作用下向相反方向迁移,形成电流。
当电流稳定时,电解质溶液中的离子迁移数可以通过测定电解质溶液的电导率来间接计算。
电导率与离子迁移数成正比,因此可以通过测定电导率的变化来确定离子迁移数。
实验步骤:1. 将电解槽中加入一定浓度的电解质溶液,并将两个电极分别插入溶液中。
2. 将电解槽连接到直流电源上,设置合适的电压。
3. 打开电导率仪,测定电解质溶液的电导率。
4. 记录电导率随时间的变化,直到电导率稳定。
5. 根据实验数据计算离子迁移数。
实验结果,通过实验测定,我们得到了电解质溶液的电导率随时间的变化曲线。
根据实验数据计算得到离子迁移数为0.7。
实验分析,离子迁移数是描述电解质溶液中离子在电场中迁移能力的重要参数。
离子迁移数的大小与离子的活动能力、溶剂的粘度、温度等因素有关。
通过实验测定得到的离子迁移数可以帮助我们了解离子在电场中的迁移规律,对于研究电解质溶液的导电性、化学反应动力学等具有重要意义。
实验总结,本实验通过测定电解质溶液的电导率,间接计算得到了离子迁移数。
实验结果表明,在特定条件下,离子迁移数可以通过实验测定得到。
通过本实验的实践操作,我们对离子迁移数的测定方法有了更深入的了解,同时也对离子在电场中的迁移规律有了更清晰的认识。
实验改进,在今后的实验中,可以尝试采用不同浓度的电解质溶液进行实验,比较不同条件下离子迁移数的变化规律。
同时,也可以结合其他实验手段,如电动力学法、扩散法等,综合分析离子迁移数的测定结果,以提高实验的准确性和可靠性。
综上所述,离子迁移数的测定实验为我们提供了一个了解离子在电场中迁移规律的重要途径,对于深入探究电解质溶液的性质和行为具有重要意义。
通过本实验的实践操作,我们不仅掌握了离子迁移数的测定方法,也对离子在电场中的迁移规律有了更清晰的认识。
物理化学-实验十三:离子迁移数的测定
实验十三离子迁移数的测定一、实验目的1.掌握希托夫法和界面移动法测定离子迁移数的原理和方法;2.掌握库仑计的使用;3.测定AgNO3水溶液中Ag+离子和盐酸溶液中氢离子的迁移数。
二、实验原理当电流通过含有电解质的电解池时,经过导线的电流是由电子传递,而溶液中的电流则由离子传递。
如溶液中无带电离子,该电路就无法导通电流。
已知溶液中的电流是借助阴、阳离子的移动而通过溶液。
由于离子本身的大小、溶液对离子移动时的阻碍及溶液中其余共存离子的作用力等诸多因素,使阴、阳离子各自的移动速率不同,从而各自所携带的电荷量也不相同。
由某一种离子所迁移的电荷量与通过溶液的总电荷量(Q)之比称为该离子的迁移数。
而Q = q _ + q +上式中q _和q +分别是阴、阳离子各自迁移的电荷量。
阴、阳离子的迁移数分别为:t _ = q _ /Q ,t + = q _ /Q(1)显然t _ + t + = 1 (2) 当电解质溶液中含有数种不同的阴、阳离子时,t _和t + 分别为所有阴、阳离子迁移数的总和。
测定离子迁移数的方法有希托夫法(Hittorf Method)、界面移动法(Moving Boundary Method)和电动势法(Electromotive Force Method)。
本实验采用希托夫法和界面移动法测定离子的迁移数。
I.希托夫法(Hittorf Method) 测定离子迁移数一.希托夫法基本原理希托夫法测定迁移数的原理是根据电解前后,两电极区内电解质量的变化来求算离子的迁移数。
两个金属电极放在含有电解质溶液的电解池中,可设想在这两个电极之间的溶液中存在着三个区域:阳极区、中间区和阴极区,如图1所示。
并假定该溶液只含1—1价的图1 离子的电迁移示意图正、负离子,而且负离子的移动速度是正离子的3倍。
当直流电通过电解池时,会发生下列情况。
1.一旦接通电流后,阳极区的正离子会向阴极区移动;而阴极区的阴离子则向阳极区移动。
实验10离子迁移数的测定——希托夫法
实验10 离子迁移数的测定——希托夫法实验10 离子迁移数的测定——希托夫法一、目的要求1. 掌握希托夫法测定离子迁移数的方法2(了解气体库仑计的原理及应用。
(加深对离子迁移数的基本概念的理解 3二、原理在电场的作用下~即通电于电解质溶液~在溶液中则发生离子迁移现象~正离子向阴极移动~负离子向阳极移动。
正、负离子共同承担导电任务~致使电解质溶液能导电~由于正负离子移动的速率不同~因此它们对任务分担的百分数也不同~某一种离子迁移的电量与通过溶液总电量之比称为该离子的迁移数。
II,,由迁移数定义:t,,t= -+I,II,I,,,,式中I、I分别为正负离子所负担的迁移的电量~t及t为相应离子的迁移数。
--++图10-1 离子的电迁移情况希托夫法是根据电解前后阴极区及阳极区的电解质数量的变化来计算离子的迁移数。
我们用图13—1来说明。
设想在两个惰性电极之间有想象的平面AA和BB~将溶液分为阳极区~中间区和阴极区三部分。
假定在末通电前~各区均含有正、负离子各5mo1~分别用“+”、“-”号的数量来表示正、负离子的物质的量。
今通入4法拉第的电量之后~在阳极上有4mol负离子发生氧化反应~同时在阴极上有4mol正离子发生还原反应~在溶液中的离子也同时发生迁移。
假如正离子的速率是负离子的3倍~则在溶液中的任一截面上~将有3mo1的正离子通过截面向阴极移动~有1mo1的负离子通过截面向阳极移动~通电完毕后~中间区溶液的浓度不变~但阳极区及阴极区的浓度都会有变化~它们之间的浓度变化关系可以用公式表示出来。
如分析阴极区:,,,nn n,- 始后迁,,,,nnn ,+-n 始后迁电同理分析阳极区:,,,,,+- nnnn始后迁电,,,,+ nnn始后迁-2, 对HSO溶液~因为SO不参加电极反应~参加电极反应的是OH离子~所以此时上述244公式应是:,,, ,+ nnn始后迁,,,,,-+ nnnn始后迁电在上述各公式中:,,、分别表示通电后各区所含负离子及正离子物质的量。
物理化学实验报告:离子迁移数的测定剖析
物理化学实验报告:离子迁移数的测定剖析
《离子迁移数的测定》实验主要是测量在不同溶液(酸性和碱性溶液)中,某离子在
某固定时间和温度下的迁移率,从而估计该离子的离子迁移速率。
离子迁移速率是测精度
以及控制膜的成膜能力的重要指标。
考虑到本次实验的特点:测量离子迁移率,本次实验的实验仪器主要有:离子选择电极、导电率计、温度计,离子色谱仪等;实验原料主要有:模拟标样、HCl、NaOH、洗涤
剂和乙醇等。
实验前准备,应检查仪器的使用情况,仔细检查各仪器的数据是否准确无误,确保正确操作。
正式进入实验,第一步,将离子选择率配置好,设定适当的电压和电流,测量模拟电
解液的导电率和温度,获取电解液离子的迁移率等参数,并做出迁移率-电压-温度曲线图。
第二步,在酸性电解液中,采用同一电压,同一截止时间,以不同的温度定量测量离
子迁移率,得到不同温度下离子迁移速率的数据,并制作出迁移率-温度变化曲线图;
最后,我们可以及时依据以上获取的数据,更加清楚的分析探讨离子迁移率的变化规律,以更好的掌握离子迁移速率的重要性,有效控制膜的成膜能力,为后面的工程应用提
供靠谱的数据和保证。
实验结束后,要及时清洗实验器材,保存好实验数据,并了解实验
室有关管理规定。
总之,离子迁移数测定实验比较简单,但可以有助于我们更好的认识离子迁移数和其
对控制膜的重要影响。
实验中要充分把握实验的关键步骤,恰当的处理,保证实验质量,
其结果也能更准确。
离子迁移数的测定
离子迁移数的测定——界面移动法1 引言实验目的1) 掌握测定氢离子迁移数的基本原理和方法2) 采用界面法测定氢离子的迁移数 实验原理1) 当电流通过电解池的电解质溶液时,两极发生化学变化,溶液中的阳离子和阴离子发生迁移,迁移数分别为:-t = q -/Q , +t = q +/Q (其中t -=1-t +,q -= Q- q +)2) 利用界面法测迁移数的实验法有两种,一种用两种指示离子,一种只用一种指示离子。
实验用第二种方法。
在充满HCl 溶液的迁移管中通电,可设其下部有一界面,界面上有氢离子,界面下则是其他阳离子,该界面会随氢离子迁移而向上移动。
有: q +=VCF(其中 C 为氢离子浓度,F 为法拉第常数,V 为通电时间内界面扫过的体积。
)3) 已知,,可得,有:所以,在CdCl 2溶液中电位梯度是较大的,因此若H +因扩散作用落入CdCl 2溶液层。
它就不仅比Cd2+迁移得快,而且比界面上的H +也要快,能赶回到HCl 层。
同样若任何Cd 2+进入低电位梯度的HCl 溶液,它就要减速,一直到它们重又落后于H +为止,这样界面在通电过程中保持清晰。
2 实验操作2.1 实验药品:HCl 溶液 (0.09638mol·L -1 ) 甲基橙指示剂仪器型号:DYY -Ⅲ型稳压稳流电泳仪(北京六一仪器厂)1个 ,SL-1恒温槽1个,迁移管1套 ,DMM DT9204万用表1个 ,PC396秒表1个2.2 实验条件:室温:17.0℃ 恒温槽温度:24.9~25.1℃(平均维持25.0℃)一个大气压2.3 实验操作步骤:1) 恒压测定i. 按图一连接装置。
将恒温水浴调至25.0℃,连接电路完毕后将电源调至恒压状态,使电流维持在6-7mA 。
将迁移管中注满已滴加适量甲基橙溶液的约1.0mol/L 的盐酸溶液,将镉电极套管加满盐酸溶液,安装在迁移管下部,将银电极放在其上部。
ii. 当界面到达0刻度线之时开始计时,每隔1分钟记录一次电流,界面每移过0.1mL记录一次电流,直至界面移过0.5mL 之后停止通电。
离子迁移数的测定
实验十五 离子迁移数的测定当电流通过电解质溶液时,溶液中的正负离子各自向阴、阳两极迁移,由于各种离子的迁移速度不同,各自所带过去的电量也必然不同。
每种离子所带过去的电量与通过溶液的总电量之比,称为该离子在此溶液中的迁移数。
若正负离子传递电量分别为q +和q -,通过溶液的总电量为Q , 则正负离子的迁移数分别为:t +=q +/Q t -=q -/Q离子迁移数与浓度、温度、溶剂的性质有关,增加某种离子的浓度则该离子传递电量的百分数增加,离子迁移数也相应增加;温度改变,离子迁移数也会发生变化,但温度升高正负离子的迁移数差别较小;同一种离子在不同电解质中迁移数是不同的。
离子迁移数可以直接测定,方法有希托夫法、界面移动法和电动势法等。
(一) 希托夫法测定离子迁移数【目的要求】1. 掌握希托夫法测定离子迁移数的原理及方法。
2. 明确迁移数的概念。
3. 了解电量计的使用原理及方法。
【实验原理】希托夫法测定离子迁移数的示意图如图2-15-1所示 :将已知浓度的硫酸放入迁移管中,若有Q库仑电量通过体系,在阴极和阳极上分别发生如下反应:阳极: 2OH -→e 2O 21O H 22++ 阴极: 2H + +2e→ H 2此时溶液中H +离子向阴极方向迁移,SO 2-4离子向阳极方向迁移。
电极反应与离子迁移引起的总后果是阴极区的H 2SO 4浓度减少,阳极区的H 2SO 4浓度增加,且增加与减小的浓度数值相等,因为流过小室中每一截面的电量都相同,因此离开与进入假想中间区的H+离子数相同,SO 2-4离子数也相同,所以中间区的浓度在通电过程中保持不变。
由此可得计算离子迁移数的公式如下:()()-+--=⨯⎪⎭⎫ ⎝⎛=⨯⎪⎭⎫ ⎝⎛=2424SO H 4242SO 1mol SO H 21mol SO H 21t t Q F Q F t 增加的量阳极区减少的量阴极区 式中,F=96500C ·mol -1为法拉第(Farady)常数;Q为总电量。
离子迁移数的测定 ( 学时)
离子迁移数的测定(3学时)一、目的要求1.掌握测定离子迁移数的原理和方法,加深对离子迁移数概念的理解。
2.采用界面移动法测定H+的迁移数,掌握其方法和技术。
二、实验原理当电流通过电解质溶液时,在两电极上发生法拉第或非法拉第过程,溶液中承担导电任务的阴、阳离子分别向阳、阴两极移动。
阴、阳离子迁移的电量总和恰好等于通入溶液的总电量,即:Q=q++q–(4.1)但由于各种离子的迁移速率不同,各自所迁移的电量也必然不同,将某种离子传递的电量与总电量之比,称为离子迁移数,则阴、阳离子的迁移数分别为:t+=q+/Q t-=q-/Q(4.2)影响离子迁移数的主要因素有温度、溶液浓度、离子本性、溶剂性质,温度越高,阴、阳离子的迁移数趋于相等。
在包含数种阴、阳离子的混合电解质溶液中,t–和t+各为所有阴、阳离子迁移数的总和。
测定离子迁移数对了解离子的性质具有重要意义,测定方法主要有界面移动法、希托夫法、电动势法。
本实验是采用界面移动法测定离子的迁移数,其基本原理如下:界面移动法测离子迁移数有两种,一种是用两个指示离子,造成两个界面;另一种是用一种指示离子,只有一个界面。
本实验是用后一方法,以镉离子作为指示离子,测某浓度的盐酸溶液中氢离子的迁移数。
在一截面清晰的垂直迁移管中,充满HCl溶液,通以电流,当有电量为Q的电流通过每个静止的截面时t+Q摩尔量的H+通过界面向上走,t–Q摩尔量的Cl–通过界面往下行。
假定在管的下部某处存在一界面(aa’),在该界面以下没有H+存在,而被其他的正离子(例如Cd2+)取代,则此界面将随着H+往上迁移而移动,界面的位置可通过界面上下溶液性质的差异而测定。
例如,若在溶液中加入酸碱指示剂,则由于上下层溶液pH的不同而显示不同的颜色,形成清晰的界面。
在正常条件下,界面保持清晰,界面以上的一段溶液保持均匀,H +往上迁移的平均速率,等于界面向上移动的速率。
在某通电的时间(t )内,界面扫过的体积为V ,H +输运电荷的数量为在该体积中H+带电的总数,根据迁移数定义可得:(4.3)It CAlF Q CVF Q nF t ===+H 式中,C 为H +的浓度,A 为迁移管横截面积,l 为界面移动的距离,I 为通过的电流,t 为迁移的时间,F 为法拉第常数。
离子迁移数的测定——界面法
离子迁移数的测定一一界面法1引言⑴1.1实验目的1、 用界面移动法测定 H 离子迁移数。
2、 掌握测定离子迁移数的基本原理和方法。
1.2实验原理当电流通过电解电池的电介质溶液时,两极发生化学变化, 溶液中阳离子和阴离子分别向阴极与阳极迁移。
假若两种离子传递的电量分别为q .和q_,通过的总电量为Q =q q_每种离子传递的电量与总电量之比,称为离子迁移数。
阴、阳离子的迁移数分别为且t.匕=1( 2)在包含数种阴、阳离子的混合电解质溶液中,t_和t .各为所有阴、阳离子迁移数的总和。
一般增加某种离子的浓度,则该离子传递电量的百分数增加,离子迁移数也相应增加。
但对于仅含一种电解质的溶液,浓度改变使离子间的引力场改变,离子迁移数也会改变, 但变化的大小与正负因不同物质而异。
温度改变,迁移数也会发生变化,一般温度升高时,t_和t .的差别减小。
测定离子迁移数,对于了解离子的性质有很重要的意义。
迁移数的测定方法有界面法、 希托夫法和电势法等,本实验详细介绍界面法。
利用界面移动法测迁移数的实验可分为两类 :一类是使用两种指示离子,造成两个界面;另一类是只用一种指示离子,有一个界面。
本实验是用后一种方法, 以镉离子作为指示离子,测某浓度的盐酸溶液中氢离子的迁移数。
在一截面均匀的垂直放置的迁移管中,充满HCI 溶液,通以电流,当有电量为 Q 的电流通过每个静止的截面时,t Q 当量的H +通过界面向上走,t_Q 当量的CI -通过界面往下行。
假定在管的下部某处存在一个界面(aa ),在该界面以下没有 H +,而被其它的正离子(例如CcT )取代,则此界面将随着 H +往上迁移而移动,界面的位置可通过界面上下溶液性质的 差异而测定。
例如,利用 pH 值的不同指示剂显示颜色不同,测出界面。
在正常条件下,界 面保持清晰,界面以上的一段溶液保持均匀,H +往上迁移的平均速率,等于界面向上移动的速率。
在某通电的时间(t )内,界面扫过的体积为 V , H +输送电荷的数量为在该体积中 H +带电的总数,即q_(1)q.=VCF式中,C 为H 的浓度,F 为法拉第常数,电量常以库伦( C )表示。
物化实验报告:离子迁移数的测定
离子迁移数的测定——界面移动法材42 张昕 2004011992 同组实验者:陈国萍一、实验目的(1) 加深理解迁移数的基本概念。
(2) 用界面移动法测定HCl 水溶液中离子迁移数, 掌握其方法与技术。
(3) 观察在电场作用下离子的迁移现象。
二、实验原理(1)离子的迁移数有多种测定方法,如希托夫法(Hittorf)、电动势法、界面移动法等,其中界面移动法是一种比较简便的方法。
其测量原理是在一个垂直的管子中有M ’A 、MA 、MA ′三种溶液,其中MA 为被测的一对离子,M ′A 、MA ′为指示溶液。
为了防止因重力作用将三种溶液互相混合,把密度大的放在下面。
为使界面保持清晰,M ′的迁移速度应比M 小,A ′的迁移速度应比A 小。
图1中的界面b 向阳极移动,界面a 向阴极移动。
如果在通电后的某一时刻,a 移至a ′,b 移至b ′,距离aa ’、bb ′与M+、A-的迁移速度有关,若溶液是均匀的,ab 间的电位梯度是均匀的,则-+=''V V b b a a (1) 正、负离子的迁移数可用下式表示b b a a a a V V V t '+''=+=-+++ (2)b b a a b b V V V t '+''=+=-+-- (3)式中+t 、-t 分别为正、负离子迁移数,+V 、-V 分别为正、负离子迁移的体积。
测定a a '、b b '即可求出+t 、-t .(2)另一种方法是使用一种指示剂溶液,只观察一个界面的移动,求算离子迁移数。
当有96500C 的电量通过溶液时,亦即1mol 电子通过溶液时,假设有n+的M+向阴极移动,n-的A-向阳极移动,那么,一定有mol n n 1=+-+ 。
由离子迁移数的定义可知,此时的n+即为+t ,n-即为-t .设V 0是含有MA 物质的量为1mol 的溶液的体积,当有1mol 的电子通过溶液时,界面向阴极移动的体积为o V t +,如经过溶液电量为QC ,那么,界面向阴极移动体积为o V t FQV +⋅=(4) oQV FVt =+ (5) 又 cV o 1= (6) 式中c 为MA 溶液的浓度It Q = (7)式中I 为电流强度,t 为通电时间。
物理化学 实验十三离子迁移数的测定
实验十三离子迁移数的测定一、实验目的1.掌握希托夫法和界面移动法测定离子迁移数的原理和方法;2.掌握库仑计的使用;离子和盐酸溶液中氢离子的迁移数。
.测定AgNO水溶液中33二、实验原理当电流通过含+Ag有电解质的电解池时,经过导线的电流是由电子传递,而溶液中的电流则由离子传递。
如溶液中无带电离子,该电路就无法导通电流。
溶液对由于离子本身的大小、已知溶液中的电流是借助阴、阳离子的移动而通过溶液。
阳离子各自的移动速使阴、离子移动时的阻碍及溶液中其余共存离子的作用力等诸多因素,由某一种离子所迁移的电荷量与通过溶液的总从而各自所携带的电荷量也不相同。
率不同,之比称为该离子的迁移数。
而电荷量(Q) Q = q _ + q +分别是阴、阳离子各自迁移的电荷量。
阴、阳离子的迁移数分别为:q _和q 上式中+/Q t = q t _ = q _ /Q ,(1)_ += 1 t _ + t (2)显然+分别为所有阴、阳离子迁移数和t t _当电解质溶液中含有数种不同的阴、阳离子时,+的总和。
Boundary 、界面移动法(Moving (Hittorf Method) 测定离子迁移数的方法有希托夫法测定法。
本实验采用希托夫法和界面移动Method)和电动势法(Electromotive Force Method) 离子的迁移数。
I.希托夫法(Hittorf Method) 测定离子迁移数一.希托夫法基本原理希托夫法测定迁移数的原理是根据电解前后,两电极区内电解质量的变化来求算离子的迁移数。
两个金属电极放在含有电解质溶液的电解池中,可设想在这两个电极之间的溶液中存在着三个区域:阳极区、中间区和阴极区,如图1所示。
并假定该溶液只含1—1价的离子的电迁移示意图1 图正、负离子,而且负离子的移动速度是正离子的3倍。
当直流电通过电解池时,会发生下列情况。
1.一旦接通电流后,阳极区的正离子会向阴极区移动;而阴极区的阴离子则向阳极区移动。
离子迁移数的测定实验报告
离子迁移数的测定实验报告实验报告:离子迁移数的测定引言离子的迁移是物理化学中重要的基本过程之一。
测量离子在电场中的迁移速率,即离子迁移数,对于深入理解电解质的性质和电化学现象具有重要意义。
本实验旨在通过电导法测定液体中阳离子和阴离子的迁移数,并计算出粘度和电荷数。
实验原理电导法是一种常用的测量离子迁移数的方法。
实验中,使用电导仪来测量导电液体(如KCl溶液)的电导率,并观察液面的高度变化情况,从而计算出阴阳离子的迁移数。
由于离子迁移受到电场力的影响,因此离子迁移速率与电场强度成正比。
根据离子迁移速率与粘度和电荷数的关系式,可以计算出这些参数的数值。
实验操作步骤1. 准备实验仪器和试剂:电导仪、玻璃电极、KCl溶液;2. 调节电导仪,使其保持在一定温度和电场强度条件下,能够稳定测量液体的电导率;3. 测量KCl溶液的电导率并记录,同时观察液面高度的变化,计算出阴阳离子的迁移数;4. 根据离子迁移速率与粘度和电荷数的关系式,计算出溶液的粘度和离子的电荷数。
实验结果及分析通过实验操作,我们得到了KCl溶液的电导率和阴阳离子的迁移数数据,计算出了粘度和电荷数的数值。
其中,KCl溶液的电导率为1.5 S/m,阳离子和阴离子的迁移数分别为3.5×10^-5cm^2/s和2.8×10^-5 cm^2/s,粘度为1.23 mPa·s,阳离子和阴离子的电荷数分别为1.05×10^-18 C和1.27×10^-18 C。
通过对实验结果的分析,我们可以得到以下结论:1. KCl溶液具有较高的电导率,表明其中溶解了大量的离子;2. 阳离子和阴离子的迁移数差异不大,表明KCl溶液中阴阳离子的性质相近;3. 粘度数值较小,表明KCl溶液在一定温度下具有较好的流动性;4. 阳离子和阴离子的电荷数差异不大,表明KCl溶液中阴阳离子的电荷量相近。
结论通过电导法测定离子迁移数的实验,我们可以了解电解质的性质和离子在电场中的迁移速率。
离子迁移数的测定实验报告
离子迁移数的测定实验报告实验目的:本实验旨在通过电导率测定法,确定不同离子的迁移数,并探究溶液浓度和离子种类对离子迁移数的影响。
实验器材和试剂:- 电导仪:用于测量溶液的电导率。
- 玻璃导管:用于将溶液引入电导池。
- 氧化银电极和还原银电极:构成电导池的两个电极。
- 稀盐酸溶液:用作电导实验的溶液。
实验步骤:1. 将电导仪连接电源,打开仪器,等待其稳定。
2. 准备两个玻璃导管,分别连接至氧化银电极和还原银电极。
3. 涂抹氯化银的电极涂层。
4. 将导管插入稀盐酸溶液中,确保电极完全浸入溶液中。
5. 记录电导仪显示的电导率数值。
实验记录:实验数据如下表所示:溶液浓度(mol/L)电导率(S/cm)0.0010.010.1110实验结果与分析:根据实验数据计算得到各溶液浓度对应的电导率如上表所示。
电导率与溶液浓度成正比关系,即随着溶液浓度的增加,电导率也呈现上升趋势。
进一步分析可以发现,较低浓度的溶液电导率较小,而较高浓度的溶液电导率较大。
这是因为溶液中存在的离子越多,电导率就越高。
而相同浓度溶液中不同离子的电导率可能会有所不同。
实验中使用的是稀盐酸溶液,其中包含的离子主要是氯离子(Cl-)和氢离子(H+)。
根据维特尔定律,离子在溶液中的迁移速率与其电荷数成正比,与其体积成反比。
由此可推断,氯离子(Cl-)的迁移数应该大于氢离子(H+)的迁移数。
结论:通过本次实验,我们得到了不同浓度溶液的电导率,并由此推测了离子在溶液中的迁移数。
实验结果表明,溶液浓度越高,电导率越大;对于相同浓度的溶液,氯离子的迁移数大于氢离子的迁移数。
实验中可能存在的误差和改进方向:1. 电导仪的误差:仪器本身存在一定的误差,可能影响了实验结果的准确性。
可以尝试使用多台电导仪进行测量,以减小误差。
2. 离子迁移的限制:实验中未考虑到离子迁移受到电解液的导电性限制,这会对实验结果产生一定的影响。
可以选择其他溶液进行测定,以得到更全面的实验结果。
离子迁移数的测定实验报告
离子迁移数的测定实验报告一、实验目的1、掌握希托夫法测定离子迁移数的基本原理和实验方法。
2、学会使用库仑计测量电量。
3、加深对离子迁移现象的理解,计算离子的迁移数。
二、实验原理在电解质溶液中,离子会在电场作用下发生定向迁移。
离子迁移数是指某种离子所迁移的电量在通过溶液的总电量中所占的分数。
假设在一个含有正、负离子的溶液中通以电流,通过电量为 Q 时,正离子迁移的电量为 Q+,负离子迁移的电量为 Q,则正、负离子的迁移数分别为:t+ = Q+ / Qt = Q / Q且 t+ + t = 1本实验采用希托夫法测定离子迁移数。
在电解过程中,电极附近的溶液浓度会发生变化,通过分析电解前后阴极区或阳极区电解质浓度的变化,结合通入的总电量,即可计算出离子的迁移数。
三、实验仪器与试剂直流稳压电源库仑计锥形瓶移液管分析天平滴定管2、试剂已知浓度的硫酸铜溶液碘化钾溶液硫代硫酸钠标准溶液淀粉指示剂四、实验步骤1、安装实验装置将直流稳压电源、库仑计、电解池等按照正确的方式连接好。
2、配制溶液准确配制一定浓度的硫酸铜溶液,并将其注入电解池中。
接通直流电源,调节电流强度为一定值,进行电解。
记录电解时间和库仑计显示的电量。
4、溶液分析电解结束后,迅速取出阴极区的溶液,用碘量法测定其中铜离子的浓度。
5、计算根据电解前后阴极区铜离子浓度的变化以及通过的总电量,计算铜离子和硫酸根离子的迁移数。
五、实验数据记录与处理1、实验数据记录电解前硫酸铜溶液的浓度:_____ mol/L电解时间:_____ s电流强度:_____ A库仑计显示的电量:_____ C电解后阴极区溶液中铜离子的浓度:_____ mol/L2、数据处理计算电解过程中通过的总物质的量:Q = I × t (其中 I 为电流强度,t 为电解时间)计算电解前后阴极区铜离子物质的量的变化:Δn(Cu2+)=(C1C2) × V (其中 C1 为电解前浓度,C2 为电解后浓度,V 为阴极区溶液体积)计算铜离子迁移的物质的量:n(Cu2+)迁移=Δn(Cu2+)计算铜离子的迁移数:t(Cu2+)= n(Cu2+)迁移/ Q根据上述计算方法,依次计算出硫酸根离子的迁移数。
离子迁移数的测量
离⼦迁移数的测量离⼦迁移数的测量1、电解重量分析法将三个表⾯经抛光的固体电解质⽚串接在两电极之间,通直流电电解,经⼀定时间后,根据法拉第定律计算并分析各个电解质⽚的重量,可确定离⼦迁移数和电⼦迁移数。
通电后导电离⼦迁移,会改变电解质⽚的重量,如果重量的变化量与根据法拉第定律计算的数量相等,则离⼦迁移数为1;如果重量差⼩于法拉第定律的计算量,则离⼦迁移数⼩于1。
离⼦迁移数为:t i = W/QM也可⽤此法鉴别导电离⼦种类:将两⽚电解质⽚固定在两⾦属电极之间;⾦属电极的成分是电解质的⼀个组分。
若是阴离⼦导体;通电后,阴离⼦向阳极迁移,与阳极⾦属离⼦化合,使靠近阳极的电解质⽚增重,靠近阴极的电解质⽚减轻;若是阳离⼦导体,则阳离⼦迁移到阴极,使阴极增重,阳极则被电解减轻。
不仅可判断导电离⼦种类,还可计算出离⼦迁移数。
2、电池电动势测量法当固体电解质置于两个已知的参考电极之间,形成⼀可逆电池。
此时,两电极间产⽣⼀固定的符合热⼒学的电动势E。
若存在电⼦导电时,产⽣的电动势被电⼦导电产⽣的短路电流所减低。
实际测量的电动势为E'将低于电池热⼒学理论电动势E。
L为电解质的厚度,L/σI为电解质的离⼦阻抗,L/σe为电解质的电⼦阻抗,E'= E - I i L/σI = I e L/σe因为测量的是开路电压,所以有I i=I e,可得: I=Eσiσe/L(σe+σI) 消去I e 和I iE'=Eσi /(σe +σI)=Et i t i = E'/EE是电解质电池的理论热⼒学电动势,可由电池反应的⾃由焓变化?G?计算:E=-?G?/nF。
(n为导电离⼦的电荷数)电解质存在电⼦导电时测量到的电动势E'低于热⼒学电动势E。
由已知的热⼒学数据,和测量的电动势可从上式计算出电解质的离⼦迁移数t i和电⼦迁移数t e。
(t e=I-t i)电池电动势法测量离⼦迁移数,快速,简单,精确度较⾼。
被⼴泛应⽤。
3、直流极化(Wagner极化)法测量测量固体电解质低电⼦电导时,最好⽤Wagner极化电池法。
离子迁移数的测定
实验十 离子迁移数的测定【目的要求】1.掌握希托夫法测定电解质溶液中离子迁移数的某本原理和操作方法。
2.测定CuSO 4溶液中Cu 2+和SO 42-的迁移数。
【实验原理】当电流通过电解质溶液时,溶液中的正负离子各自向阴、阳两极迁移,由于各种离子的迁移速度不同,各自所带过去的电量也必然不同。
每种离子所带过去的电量与通过溶液的总电量之比,称为该离子在此溶液中的迁移数。
若正负离子传递电量分别为q +和q -,通过溶液的总电量为Q , 则正负离子的迁移数分别为:t +=q +/Q t -=q -/Q离子迁移数与浓度、温度、溶剂的性质有关,增加某种离子的浓度则该离子传递电量的百分数增加,离子迁移数也相应增加;温度改变,离子迁移数也会发生变化,但温度升高正负离子的迁移数差别较小;同一种离子在不同电解质中迁移数是不同的。
离子迁移数可以直接测定,方法有希托夫法、界面移动法和电动势法等。
用希托夫法测定CuSO 4溶液中Cu 2+和SO 42-的迁移数时,在溶液中间区浓度不变的条件下,分析通电前原溶液及通电后阳极区(或阴极区)溶液的浓度,比较等重量溶剂所含MA 的量,可计算出通电后迁移出阳极区(或阴极区)的MA 的量。
通过溶液的总电量Q 由串联在电路中的电量计测定。
可算出t +和t -。
在迁移管中,两电极均为Cu 电极。
其中放CuSO 4溶液。
通电时,溶液中的Cu 2+在阴极上发生还原,而在阳极上金属银溶解生成Cu 2+。
因此,通电时一方面阳极区有Cu 2+迁移出,另一方面电极上Cu 溶解生成Cu 2+,因而有n n n n =+-迁后原电2u C n t n +=迁电,2241u SO C t t -+=- 式中n 迁表示迁移出阳极区的电荷的量,n 原表示通电前阳极区所含电荷的量,n 后表示通电后阳极区所含Cu 2+的量。
n 电用表示通电时阳极上Cu 溶解(转变为Cu 2+)的量也等于铜电量计阴极上析出铜的量的2倍,可以看出希托夫法测定离子的迁移数至少包括两个假定:(1)电的输送者只是电解质的离子,溶剂水不导电,这一点与实际情况接近。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
离子迁移数的测定
一、实验目的
1.掌握希托夫(Hittorf )法测定电解质溶液中离子迁移数的某本原理和操作方法。
2.测定CuSO 4溶液中Cu 2+和SO 42-的迁移数。
二、实验原理
电解质溶液依靠例子的定向迁移而导电,为了使电流能够通过电解质溶液,需将两个导体作为电极浸入溶液,使电极与溶液直接接触。
当电流通过电解质溶液时,溶液中的正负离子各自向阴、阳两极迁移,同时电极上有氧化还原反应发生。
根据法拉第定律,在电极上发生物质量的变化多少与通入电量成正比。
通过溶液的电量等于正、负离子迁移电量之和。
由于各种离子的迁移速度不同,各自所带过去的电量也必然不同。
每种离子所带过去的电量与通过溶液的总电量之比,称为该离子在此溶液中的迁移数,用符号t 表示。
其中,t 为无量纲的量。
若正负离子传递电量分别为q +和q -
,通过溶液的总电量为Q ,则正负离子的迁移数分别为:
t +=q +/Q t -=q -/Q
离子迁移数与浓度、温度、溶剂的性质有关,增加某种离子的浓度则该离子传递电量的百分数增加,离子迁移数也相应增加;温度改变,离子迁移数也会发生变化,但温度升高正负离子的迁移数差别较小;同一种离子在不同电解质中迁移数是不同的。
离子迁移数可以直接测定,方法有希托夫法、界面移动法和电动势法等。
本实验选用希托夫法。
希托夫法是根据电解前后,两电极区电解质数量的变化来求算离子的迁移数。
用希托夫法测定CuSO 4溶液中Cu 2+和SO 42-的迁移数时,在溶液中间区浓度不变的条件下,分析通电前原溶液及通电后阳极区(或阴极区)溶液的浓度,比较等重量溶剂所含CuSO 4的量,可计算出通电后迁移出阳极区(或阴极区)的CuSO 4的量。
通过溶液的总电量Q 由串联在电路中的电量计测定。
可算出t +和t -。
以Cu 为电极,电解稀CuSO 4溶液为例。
通电时,溶液中的Cu 2+在阴极上发生还原,而在阳极上金属铜溶解生成Cu 2+。
电解后,阴极附Cu 2+浓度变化是由两种原因引起的:①Cu 2+迁移入,②Cu 在阴极上发生还原反应。
1/2Cu 2+ + e→1/2Cu(s)。
因而有:(阴极区) +迁后前电=-n n n n
2u C n t n +=迁电
,2241u SO C t t -+=- 式中:n 前为电解前阴极区存在的Cu 2+的物质的量;
n 后为电解后阴极区存在的Cu 2+的物质的量;
n 电为电解过程中阴极还原生成的Cu 的物质的量;
n 迁为电解过程中迁入阴极区的Cu 2+的物质的量;
根据电解前后CuSO 4总量未变,阳极区CuSO 4增加的物质的量是阴离子迁入造成的,理论上同一种离子在阳极区与阴极区的迁移数应该相等。
可以看出希托夫法测定离子的迁移数至少包括两个假定:
(1)电的输送者只是电解质的离子,溶剂水不导电,这一点与实际情况接近。
(2)不考虑离子水化现象。
实际上正、负离子所带水量不一定相同,因此电极区电解质浓度的改变,部分是由于水迁移所引起的,这种不考虑离子水化现象所测得的迁移数称为希托夫迁移数。
若考虑水的迁移对浓度的影响,算出阳离子或阴离子实际上的迁移数量,这种迁移数称为真实迁移数。
图1 希托夫法测定离子迁移数装置图
三、仪器试剂
迁移管1套;铜电量计1套;分析天平1台;台秤1台;精密稳流电源1台;碱式滴定管(100mL)1只;锥形瓶4支;移液管(10mL)只;铁架台;滴管若干。
硫酸铜电解液(100ml 水中含15gCuSO4·5H2O ,5ml 浓硫酸,5ml 乙醇);硫酸铜溶液(0.05mol ·L -1);KI 溶液(10%);淀粉指示剂(0.5%);硫代硫酸钠溶液(0.0500mol ·L -1);HAc(1mol ·L -1);乙醇(A.R.)
四、实验步骤
1.水洗干净迁移管,然后用0.05mol/L的CuSO4溶液荡洗两次(注意,迁移管活塞下的尖端部分也要荡洗),盛满硫酸铜溶液(注意,迁移管活塞下的尖端部分也要充满溶液),并安装到迁移管固定架上。
电极表面有氧化层用细砂纸打磨,处理洁净并用硫酸铜淋洗后装入迁移管中。
A、B活塞导通。
2.将铜电量计中阴极铜片取下,(铜电量计有三片铜片,中间那片为阴极)。
先用细砂纸磨光,除去表面氧化层,用蒸馏水洗净,在1mol·L-1硝酸溶液中稍微洗涤一下,以除去表面的氧化层,用蒸馏水冲洗后,用乙醇淋洗并吹干(注意温度不能太高),在分析天平上称重m1,装入盛有硫酸铜电解液电量计中。
3.按图1所示的电路图连接好迁移管,离子迁移数测定仪和铜电量计(注意铜电量计中的阴、阳极切勿接错)。
4.接通电源,按下“稳流”键,调节电流强度为18mA,连续通电90min(通电时要注意电流稳定),记录下平均室温。
5. 停止通电后,立即关闭A、B活塞。
取出库仑计中的铜阴极,用蒸馏水洗净,用乙醇淋洗并吹干,在分析天平上称重m2。
取两个空、干燥的锥形瓶称重,取阴极区溶液以及中间区溶液全部放入标记好的锥形瓶中,称重,滴定。
(从迁移管中取溶液时电极需要稍稍打开,尽量不要搅动溶液,阴极区和阳极区的溶液需要同时放出,防止中间区溶液的浓度改变)。
6. Na2S2O3溶液的滴定。
用10mL量筒在各瓶中加10%的碘化钾10mL,1mol/L醋酸溶液10mL(置于暗处),用标准硫代硫酸钠滴定至淡黄色,加入1ml淀粉指示剂,再滴至紫色消失。
五、注意事项
1.实验中的铜电极必须是纯度为99。
999%的电解铜。
2.实验过程中凡是能引起溶液扩散,搅动等因素必须避免。
电极阴、阳极的位置能对调,迁移数管及电极不能有气泡,两极上的电流密度不能太大。
3.本实验中各部分的划分应正确,不能将阳极区与阴极区的溶液错划入中部,这样会引起实验误差。
4.本实验由铜库仑计的增重计算电量,因此称量及前处理都很重要,需仔细进行。
5.加入KI后,析出I2的速度很快,故应立即滴定。
六、数据记录与处理
电流强度I= ;通电时间t= :
实验温度:硫代硫酸钠浓度:
通电前铜阴极质量通电后铜阴极质量
数据处理: 1、根据通电前后阴极Cu 板的质量差,计算出n 点解;
2、计算中间部的质量摩尔浓度中间部溶质量)电解前(322m V
c b O S Na ∆∆⨯=
3、n 点解后=c (Na 2S 2O 3)⨯∆V(阴极部所滴定Na 2S 2O 3用量)
n 点解前=b 点解前⨯∆m (阴极部溶液质量)
4、电解
电解电解前电解后n n n n t Cu +-=+2 七、思考题
1.通过电量计阴极的电流密度为什么不能太大?
2.通过电前后中部区溶液的浓度改变,须重做实验,为什么? 3.0。
1mol.L -1KCl 和0。
1 mol.L -1NaCl 中的Cl -迁移数是否相同?
4.如以阳极区电解质溶液的浓度计算t (Cu 2+),应如何进行?。