解一元二次方程-教学设计

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

解一元二次方程教学设计

教学设计思想

解一元二次方程有四种方法,直接开平方法、配方法、公式法、因式分解法,这四种方法各有千秋。为保证学生掌握基本的运算技能,教学中进行了一定量的训练,但要避免学生简单的模仿。我们在探究一元二次方程解法的过程中,要加强思想方法的渗透,发展学生的思维能力。在解一元二次方程的几种方法中,均需要用到转化的思想方法。如配方法需要将方程转化为能直接开平方的形式,公式法能根据一元二次方程转化为两个一元一次方程,所有这些均体现了转化的思想。在教学时老师引导学生在主动进行观察、思考核探究的基础上,体会数学思想方法在其中的作用,充分发展学生的思维能力。

教学目标

知识与技能:

1.会用配方法、公式法、因式分解法解简单数字系数的一元二次方程。

2.能够根据一元二次方程的特点,灵活选用解方程的方法,体会解决问题策略的多样性。

过程与方法:

1.参与对一元二次方程解法的探索,体验数学发现的过程,对结果比较、验证、归纳、理清几种解法之间的关系,并能根据方程的特点灵活选择适当的方法解一元二次方程。

2.在探究一元二次方程的过程中体会转化、降次的数学思想。

情感态度价值观:

在解一元二次方程的实践中,交流、总结经验和规律,体验数学活动乐趣。

教学重难点

重点:掌握配方法、公式法、因式分解法解一元二次方程的步骤,并熟练运用上述方法解题。

难点:根据方程的特点灵活选择适当的方法解一元二次方程。

教学方法

探索发现,讲练结合

教学媒体

多媒体

课时安排

4课时

教学过程设计

第一课时

一、复习引入:

1.一元二次方程的一般形式是什么?其中a 应具备什么条件?

2.042=-x 是一元二次方程吗?其中二次项的系数,一次项的系数,常数项各是什么?

(是。二次项系数是1,一次项系数是0,常数项是-4)

3.解下列方程:

(1)x 2=4 (2)(x+3)2

=9 学生依次回答上述问题。

师总结强调:(1)象这种通过直接开平方求得x 的值的方法,实际上就是求x 2=a (a ≥0)这种特殊形式的一元二次方程的解方法。

(2)对于形如“(x+a) 2=b (b ≥0)”型的方程,只要把x+a 看作一个整体,就可以转化为x 2=b (b ≥0)型的方法去解决,这里渗透了“换元”的方法。

(3)在对方程(x+3) 2=9两边同时开平方后,原方程就转化为两个一次方程。要向学生

指出,这种变形实质上是将原方程“降次”。“降次”也是一种数学方法

二、试着做做

1.如果(x+2)2

=9,那么x=_______________。

2.如果(x-3)2=7,那么x=_______________。

3.完全平方公式是什么?

4.如果x 2+2x+1=4,那么x=_______________。

学生独立求解

5.对于x 2+2x-3=0这样的方程,该怎样求解呢?能否经过适当变形,将方程转化为(x+m )2=n (m ,n 是常数,n ≥0)的形式,然后应用直接开平法求解呢?你能总结出你解这个方程的步骤吗?

学生活动:小组讨论,利用完全平方公式及上述提示寻求解法,将x 2+2x-3=0变形为x 2+2x+1=4,即(x+1)2=4 。并总结出解方程x 2+2x-3=0的一种方法:

三、做一做

把下列方程化为(x+ m )2

=n (m ,n 是常数,n ≥0)的形式,并求出它们的解。

(1)x 2+2x=48;(2)x 2-4x=12;

(3)x2-6x+6=0;(4)25

0 4

x x

+-=。

学生活动:初步体验用配方法解一元二次方程的步骤。

例1 解方程 x2-10x-11=0

该例题师生共同完成,学生通过此题明白每步变形的依据和目的。

然后师生一起总结:

通过配方,把方程的一边化为完全平方式,另一边化为非负数,然后利用开平方的方法求出一元二次方程的根,这种方法叫做解一元二次方程的配方法。

四、练习:

1.配方:填上适当的数,使下列等式成立:

(1)x2+12x+ =(x+6)2

(2)x2―12x+ =(x― )2

(3)x2+8x+ =(x+ )2

2.解方程:课本P34 练习

五、小结

这节课你的收获是什么?

六、作业

课本P34 1,2,3

七、板书设计

第二课时

一、复习引入

上节课我们学习了解一元二次方程的什么方法?

解下列方程:

(1)x2-6x+4= 0 (2)x2+4x-16= 0

今天我们一起来学习方程的二次项系数不是1的一元二次方程。

二、做一做

解方程3x 2-32x-48= 0

师:引导学生观察,此方程和上节课方程进行比较有什么不同,能否转化成二次项系数为1的形式。

学生独立思考,积极探究,解答题目。

解:略。见课本P35

师:请同学们总结用配方法解一元二次方程的一般步骤是什么?

学生小组讨论,相互交流自己的想法。

利用配方法解一元二次方程,其一般步骤为:

A .先把方程整理为一般形式

B .用二次项系数去除方程两边,把二次项系数化为1

C .把常数项移到方程的右边(移项)

D .方程两边各加上一次项系数一半的平方,把方程化为(n m x =+2

)的形式(配方) E .利用直接开方法求得方程的解(当右边是负数时,方程无解)

三、练一练

解下列方程

(1)x 2-4x=12; (2)3x 2+2x-5=0;

(3)2y 2+y-6=0; (4)2x 2+5x+1=0

四、实际应用

例3 有一张长方形桌子,它的长为2m ,宽为1m 。有一块长方形台布,它的面积是桌面面积的2倍,将台布铺在桌面上时,各边垂下的长相等。求这块台布的长和宽(均精确到0.01m )。

小组讨论:(1)题目中有哪些等量关系?(2)如何设未知数?根据你所设的未知数列出一元二次方程,并解答。(3)算出的x 值都可取么?为什么

老师引导学生注意验证方程的解的合理性,并对学习困难的学生给予及时的点拨和引导。

通过此题我们发现在解决实际问题时,设未知数要灵活选择,同时注意检验方程的解是否符合题意,从而确定实际问题的答案。

五、小结

1.配方法的基本步骤。

相关文档
最新文档