经典力学的哈密顿理论(精)

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

, q 和t的函数: 拉格朗日函数是 q
s
, q,它的全微分为 L L(q ,t)
s L L L dL dq dq dt t 1 q 1 q
将广义动量和拉格朗日方程:
p
L q
d L L 0 q dt q
7 经典力学的哈密顿理论
内容: · 哈密顿正则方程 · 哈密顿原理 · 正则变换
· 哈密顿—雅可比方程
重点: ·哈密顿正则方程
· 正则变换
难点: · 正则变换
在经典力学中,力学体系的运动可用各种方法来描述。用牛顿运动定律 描述,常常要解算大量的微分方程组,对约束体系更增强了问题的复杂 性。1788年拉格朗日用s个广义坐标来描述力学体系的运动,导出了用广 义坐标表出的拉格朗日方程,其好处是只要知道体系的动能和所受的广 义力,就可写出体系的动力学方程。1834年以后哈密顿提出用s个广义坐 标和s个广义动量(称为正则共轭坐标)描述体系的运动,导出了三种不 同形式的方程:哈密顿正则方程、哈密顿原理和哈密顿——雅可比方程, 称为经典力学的哈密顿理论。哈密顿理论和拉格朗日理论、牛顿理论是 等价的。哈密顿理论的优点在于便于将力学推广到物理学其他领域。 7.1 哈密顿函数和正则方程 (1)哈密顿函数
H q p H p Q q
1,2, s
哈密顿正则方程常用来建立体系的运动方程。 [例1] 写出粒子在中心势场
V 中的哈密顿函数和正则方程。 r

解:粒子在中心势场中运动的特点、自由 度、广义坐标如何? 粒子的拉格朗日函数为
(7.3)
比较(7.2)和(7.3)式,得
H q p 1,2, s H p q H L t t
(7.4)
(7.5)
(7.4)式称为保守系哈密顿正则方程,它是2s个一阶微分方程,形式对 称,结构紧凑。
对于非保守系,正则方程形式为
故H是p、q、t的函数,表征体系的状态,称为哈密顿函数。 若L不显含t,并且约束是稳定的,体系的能量守 恒,则
H=E=T+V
(2)哈密顿正则方程 哈密顿函数H=H(p,q,t)的全微分为
s H H H dH dp dq dt p q t 1 1 s
L 1 2 ) 2 r 2 m( r 2 r
( 1)
广义动量
pr L p m r , r r r m p L mr 2 , p mr 2
( 2)
哈密顿函数
H T V (Why ?)
(dx ) 2 (dy ) 2 1 y' 2 ds 2 gy dx dt dt dt
2 p 1 1 2 2 2 2 r ) ( ) (r ( pr 2 ) 2m r 2m r r
于是得正则方程
H pr r pr m r 2 ) 2 m ( r 2 r H p (径向运动方程) p r r mr 3 r 2
L 1 1 m 2 m ( r ) m( r ) 2 V (1) 2 2
所以
L p m m( r )
Biblioteka Baidu(2 )
p r m
( 3)
则哈密顿函数
H p L 1 1 [m m( r )] [ m 2 m ( r ) m( r ) 2 V (4) 2 2 1 1 m 2 m( r ) 2 V 2 2
代入上式,得
L) q dq p dq d ( p q
1 1 1
s
s
s
L dt t
(7.1)
式中

L H ( p, q, t ) h p q
1
s
(7.2)
是体系的广义能量。由 p
L q ( p, q, t ) , t ) 可以解出 q p (q, q q
( 3)
p H p mr 2 p mr 2 常数 (角动量守恒) p H 0
( 4)
[例2] 写出粒子在等角速度转动参考系中的H函数和正则方程。 解:取图7.3所示的转动参考系。粒 子的L函数为(参见5.12式)
(3)式代入(4)式,得
p2 H p ( r ) V 2m
( 5)
正则方程为
H p ( r) P m H V p p r r
( 6)
将 p m m r 代入上式中的第二式,可得粒子的动力学方程 m m r m m r F
ma F m ( r ) 2m
7.2 哈密顿原理 (1)最速落径问题和变分法 数学上的变分法是为了解决最速落径这一力学问题而发展起来的。 如图7.4所示,铅直平面内在所有连接两个定点A和B的曲线中,找出 一条曲线来,使得初速度为零的质点,在重力作用下,自A点沿它无摩 擦地滑下时,以最短时间到达B点。 设曲线AB方程为y=y(x),质点沿曲 线运动速度为
相关文档
最新文档