数字推理之解题技巧(精华版)

合集下载

行测数字推理题技巧

行测数字推理题技巧

行测数字推理题技巧
1.规律分析:首先看给出的数字序列是否存在其中一种规律,例如递增、递减、交替等。

通过观察规律,可以将下一个数字或者数字序列进行
推理。

2.数字运算:在数字推理题中,经常出现的是数字的运算关系。

可以
通过加减乘除等简单的运算符号,对给出的数字进行运算,从而得出新的
数字或者数字序列。

3.数字特征:观察给出的数字是否有一些特殊的特征,例如是否为质数、完全平方数、斐波那契数列等,可以通过这些特征进行逻辑推理。

4.数字拆分:有些数字推理题给出的数字较大,可以将其拆分成小的
数字,然后再进行运算或者找规律。

5.条件限制:有些数字推理题在给出的数字序列中存在一些限制条件,例如数字的位数、数字之间差距等。

可以通过这些限制条件进行推理。

6.平均数:在有些数字推理题中,给出的数字序列的平均数可能有特
殊的含义,通过计算平均数,可以得到下一个数字或者数字序列。

7.数字替换:有些数字推理题中,给出的数字序列中存在一些数字可
以进行替换,通过替换数字,可以发现其中一种规律。

【数量关系】''数字推理''的解题技巧

【数量关系】''数字推理''的解题技巧

【数量关系】''数字推理''的解题技巧一、解题前的准备1.熟记各种数字的运算关系。

如各种数字的平方、立方以及它们的邻居,做到看到某个数字就有感觉。

这是迅速准确解好数字推理题材的前提。

常见的需记住的数字关系如下:(1)平方关系:2-4,3-9,4-16,5-25,6-36,7-49,8-64,9-81,10-100,11-121,12-144 13-169,14-196,15-225,16-256,17-289,18-324,19-361,20-400(2)立方关系:2-8,3-27,4-64,5-125,6-216,7-343,8-512,9-729,10-1000(3)质数关系:2,3,5,7,11,13,17,19,23,29......(4)开方关系:4-2,9-3,16-4......以上四种,特别是前两种关系,每次考试必有。

所以,对这些平方立方后的数字,及这些数字的邻居(如,64,63,65等)要有足够的敏感。

当看到这些数字时,立刻就能想到平方立方的可能性。

熟悉这些数字,对解题有很大的帮助,有时候,一个数字就能提供你一个正确的解题思路。

如216 ,125,64()如果上述关系烂熟于胸,一眼就可看出答案但一般考试题不会如此弱智,实际可能会这样215,124,63,()或是217,124,65,()即是以它们的邻居(加减1),这也不难,一般这种题5秒内搞定。

2.熟练掌握各种简单运算,一般加减乘除大家都会,值得注意的是带根号的运算。

根号运算掌握简单规律则可,也不难。

3.对中等难度以下的题,建议大家练习使用心算,可以节省不少时间,在考试时有很大效果。

二、解题方法按数字之间的关系,可将数字推理题分为以下十种类型:1.和差关系。

又分为等差、移动求和或差两种。

(1)等差关系。

这种题属于比较简单的,不经练习也能在短时间内做出。

建议解这种题时,用口算。

12,20,30,42,()127,112,97,82,()3,4,7,12,(),28(2)移动求和或差。

公考数字推理攻略汇总

公考数字推理攻略汇总

公务员数字推理技巧总结精华版数字推理技巧总结备考规律一:等差数列及其变式(后一项与前一项的差 d 为固定的或是存在一定规律(这种规律包括等差、等比、正负号交叉、正负号隔两项交叉等)(1) 后面的数字与前面数字之间的差等于一个常数。

如7,11,15,( 19 ) (2)后面的数字与前面数字之间的差是存在一定的规律的,这个规律是一种等差的规律。

如7,11,16,22,( 29 )(3)后面的数字与前面数字之间的差是存在一定的规律的,但这个规律是一种等比的规律。

如7,11,13,14,( 14.5 )(4)后面的数字与前面数字之间的差是存在一定的规律的,但这个规律是一种正负号进行交叉变换的规律。

【例题】7,11,6,12,( 5 )(5) 后面的数字与前面数字之间的差是存在一定的规律的,但这个规律是一种正负号每“相隔两项”进行交叉变换的规律。

【例题】7,11,16,10,3,11,(20 )备考规律二:等比数列及其变式(后一项与除以前一项的倍数 q 为固定的或是存在一定规律(这种规律包括等差、等比、幂字方等)(1)“后面的数字”除以“前面数字”所得的值等于一个常数。

【例题】4,8,16,32,( 64 )(2)后面的数字与前面数字之间的倍数是存在一定的规律的,倍数加1。

【例题】4,8,24,96,( 480 )(3)后面的数字与前面数字之间的倍数是存在一定的规律的,倍数乘 2【例题】4,8,32,256,( 4096 )(4)后面的数字与前面数字之间的倍数是存在一定的规律的,倍数为 3 的n 次方。

【例题】2,6,54,1428,( 118098 )(5)后面的数字与前面数字之间的倍数是存在一定的规律的,“倍数”之间形成了一个新的等差数列。

【例题】2,-4,-12,48,(240 )备考规律三:“平方数”数列及其变式(an=n2+d,其中d为常数或存在一定规律)(1) “平方数”的数列【例题】1,4,9,16,25,36 ,49,64,81,100,121,144,169,196(2)每一个平方数减去或加上一个常数【例题】 0,3,8,15,24,(35 )【例题变形】2,5,10,17,26,(37 )(3) 每一个平方数加去一个数值,而这个数值本身就是有一定规律的。

行测数字推理秒杀口诀

行测数字推理秒杀口诀

行测数字推理秒杀口诀
题型一、和倍问题。

问题描述:已知两数之和及倍数关系,可快速得出这两数。

秒杀公式:大+小=和;大=倍×小,则:小=和÷(倍+1);大=倍×小=和-小。

题型二、差倍问题。

问题描述:已知两数之差及倍数关系,可快速得出这两数。

秒杀公式:大-小=差;大=倍×小,则:小=差÷(倍-1);大=倍×小=差+小。

题型三、和差问题。

问题描述:已知两数之和及两数之差,可快速得出这两数。

秒杀公式:大+小=和;大-小=差;则:大=(和+差)÷2;小=(和-差)÷2。

题型四、日期问题。

问题描述:若2017年7月10日星期三,则2018年8月10日星期几。

秒杀公式:平年:365=52×7+1 平过1;闰年:366=52×7+2 闰过2。

题型五、植树问题。

问题描述:在一个路段上植树,植树方式不同,棵数和段数的关系不同。

秒杀公式:①不封闭路段:两端植:棵数=段数+1;一端植:棵数=段数,②两端都不植:棵数=段数-1;③封闭路线:棵数=段数。

数字推理题的解题技巧大全

数字推理题的解题技巧大全

数字推理题的解题技巧大全各位读友大家好,此文档由网络收集而来,欢迎您下载,谢谢篇一:行测100%过关秘诀:数字推理题解题技巧大全行政能力数字推理题解题技巧大全行政能力倾向测试是公务员(civil servant)考试必考的一科,数字推理题又是行政测试中一直以来的固定题型。

如果给予足够的时间,数字推理并不难;但由于行政试卷整体量大,时间短,很少有人能在规定的考试时间内做完,尤其是对于文科的版友们来说,数字推理、数字运算(应用题)以及最后的资料分析是阻碍他们行政拿高分的关卡。

并且,由于数字推理处于行政A类的第一项,B类的第二项,开头做不好,对以后的考试有着较大的影响。

数字推理考察的是数字之间的联系,对运算能力的要求并不高。

所以,文科的朋友不必担心数学知识不够用或是以前学的不好。

只要经过足够的练习,这部分是可以拿高分的,至少不会拖你的后腿。

抽根烟,下面开始聊聊。

一、解题前的准备1.熟记各种数字的运算关系。

如各种数字的平方、立方以及它们的邻居,做到看到某个数字就有感觉。

这是迅速准确解好数字推理题材的前提。

常见的需记住的数字关系如下:(1)平方关系:2-4,3-9,4-16,5-25,6-36,7-49,8-64,9-81,10-100,11-121,12-14413-169,14-196,15-225,16-256,17-289,18-3 24,19-361,20-400(2)立方关系:2-8,3-27,4-64,5-125,6-216,7-343,8-512 ,9-729,10-1000(3)质数关系:2,3,5,7,11,13,17,19,23,29......(4)开方关系:4-2,9-3,16-4......以上四种,特别是前两种关系,每次考试必有。

所以,对这些平方立方后的数字,及这些数字的邻居(如,64,63,65等)要有足够的敏感。

当看到这些数字时,立刻就能想到平方立方的可能性。

熟悉这些数字,对解题有很大的帮助,有时候,一个数字就能提供你一个正确的解题思路。

行测数字推理之解题技巧(精华版)

行测数字推理之解题技巧(精华版)

数字推理之解题技巧(精华版)(1)等差,等比这种最简单的不用多说,深一点就是在等差,等比上再加、减一个数列,如24,70,208,622,规律为a*3-2=b(注:a、b为前后数)(2)深一层次的,①各数之间的差有规律,如 1、2、5、10、17。

它们之间的差为1、3、5、7,成等差数列。

这些规律还有差之间成等比之类。

②各数之间的和有规律,如1、2、3、5、8、13,前两个数相加等于后一个数。

(注:前一就是高中数学常说的差后等差数列或等比数列)(3)看各数的大小组合规律,作出合理的分组。

如 7,9,40,74,1526,5436,可以划分为7和9,40和74,1526和5436三组,这三组各自是大致处于同一大小和位数级别,那规律就要从组方面考虑,即不把它们看作6个数,而应该看作3个小组。

而组和组之间的差距不是很大,用乘法就能从一个组过渡到另一个组。

所以7*7-9=40 , 9*9-7=74 ,40*40-74=1526 ,74*74-40=5436,这就是规律。

(4)如根据大小不能分组的,①,看首尾关系,如7,10,9,12,11,14,这组数 7+14=10+11=9+12。

首尾关系经常被忽略,但又是很简单的规律。

②,数的大小排列看似无序的,可以看它们之间的差与和有没有顺序关系。

(5)各数间相差较大,但又不相差大得离谱,就要考虑乘方,这里就要看各位对数字敏感程度如何了。

如6、24、60、 120、210,感觉它们之间的差越来越大,但这组数又看着比较舒服(个人感觉,嘿嘿),它们的规律就是2^3-2=6、3^3-3=24、4^3-4=60、5^3-5=120、6^3-6=210。

(注意,这组数比较巧的是都是6的倍数,大家容易导入歧途。

)6)看大小不能看出来的,就要看数的特征了。

如21、31、47、56、69、72,它们的十位数就是递增关系;如 25、58、811、1114 ,这些数相邻两个数首尾相接,且2、5、8、11、14的差为3;如论坛上fjjngs所解答的一道题:256,269,286,302,(),2+5+6=132+6+9=17 2+8+6=16 3+0+2=5,∵256+13=269 269+17=286 286+16=302 ∴下一个数为302+5=307。

公务员考试数字推理题解题技巧大全

公务员考试数字推理题解题技巧大全

公务员考试数字推理题解题技巧大全公务员考试是一项重要的选拔机制,而数字推理题是其中的一项难点。

在数字推理题中,考生需要通过数字、图表等信息,寻找一定的规律和推理思路,从而解决问题。

为了帮助考生顺利应对数字推理题,本文将为大家介绍一些解题技巧和思路。

一、理解题目和数据在做数字推理题时,首先需要认真阅读题目和给出的数据,了解题目的背景和要求。

在阅读中要注意对数据进行分类和总结,分析数字间的关系和规律。

二、寻找常见数字规律数字推理题中存在着许多常见的数字规律,例如:相邻数的关系、乘法和除法关系、平方、倒数等规律。

若能找出这些规律,便能够轻松解决此类推理题。

三、寻找图形规律数字推理题中,常常会配有一些图形数据。

对于这些图形,我们可以通过寻找它们的共性和特点,来发现其中的规律。

例如,周期性图形的规律常常是循环或对称性;封闭型图形的规律常常是不变性或连通性。

通过这些规律,我们可以迅速地推断出答案。

四、确定类型和答案数字推理题大致可以分为数列和图形两类。

对于数列题,我们可以看其中的差值和倍数规律,以及数列的加和、中位数、众数等;对于图形题,我们可以寻找变化和相似性规律,以及图形的方向、角度、面积和比例等。

同时,我们也可以先推断出答案,然后再用已有的数据进行验证,验证结果。

五、注意隐形陷阱在数字推理题中,经常会隐藏着一些陷阱,这些陷阱可能会导致我们犯错。

例如,数据中可能存在重复数字、相同数字或相同图形,这就需要我们仔细分辨;同时也要注意看清题目要求,不要遗漏信息或多读信息。

总之,数字推理题是公务员考试中的难点之一,但是只要我们掌握题目信息,查找数字和图形规律,注意隐形陷阱,便能够较为轻松地应对此类题目。

希望以上简单的技巧和思路能够对大家在公务员考试中取得好成绩有所帮助。

行测指导:数字推理30种解题技巧

行测指导:数字推理30种解题技巧

行测指导:数字推理30 种解题技巧一、当一列数中出现几个整数,而只有一两个分数并且是几分之一的时候,这列数常常是负幂次数列。

【例】 1、4、3、1、1/5 、1/36 、()二、当一列数几乎都是分数时,它基本就是分式数列,我们要注意察看分式数列的分子、分母是向来递加、递减或许不变,并以此为依照找到打破口,经过“约分”、“反约分”实现分子、分母的各自成规律。

【例】 1/162/132/58/74()三、当一列数比较长、数字大小比较靠近、有时有两个括号时,常常是间隔数列或分组数列。

【例】 33、32、34、31、35、30、36、29、()四、在数字推理中,当题干和选项都是个位数,且大小改动不稳准时,常常是取尾数列。

取尾数列一般拥有相加取尾、相乘取尾两种形式。

【例】 6、7、3、0、3、3、6、9、5、()五、当一列数都是几十、几百或许几千的“清一色”整数,且大小改动不稳准时,常常是与数位有关的数列。

【例】 448、516、639、347、178、()六、幂次数列的实质特点是:底数和指数各自成规律,而后再加减修正系数。

关于幂次数列,考生要成立起足够的幂数敏感性,当数列中出现 6?、 12?、 14?、 21?、 25?、 34?、 51?、312?,就优先考虑 43、112(53)、 122、63、44、73、83、55。

【例】 0、9、26、65、124、()七、在递推数列中,当数列选项没有显然特点时,考生要注意察看题干数字间的倍数关系,常常是一项推一项的倍数递推。

【例】 118、60、32、20、()八、假如数列的题干和选项都是整数且数字颠簸不大时,不存在其余显然特点时,优先考虑做差多级数列,其次是倍数递推数列,常常是两项推一项的倍数递推。

【例】 0、6、24、60、120、()九、当题干和选项都是整数,且数字大小颠簸很大时,常常是两项推一项的乘法或许乘方的递推数列。

【例】 3、7、16、107、()十、当数列选项中有两个整数、两个小数时,答案常常是小数,且一般是经过乘除来实现的。

公考数字推理攻略

公考数字推理攻略

公务员数字推理技巧总结精华版数字推理技巧总结备考规律一:等差数列及其变式(后一项与前一项的差d为固定的或是存在一定规律(这种规律包括等差、等比、正负号交叉、正负号隔两项交叉等)(1)后面的数字与前面数字之间的差等于一个常数。

如7,11,15,(19)(2)后面的数字与前面数字之间的差是存在一定的规律的,这个规律是一种等差的规律。

如7,11,16,22,(29)(3)后面的数字与前面数字之间的差是存在一定的规律的,但这个规律是一种等比的规律。

如7,11,13,14,()(4)后面的数字与前面数字之间的差是存在一定的规律的,但这个规律是一种正负号进行交叉变换的规律。

【例题】7,11,6,12,(5)(5)后面的数字与前面数字之间的差是存在一定的规律的,但这个规律是一种正负号每“相隔两项”进行交叉变换的规律。

【例题】7,11,16,10,3,11,(20)备考规律二:等比数列及其变式(后一项与除以前一项的倍数q为固定的或是存在一定规律(这种规律包括等差、等比、幂字方等)(1)“后面的数字”除以“前面数字”所得的值等于一个常数。

【例题】4,8,16,32,(64)(2)后面的数字与前面数字之间的倍数是存在一定的规律的,倍数加1。

【例题】4,8,24,96,(480)(3)后面的数字与前面数字之间的倍数是存在一定的规律的,倍数乘2【例题】4,8,32,256,(4096)(4)后面的数字与前面数字之间的倍数是存在一定的规律的,倍数为3的n次方。

【例题】2,6,54,1428,(118098)(5)后面的数字与前面数字之间的倍数是存在一定的规律的,“倍数”之间形成了一个新的等差数列。

【例题】2,-4,-12,48,(240)备考规律三:“平方数”数列及其变式(an=n2+d,其中d为常数或存在一定规律)(1)“平方数”的数列【例题】1,4,9,16,25,36,49,64,81,100,121,144,169,196(2)每一个平方数减去或加上一个常数【例题】0,3,8,15,24,(35)【例题变形】2,5,10,17,26,(37)(3)每一个平方数加去一个数值,而这个数值本身就是有一定规律的。

数字推理十大题型秒杀技巧

数字推理十大题型秒杀技巧

数字推理十大题型秒杀技巧
1. 数字推理里的等差数列题型,那简直就是送分题呀!比如说1,3,5,7,这不是很明显的等差数列嘛,公差为2,下一个数不就是9 嘛!
2. 等比数列题型,哇塞,一旦发现规律就超简单的!像2,4,8,16,这倍数关系多明显呀,下一个肯定是 32 啦!
3. 平方数列题型,这可得瞪大眼睛找呀!像 1,4,9,16,不就是平方数嘛,下一个就是 25 咯!
4. 立方数列题型,这个有点难度哦,但找到了就很有成就感呀!比如1,8,27,64,那下一个就是 125 呀!
5. 组合数列题型,就像玩拼图一样有趣呢!比如奇数项和偶数项各有规律,找到就轻松解题啦!
6. 数字拆分题型,把数字拆开来分析,哎呀,真的很有意思!像34 可以拆成 3 和 4 嘛,然后再找规律。

7. 分数数列题型,这可不能被分数吓到呀!比如1/2,2/3,3/4,那下一个不就是 4/5 嘛!
8. 根式数列题型,虽然看着有点复杂,但找到了根号里的规律就迎刃而解啦!
9. 周期数列题型,就像循环播放的音乐一样有规律呀!比如1,2,
3,1,2,3,那下一个当然还是 1 啦!
10. 递推数列题型,一环扣一环的,多有意思呀!像前面两个数相加等于后面一个数,找到这个关系就好办啦!
我觉得呀,掌握了这些数字推理的秒杀技巧,就像是拥有了一把打开数字世界大门的钥匙,能让我们在数字的海洋里畅游无阻!。

行测数字推理题技巧

行测数字推理题技巧

行测数字推理题技巧数字推理题是公务员考试中常见的题型之一,包含数字序列、数字关系、数字分类等多种形式。

数字推理题不仅考察了考生的数学能力,更重要的是考察了考生的逻辑思维和推理能力。

本文将从四个方面为大家介绍数字推理题的技巧和方法。

一、数字序列题数字序列题是指给出一组数字序列,要求考生根据规律推断出下一个数字或者缺失的数字。

数字序列题考察的是考生的数学能力和逻辑推理能力。

下面介绍一些数字序列题的常见规律和解题方法。

1.等差数列等差数列是指每一项与前一项之差相等的数列,例如1、3、5、7、9……。

在等差数列中,每一项与前一项之差都相等,这个差值称为公差。

在数字序列题中,等差数列的规律通常是给出前几项,要求考生推断出下一项或者缺失的项。

解题方法是求出公差,然后根据公差推断出下一项或者缺失的项。

2.等比数列等比数列是指每一项与前一项之比相等的数列,例如1、2、4、8、16……。

在等比数列中,每一项与前一项之比都相等,这个比值称为公比。

在数字序列题中,等比数列的规律通常是给出前几项,要求考生推断出下一项或者缺失的项。

解题方法是求出公比,然后根据公比推断出下一项或者缺失的项。

3.斐波那契数列斐波那契数列是指第一项和第二项都为1,从第三项开始,每一项都是前两项之和的数列,例如1、1、2、3、5、8……。

在斐波那契数列中,每一项都是前两项之和,这个规律称为递推关系。

在数字序列题中,斐波那契数列的规律通常是给出前几项,要求考生推断出下一项或者缺失的项。

解题方法是根据递推关系推断出下一项或者缺失的项。

二、数字关系题数字关系题是指给出一组数字之间的关系,要求考生根据这些关系推断出其他数字之间的关系。

数字关系题考察的是考生的逻辑推理能力和数学能力。

下面介绍一些数字关系题的常见关系和解题方法。

1.加减乘除加减乘除是数字关系题中最为常见的关系,例如1+2=3,2-1=1,2×3=6,6÷2=3等。

在数字关系题中,加减乘除的规律通常是给出部分数字和运算符号,要求考生推断出其他数字和运算符号。

数字推理全方法介绍(绝对经典)

数字推理全方法介绍(绝对经典)

数字推理全方法介绍写在前面的话1、希望能给数字推理比较弱的同学帮助2、做数推,重点不是怎么做,而是:“你怎么会想到这种做法?思路在哪?突破口呢?”3、只要你认真看完这个帖子,你的数字推理一定会有进步4、例子来源于真题5、觉得好一定要顶,让更多的人能来交流言归正传(一)等差、倍数关系介绍要学会观察变化趋势(1)数变化很大,一般和乘法和次方有关。

如:2,5,13, 35,97 ()-------------A*2+1 3 9 27 81=B又如:1,1,3,15,323,()---------------数跳很大,考虑是次方和乘法。

此题-------------(A+B)^2-1 =c再如:1 ,2 ,3 ,35 ()------------(a*b)^2-1=c0.4 1.6 8 56 560 ()--------4 5 7 10倍,倍数成二级等差A、2240B、3136C、4480D、784009国考真题14 20 54 76 ()A.104 B.116 C.126 D1449+525-549+5…(2)数差(数跳不大,考虑是做差)等差数列我就不说了,很简单下面说下数字变化不大,但是做差没规律怎么办?一般三种可以尝试的办法(1)隔项相加、相减(2)递推数列(3)自残(一般用得很少,真题里我好像没见过?也许是我忘了吧)09江苏真题1,1,3,5,11,()A.8 B.13 C.21 D.32满足C-A=2 4 8 16-3,7,14,15,19,29,()A 35B 36C 40D 42------------------------------满足A+C=11 22 33 44 5521,37,42,45,62,()A 57B 69C 74D 8721+3*7=4237+4*2=4542+4*5=6245+6*2=57(3)倍数问题(二)三位数的数字推理的思路(1)数和数之间的差不是很大的时候考虑做差(2)很多三位数的数字推理题都用“自残法”如:252,261,270,279,297,()252+2+5+2=261261+2+6+1=270270+2+7+0=27909国考真题153, 179, 227, 321, 533, ( )A.789B.919C.1079D.1229150+3170+9200+27….左边等差,右边等比(三)多项项数的数字推理多项项数的数推”比如:5,24,6,20,(),15,10,()上面个数列有8项,我习惯把项数多余6项的数列叫做“多项数列”。

数字推理题技巧

数字推理题技巧

数字推理题技巧数字推理题在各种考试和智力竞赛中常见。

它们要求通过对一系列数字或符号的分析来推断规律,并根据这些规律来确定缺失的数字或者下一个数字。

虽然数字推理题看似简单,但其中蕴含着一定的技巧和思维方式。

本文将介绍一些常见的数字推理题技巧,帮助读者更好地解决这类问题。

数列规律分析在数字推理题中,常见的情况是给出一个数字序列,要求推断出规律并继续这个规律。

首先要分析数列中数字之间的关系,可能是加减乘除、平方平方根、递增递减等等。

观察数字之间的差值或者倍数关系,能够帮助快速找到规律。

奇偶性分析奇偶性在数字推理题中经常发挥重要作用。

注意观察数字序列中奇数和偶数的分布情况,有时候规律会与数字的奇偶性有关。

此外,还要注意特殊数字(如0、1)在奇偶性上的特点,它们常常会被用来构成规律。

数字组合分析有时数字推理题中会涉及到数字组合的情况,要求找出数字之间的组合规律。

这时可以尝试将数字分解成各个位的数字或者将多个数字合并成一个数字,通过观察这些组合是否有特定的规律来解题。

常见数学公式运用在数字推理题中,有时候会用到一些基本的数学公式或者性质。

比如等差数列、等比数列、平方数列等等。

熟练掌握这些数学知识,能够帮助快速解决数字推理问题。

注意数字序列的整体性有时候数字推理题中的数字序列可能会和其他数字序列或者图形有关联。

要留意整体的规律,不只是局限于当前的数字序列。

通过观察多个数字序列之间的共同点,能够更好地推断规律。

总结数字推理题虽然看似简单,但其实隐藏着许多技巧和思维方式。

通过掌握常见的规律分析方法、奇偶性分析、数字组合分析等技巧,能够帮助更好地解决数字推理问题。

在平时的学习和练习中多多总结经验,相信在应对各类数字推理题时会游刃有余。

数字推理题的解题方法

数字推理题的解题方法

数字推理题的解题方法数字推理题是一类需要根据一定的规律或模式来推断或填充数字的问题。

这类题目常见于智力测试、数学竞赛等场合。

解决数字推理题通常需要观察数字序列中的规律,并据此找到正确的解法。

以下是一些常见的数字推理题的解题方法:1. 找规律:仔细观察数字序列,寻找其中的规律或模式。

这可能涉及到数字之间的运算、递增规律、几何形状等。

2. 算术运算:检查数字序列中相邻数字之间是否存在某种算术运算关系,如加法、减法、乘法、除法等。

这些运算关系可以用于推测下一个数字或填充缺失的数字。

3. 几何形状:数字序列有时可能构成一些几何形状,如等差数列、等比数列、斐波那契数列等。

找到这些几何形状有助于推断下一个数字。

4. 奇偶性:观察数字的奇偶性,有时可以发现一些规律。

例如,每两个数字之和是偶数,或者奇数和偶数交替出现等。

5. 位数和数字之和:考虑数字的位数和各位数字之和。

有时规律可能与这些因素有关,例如数字之和是某个特定值,或者数字的位数遵循某种规律。

6. 填空法:如果有多个数字序列,可以尝试在其中的一个序列中找到规律,然后应用相同的规律到其他序列中。

7. 找出特殊模式:有时数字序列中可能存在一些特殊的模式,例如重复、对称、交替等,这些模式可以帮助你找到规律。

8. 试错法:如果找不到明显的规律,可以尝试一些常见的数学运算和规律,并检查是否满足给定的条件。

例子:给定数字序列:2, 4, 8, 16, __观察到每个数字是前一个数字的两倍,因此下一个数字应为16 的两倍,即 32。

这只是数字推理题的一种解法,具体的方法可能因题目而异。

在解决这类问题时,耐心观察、灵活思维和多角度思考都是很有帮助的。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

数字推理之解题技巧(精华版)(1)等差,等比这种最简单的不用多说,深一点就是在等差,等比上再加、减一个数列,如24,70,208,622,规律为a*3-2=b(注:a、b为前后数)(2)深一层次的,①各数之间的差有规律,如 1、2、5、10、17。

它们之间的差为1、3、5、7,成等差数列。

这些规律还有差之间成等比之类。

②各数之间的和有规律,如1、2、3、5、8、13,前两个数相加等于后一个数。

(注:前一就是高中数学常说的差后等差数列或等比数列)(3)看各数的大小组合规律,作出合理的分组。

如 7,9,40,74,1526,5436,可以划分为7和9,40和74,1526和5436三组,这三组各自是大致处于同一大小和位数级别,那规律就要从组方面考虑,即不把它们看作6个数,而应该看作3个小组。

而组和组之间的差距不是很大,用乘法就能从一个组过渡到另一个组。

所以7*7-9=40 , 9*9-7=74 ,40*40-74=1526 ,74*74-40=5436,这就是规律。

(4)如根据大小不能分组的,①,看首尾关系,如7,10,9,12,11,14,这组数 7+14=10+11=9+12。

首尾关系经常被忽略,但又是很简单的规律。

②,数的大小排列看似无序的,可以看它们之间的差与和有没有顺序关系。

(5)各数间相差较大,但又不相差大得离谱,就要考虑乘方,这里就要看各位对数字敏感程度如何了。

如6、24、60、 120、210,感觉它们之间的差越来越大,但这组数又看着比较舒服(个人感觉,嘿嘿),它们的规律就是2^3-2=6、3^3-3=24、4^3-4=60、5^3-5=120、6^3-6=210。

(注意,这组数比较巧的是都是6的倍数,大家容易导入歧途。

)6)看大小不能看出来的,就要看数的特征了。

如21、31、47、56、69、72,它们的十位数就是递增关系;如 25、58、811、1114 ,这些数相邻两个数首尾相接,且2、5、8、11、14的差为3;如论坛上fjjngs所解答的一道题:256,269,286,302,(),2+5+6=132+6+9=17 2+8+6=16 3+0+2=5,∵256+13=269 269+17=286 286+16=302 ∴下一个数为302+5=307。

(7)再复杂一点,如 0、1、3、8、21、55,这组数的规律是b*3-a=c,即相邻3个数之间才能看出规律,这算最简单的一种,更复杂数列也用把前面介绍方法深化后来找出规律。

3*3-1=88*3-3=2121*3-8=558)分数之间的规律,就是数字规律的进一步演化,分子一样,就从分母上找规律;或者第一个数的分母和第二个数的分子有衔接关系。

而且第一个数如果不是分数,往往要看成分数,如2就要看成2/1。

数字推理题经常不能在正常时间内完成,考试时也要抱着先易后难的态度(废话,嘿嘿)。

应用题个人觉得难度和小学奥数程度差不多(本人青年志愿者时曾在某小学辅导奥数),各位感觉自己有困难的网友可以看看这方面的书,还是有很多有趣、快捷的解题方法做参考。

国家公务员考试中数学计算题分值是最高的,一分一题,而且题量较大,所以很值得重视(国家公务员125题,满分100分,各题有分值差别,但如浙江省公务员一共120题,满分120分,没有分值的差别)前几天做了Jane2004发的数字推理题后,看到论坛上有不少网友对数字推理题很是困惑,所以总结了一下经验发给大家。

希望各位论坛网友能不吝赐教,在回帖中增添新的解数字推理题的技巧,给各位有需求的网友多做贡献另外补充:(1)中间数等于两边数的乘积,这种规律往往出现在带分数的数列中,且容易忽如1/2、1/6、1/3、2、6、3、1/22)数的平方或立方加减一个常数,常数往往是1,这种题要求对数的平方数和立方数比较熟悉如看到2、5、10、17,就应该想到是1、2、3、4的平方加1如看到0、7、26、63,就要想到是1、2、3、4的立方减1对平方数,个人觉得熟悉1~20就够了,对于立方数,熟悉1~10就够了,而且涉及到平方、立方的数列往往数的跨度比较大,而且间距递增,且递增速度较快3)A^2-B=C 因为最近碰到论坛上朋友发这种类型的题比较多,所以单独列出来如数列5,10,15,85,140,7085如数列5, 6, 19, 17 , 344 , -55如数列5, 15, 10, 215,-115这种数列后面经常会出现一个负数,所以看到前面都是正数,后面突然出现一个负数,就考虑这个规律看看52=6+1952=10+154)奇偶数分开解题,有时候一个数列奇数项是一个规律,偶数项是另一个规律,互相成干扰项如数列1, 8, 9, 64, 25,216奇数位1、9、25 分别是1、3、5的平方偶数位8、64、216是2、4、6的立方先补充到这儿。

5) 后数是前面各数之各,这种数列的特征是从第三个数开始,呈2倍关系如数列:1、2、3、6、12、24 由于后面的数呈2倍关系,所以容易造成误解!《数字推理题型分析及解题技巧》题型分析所谓数字推理,就是在每道试题中呈现一组按某种规律排列的数列,但这一数列中有意地空缺了一项,要求考生对这一数列进行观察和分析,找出数列的排列规律,从而根据规律推导出空缺项应填的数字,然后在供选择的答案中找出应选的一项,在答题纸上将相应题号下的选项涂黑。

在作答这种数字推理的试题时,反应要快,既要利用直觉,还要掌握恰当的方法。

首先找出两相邻数字(特别是第一、第二个)之间的关系,迅速将这种关系类推到下两个相邻数字中去,若还存在这种关系,就说明找到了规律,可以直接地推导出答案;假如被否定,应该马上改变思考方向和角度,提出另一种数量关系假设。

如此反复,直到找到规律为止。

有时也可以从后面往前面推,或“中间开发”往两边推,都是较为有效的。

答这类试题的关键是找出数字排列时所依据的某种规律,通过相邻两数字间关系的两两比较就会很快找到共同特征,即规律。

规律被找出来了,答案自然就出来了。

在进行此项测验时,必然会涉及到许多计算,这时,要尽量多用心算,少用笔算或不用笔算。

下面我们分类列举一些比较典型或具有代表性的试题,它们是经常出现在数字推理测验中的,熟知并掌握它们的应答思路与技巧,对提高成绩很有帮助。

但需要指出的是,数字排列的方式(规律)是多种多样的,限于篇幅,我们不可能穷尽所有的排列方式,只是选择了一些最基本、最典型、最常见的数字排列规律,希望考生在此基础上熟练掌握,灵活运用,达到举一反三的效果。

实际上,即使一些表面看起来很复杂的排列现象,只要我们对其进行细致分析和研究,就会发现,它们也不过是由一些简单的排列规律复合而成的。

只要掌握它们的排列规律,善于开动脑筋,就会获得理想效果。

另外还要补充说明一点,近年来数字推理题的趋势是越来越难。

因此,当遇到难题时,可以先跳过去做其他较容易的题目,等有时间再返回来答难题。

这种处理不但节省了时间,保证了容易题目的得分率,甚至会对难题的解答有所帮助。

□ 等差数列及其变式【例题1】2,5,8,()A 10B 11C 12D 13【解答】从上题的前3个数字可以看出这是一个典型的等差数列,即后面的数字与前面数字之间的差等于一个常数。

题中第二个数字为5,第一个数字为2,两者的差为3,由观察得知第三个、第二个数字也满足此规律,那么在此基础上对未知的一项进行推理,即8+3=11,第四项应该是11,即答案为B。

【例题2】3,4,6,9,(),18A 11B 12C 13D 14【解答】答案为C。

这道题表面看起来没有什么规律,但稍加改变处理,就成为一道非常容易的题目。

顺次将数列的后项与前项相减,得到的差构成等差数列1,2,3,4,5,……。

显然,括号内的数字应填13。

在这种题中,虽然相邻两项之差不是一个常数,但这些数字之间有着很明显的规律性,可以把它们称为等差数列的变式。

□ 等比数列及其变式【例题3】3,9,27,81()A 243B 342C 433D 135【解答】答案为A。

这也是一种最基本的排列方式,等比数列。

其特点为相邻两个数字之间的商是一个常数。

该题中后项与前项相除得数均为3,故括号内的数字应填243。

【例题4】8,8,12,24,60,()A 90B 120C 180D 240商后等比【解答】答案为C。

该题难度较大,可以视为等比数列的一个变形。

题目中相邻两个数字之间后一项除以前一项得到的商并不是一个常数,但它们是按照一定规律排列的;1,1.5,2,2.5,3,因此括号内的数字应为60×3=180。

这种规律对于没有类似实践经验的应试者往往很难想到。

我们在这里作为例题专门加以强调。

该题是1997年中央国家机关录用大学毕业生考试的原题。

【例题5】8,14,26,50,()A 76B 98C 100D 104【解答】答案为B。

这也是一道等比数列的变式,前后两项不是直接的比例关系,而是中间绕了一个弯,前一项的2倍减2之后得到后一项。

故括号内的数字应为50×2-2=98。

□ 等差与等比混合式【例题6】5,4,10,8,15,16,(),()A 20,18B 18,32C 20,32D 18,32【解答】此题是一道典型的等差、等比数列的混合题。

其中奇数项是以5为首项、等差为5的等差数列,偶数项是以4为首项、等比为2的等比数列。

这样一来答案就可以容易得知是C。

这种题型的灵活度高,可以随意地拆加或重新组合,可以说是在等比和等差数列当中的最有难度的一种题型。

□ 求和相加式与求差相减式【例题7】34,35,69,104,()A 138B 139C 173D 179【解答】答案为C。

观察数字的前三项,发现有这样一个规律,第一项与第二项相加等于第三项,34+35=69,这种假想的规律迅速在下一个数字中进行检验,35+69=104,得到了验证,说明假设的规律正确,以此规律得到该题的正确答案为173。

在数字推理测验中,前两项或几项的和等于后一项是数字排列的又一重要规律。

【例题8】5,3,2,1,1,()A -3B -2C 0D 2【解答】这题与上题同属一个类型,有点不同的是上题是相加形式的,而这题属于相减形式,即第一项5与第二项3的差等于第三项2,第四项又是第二项和第三项之差……所以,第四项和第五项之差就是未知项,即1-1=0,故答案为C。

□ 求积相乘式与求商相除式【例题9】2,5,10,50,()A 100B 200C 250D 500【解答】这是一道相乘形式的题,由观察可知这个数列中的第三项10等于第一、第二项之积,第四项则是第二、第三两项之积,可知未知项应该是第三、第四项之积,故答案应为D。

【例题10】100,50,2,25,()A 1B 3C 2/25D 2/5【解答】这个数列则是相除形式的数列,即后一项是前两项之比,所以未知项应该是2/25,即选C。

相关文档
最新文档