高中数学知识点精讲极限和导数

合集下载

高中数学-公式-极限与导数

高中数学-公式-极限与导数

极限与导数一、极限1、常用的几个数列极限:C C n =∞→lim (C 为常数);01lim =∞→nn ,0lim =∞→n n q (a <1,q 为常数); (4)无穷递缩等比数列各项和公式qa S S n n -==∞→1lim 1(0<1<q ); 2、函数的极限:(1)当x 趋向于无穷大时,函数的极限为a a x f x f n n ==⇔-∞→+∞→)(lim )(lim (2)当0x x →时函数的极限为a a x f x f x x x x ==⇔+-→→)(lim )(lim 00: 3、函数的连续性:(1)如果对函数f(x)在点x=x 0处及其附近有定义,而且还有)()(lim 00x f x f x x =→,就说函数f(x)在点x 0处连续;(2)若f(x)与g(x)都在点x 0处连续,则f(x)±g(x),f(x)g(x),)()(x g x f (g(x)≠0)也在点x 0处连续; (3)若u(x)在点x 0处连续,且f(u)在u 0=u(x 0)处连续,则复合函数f[u(x)]在点x 0处也连续;4、连续函数的极限运算:如果函数在点x 0处有极限,那么)()(lim 00x f x f x x =→;二、导数1、导数的定义:f(x)在点x 0处的导数记作xx f x x f x f y x x x ∆-∆+='='→∆=)()(lim )(00000; 2、根据导数的定义,求函数的导数步骤为:(1)求函数的增量 );()(x f x x f y -∆+=∆ (2)求平均变化率xx f x x f x y ∆-∆+=∆∆)()(; (3)取极限,得导数x y x f x ∆∆='→∆0lim )(; 3、可导与连续的关系:如果函数y=f(x)在点x 0处可导,那么函数y=f(x)在点x 0处连续;但是y=f(x)在点x 0处连续却不一定可导;4、导数的几何意义:曲线y =f(x)在点P(x 0,f(x 0))处的切线的斜率是).(0x f '相应地,切线方程是);)((000x x x f y y -'=-5、导数的四则运算法则:v u v u '±'='±)( ///[()()]()()f x g x f x g x ±=± v u v u uv '+'=')( []()()()()()()f x g x f x g x f x g x '''∙=∙+∙ 推论:[]()()cf x cf x ''=(C 为常数)2)(v v u v u v u '-'=' []2()()()()()(()0)()()f x f x g x f x g x g x g x g x '''⎡⎤-=≠⎢⎥⎣⎦ 6、复合函数的导数:;x u x u y y '⋅'=' 7、导数的应用:(1)利用导数判断函数的单调性:设函数y =f(x)在某个区间内可导,如果,0)(>'x f 那么f(x)为增函数;如果,0)(<'x f 那么f(x)为减函数;如果在某个区间内恒有,0)(='x f 那么f(x)为常数;(2)求可导函数极值的步骤:①求导数)(x f ';②求方程0)(='x f 的根;③检验)(x f '在方程0)(='x f 根的左右的符号,如果左正右负,那么函数y=f(x)在这个根处取得最大值;如果左负右正,那么函数y=f(x)在这个根处取得最小值;(3)求可导函数最大值与最小值的步骤:①求y=f(x)在(a,b)内的极值;②将y=f(x)在各极值点的极值与f(a)、f(b)比较,其中最大的一个为最大值,最小的一个是最小值。

极限与导数的概念

极限与导数的概念

极限与导数的概念
极限是数学中非常重要的概念之一。

在数学中,极限是指当自变量无限趋近于某个特定的值时,函数的取值也趋近于一个特定的常数,这个常数就是这个函数的极限。

极限概念是用来描述函数在某一点处的变化趋势的。

极限的符号表示为:
lim f(x) = L
x→a
其中,f(x)表示一个函数,L表示函数f(x)在x=a处的极限,x→a表示x趋近于a。

例如,当x→0时,函数f(x) = sin(x)/x的极限是1;当x→∞时,函数f(x) = 1/x 的极限是0。

导数是表示函数在某一点的变化率的量。

在数学中,导数用来表示函数在某一点的切线斜率。

导数的概念是微积分的核心概念之一,也是数学中最重要的工具之一。

导数的符号通常表示为f’(x),表示函数f(x)在x处的导数。

导数的计算方法是求函数在这一点处的斜率。

例如,函数f(x) = x²在x=2处的导数为4。

导数可以表示函数的变化量,例如速度和加速度。

速度表示距离随时间的变化率,而加速度则表示速度随时间的变化率。

极限和导数的概念经常在数学中被用于求解各种问题,如寻找最大值和最小值,判断曲线的凹凸性质等。

通过对这两个概念的理解和应用,我们可以更加深入地了解数学的本质和应用。

(整理)导数与最值与极值

(整理)导数与最值与极值

课 题 导数与最值 极值教学目标 掌握导数在函数最值与极值方面的应用重点、难点导数应用求解函数的单调区间,极值最值和恒成立问题.分析相关题型进行分类总结.考点及考试要求导数应用求解函数的单调区间,极值最值和恒成立问题. 导数应用各类题型的出题方式,举一反三.典型例题的典型方法. 在掌握导数求导的前提下,熟悉并掌握导数应用的题型,典型例题与课本知识相结合,精讲精练.复习与总结同时进行,逐步掌握导数应用的方法.教学内容 知识框架知识梳理1.函数的单调性:在某个区间(a,b )内,如果()0f x '>,那么函数()y f x =在这个区间内单调递增;如果()0f x '<,那么函数()y f x =在这个区间内单调递减.如果()0f x '=,那么函数()y f x =在这个区间上是常数函数.注:函数()y f x =在(a,b )内单调递增,则()0f x '≥,()0f x '>是()y f x =在(a,b )内单调递增的充分不必要条件.2.函数的极值:曲线在极值点处切线的斜率为0,并且,曲线在极大值点左侧切线的斜率为正,右侧为负;曲线在极小值点左侧切线的斜率为负,右侧为正.一般地,当函数 ()y f x = 在点0x 处连续时,判断0()f x 是极大(小)值的方法是:(1)如果在0x 附近的左侧'()0f x > ,右侧'()0f x <,那么0()f x 是极大值. (2)如果在0x 附近的左侧'()0f x < ,右侧'()0f x >,那么0()f x 是极小值.注:导数为0的点不一定是极值点知识点一:导数与函数的单调性 方法归纳:在某个区间(a,b )内,如果()0f x '>,那么函数()y f x =在这个区间内单调递增;如果()0f x '<,那么函数()y f x =在这个区间内单调递减.如果()0f x '=,那么函数()y f x =在这个区间上是常数函数.注:函数()y f x =在(a,b )内单调递增,则()0f x '≥,()0f x '>是()y f x =在(a,b )内单调递增的充分不必要条件.【例1已知函数32()f x x bx cx d =+++的图象过点(0, 2)P ,且在点(1, (1))M f --处的切线方程为076=+-y x . (Ⅰ)求函数)(x f y =的解析式; (Ⅱ)求函数)(x f y =的单调区间.【解题思路】注意切点既在切线上,又原曲线上.函数()f x 在区间[,]a b 上递增可得:'()0f x ≥;函数()f x 在区间[,]a b 上递减可得:'()0f x ≤.【解析】(Ⅰ)由)(x f 的图象经过(0, 2)P ,知2d =,所以32()2f x x bx cx =+++. 所以2()32f x x bx c '=++.由在(1, (1))M f --处的切线方程是670x y -+=,知6(1)70f ---+=,即(1)1f -=,(1)6f -=′. 所以326,12 1.b c b c -+=⎧⎨-+-+=⎩ 即23,0.b c b c -=⎧⎨-=⎩解得3b c ==-.故所求的解析式是32()332f x x x x =--+. (Ⅱ)因为2()363f x x x '=--,令23630x x --=,即2210x x --=, 解得 112x =-,212x =+.当12x ≤-或12x ≥+时,'()0f x ≥, 当1212x -≤≤+时,'()0f x ≤,故32()332f x x x x =--+在(,12]-∞-内是增函数,在[12,12]-+内是减函数,在[12,)++∞内是增函数.【例2】(A 类)若3()f x ax x =+在区间[-1,1]上单调递增,求a 的取值范围.【解题思路】利用函数()f x 在区间[,]a b 上递增可得:'()0f x ≥;函数()f x 在区间[,]a b 上递减可得:'()0f x ≤.得出恒成立的条件,再利用处理不等式恒成立的方法获解.【解析】2()31f x ax '=+Q 又()f x 在区间[-1,1]上单调递增2()310f x ax '∴=+≥在[-1,1]上恒成立 即213a x ≥-在x ∈ [-1,1]时恒成立. 13a ∴≥- 故a 的取值范围为1[,]3-+∞【例3】(B 类)已知函数()ln f x x =,()(0)ag x a x=>,设()()()F x f x g x =+.(Ⅰ)求函数()F x 的单调区间;(Ⅱ)若以函数()((0,3])y F x x =∈图像上任意一点00(,)P x y 为切点的切线的斜率12k ≤恒成立,求实数a 的最小值;【解题思路】注意函数的求导法则.注意对数函数定义域.在某点处的切线的斜率为该点的导数值. 【解析】(I )()()()()ln 0a F x f x g x x x x =+=+>,()()221'0a x aF x x x x x-=-=> ∵0a >,由()()'0,F x x a >⇒∈+∞,∴()F x 在(),a +∞上单调递增.由()()'00,F x x a <⇒∈,∴()F x 在()0,a 上单调递减.∴()F x 的单调递减区间为()0,a ,单调递增区间为(),a +∞. (II )()()2'03x aF x x x -=<≤, ()()0020'03x a k F x x x -==<≤恒成立⇔200max12a x x ⎛⎫≥-+ ⎪⎝⎭ 当01x =时,20012x x -+取得最大值12.∴12a ≥,∴a min =12.【课堂练习】1.已知函数32()f x ax bx =+的图像经过点(1,4)M ,曲线在点M 处的切线恰好与直线90x y +=垂直.(Ⅰ)求实数,a b 的值;(Ⅱ)若函数()f x 在区间[,1]m m +上单调递增,求m 的取值范围.【解题思路】两条直线垂直斜率互为负倒数.在区间[,1]m m +上单调递增,即[,1]m m +为函数的递增区间的子集.【解析】(Ⅰ)32()f x ax bx =+的图象经过点(1,4)M ∴4a b += ∵2()32f x ax bx '=+,∴(1)32f a b '=+ 由已知条件知1(1)()19f '⋅-=- 即329a b +=∴解4329a b a b +=⎧⎨+=⎩得:13a b =⎧⎨=⎩(Ⅱ)由(Ⅰ)知32()3f x x x =+,2()36f x x x '=+令2()360f x x x '=+≥则2x ≤-或0x ≥∵函数()f x 在区间[,1]m m +上单调递增 ∴[,1](,2][0,)m m +⊆-∞-+∞U ∴0m ≥或12m +≤- 即0m ≥或3m ≤- 2.(B 类)设函数),(2131)(22R b a bx ax x x g ∈-+=,在其图象上一点P (x ,y )处的切线的斜率记为).(x f(1)若方程)(,420)(x f x f 求和有两个实根分别为-=的表达式; (2)若22,]3,1[)(b a x g +-求上是单调递减函数在区间的最小值.【解题思路】注意一元二次方程韦达定理的应用条件.在区间[-1,3]上单调递减,即导函数在相应区间上恒小于等于0.再者注意目标函数的转化.【解析】(1)根据导数的几何意义知b ax x x g x f -+='=2)()(由已知-2、4是方程02=-+b ax x 的两个实根由韦达定理,82)(,8242422--=⎩⎨⎧=-=∴⎩⎨⎧-=⨯--=+-x x x f b a b a(2))(x g 在区间[—1,3]上是单调递减函数,所以在[—1,3]区间上恒有,931931,0)3(0)1(]3,1[0)(,0)()(2222方内的点到原点距离的平可视为平面区域而也即即可这只需满足恒成立在即⎩⎨⎧≥-≥++⎩⎨⎧≥-≥+⎩⎨⎧≤≤--≤-+=≤-+='=a b b a b a a b b a f f b ax x x f b ax x x g x f其中点(—2,3)距离原点最近,所以当22,32b a b a +⎩⎨⎧=-=时有最小值133.(A 类)已知函数 21()ln (1)2f x x m x m x =-+-,m ∈R .当 0m ≤ 时,讨论函数 ()f x 的单调性.【解题思路】注意函数的定义域.在确定函数的定义域之后再对函数进行单调性的讨论【解析】∵2(1)(1)()()(1)m x m x m x x m f x x m x x x+---+'=-+-==,∴(1)当10m -<≤时,若()0,,()0,()x m f x f x '∈->时为增函数;(),1,()0,()x m f x f x '∈-<时为减函数; ()1,,()0,()x f x f x '∈+∞>时为增函数.(2)当1m ≤-时,()0,1,()0,()x f x f x '∈>时为增函数;()1,,()0,()x m f x f x '∈-<时为减函数; (),,()0,()x m f x f x '∈-+∞>时为增函数.知识点二: 导数与函数的极值最值 方法归纳:1.求函数的极值的步骤:(1)确定函数的定义域,求导数'()f x . (2)求方程'()0f x =的根.(3)用函数的导数为0的点,顺次将函数的定义域分成若干小开区间,并列成表格.检查'()f x 在方程根左右的值的符号,如果左正右负,那么)(x f 在这个根处取得极大值;如果左负右正,那么)(x f 在这个根处取得极小值;如果左右不改变符号,那么)(x f 在这个根处无极值. 2.求函数在[,]a b 上最值的步骤:(1)求出()f x 在(,)a b 上的极值. (2)求出端点函数值(),()f a f b .(3)比较极值和端点值,确定最大值或最小值.注:可导函数()y f x =在0x x =处取得极值是0'()0f x =的充分不必要条件.【例4】(A 类)若函数1()cos sin 22f x m x x =+在4x π=处取得极值,则m = .【解题思路】若在0x 附近的左侧'()0>f x ,右侧()0f x '<,且'0()0f x =,那么0()f x 是()f x 的极大值;若在0x 附近的左侧'()0<f x ,右侧'()0>f x ,且'0()0f x =,那么0()f x 是()f x 的极小值.【解析】因为()f x 可导,且'()sin cos 2f x m x x =-+,所以'()sincos0442f m πππ=-+=,解得0m =.经验证当0m =时, 函数1()sin 22=f x x 在4x π=处取得极大值.【注】 若()f x 是可导函数,注意0()0f x '=是0x 为函数()f x 极值点的必要条件.要确定极值点还需在0x 左右判断单调性. 【例5】已知函数()()xf x x k e =-,(I )求()f x 的单调区间;(II )求()f x 在区间[]0,1上的最小值.【解题思路】注意求导的四则运算;注意分类讨论.【解析】(I )/()(1)x f x x k e =-+,令/()01f x x k =⇒=-;所以()f x 在(,1)k -∞-上递减,在(1,)k -+∞上递增;(II )当10,1k k -≤≤即时,函数()f x 在区间[]0,1上递增,所以min()(0)f x f k==-;当011k <-≤即12k <≤时,由(I )知,函数()f x 在区间[]0,1k -上递减,(1,1]k -上递增,所以1min ()(1)k f x f k e -=-=-;当11,2k k ->>即时,函数()f x 在区间[]0,1上递减,所以min()(1)(1)f x f k e==-.【例6】设1,2x x ==是()ln f x a x bx x =++函数的两个极值点.(1)试确定常数a 和b 的值; (2)试判断1,2x x ==是函数()f x 的极大值点还是极小值点,并求相应极值.【解析】(1)()'21,afx bx x=++由已知得:()()''210101204102a b f f a b ++=⎧⎧=⎪⎪⇒⎨⎨=++=⎪⎩⎪⎩ 2316a b ⎧=-⎪⎪∴⎨⎪=-⎪⎩(2)x 变化时.(),()f x f x '的变化情况如表:x(0,1)1 (1,2)2()f x ,— 0 + 0—()f x极小值极大值故在1x =处,函数()f x 取极小值56;在2x =处,函数()f x 取得极大值42ln 233-.【课堂练习】4.设axx x x f 22131)(23++-=.若)(x f 在),32(+∞上存在单调递增区间,求a 的取值范围.【解题思路】在某区间上存在单调区间等价于在该区间上有极值.【解析】)(x f 在),32(+∞上存在单调递增区间, 即存在某个子区间),32(),(+∞⊆n m 使得0)('>x f .由ax a x x x f 241)21(2)(22'++--=++-=,)('x f 在区间),32[+∞上单调递减,则只需0)32('>f 即可.由0292)32('>+=a f 解得91->a , 所以,当91->a 时,)(x f 在),32(+∞上存在单调递增区间.5.设()ln f x x =,()()()g x f x f x '=+.(1)求()g x 的单调区间和最小值; (2)讨论()g x 与1()g x 的大小关系;【解题思路】(1)先求出原函数()f x ,再求得()g x ,然后利用导数判断函数的单调性(单调区间),并求出最小值;(2)作差法比较,构造一个新的函数,利用导数判断函数的单调性,并由单调性判断函数的正负;(3)对任意x >0成立的恒成立问题转化为函数()g x 的最小值问题.【解】(1)由题设知1()ln ,()ln f x x g x x x ==+,∴21(),x g x x -'=令()g x '=0得x =1, 当x ∈(0,1)时,()g x '<0,()g x 是减函数,故(0,1)是()g x 的单调减区间. 当x ∈(1,+∞)时,()g x '>0,()g x 是增函数,故(1,+∞)是()g x 的单调递增区间,因此,x =1是()g x 的唯一极值点,且为极小值点,从而是最小值点,所以()g x 的最小值为(1) 1.g =(2)1()ln g x x x =-+,设11()()()ln h x g x g x x x x =-=-+,则22(1)()x h x x -'=-, 当1x =时,(1)0h =,即1()()g x g x =,当(0,1)(1,)x ∈⋃+∞时,()0h x '<, 因此,()h x 在(0,)+∞内单调递减,当01x <<时,()(1)0h x h >=,即1()().g x g x < 6.已知函数32()3(36)124()f x x ax a x a a R =++-+-∈ (Ⅰ)证明:曲线()0y f x x ==在(2,2)的切线过点; (Ⅱ)若00()(1,3)f x x x x =∈在处取得极小值,,求a 的取值范围。

高中数学知识点全总结(电子版)

高中数学知识点全总结(电子版)

高中数学知识点全总结(电子版)高中数学知识点全一、求导数的(1)基本求导公式(2)导数的四则运算(3)复合函数的导数设在点x处可导,y=在点处可导,则复合函数在点x处可导,且即_二、关于极限1、数列的极限:粗略地说,就是当数列的项n无限增大时,数列的项无限趋向于A,这就是数列极限的描述性定义。

记作:=A。

如:2、函数的极限:当自变量x无限趋近于常数时,如果函数无限趋近于一个常数,就说当x趋近于时,函数的极限是,记作三、导数的概念1、在处的导数。

2、在的导数。

3、函数在点处的导数的几何意义:函数在点处的导数是曲线在处的切线的斜率,即k=,相应的切线方程是_注:函数的导函数在时的函数值,就是在处的导数。

例、若=2,则=()A—1B—2C1D四、导数的综合运用(一)曲线的切线函数y=f(x)在点处的导数,就是曲线y=(x)在点处的切线的斜率。

由此,可以利用导数求曲线的切线方程。

具体求法分两步:(1)求出函数y=f(x)在点处的导数,即曲线y=f(x)在点处的切线的斜率k=_(2)在已知切点坐标和切线斜率的条件下,求得切线方程为x。

如何学好高中数学方法1、上课认真听、仔细做笔记学习新的知识首先得通过老师的讲解,然后自己理解,这样才能通过做题巩固,不然上课不认真听的话,下课自己做题也不会,即使自己参照例题做出来了,也会有很多地方不理解,而且自己学还很浪费时间。

所以高中的学生们一定不能轻视了上课老师讲的内容。

再有一点就是数学也是需要记笔记的,上课的时候把老师讲的书上没有的步骤都记一下,重点的内容该画的画,改写的写,千万不要觉得现在看了一眼就记住了,要知道数学的知识从高一到高三会越来越难,前面的知识相当于为后面做铺垫,尤其是高三复习的时候。

所以同学们在高一高二的时候老师讲的重点的内容一定要整理在笔记上,不然到了高三复习的时候忘记了又得浪费时间重新做笔记。

2、以课本为主,把握课本去理解提高数学成绩主要是靠听课和做题来提高。

高中数学导数知识点归纳总结

高中数学导数知识点归纳总结

高中导数复习资料一、根本概念1. 导数的定义:设0x 是函数)(x f y =定义域的一点,假如自变量x 在0x 处有增量x ∆,那么函数值y 也引起相应的增量)()(00x f x x f y -∆+=∆;比值x x f x x f x y ∆-∆+=∆∆)()(00称为函数)(x f y =在点0x 到x x ∆+0之间的平均改变率;假如极限xx f x x f x y x x ∆-∆+=∆∆→∆→∆)()(lim lim 0000存在,那么称函数)(x f y =在点0x 处可导,并把这个极限叫做)(x f y =在0x 处的导数。

()f x 在点0x 处的导数记作xx f x x f x f y x x x ∆-∆+='='→∆=)()(lim )(00000 2 导数的几何意义:〔求函数在某点处的切线方程〕函数)(x f y =在点0x 处的导数的几何意义就是曲线)(x f y =在点))(,(0x f x 处的切线的斜率,也就是说,曲线)(x f y =在点P ))(,(0x f x 处的切线的斜率是)(0'x f ,切线方程为).)((0'0x x x f y y -=-3.根本常见函数的导数:①0;C '=〔C 为常数〕 ②()1;n n x nx -'=③(sin )cos x x '=; ④(cos )sin x x '=-;⑤();x x e e '= ⑥()ln x x a a a '=;⑦()1ln x x '=; ⑧()1l g log a a o x e x'=. 二、导数的运算1.导数的四那么运算:法那么1:两个函数的和(或差)的导数,等于这两个函数的导数的和(或差),即: ()()()()f x g x f x g x '''±=±⎡⎤⎣⎦法那么2:两个函数的积的导数,等于第一个函数的导数乘以第二个函数,加上第一个函数乘以第二个函数的导数,即:()()()()()()f x g x f x g x f x g x '''⋅=+⎡⎤⎣⎦常数及函数的积的导数等于常数乘以函数的导数: ).())((''x Cf x Cf =(C 为常数)法那么3:两个函数的商的导数,等于分子的导数及分母的积,减去分母的导数及分子的积,再除以分母的平方:()()()()()()()()()20f x f x g x f x g x g x g x g x '⎡⎤''-=≠⎢⎥⎡⎤⎣⎦⎣⎦。

极限与导数的基础知识与运用

极限与导数的基础知识与运用

极限与导数的基础知识与运用极限和导数是高等数学中重要的概念,也是计算机科学、物理学等多个领域中必不可少的数学工具。

本文旨在系统地介绍极限和导数的概念,以及它们的应用。

一、极限1.1 极限的定义极限是研究函数变化趋势的一种方法。

给定一个函数 $f(x)$,当自变量 $x$ 越来越接近某个特定的值 $a$ 时,如果函数值 $f(x)$ 也越来越接近某个常数 $L$,则称 $L$ 是函数 $f(x)$ 当 $x$ 趋近于 $a$ 时的极限,记作$$\lim_{x\rightarrow a}f(x)=L$$其中,$x$ 可以从左侧或右侧趋近于 $a$。

1.2 夹逼定理夹逼定理是极限的一个重要定理,它有助于我们判断一些函数的极限是否存在。

设 $f(x)\leq g(x)\leq h(x)$,当 $x\rightarrow a$ 时,$f(x)$ 和 $h(x)$ 的极限都等于 $L$,则 $g(x)$ 的极限也等于 $L$。

即$$\lim_{x\rightarrow a}f(x)=L=\lim_{x\rightarrow a}h(x)\Rightarrow \lim_{x\rightarrow a}g(x)=L$$1.3 极限的计算计算极限的方法有很多,以下是一些典型的极限计算方法:1.3.1 基本极限$$ \lim_{x\rightarrow 0}\frac{\sin x}{x}=1 $$$$ \lim_{x\rightarrow \infty}\left(1+\frac{1}{x}\right)^x=e $$1.3.2 无穷小与无穷大当 $x\rightarrow 0$ 时,如果 $f(x)$ 满足 $\lim_{x\rightarrow0}f(x)=0$,则称 $f(x)$ 是一个无穷小。

当 $x\rightarrow \infty$ 时,如果 $f(x)$ 满足 $\lim_{x\rightarrow \infty}f(x)=\infty$,则称 $f(x)$ 是一个无穷大。

重点高中数学导数知识点归纳总结

重点高中数学导数知识点归纳总结

重点高中数学导数知识点归纳总结高中数学中的导数是一个重要的知识点,它是微积分的基础,也是日后学习数学和理工科学科的必备知识。

下面将对高中数学中的导数相关知识进行归纳总结。

一、导数的定义与基本性质1. 导数的定义:设函数y=f(x),在x=a处可导,那么函数f(x)在x=a处的导数定义为:f'(a)=lim┬(△x→0)⁡(f(a+△x)-f(a))/(△x)。

2.函数连续与可导的关系:如果函数f(x)在x=a处可导,则函数f(x)在x=a处连续。

3.导数的几何意义:函数y=f(x)在x=a处的导数f'(a)表示了函数在该点处切线的斜率。

4.导数的性质:(1)常数函数的导数为0,即(f(x)=c,c为常数时,f'(x)=0)。

(2) 任意一次幂函数的导数为对应的幂次函数的导函数,即(f(x)=x^n,n为常数时,f'(x)=nx^(n-1))。

(3)任意两个函数的和(差)的导数等于这两个函数的导数之和(差)。

(f(x)±g(x))'=f'(x)±g'(x)。

(4)任意两个函数的积的导数等于这两个函数的导数之积加上这两个函数之积的导数。

(f(x)g(x))'=f'(x)g(x)+f(x)g'(x)。

(5) 任意一个函数的常数倍的导数等于它的导数的常数倍,即(cf(x))' = cf'(x),c为常数。

二、常见函数的导数1.常数函数f(x)=c的导数为f'(x)=0。

2. 幂函数f(x)=x^n,n为常数时,导数为f'(x)=nx^(n-1)。

3. 指数函数f(x)=a^x,a>0且a≠1时,导数为f'(x)=a^xlna。

4. 对数函数f(x)=logₐx,a>0且a≠1时,导数为f'(x)=1/(xlna)。

5. 正弦函数f(x)=sinx的导数为f'(x)=cosx。

高中极限导数积分知识总结

高中极限导数积分知识总结
sin′x=cosx
csc′x=-cscxcotx
cos′x=-sinxsec′x=secxtanxtan′x=sec2x
cot′x=-csc2x
arcsin′x=
arctan′x=
arccos′x=-
arccot′x=-
③高阶导数:
1.微分导数定义:
①导数定义:设函数y=f(x)在点x0的某个邻域内有定义,当自变量x在点x0取得该变量△x(x≠0)时,相应地函数y=f(x)也有改变量,△y=f(x0+△x)-f(x0)。如果 存在,则称函数y=f(x)在点x0可导,并称这个极限值为函数y=f(x)在点x0的导数。其几何意义是x0点的斜率。
②微分定义:设函数y=f(x)在区间I上有定义,x0,x0+△x∈I,如果函数的改变量△y=f(x0+△x)-f(x0)可表示为△y=A△x+0(△x),其中A是不依赖△x常数,而0(△x)是比△x高阶无穷小,则称函数y=f(x)在点x0可微:dy=Adx。其几何意义是△y线性部分。
③可导与连续性:如果函数y=f(x)在点x0可导,则函数在该点x0连续。一个函数在点x0连续却不一定可导。
2.计算方法原则:
①四则运算:
[f(x)±g(x)]′=f′(x)±g′(x)
[f(x)·g(x)]′=f′(x)g(x)+f(x)g′(x)
y=f(u),u=g(x)→y′=f′(u)·g′(x)
②常用导数:
C′=0
(xa)′=axa-1
(ax)′=axlna
(ex)′=ex
(logax)′=
(lnx)′=

高中数学知识点精讲——极限和导数

高中数学知识点精讲——极限和导数
14.Lagrange中值定理:若f(x)在[a,b]上连续,在(a,b)上可导,则存在ξ∈(a,b),使
[证明] 令F(x)=f(x)- ,则F(x)在[a,b]上连续,在(a,b)上可导,且F(a)=F(b),所以由13知存在ξ∈(a,b)使 =0,即
15.曲线凸性的充分条件:设函数f(x)在开区间I内具有二阶导数,(1)如果对任意x∈I, ,则曲线y=f(x)在I内是下凸的;(2)如果对任意x∈I, ,则y=f(x)在I内是上凸的。通常称上凸函数为凸函数,下凸函数为凹函数。
12.极值的第二充分条件:设f(x)在x0的某领域(x0-δ,x0+δ)内一阶可导,在x=x0处二阶可导,且 。(1)若 ,则f(x)在x0处取得极小值;(2)若 ,则f(x)在x0处取得极大值。
13.罗尔中值定理:若函数f(x)在[a,b]上连续,在(a,b)上可导,且f(a)=f(b),则存在ξ∈(a,b),使
9.导数与函数的性质:(1)若f(x)在区间I上可导,则f(x)在I上连续;(2)若对一切x∈(a,b)有 ,则f(x)在(a,b)单调递增;(3)若对一切x∈(a,b)有 ,则f(x)在(a,b)单调递减。
10.极值的必要条件:若函数f(x)在x0处可导,且在x0处取得极值,则
11.极值的第一充分条件:设f(x)在x0处连续,在x0邻域(x0-δ,x0+δ)内可导,(1)若当x∈(x-δ,x0)时 ,当x∈(x0,x0+δ)时 ,则f(x)在x0处取得极小值;(2)若当x∈(x0-δ,x0)时 ,当x∈(x0,x0+δ)时 ,则f(x)在x0处取得极大值。
⑥ 已知数列 的首项 ,其前 项的和为 ,且 ,则 =.
2、函数极限:
(1)公式: (C为常数); (p>0);

导数高端知识点总结高中

导数高端知识点总结高中

导数高端知识点总结高中一、导数的概念1. 导数的定义在数学中,导数是函数变化率的量度,它表示函数在某一点的变化速率。

设函数y=f(x),若极限f'(x)=lim[(f(x+Δx)-f(x))/Δx](Δx→0)存在,则称f(x)在点x处可导,并称这个极限为函数f(x)在点x处的导数,记为f'(x)。

导数的几何意义是函数在某一点处的切线斜率。

2. 导数的几何意义导数的几何意义可以从图像的角度来理解。

在函数图像的某一点A处,函数的导数f'(x)表示了曲线在A点的切线斜率,也就是函数在这一点处的变化速率。

如果导数为正,表示函数在该点处是递增的;如果导数为负,表示函数在该点处是递减的;如果导数为零,表示函数在该点处的变化率为零,即函数在该点处有极值。

3. 导数的物理意义导数在物理学中也有着重要的应用。

例如,物体的位移与时间的关系可以用函数来描述,而物体的速度就是位移对时间的导数,加速度就是速度对时间的导数。

因此,导数可以用来描述物体在某一时刻的速度和加速度,这对于研究物体的运动特性具有重要的意义。

二、导数的性质1. 导数存在的条件函数f(x)在点x处可导的条件是函数在该点处的左导数和右导数存在且相等。

这个条件可以用极限的形式来描述,即lim[Δx→0-(f(x+Δx)-f(x))/Δx]=lim[Δx→0+(f(x+Δx)-f(x))/Δx]。

2. 导数的四则运算性质导数具有四则运算的性质,即对于两个可导函数f(x)和g(x),它们的和、差、积和商的导数可以通过原函数的导数来求得。

具体的性质如下:(1)和函数的导数:(f+g)'=f'+g'(2)差函数的导数:(f-g)'=f'-g'(3)积函数的导数:(fg)'=f'g+fg'(4)商函数的导数:(f/g)'=(f'g-fg')/g^23. 复合函数的导数如果函数y=f(u)和u=g(x)都可导,则复合函数y=f(g(x))也是可导的,它的导数可以通过链式法则来求得。

(完整版)高中数学导数知识点归纳总结

(完整版)高中数学导数知识点归纳总结

§14.导数知识要点1.导数(导函数的简称)的定义:设X 。

是函数y f(x)定义域的一点,如果自变量X 在X 。

处 有增量 x ,则函数值y 也引起相应的增量 y f (x 0 x) f(x 0);比值 丄 止__x) f(xo)称为函数y 仁刈在点%。

到X 。

x 之间的平均变化率;如果极限 x X lim - lim f(X0 -------------- X)_f (Xo)存在,则称函数y f (x)在点x 。

处可导,并把这个极限叫做x 0 x x 0 x y f (x)在 x 0处的导数,记作 f (x 0)或 y |xX Q,即 f (x 。

)= lim y limf -(X° --- X)_.X 。

x x 。

x注:① X 是增量,我们也称为改变量”,因为X 可正,可负,但不为零.②以知函数y f(x)定义域为A , y f '(x)的定义域为B ,则A 与B 关系为A B.注:①可导的奇函数函数其导函数为偶函数 ②可导的偶函数函数其导函数为奇函数2.函数y⑴函数y 可以证明,如果 事实上,令x f (X)在点X o 处连续与点X o 处可导的关系:X o 处连续是y f (x)在点X o 处可导的必要不充分条件 y f (x)点x 0处连续. o.f (x)在点 y xof(x)在点X o 处可导,那么 X ,则XX o 相当于 是 lim f (x)X X 。

lim X 。

f(x 。

x) lim [ f(xX 。

X 。

) f(x 。

) f(x 。

)] 叫⑵如果y f (X 。

X ) f(x 。

) X f(x)点X o 处连续,f(x 。

)] 那么y例: f(x) |x|在点X o 。

处连续,f(X oX) f(X o ) lim lim f(X o )xx o x of(x)在点X o 处可导,是不成立的.y ,当X X0。

f (X 。

)o f(x 。

极限与导数知识点总结

极限与导数知识点总结

极限与导数知识点总结极限与导数是微积分学中非常重要的内容,它们是我们理解函数性质和计算函数变化率的基础。

在这篇总结中,我将从定义、性质和常见计算方法等方面对极限与导数进行详细的介绍和解析。

一、极限的概念与性质1. 极限的定义极限是描述函数在某一点附近的行为的概念。

如果一个函数$f(x)$在$x=a$附近的取值随着$x$的逼近$a$而无限接近某一值$A$,那么我们就说当$x$趋近$a$时$f(x)$的极限为$A$,记作$\lim_{x\to a}f(x)=A$。

2. 极限的性质(1)唯一性:若$\lim_{x\to a}f(x)$存在,则其极限唯一。

(2)局部有界性:如果$\lim_{x\to a}f(x)=A$存在,则存在一个$\delta>0$,使得当$0<|x-a|<\delta$时,$f(x)$有界。

(3)局部保号性:若$\lim_{x\to a}f(x)=A$存在且$A>0$,则存在一个$\delta>0$,当$0<|x-a|<\delta$时,$f(x)>0$;若$A<0$,则存在一个$\delta>0$,当$0<|x-a|<\delta$时,$f(x)<0$。

(4)局部保号性:若$\lim_{x\to a}f(x)=A>0$,则存在一个$\delta>0$,当$0<|x-a|<\delta$时,$f(x)>0$;若$\lim_{x\to a}f(x)=A<0$,则存在一个$\delta>0$,当$0<|x-a|<\delta$时,$f(x)<0$。

3. 极限存在的条件函数$f(x)$在$x=a$处的极限存在的条件有:(1)情况一:$\lim_{x\to a}f(x)$存在且有限。

(2)情况二:$\lim_{x\to a^+}f(x)$和$\lim_{x\to a^-}f(x)$均存在且相等。

高中数学知识点精讲精析 计算导数

高中数学知识点精讲精析 计算导数

3 计算导数1.常见函数的导数(kx+b)’=k2.对数函数的导数3.指数函数的导数)()]([)()()]()([/////x Cf x f C x g x f x g x f =⋅±=±;1.定义),0(,,)1(),(+∞∈+=y x x y x F y ,(1)令函数))94(log ,1()(22+-=x x F x f 的图象为曲线C 1,曲线C 1与y 轴交于点A(0,m ),过坐标原点O 作曲线C 1的切线,切点为B (n,t )(n>0),设曲线C 1在点A 、B 之间的曲线段与线段OA 、OB 所围成图形的面积为S ,求S 的值。

(2)当);,(),(,*,x y F y x F y x N y x ><∈证明时且(3)令函数))1(log ,1()(232+++=bx ax x F x g 的图象为曲线C 2,若存在实数b 使得)(0为常数C C =')(1为常数αααα-=x x xx cos )(sin ='xx sin )(cos -='1(1)(log )(0,1).ln a x a a x a '=>≠1(2)(ln ).x x'=(1)()ln (0,1).x x a a a a a '=>≠(2)().x x e e '=曲线C 2在)14(00-<<-x x 处有斜率为-8的切线,求实数a 的取值范围。

【解析】(1)y x y x F )1(),(+=942)94(log ,1()(2)94(log 2222+-==+-=∴--x x x x F x f x x ,故A (0,9)…1分 又过坐标原点O 向曲线C 1作切线,切点为B (n ,t )(n>0),.42)(-='x x f)6,3(,42942B n nt n n t 解得⎪⎩⎪⎨⎧-=+-=∴…….9|)933()294(3023230=+-=-+-⎰=∴x x x dx x x x S (2)令2)1ln(1)(,1,)1ln()(xx x x x h x x x x h +-+='≥+=由,…… 又令,0),1ln(1)(>+-+=x x x x x p 0)1(11)1(1)(22<+-=+-+='∴x x x x x p , ),0[)(+∞∴在x p 单调递减.…………………,0)(1,0)0()(0<'≥∴=<>∴x h x p x p x 时有当时有当),1[)(+∞∴在x h 单调递减,…………x y y x y x x y yy x x y x )1()1(),1ln()1ln(,)1ln()1ln(,1+>+∴+>+∴+>+<≤∴有时, ).,(),(,x y F y x F y x N y x ><∈∴*时且当…………(3),1)1(log ,1()(23222+++=+++=bx ax x bx ax x F x g设曲线)14(02-<<-x x C 在处有斜率为-8的切线,又由题设,23)(,0)1(log 2232b ax x x g bx ax x ++='>+++∴存在实数b 使得⎪⎩⎪⎨⎧>+++-<<--=++1114823020300020bx ax x x b ax x 有解,………①②③由①得,238020ax x b ---=代入③得082020<---ax x ,………⎩⎨⎧>+<->++∴0840820020x ax x 由有解,得08)1()1(208)4()4(222>+-⨯+-⨯>+-⨯+-⨯a a 或, .10,1010<∴<<∴a a a 或………………2.函数42()2f x x ax =-,()1g x =。

高中数学知识点总结导数的应用之函数的极值与最值

高中数学知识点总结导数的应用之函数的极值与最值

高中数学知识点总结导数的应用之函数的极值与最值高中数学知识点总结:导数的应用之函数的极值与最值在高中数学中,导数是一个重要的概念和工具,它被广泛应用于各个数学领域。

其中的一个应用就是求解函数的极值与最值。

本文将针对这一知识点进行总结和讨论。

I. 导数和极值函数的极值指的是函数在某个区间上的最大值或最小值。

在求解极值问题时,我们可以利用导数的性质来进行分析和计算。

下面是一些常见的求解函数极值的方法:1. 极值的必要条件若函数f(x)在x=a处取得极值,那么导数f'(a)存在,且f'(a)=0,或者导数不存在(函数在该点有间断点或者不可导)。

2. 极值的充分条件若函数f(x)在x=a点的左右两侧导数符号相反,即f'(a-)和f'(a+)异号,那么f(x)在x=a处取得极值。

- 若f'(a-)>0且f'(a+)<0,那么极值为极大值;- 若f'(a-)<0且f'(a+)>0,那么极值为极小值。

3. 临界点和拐点临界点是指导数为零或不存在的点,对于一元函数来说,临界点多对应于函数的极值点。

拐点是指在函数图像上出现凹凸性突变的点,即曲线的凸度方向改变的点。

II. 求解函数的极值步骤在应用导数求解函数极值时,一般需要按照以下步骤进行:1. 求取函数f(x)的导数f'(x)。

2. 解方程f'(x)=0,求得导数为零的临界点。

3. 利用极值的充分条件,对临界点进行分析判断。

4. 若需要,进一步计算临界点处的函数值和边界点处的函数值进行比较。

5. 得到函数的极值。

III. 求解函数的最值函数的最大值和最小值称为最值,求解最值问题需要考虑函数的定义域和导数的变化情况。

下面是一些常见的求解函数最值的方法:1. 函数在开区间内求最值若函数f(x)在开区间(a, b)内进行求最大值,我们需要进行以下步骤:- 求取函数f(x)的导数f'(x)。

完整版)高中数学导数知识点归纳总结

完整版)高中数学导数知识点归纳总结

完整版)高中数学导数知识点归纳总结导数的定义:对于函数y=f(x),在点x处的导数f'(x)定义为:f'(x)=\lim_{\Delta x\to 0}\frac{\Delta y}{\Deltax}=\lim_{\Delta x\to 0}\frac{f(x+\Delta x)-f(x)}{\Delta x}其中,$\Delta x$表示自变量的增量,$\Delta y$表示函数值的增量。

函数的连续性和可导性的关系:如果函数y=f(x)在点x处可导,则它在该点处必然连续。

但是,反过来并不成立,即函数在某点处连续并不一定可导。

导数的几何意义:函数y=f(x)在点x处的导数f'(x)表示曲线在该点处的切线的斜率。

因此,切线方程为:y-y_0=f'(x_0)(x-x_0)其中,$y_0=f(x_0)$表示曲线在点$(x_0,y_0)$处的纵坐标。

导数的四则运算法则:对于任意可导函数f(x)和g(x),有以下四则运算法则:1.$(f+g)'(x)=f'(x)+g'(x)$2.$(f-g)'(x)=f'(x)-g'(x)$3.$(fg)'(x)=f'(x)g(x)+f(x)g'(x)$4.$\left(\frac{f}{g}\right)'(x)=\frac{f'(x)g(x)-f(x)g'(x)}{g^2(x)}$其中,除法的分母$g(x)$不能为0.导数的应用:导数可以用来求函数的单调性、极值和最值。

函数单调递增的条件是导数大于0,函数单调递减的条件是导数小于0.函数在极值点处的导数为0,但反之不一定成立。

函数的最值可以通过求导数来确定。

注①:若点x是可导函数f(x)的极值点,则f'(x)=0.但反过来不一定成立。

对于可导函数,其一点x是极值点的必要条件是若函数在该点可导,则导数值为零。

高中数学导数知识点归纳总结

高中数学导数知识点归纳总结

高中导数知识点归纳一、基本概念1. 导数的定义:设是函数定义域的一点,如果自变量在处有增量,则函数值也引起相应的增量;比值称为函数在点到之间的平均变化率;如果极限存在,则称函数在点处可导,并把这个极限叫做在处的导数。

在点处的导数记作2 导数的几何意义:(求函数在某点处的切线方程)函数在点处的导数的几何意义就是曲线在点处的切线的斜率,也就是说,曲线在点P 处的切线的斜率是,切线方程为3.基本常见函数的导数:①0;C '=(C 为常数) ②()1;n n x nx-'= ③(sin )cos x x '=; ④(cos )sin x x '=-; ⑤();x x e e '= ⑥()ln x x a a a '=;⑦()1ln x x '=; ⑧()1l g log a a o x e x'=. 二、导数的运算1.导数的四则运算:法则1:两个函数的和(或差)的导数,等于这两个函数的导数的和(或差),即: ()()()()f x g x f x g x '''±=±⎡⎤⎣⎦法则2:两个函数的积的导数,等于第一个函数的导数乘以第二个函数,加上第一个 函数乘以第二个函数的导数,即:()()()()()()f x g x f x g x f x g x '''⋅=+⎡⎤⎣⎦常数与函数的积的导数等于常数乘以函数的导数: ).())((''x Cf x Cf =(C 为常数)法则3:两个函数的商的导数,等于分子的导数与分母的积,减去分母的导数与分子的积,再除以分母的平方:()()()()()()()()()20f x f x g x f x g x g x g x g x '⎡⎤''-=≠⎢⎥⎡⎤⎣⎦⎣⎦。

2.复合函数的导数形如)]([x f y ϕ=的函数称为复合函数。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第十二章 极限和导数第十四章 极限与导数一、基础知识 1.极限定义:(1)若数列{u n }满足,对任意给定的正数ε,总存在正数m ,当n>m 且n ∈N 时,恒有|u n -A|<ε成立(A 为常数),则称A 为数列u n 当n 趋向于无穷大时的极限,记为)(lim ),(lim x f x f x x -∞→+∞→,另外)(lim 0x f x x +→=A 表示x 大于x 0且趋向于x 0时f(x)极限为A ,称右极限。

类似地)(lim 0x f x x -→表示x 小于x 0且趋向于x 0时f(x)的左极限。

2 极限的四则运算:如果0lim x x →f(x)=a, 0lim x x →g(x)=b ,那么0lim x x →[f(x)±g(x)]=a ±b,lim x x →[f(x)•g(x)]=ab, 0limx x →).0()()(≠=b bax g x f 3.连续:如果函数f(x)在x=x 0处有定义,且0lim x x →f(x)存在,并且0lim x x →f(x)=f(x 0),则称f(x)在x=x 0处连续。

4.最大值最小值定理:如果f(x)是闭区间[a,b]上的连续函数,那么f(x)在[a,b]上有最大值和最小值。

5.导数:若函数f(x)在x0附近有定义,当自变量x 在x 0处取得一个增量Δx 时(Δx 充分小),因变量y 也随之取得增量Δy(Δy=f(x 0+Δx)-f(x 0)).若xyx ∆∆→∆0lim存在,则称f(x)在x 0处可导,此极限值称为f(x)在点x 0处的导数(或变化率),记作'f (x 0)或0'x x y =或x dxdy ,即00)()(lim)('0x x x f x f x f x x --=→。

由定义知f(x)在点x 0连续是f(x)在x 0可导的必要条件。

若f(x)在区间I 上有定义,且在每一点可导,则称它在此敬意上可导。

导数的几何意义是:f(x)在点x 0处导数'f (x 0)等于曲线y=f(x)在点P(x 0,f(x 0))处切线的斜率。

6.几个常用函数的导数:(1))'(c =0(c 为常数);(2)1)'(-=a a ax x (a 为任意常数);(3);cos )'(sin x x =(4)x x sin )'(cos -=;(5)a a a x x ln )'(=;(6)x x e e =)'(;(7))'(log x a x xa log 1=;(8).1)'(ln xx =7.导数的运算法则:若u(x),v(x)在x 处可导,且u(x)≠0,则(1))(')(')]'()([x v x u x v x u ±=±;(2))(')()()(')]'()([x v x u x v x u x v x u +=;(3))(')]'([x u c x cu ⋅=(c 为常数);(4))()(']')(1[2x u x u x u -=;(5))()()(')(')(]')()([2x u x v x u x v x u x u x u -=。

8.复合函数求导法:设函数y=f(u),u=ϕ(x),已知ϕ(x)在x 处可导,f(u)在对应的点u(u=ϕ(x))处可导,则复合函数y=f[ϕ(x)]在点x 处可导,且(f[ϕ(x)])'=)(')](['x x f ϕϕ.9.导数与函数的性质:(1)若f(x)在区间I 上可导,则f(x)在I 上连续;(2)若对一切x ∈(a,b)有0)('>x f ,则f(x)在(a,b)单调递增;(3)若对一切x ∈(a,b)有0)('<x f ,则f(x)在(a,b)单调递减。

10.极值的必要条件:若函数f(x)在x 0处可导,且在x 0处取得极值,则.0)('0=x f11.极值的第一充分条件:设f(x)在x0处连续,在x 0邻域(x 0-δ,x 0+δ)内可导,(1)若当x ∈(x-δ,x 0)时0)('≤x f ,当x ∈(x 0,x 0+δ)时0)('≥x f ,则f(x)在x 0处取得极小值;(2)若当x ∈(x 0-δ,x 0)时0)('≥x f ,当x ∈(x 0,x 0+δ)时0)('≤x f ,则f(x)在x 0处取得极大值。

12.极值的第二充分条件:设f(x)在x 0的某领域(x 0-δ,x 0+δ)内一阶可导,在x=x 0处二阶可导,且0)('',0)('00≠=x f x f 。

(1)若0)(''0>x f ,则f(x)在x 0处取得极小值;(2)若0)(''0<x f ,则f(x)在x 0处取得极大值。

13.罗尔中值定理:若函数f(x)在[a,b]上连续,在(a,b)上可导,且f(a)=f(b),则存在ξ∈(a,b),使.0)('=ξf[证明] 若当x ∈(a,b),f(x)≡f(a),则对任意x ∈(a,b),0)('=x f .若当x ∈(a,b)时,f(x)≠f(a),因为f(x)在[a,b]上连续,所以f(x)在[a,b]上有最大值和最小值,必有一个不等于f(a),不妨设最大值m>f(a)且f(c)=m ,则c ∈(a,b),且f(c)为最大值,故0)('=c f ,综上得证。

14.Lagrange 中值定理:若f(x)在[a,b]上连续,在(a,b)上可导,则存在ξ∈(a,b),使.)()()('ab a f b f f --=ξ[证明] 令F(x)=f(x)-)()()(a x ab a f b f ---,则F(x)在[a,b]上连续,在(a,b)上可导,且F(a)=F(b),所以由13知存在ξ∈(a,b)使)('ξF =0,即.)()()('ab a f b f f --=ξ15.曲线凸性的充分条件:设函数f(x)在开区间I 内具有二阶导数,(1)如果对任意x ∈I,0)(''>x f ,则曲线y=f(x)在I 内是下凸的;(2)如果对任意x ∈I,0)(''<x f ,则y=f(x)在I 内是上凸的。

通常称上凸函数为凸函数,下凸函数为凹函数。

16.琴生不等式:设α1,α2,…,αn ∈R +,α1+α2+…+αn =1。

(1)若f(x)是[a,b]上的凸函数,则x 1,x 2,…,x n ∈[a,b]有f(a 1x 1+a 2x 2+…+a n x n )≤a 1f(x 1)+a 2f(x 2)+…+a n f(x n ). 二、极限1、数列极限:(1)公式:lim n C C →∞=(C 为常数);1lim 0p n n →∞=(p>0);0 1lim 1 1 11n n q q q q q →∞⎧<⎪==⎨⎪>=-⎩不存在或.(2)运算法则:若数列{}n a 和{}n b 的极限都存在,则{}n a 和{}n b 的和、差、积、商的极限等于{}n a 和{}n b 的极限的和、差、积、商.例题:① 将直线1:10l x y +-=、2:0l nx y n +-=、3:0l x ny n +-=(*n N ∈,2n ≥)围成的三角形面积记为n S ,则lim n n S →∞= .② 已知p 和q 是两个不相等的正整数,且2q ≥,则111lim 111pq n n n ∞⎛⎫+- ⎪⎝⎭=⎛⎫+- ⎪⎝⎭→ . 习题:① 135(21)lim(21)n n n n →∞++++-=+L .② 设0<a <b ,则4lim nn nn b a b →∞-=_ ____.③ 若(1)1lim 2n a n n a∞++=+→,则a = .④n 等于 .⑤ 数列2141n ⎧⎫⎨⎬-⎩⎭的前n 项和为S n ,则lim n n S →∞=________. ⑥ 已知数列{}n a 的首项10a ≠,其前n 项的和为n S ,且112n n S S a +=+,则lim nn na S →∞= .2、函数极限:(1)公式:lim x C C →∞= (C 为常数);1lim0p x n →∞= (p>0); 0 1lim 1 111x x a a a a a →+∞⎧<⎪==⎨⎪>=-⎩不存在或;0 1lim 1 1 11x x a a a a a →-∞⎧>⎪==⎨⎪<=-⎩不存在或. (2)运算法则:若函数()f x 和)(x g 的极限都存在,则函数)(x f 和)(x g 的和、差、积、商的极限等于)(x f 和)(x g 的极限的和、差、积、商.习题:① 211lim______34x x x x →-=+-;2241lim()42x x x→--=-+ . ② 已知22lim 7x ax cx bx c →∞+=+,lim 5x bx ccx a→∞+=+,且0bc ≠,则22lim x ax bx c cx ax b →∞++=++ . ③ 222sin lim(tan )cos x xx xπ→-= . 3、函数的连续性:函数)(x f 在0x x =处连续的充要条件是00lim ()()x x f x f x →=.习题:① 已知函数2 3 ( 0 )() (0 )x x f x a x +≠⎧=⎨=⎩在x =0处连续,则a = .② 已知2 3 , 1() 2 , 1x x f x x +≠⎧=⎨=⎩,下面结论正确的是 ( )(A )()f x 在1x =处连续 (B )(1)5f =(C ) 1lim ()2x f x -→= (D ) 1lim ()2x f x →= ③ 若21lim()111x a bx x →-=--,则常数b a ,的值分别为 .三、导数1、导数的概念:(1)导数的定义:函数()y f x =在0x x =处的导数/0000()()()limx f x x f x f x x∆→+∆-=∆.(2)导数的几何意义:曲线()y f x =上点00(,())x f x 处的切线的斜率为/0()f x .因此曲线()y f x =在点()(,00x f x )处的切线方程为/000()()()y f x f x x x -=-.(3)导数的物理意义:若质点运动的位移函数为S =s (t ),则0t t =时质点运动的瞬时速度是0'()s t . 例题:① 若000(2)()lim 13x f x x f x x∆→+∆-=∆,则0'()f x 等于 .② 若曲线12y x-=在点12(,)a a-处的切线与两个坐标围成的三角形的面积为18,则a = .③ 如图,一个正五角星薄片(其对称轴与水面垂直)匀速地升出水面,记t 时刻五角星露出水面部分的图形面积为()()()00S t S =,则导函数()y S t '=的图像大致为④ 已知曲线314()33f x x =+. (1) 求曲线在点(2,4)P 处的切线方程; (2) 求曲线过点(2,4)P 的切线方程. ⑤ 求抛物线2y x =-上的点到直线4380x y +-=距离的最小值.习题:① 若000()()lim1x f x x f x x∆→-∆-=∆,则0'()f x 等于 .② 运动曲线方程为2212t S t t-=+,则t=3时的速度是 .③ 已知函数y =f (x ),y =g (x )的导函数的图象如下图,那么y =f (x ),y =g (x )的图象可能是④ 曲线221xy x =+在点(1,1)处的切线方程是 . ⑤ 已知点P 在曲线y=41x e +上,α为曲线在点P 处的切线的倾斜角,则α的取值范围是 .2、导数的运算:(1)常见函数的导数:'0C =;1()'n n x nx -=;(sin )'cos x x =;(cos )'sin x x =-. 1(ln )'x x =;1(log )'log a a x e x=;()'x x e e =;()'ln x xa a a =. (2)导数的四则运算法则: '''[()()]()()u x v x u x v x ±=±;[()()]'()()()'()u x v x u x v x u x v x '=+, [()]'()C u x C u x '⋅=⋅;'2()'()()()'()(()0)()()u x u x v x u x v x v x v x v x ⎡⎤-=≠⎢⎥⎣⎦.(3)复合函数的求导法则:首先,选定中间变量,分解复合关系,说明函数关系y =f (μ),μ=f (x );然后将已知函数对中间变量求导(')y μ,中间变量对自变量求导)'(x μ;最后求''x y μμ⋅,并将中间变量代回为自变量的函数习题:① 若42()f x ax bx c =++满足(1)2f '=,则(1)f '-= .② 等比数列{}n a 中,12a =,84a =,()128()()()f x x x a x a x a =---L ,则()0f '= . ③ 求下列函数的导数:(1)y =(1)x > (2)4y = 3、导数的应用:(1)求函数的单调性:用导数求函数单调区间的一般步骤为:求()f x ';()f x '>0的解集与定义域的交集的对应区间为增区间;()f x '<0的解集与定义域的交集的对应区间为减区间.例题:① 函数2()xf x x e -=的单调递增区间为 . ② 已知函数2()ln(1)(0)2k f x x x x k =+-+≥,求f (x )的单调区间. ③ 若函数3211()(1)132f x x ax a x =-+-+在区间(1,4)内为减函数,在区间(6,+∞)上为增函数,试求实数a 的取值范围.④已知函数42()32(31)4f x ax a x x =-++在()1,1-上是增函数,求a 的取值范围. 习题:① 函数32()15336f x x x x =--+的单调减区间为 . ② 若3()f x ax x =+恰有三个单调区间,则a 的取值范围是 .③ 已知a >0,函数f (x )=x 3-ax 在[1,+∞)上是单调增函数,则a 的最大值是 .④ 求函数3211()(1)32f x x a x ax b =-+++(,R a b ∈)的单调性. ⑤ 是否存在这样的k 值,使函数243221()232f x k x x kx x =--++在(1,2)上递减,在(2,+∞)上递增(2)求函数的极值:求导数()f x ';求方程()f x '=0的根;用函数的导数为0的点,顺次将函数的定义区间分成若干小开区间,并列成表格,检查()f x '在方程根左右的值的符号,如果左正右负,那么()f x 在这个根处取得极大值;如果左负右正,那么()f x 在这个根处取得极小值;如果左右不改变符号即都为正或都为负,则()f x 在这个根处无极值.例题:① 已知函数f (x )=ax 3+bx 2-3x 在x =±1处取得极值,求f (x )的极大值和极小值. ② 函数f (x )=x 3-6bx +3b 在(0,1)内有极小值,则b 的取值范围为 . ③ 已知函数321()(2)13f x ax bx b x =-+-+在1x x =处取得极大值,在2x x =处取得极小值,且12012x x <<<<.(1)证明0a >;(2)若z =a +2b ,求z 的取值范围.习题:① 已知函数()f x =x 3+ax 2+bx +a 2在x =1处有极值为10,则(2)f =______② 设a 为实数,函数32()f x x x x a =--+,求()f x 的极值. ③ 设函数()sin cos 1f x x x x =-++,02x π<<,求函数()f x 的极值.(3)求函数的最值:利用导数求函数的最值步骤:求()f x 在(,)a b 内的极值;将()f x 的各极值与)(a f 、)(b f 比较得出函数()f x 在[],a b 上的最值.例题:① 函数32()32f x x x =-+在区间[]1,1-上的最大值是 .② 求抛物线212y x =上与点)0,6(A 距离最近的点. ③ 设函数321()(1)4243f x x a x ax a =-+++,其中常数1a >.(1)讨论()f x 的单调性;(2)若当0x ≥时,()0f x >恒成立,求a 的取值范围.。

相关文档
最新文档