固体物理学复习题

合集下载

固体物理复习题

固体物理复习题

固体物理复习题第一章概念部分:1、晶体:是一种组成粒子在空间排列具有周期性,表现为长城有序且平移对称性的固体。

2、布拉菲格子(点阵):晶体内部结构可以看成是由一些相同点子在空间做规则的周期性的无限分布。

沿三个不同方向通过点阵中的结点作平行的直线族,把结点包括无遗,点阵便构成一个三维网格。

这种三维格子称为晶格,又称为布拉菲格子,结点又称格点。

(P4-P5)3、原胞:以三个不同方向的周期为边长的平行六面体中体积最小的重复单元。

(P5)4、晶胞:能同时反映晶体对称性和周期性特征的重复单元。

(P5-P6)5、密勒指数:在晶胞基矢坐标系中求出的面指数称为密勒指数。

以三个互质的整数表示为(hkl )。

(P11)6、倒格子:由式'=2l h πμ⋅R K 得到,l R 和h'K 的量纲是互为倒逆的,l R 是格点的位置矢量,称为正格矢,h'K 称为倒格矢,1122h'h h h =++K b b b ,其中2312[]πΩ⨯=a a b ,3122[]πΩ⨯=a a b ,1232[]πΩ⨯=a a b (Ω表示晶格原胞体积)是三个倒格基矢,倒格基矢平移可形成倒格子。

(P12-13)7、晶列:通过任意两格点作一直线,这一直线称为晶列。

(P9)8、晶面指数:任一晶面族的面指数,可以由晶面族中任一晶面在基矢坐标轴上截距系数的倒数求出,表示为(rst)。

(P11)9、密堆积:最紧密的堆积称为密堆积,密堆积对应最大的配位数。

(P4) 简答部分:1、原胞与晶胞的区别。

答:原胞只考虑点阵周期性的最小重复单元,而晶胞是同时可以反应晶体的周期性与对称性的重复单元。

晶胞的体积是原胞体积的整数倍。

2、什么是宏观对称性?答:一个晶体在经过某一变换后,晶格在空间的分布保持不变,与原来重合,这便体现了晶体的宏观对称性,这种变换称为对称操作。

3、简述几何结构因子的意义。

答:几何结构因子是指原胞内所有原子在某一方向上引起的散射波的总振幅与某一电子在该方向上所引起的散射波的振幅之比(P30)。

(完整word版)固体物理考试

(完整word版)固体物理考试

)2(sin 422aq m βω=24aq m sin βω=m β42271()(cos cos 2)88E k ka ka ma =-+k a π=ma a E 22)( =π晶态, 非晶态, 准晶态在原子排列上各有什么特点? 答: 晶体是原子排列上长程有序)、非晶体(微米量级内不具有长程有序)、准晶体(有长程取向性, 而没有长程的平移对称性) 晶体:长程有序, 有固定的熔点 单晶体: 分子在整个固体中排列有序。

多晶体: 分子在微米量级内排列有序 非晶体:多晶体:分子在微米量级内排列有序, 整个晶体是由这些排列有序的晶粒堆砌而成的。

准晶体:有长程取向性, 而没有长程的平移对称性。

长程有序:至少在微米量级以上原子、分子排列具有周期性。

晶体结构周期性, 晶体: 基元+布拉维格子 实际的晶体结构与空间点阵之间有何关系? 晶体结构=空间点阵+基元。

原胞和晶胞的区别? 原胞是晶体的最小重复单元, 它反映的是晶格的周期性, 原胞的选取不是唯一的, 但是它们的体积都是相等的, 结点在原胞的顶角上, 原胞只包含1个格点;为了同时反映晶体的对称性, 结晶学上所取的重复单元, 体积不一定最小, 结点不仅可以在顶角上, 还可以在体心或者面心上, 这种重复单元称为晶胞。

掌握立方晶系3个布拉维格子的原胞、晶胞基失导法。

简单立方晶胞基失: 二者一样, 因为格点均在立方体顶角上。

原胞基失: a1=ai a2=bj=aj a3=ck=ak 体心立方除顶角格点外, 还有一个格点在位于立方体的中心。

晶胞基失a=a b=aj c=ak 原胞基失: a1=a/2(-i+j+k ) a 2=a/2(i-j+k ) a 3=a/2(i+j-k) 面心立方除顶角格点外: B 面的中心还有6个格点, (每个格点为相邻晶胞所共有) 原胞基失: a=ai b=aj c=ak 晶胞基失 a 1=a/2(j+k )a 2=a/2(k+i) a 3=a/2(i+j) 常见实际晶体的结构 ①氯化钠的结构: 由Na+和Cl-相间排列组成。

固体物理复习题答案完整版

固体物理复习题答案完整版

一·简答题1.晶格常数为a 的体心立方、面心立方结构,分别表示出它们的基矢、原胞体积以及最近邻的格点数。

(答案参考教材P7-8)(1)体心立方基矢:123()2()2()2ai j k a i j k ai j k ααα=+-=-++=-+,体积:312a ,最近邻格点数:8(2)面心立方基矢:123()2()2()2a i j a j k ak i ααα=+=+=+,体积:314a ,最近邻格点数:122.习题1.5、证明倒格子矢量112233G h b h b h b =++垂直于密勒指数为123()h h h 的晶面系。

证明:因为33121323,a aa a CA CB h h h h =-=-,112233G h b h b h b =++ 利用2i j ij a b πδ⋅=,容易证明12312300h h h h h h G CA G CB ⋅=⋅=所以,倒格子矢量112233G h b h b h b =++垂直于密勒指数为123()h h h 的晶面系。

3.习题 1.6、对于简单立方晶格,证明密勒指数为(,,)h k l 的晶面系,面间距d 满足:22222()d a h k l =++,其中a 为立方边长;解:简单立方晶格:123a a a ⊥⊥,123,,a ai a aj a ak ===由倒格子基矢的定义:2311232a a b a a a π⨯=⋅⨯,3121232a a b a a a π⨯=⋅⨯,1231232a a b a a a π⨯=⋅⨯倒格子基矢:123222,,b i b j b k a a aπππ=== 倒格子矢量:123G hb kb lb =++,222G hi k j l k a a aπππ=++ 晶面族()hkl 的面间距:2d Gπ=2221()()()h k l a a a=++4.习题1.9、画出立方晶格(111)面、(100)面、(110)面,并指出(111)面与(100)面、(111)面与(110)面的交线的晶向。

固体物理学考试题及答案

固体物理学考试题及答案

固体物理学考试题及答案一、选择题(每题2分,共20分)1. 固体物理学中,描述晶体中原子排列的周期性规律的数学表达式是()。

A. 布洛赫定理B. 薛定谔方程C. 泡利不相容原理D. 费米-狄拉克统计答案:A2. 固体中电子的能带结构是由()决定的。

A. 原子的核外电子B. 晶体的周期性势场C. 原子的核电荷D. 原子的电子云答案:B3. 在固体物理学中,金属导电的原因是()。

A. 金属中存在自由电子B. 金属原子的电子云重叠C. 金属原子的价电子可以自由移动D. 金属原子的电子云完全重叠答案:C4. 半导体材料的导电性介于导体和绝缘体之间,这是因为()。

A. 半导体材料中没有自由电子B. 半导体材料的能带结构中存在带隙C. 半导体材料的原子排列无序D. 半导体材料的电子云完全重叠答案:B5. 固体物理学中,描述固体中电子的波动性的数学表达式是()。

A. 薛定谔方程B. 麦克斯韦方程C. 牛顿第二定律D. 热力学第一定律答案:A6. 固体中声子的概念是由()提出的。

A. 爱因斯坦B. 德拜C. 玻尔D. 费米答案:B7. 固体中电子的费米能级是指()。

A. 电子在固体中的最大能量B. 电子在固体中的最小能量C. 电子在固体中的平均水平能量D. 电子在固体中的动能答案:A8. 固体物理学中,描述固体中电子的分布的统计规律是()。

A. 麦克斯韦-玻尔兹曼统计B. 费米-狄拉克统计C. 玻色-爱因斯坦统计D. 高斯统计答案:B9. 固体中电子的能带理论是由()提出的。

A. 薛定谔B. 泡利C. 费米D. 索末菲答案:D10. 固体中电子的跃迁导致()的发射或吸收。

A. 光子B. 声子C. 电子D. 质子答案:A二、填空题(每题2分,共20分)1. 固体物理学中,晶体的周期性势场是由原子的______产生的。

答案:周期性排列2. 固体中电子的能带结构中,导带和价带之间的能量区域称为______。

答案:带隙3. 金属导电的原因是金属原子的价电子可以______。

固体物理复习题

固体物理复习题

固体物理复习题一、名词解释1、布拉菲格子2、共价键的方向性和饱和性3、布洛赫波函数4、简单格子和复式格子5、声子6、p3杂化轨道7、费米面8、第一布里渊区9、倒格子二、证明1、只考虑近邻相互作用(待定力常数为)和简谐近似下,试证明一维单原子链晶格振动波的色散关系为:(q)2Minaq2采用周期性边界条件讨论q的取值,并说明它和介质弹性波波矢取值的差异。

2、利用线性谐振子模型证明两个极性分子间的吸引能与它们之间距离的六次方成正比。

3、证明一维晶格的布洛赫定理。

24、证明倒格矢G晶面(h1h2h3),并且G(d为晶面(h1h2h3)的面间距)dE(kG)E(k)E(k)E(k)5、证明能带的对称性:n,nhnn三、简答2、金刚石结构有几支格波几支声学波几支光学波设晶体有N个原胞,晶格振动模式数为多少3、试用能带论阐述导体、绝缘体、半导体中电子在能带中填充的特点.4、原子间的排斥作用和吸引作用有何关系?起主导的范围是什么?5、什么是原胞?什么是单胞?二者有何区别?6、金刚石结构的晶体为何种布拉维格子?配位数是多少?每个原胞有几个原子?该晶体的倒格子是什么类型7、、什么是原子的电离能、亲和能和负电性?8、石墨中是电子还是电子导致石墨的导电性?简述原因。

9、什么是简正模?什么是格波?格波和弹性波之间有什么区别?10、解释布里渊区的物理意义,在布里渊区边界上能带有何特点四、计算1、晶格常数为a的体心立方格子的倒格子为什么格子?并给出晶格常数。

2、一维简单正方晶格,晶格常数为a,每个原胞有一个原子,每个原子只有一个态价电子,使用近束缚紧似,只计入近邻相互作用。

(1)求出电子组成的能带的E(k)函数;(2)求出能带带顶和带底的位置和能量值;如果换成二维结果又如何?如果换成体心立方结果又如何?3、利用线性谐振子模型讨论两个极性分子间的吸引能与它们之间距离的六次方成正比。

4、求金刚石结构的几何结构因子消光条件。

固体物理总复习资料及答案

固体物理总复习资料及答案

固体物理总复习题一、填空题1.原胞是 的晶格重复单元。

对于布拉伐格子,原胞只包含 个原子。

2.在三维晶格中,对一定的波矢q ,有 支声学波, 支光学波。

3.电子在三维周期性晶格中波函数方程的解具有 形式,式中 在晶格平移下保持不变。

4.如果一些能量区域中,波动方程不存在具有布洛赫函数形式的解,这些能量区域称为 ;能带的表示有 、 、 三种图式。

5.按结构划分,晶体可分为 大晶系,共 布喇菲格子。

6.由完全相同的一种原子构成的格子,格子中只有一个原子,称为格子,由若干个布喇菲格子相套而成的格子,叫做 格子。

其原胞中有 以上的原子。

7.电子占据了一个能带中的所有的状态,称该能带为 ;没有任何电子占据的能带,称为 ;导带以下的第一满带,或者最上面的一个满带称为 ;最下面的一个空带称为 ;两个能带之间,不允许存在的能级宽度,称为 。

8.基本对称操作包括 , , 三种操作。

9.包含一个n 重转轴和n 个垂直的二重轴的点群叫 。

10.在晶体中,各原子都围绕其平衡位置做简谐振动,具有相同的位相和频率,是一种最简单的振动称为 。

11.具有晶格周期性势场中的电子,其波动方程为 。

12.在自由电子近似的模型中, 随位置变化小,当作 来处理。

13.晶体中的电子基本上围绕原子核运动,主要受到该原子场的作用,其他原子场的作用可当作 处理。

这是晶体中描述电子状态的模型。

14.固体可分为,,。

15.典型的晶格结构具有简立方结构,,,四种结构。

16.在自由电子模型中,由于周期势场的微扰,能量函数将在K= 处断开,能量的突变为。

17.在紧束缚近似中,由于微扰的作用,可以用原子轨道的线性组合来描述电子共有化运动的轨道称为,表达式为。

18.爱因斯坦模型建立的基础是认为所有的格波都以相同的振动,忽略了频率间的差别,没有考虑的色散关系。

19.固体物理学原胞原子都在,而结晶学原胞原子可以在顶点也可以在即存在于。

20.晶体的五种典型的结合形式是、、、、。

大学固体物理试题及答案

大学固体物理试题及答案

大学固体物理试题及答案一、选择题(每题5分,共20分)1. 下列关于晶体结构的描述,错误的是:A. 晶体具有规则的几何外形B. 晶体内部的原子排列是无序的C. 晶体具有各向异性D. 晶体具有固定的熔点答案:B2. 固体物理中,描述电子在晶格中运动的方程是:A. 薛定谔方程B. 牛顿运动方程C. 麦克斯韦方程D. 热力学第一定律答案:A3. 固体中,电子能带的宽度与下列哪个因素有关?A. 电子的电荷B. 电子的质量C. 晶格的周期性D. 电子的自旋答案:C4. 金属导电的原因是:A. 金属内部存在自由电子B. 金属内部存在空穴C. 金属内部存在离子D. 金属内部存在分子答案:A二、填空题(每题5分,共20分)1. 晶体的周期性结构可以用_________来描述。

答案:晶格常数2. 能带理论中,电子在能带之间跃迁需要吸收或释放_________。

答案:光子3. 根据泡利不相容原理,一个原子轨道内最多可以容纳_________个电子。

答案:24. 半导体的导电性介于金属和绝缘体之间,其原因是半导体的_________较窄。

答案:能带间隙三、简答题(每题10分,共30分)1. 简要说明什么是费米能级,并解释其在固体物理中的重要性。

答案:费米能级是指在绝对零度时,电子占据的最高能级。

在固体物理中,费米能级是描述电子分布状态的重要参数,它决定了固体的导电性、磁性等物理性质。

2. 解释为什么金属在常温下具有良好的导电性。

答案:金属具有良好的导电性是因为其内部存在大量的自由电子,这些电子可以在电场作用下自由移动,形成电流。

3. 什么是超导现象?请简述其物理机制。

答案:超导现象是指某些材料在低于某一临界温度时,电阻突然降为零的现象。

其物理机制与电子之间的库珀对形成有关,这些库珀对在低温下能够无阻碍地流动,从而实现零电阻。

四、计算题(每题15分,共30分)1. 假设一个一维晶格,晶格常数为a,电子的有效质量为m*,求电子在第一能带的最低能级。

固体物理考题汇总 (无答案)

固体物理考题汇总 (无答案)

第一章晶体结构一、填空1、晶面有规则,对称配置的固体,具有长程有序特点的固体称为;在凝结过程中不经过结晶(即有序化)的阶段,原子的排列为长程无序的固体称为。

由晶粒组成的固体,称为。

2、化合物半导体材料GaAs晶体属于闪锌矿类结构,晶格常数为a,其配位数为。

一个惯用元胞(结晶学元胞)内的原子数,其布喇菲格子是。

其初基原胞(固体物理学原胞)包含原子数,体积为。

初基元胞的基矢为,,。

3、半导体材料Si具有金刚石型晶体结构,晶格常数为a,其配位数为。

一个惯用元胞(结晶学元胞)内的原子数。

属于布喇菲格子。

写出其初基元胞(固体物理学元胞)的基矢________,_______,_______。

晶格振动色散关系中支声学波,支光学波,其总的格波数。

4、简立方结构如果晶格常数为a,其倒格子元胞基矢为是_______,______,_________ 。

在倒格子空间中是结构,第一布里渊区的形状为______,体积为______ 。

5、某元素晶体的结构为体心立方布喇菲格子,其格点面密度最大的晶面的密勒指数____ ,并求出该晶面系相邻晶面的面间距________。

(设其晶胞参数为a )。

6、根据三个基矢的大小和夹角的不同,十四种布喇菲格子可归属于_____ 晶系,其中当 90,=====γβαc b a 时称为 _____类晶系,该晶系的布喇菲格子有 ______ 。

7、NaCl 晶体是由两个 _ 格子沿体对角线滑移1/4长度套构而成;设惯用原胞的体积为a 3,一个惯用元胞内的原子数 ;其配位数为 ,最近邻距离 ;初基原胞体积为 ,第一布里渊区体积为______;晶体中有 支声学波, 支光学波。

8、对晶格常数为a 的SC ,与倒格矢 242K i j k a a aπππ=+- 正交的晶面族的晶面指数为____,其面间距为 __ 。

9、半导体材料Si 具有金刚石型晶体结构,晶格常数为a ,一个惯用元胞内的原子数 ,一个固体物理学原胞内的原子数 ;固体物理学原胞的体积 ,倒格子原胞的体积 __ ,第一布里渊区的体积为 ;晶格振动色散关系中 支声学波,______ 支光学波。

固体物理 必考

固体物理 必考

西安工业大学物理系应用物理专业固体物理学复习一.填空题1.对比热和电导有贡献的仅是(费米面附近的)电子, 这些电子分别从(格波和外场)获取能量使其跃迁到费密面附近或以外的空状态上。

2. 根据晶胞基矢之间的夹角、长度关系可将晶体分为(7)大晶系,对应的只有(14 )种布拉伐格子。

3. 对晶格常数为a的SC晶体,与正格矢R=a i+2a j+2a k正交的倒格子晶面族的面指数为( 122), 其面间距为(2π∕3a)。

4.典型离子晶体的体积为V, 最近邻两离子的距离为R, 晶体的格波数目为( )。

5.声子是(晶格振动的)能量量子,其能量为(h把w),准动量为(h把q)。

6. 一维简单晶格由N个格点组成, 则一个能带有(N)个不同的波矢状态, 能容纳(2N)个电子。

由于电子的能带是波矢的偶函数, 所以能级有( N/2)个。

可见一个能级上包含(4)个电子。

7.金刚石晶体的结合类型是典型的( 共价键)晶体, 其每个原胞中含有(8 )个原子,它有( 6 )支格波,其中声学支格波有( 3 )支,光学支格波有( 3 )支。

8. 根据化学键的性质,晶体的结合类型可分为(离子晶体,共价晶体,金属,分子晶体,氢键晶体,混合型晶体)。

9. Wigner-Seitz原胞是由(各格矢的垂直平分面)所围成的(包含原点在内的最小封闭)体积。

10. N个电子组成的简并电子气,在T=0K时,电子的平均能量为(3∕5 EF)。

11. 共价结合的基本特征是(饱和性和方向性)。

以共价键形式相结合的原子所能形成的键的数目有一个最大值,每一个键含2个电子,分别来自两个原子;原子只在特定的方向上形成共价键,各个共价键之间有确定的相对取向。

原子在价电子波函数最大的方向上形成共价键,键与键之间的夹角固定。

12. 第一Brillouin区就是倒格子空间的(维格纳赛茨)原胞,每个Brillouin区的体积(等于)倒格子原胞的体积。

13. 六角密积属(六角)晶系, 一个晶胞包含(两个)原子。

固体物理复习题试卷.doc

固体物理复习题试卷.doc

2、 原子间的排斥力主要是什么原因引起的?库仑斥力与泡利原理引起的 3、 固体呈现宏观弹性的微观本质是什么?[解答]固休受到外力作用时发卞形炎,外力撤消后形殳消失的性质称为固休的弹性.设无外力时相邻原子间的距 离为当相邻原了间的距离吋,吸引力起主导作用;当相邻原了间的距离吋,排斥力起主导作用.当固体受挤压时,^<r o,原子间的排斥力抗山•着这一形变.当固体受拉伸时,r>r o,原子间的吸引力抗山•肴这一形变.因此,固体朵现宏观弹忡.的微观本质足原子间存在着相互作用力,这种作W 力既包含着吸引力,乂包含 肴排斥力. 4、简述产生范德瓦斯力的三个来源,为什么分子晶体是密堆积结构?答:米源:1、极件分子间的固有偶极矩产生的力称力Kecsen 力;2、感应偶极矩产生的力称为Debye 力:3、非极 性分了•间的瞬时偶极矩产t 的力称为London 力。

由丁•范德瓦耳斯力引起的吸引能4分子间的距离r 的6次方成反比,因此,只有岀分子间的距离r 很小时范德 瓦戽斯力才能起作用。

而分f 晶体的排斥能与分广间的距离r 的12次方成反比,凶此排斥能随分丁间的距离增加 而迅速减少。

范徳瓦耳斯力没何方向性.也小受感应电荷是否异同号的限制,因此.分了晶体的配位数越人越好。

配位数越大,原子排列越密集,分子晶体的结合能就越大,分子晶体就越稳定,在自然界排列最密集的晶体结构为 面心V 方或六方密堆积结构。

5、晶体结合类型及机理。

周期表中元索和化合物晶体结合的规律性。

(见课本)答:结合类型及机理:离子晶体一离子键分子晶体一范德瓦尔斯力共价晶体一井价键金属晶体一金属键M 键席休一氢键。

6、试述共价键定义,为什么共价键具有饱和性和方向性的特点?答:共价键是化学键的一种,两个成多个原了•共同使用它们的外层电了,/I:理想情况下达到电了•逛®的状态,由此 组成比较稳定和坚固的化学结构叫做共价键。

当原•丫中的电了 M 配对后,便再不能再与笫个电丫•配对,囚此当个原•丫与其他原丫结合吋,能够形成共 价键的数目何一个敁人值,这个敁人值取决于它所含有的未配对的电了数。

固体物理复习题(已解答)

固体物理复习题(已解答)

1 简述Drude 模型的基本思想把金属中的电子看做气体,金属由可以自由运动的电子和固定不动的离子实两部分组成,这些可以自由运动的电子使金属导电的成分。

将自由电子看做带电的小硬球,它们的运动遵循牛顿第二定律。

应用独立自由电子气假设:在忽略电子-电子和电子-离子间电磁相互作用(内场)的情况下,它们在金属中运动或并发生碰撞。

2 简述Drude 模型的三个基本假设并解释 独立电子近似:电子与电子无相互作用自由电子近似:除碰撞的瞬间外,电子与离子无相互作用弛豫时间近似:一给定的电子在单位时间内受一次碰撞的几率为1/τ 3在Drude 模型下,固体如何建立热平衡 碰撞前后速度无关联 碰撞后获得的速度方向随机 速率与碰撞后的温度相适应4 Drude 模型中对金属导电率的表达式为:mnq τσ2=5 在自由电子气模型中,由能量均分定理知在特定温度T 下电子的动能为: 1.5K B T6 在Drude 模型当中,按照理想气体理论,自由电子气的密度为n ·cm -3,比Cv= 1.5 nK B7 1853年维德曼和弗兰兹在研究金属性质时发现一个定律,即在给定温度下金属的 导热率 和 电导率 的比值为常数。

8 简述Drude 模型的不足之处?电子对比热的贡献与温度无关,被严重高估(210) 对电子速度 2v 低估(210)误认磁化率与温度成反比,而实际无关 什么决定传到电子的数目?价电子? 导体?绝缘体?半导体?他之所以解释 维德曼-弗兰兹 成功,是因为对比热的高估正好抵消对速度的低估 9 对于自由电子气体,系统的化学势随温度的增大而 降低 。

10 请给出Fermi-Dirac 统计分布中,温度T 下电子的能量分布函数,并进一步解释电子能量分布的特点。

11)(/)('+=-TK E E FD B F eE f在温度T 下,能量为E 的状态被占据的几率。

式中EF 是电子的化学势,是温度的函数。

当温度为零时,电子最高占据状态能量,称为费米能级。

固体物理总复习资料及复习资料

固体物理总复习资料及复习资料

固体物理总复习题一、填空题1.原胞是的晶格重复单元。

对于布拉伐格子,原胞只包含个原子。

2.在三维晶格中,对一定的波矢q ,有支声学波,支光学波。

3.电子在三维周期性晶格中波函数方程的解具有形式,式中在晶格平移下保持不变。

4.如果一些能量区域中,波动方程不存在具有布洛赫函数形式的解,这些能量区域称为;能带的表示有、、三种图式。

5.按结构划分,晶体可分为大晶系,共布喇菲格子。

6.由完全相同的一种原子构成的格子,格子中只有一个原子,称为格子,由若干个布喇菲格子相套而成的格子,叫做格子。

其原胞中有以上的原子。

7.电子占据了一个能带中的所有的状态,称该能带为;没有任何电子占据的能带,称为;导带以下的第一满带,或者最上面的一个满带称为;最下面的一个空带称为;两个能带之间,不允许存在的能级宽度,称为。

8.基本对称操作包括,,三种操作。

9.包含一个n重转轴和n个垂直的二重轴的点群叫。

10.在晶体中,各原子都围绕其平衡位置做简谐振动,具有相同的位相和频率,是一种最简单的振动称为。

11.具有晶格周期性势场中的电子,其波动方程为。

12.在自由电子近似的模型中,随位置变化小,当作来处理。

13.晶体中的电子基本上围绕原子核运动,主要受到该原子场的作用,其他原子场的作用可当作处理。

这是晶体中描述电子状态的模型。

14.固体可分为,,。

15.典型的晶格结构具有简立方结构,,,四种结构。

16.在自由电子模型中,由于周期势场的微扰,能量函数将在处断开,能量的突变为。

17.在紧束缚近似中,由于微扰的作用,可以用原子轨道的线性组合来描述电子共有化运动的轨道称为,表达式为。

18.爱因斯坦模型建立的基础是认为所有的格波都以相同的振动,忽略了频率间的差别,没有考虑的色散关系。

19.固体物理学原胞原子都在,而结晶学原胞原子可以在顶点也可以在即存在于。

20.晶体的五种典型的结合形式是、、、、。

21.两种不同金属接触后,费米能级高的带电,对导电有贡献的是的电子。

固体物理复习题整理

固体物理复习题整理
3、体心立方中格矢 的格点与过原点的晶列[112]的距离为______。(a/√2)
第二章
基本概念:
1、固体的结合可以概括为离子性结合、共价结合、金属性结合和范德瓦尔结合这四种基本形式。
2、离子性结合是指固体中原子与原子之间的结合方式是以离子形式结合的单位。
3、结合能:两粒子结合成稳定结构时所释放出来的能量,或者是破坏稳定结构所需要的最小能量。也就是两粒子处在平衡状态时所具有的势能。
所以,能态密度为
5、例3:求简单立方s态能带的能态密度。
解:简单立方s态能带为
很明显, 。
在长波区域 时, ,此时等能面是一个半径为 的球面,
在 的其他地方,颇为复杂。从其等能面图上可以看到,有些地方, ,也就是 的地方,这些地方,导致能态密度发散,这样的点称为范霍夫奇点,也叫临界点。
6、作业:(1)求二维自由电子的能态密度。
方向性是指原子只在特定的方向上形成共价键。
7、电离度:描述共价结合中离子性的成份。
8、原子的负电性是用来标志原子得失电子能力的物理量,负电性越大越容易得到电子,负电性越小,越容易失去电子。负电性=0.18(电离能+亲和能),(单位:电子伏特)
9、亲和能用来度量原子束缚电子能力的量,即一个中性原子获得一个电子成为负离子时所放出的能量。
4.(作业)一维双原子链中, , ,计算: 1、光学波 和 以及声学波 ;
5.(作业)计算相应的声子能量 ( 声子的能量 )
6.(作业)在T=300K下,三种声子的数目各为多少?(利用 来求声子数)
7.课本p.580.第3.4题:考虑一个全同原子组成的平面方格子,用 记第 行,第m列的原子垂直于格平面的位移,每个原子质量为M,最近邻原子的力常源自为c,解:两格点连线的位矢为

(完整版)固体物理试题库

(完整版)固体物理试题库

一、名词解释1.晶态--晶态固体材料中的原子有规律的周期性排列,或称为长程有序。

2.非晶态--非晶态固体材料中的原子不是长程有序地排列,但在几个原子的范围内保持着有序性,或称为短程有序。

3.准晶--准晶态是介于晶态和非晶态之间的固体材料,其特点是原子有序排列,但不具有平移周期性。

4.单晶--整块晶体内原子排列的规律完全一致的晶体称为单晶体。

5.多晶--由许多取向不同的单晶体颗粒无规则堆积而成的固体材料。

6.理想晶体(完整晶体)--内在结构完全规则的固体,由全同的结构单元在空间无限重复排列而构成。

7.空间点阵(布喇菲点阵)--晶体的内部结构可以概括为是由一些相同的点子在空间有规则地做周期性无限重复排列,这些点子的总体称为空间点阵。

8.节点(阵点)--空间点阵的点子代表着晶体结构中的相同位置,称为节点(阵点)。

9.点阵常数(晶格常数)--惯用元胞棱边的长度。

10.晶面指数—描写布喇菲点阵中晶面方位的一组互质整数。

11.配位数—晶体中和某一原子相邻的原子数。

12.致密度—晶胞内原子所占的体积和晶胞体积之比。

13.原子的电负性—原子得失价电子能力的度量;电负性=常数(电离能+亲和能)14.肖特基缺陷—晶体内格点原子扩散到表面,体内留下空位。

15.费仑克尔缺陷--晶体内格点原子扩散到间隙位置,形成空位-填隙原子对。

16.色心--晶体内能够吸收可见光的点缺陷。

17.F心--离子晶体中一个负离子空位,束缚一个电子形成的点缺陷。

18.V心--离子晶体中一个正离子空位,束缚一个空穴形成的点缺陷。

19.近邻近似--在晶格振动中,只考虑最近邻的原子间的相互作用。

20.Einsten模型--在晶格振动中,假设所有原子独立地以相同频率ωE振动。

21.Debye模型--在晶格振动中,假设晶体为各向同性连续弹性媒质,晶体中只有3支声学波,且ω=vq 。

22.德拜频率ωD── Debye模型中g(ω)的最高频率。

23.爱因斯坦频率ωE──Einsten模型中g(ω)的最可几频率。

最新固体物理复习资料(1)

最新固体物理复习资料(1)

最新固体物理复习资料(1)固体物理复习资料(1)⼀.选择题: 1、⾯⼼⽴⽅晶格的晶胞的体积是其原胞体积的( D ) A. 21 B. 31 C. 41 D. 61 2、下图为三维晶格的平⾯⽰意图,图中1α、2α分别表⽰晶格在该平⾯上的基⽮,另⼀基⽮3α垂直于1α、2α所在的平⾯。

现有平⾏于3α的晶⾯截取1α、2α(如下图(a )(b )(c )所⽰),图(a )中晶⾯的密勒指数为()100,图(b )和图(c )中晶⾯的密勒指数分别为( D )(a )(b )(c )A. ()110和()120B. ()110和()210C. ()011和()120D. ()011和()2103、⾯⼼⽴⽅晶格和体⼼⽴⽅晶格的简约布⾥渊区分别是( D )A. ⼋⾯体和正⼗⼆⾯体B. 正⼗⼆⾯体和截⾓⼋⾯体C. 正⼗⼆⾯体和⼋⾯体D. 截⾓⼋⾯体和正⼗⼆⾯体4、对⼀个简单⽴⽅晶格,若在第⼀布⾥渊区⾯⼼上⼀个⾃由电⼦的动能为E ,则在该区顶⾓上⼀个⾃由电⼦的动能为A. EB. 2EC. 3ED. 4E5、相邻原⼦间距为a 的⼀维单原⼦链的第⼀布⾥渊区也是波数q 的取值范围为( B )A.a q a ππ22≤<-B. aq a ππ≤<- C. a q a 22ππ≤<- D. a q a 44ππ≤<- 6、关于电⼦有效质量下列表述中正确的是( B )A. 在⼀个能带底附近,有效质量总是负的;⽽在⼀个能带顶附近,有效质量总是正的B. 在⼀个能带底附近,有效质量总是正的;⽽在⼀个能带顶附近,有效质量总是负的C. 在⼀个能带底附近和能带顶附近,有效质量总是正的D. 在⼀个能带底附近和能带顶附近,有效质量总是负的7、下⾯⼏种晶格中,不是⾦属元素常采取的晶格结构是( A )A. ⾦刚⽯晶格B.⾯⼼⽴⽅晶格C.六⾓密排晶格D. 体⼼⽴⽅晶格9、温度升⾼,费⽶⾯E F ( D )A.不变B. ⼤幅升⾼C. 略为升⾼D. 略为降低10、在极低温度下,晶格的热容量C v 与温度T 的关系是 ( D )A. C v 与T 成正⽐B. C v 与2T 成正⽐C. C v 与3T 成正⽐D. C v 与T 3成反⽐11、⼀晶格原胞的体积为v ,则其倒格⼦原胞的体积为( D )A. vB. 2vC. v π2D. v3)2(π 13、以下属于简单晶格的是( A )A. ⾯⼼⽴⽅晶格B. 六⾓密排晶格C. ⾦刚⽯晶格D. NaCl 晶格14、体⼼⽴⽅晶格的晶格常数为a ,则晶格中最近邻原⼦的间距r 为( B )A. 2aB. 23 aC. 334 a D. 433 a 15、相邻原⼦间距为a 的⼀维双原⼦链的第⼀布⾥渊区也是波数q 的取值范围( C )A.a q a ππ22≤<-B. aq a ππ≤<- C. a q a 22ππ≤<- D. a q a 44ππ≤<- 17、下图为三维晶格的平⾯⽰意图,图中1α、2α分别表⽰晶格在该平⾯上的基⽮,另⼀基⽮3α垂直于1α、2α所在的平⾯。

固体物理复习题目-final

固体物理复习题目-final

一、名词解释:1、晶体 ;2、非晶体;3、点阵;4、晶格;5、格点;6、晶体的周期性;7、晶体的对称性8、密勒指数;9、倒格子;10、配位数;11、致密度;12、固体物理学元胞;13、结晶学元胞;14、布拉菲格子;15、复式格子;16、声子;17、布洛赫波 ;18、布里渊区;19、格波;20、电子的有效质量 二、计算证明题1. 晶体点阵中的一个平面h kl ,试证:(1)晶格的两个相邻平行平面(这些平面通过格点)之间的距离为2||hkl d K π= 此处123K hb kb lb =++ ;(2)利用上述关系证明,对于简单立方格子,d= a 为晶格常数;(3)说明什么样的晶面容易解理,为什么?2、金刚石晶胞的立方边长为m 101056.3-⨯,求最近邻原子间的距离、平均每立方厘米中的原子数和金刚石的密度。

(碳原子的重量为2310*99.1-g )3. 试证:在晶体中由于受到周期性的限制,只能有1、2、3、4、6重旋转对称轴,5重和大于6重的对称轴不存在。

4、晶体点阵中的一个平面.hkl(a )证明倒易点阵矢量321b l b k b h G++=垂直于这个平面。

(b )证明正格子原胞体积与倒格子原胞体积互为倒数 5. 证明体心立方格子和面心立方格子互为正、倒格子。

6. 在六角空间格子中选取一平行六面体为原胞,试求:(1)基矢321,,a a a的表示式;(2)原胞的体积;(3)倒格子基矢321,,b b b 。

7、氪原子组成惰性晶体为体心立方结构,其总势能可写为()⎥⎥⎦⎤⎢⎢⎣⎡⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛=6612122R A R A N R U σσε,其中N 为氪原子数,R 为最近邻原子间距离,点阵和A 6=12.25,A 12=9.11;设雷纳德—琼斯系数ε=0.014eV ,σ=3.65。

求:(1)平衡时原子间最近距离R 0及点阵常数a ;(2)每个原子的结合能(eV )。

8. 设两原子间的互作用能可表示为()n m rrr u βα+-=式中,第一项为引力能;第二项为排斥能;βα,均为正常数。

固体物理期末复习题目及答案

固体物理期末复习题目及答案
3、从能带论的角度解释导体,半导体和绝缘体的导电能力存在差别的原因。
答:(l)导体、半导体和绝缘体的能带图如下图所示。(3分)其中导体中存在不满带,半导体和绝缘体都只存在满带而不存在不满带,而不满带会导电,满带则不会导电,所以导体导电性好,而半导体和绝缘体则不容易导电。(3分)
(2)半导体中虽然只存在满带而不存在不满带,但由于其禁宽度比较小,所以在热激活下,满带顶的电子会被激活到空带上,使原来的空带变成不满带,原来的满带也变成不满带,所以半导体在热激活下也可.以导电。(2分、
5能写出任一晶列的密勒指数,也能反过来根据密勒指数画出晶列;能写出任一晶面的晶面指数,也能反过来根据晶面指数画出晶面。
见课件例题 以下作参考:
15.如图1.36所示,试求:
(1)晶列 , 和 的晶列指数;
(2)晶面 , 和 的密勒指数;
(3) 画出晶面(120),(131)。
密勒指数:以晶胞基矢定义的互质整数( )。 [截a,b,c.]
答:(1)波矢空间与倒格空间处于同一空间,倒格空间的基矢分别为b1,b2,b3,而波矢空间的基矢分别为b1/N1,b2/N2,b3/N3,其中N1,N2,N3分别是沿正格子基矢方向晶体的原胞数目。
(2)倒格空间中一个倒格点对应的体积为 ,
波矢空间中一个波矢点对应的体积为 即 ,
即波矢空间中一个波矢点对应的体积,是倒格空间中一个倒格点对应的体积的1/N。由于N是晶体的原胞数目, 数目巨大, 所以一个波矢点对应的体积与一个倒格点对应的体积相比是极其微小的. 也就是说, 波矢点作求和处理时, 可把波矢空间的状态点看成是准连续的.
3、计算由正负离子相间排列的一维离子链的马德隆常数。
4、氢原子电离能为13.6eV。(1)求PE和KE(2)电子的轨道半径(3)电子的运动速率(4)电子绕原子转动的频率

固体物理经典复习题及答案

固体物理经典复习题及答案
3 则此轴称为 3 度旋转-反演轴。 21.Байду номын сангаас 度旋转-反演轴 答:若晶体绕某一固定轴转 角度后,再经过中心反演,晶体能自身重合,
则此轴称为 3 度旋转-反演轴。
22.n 度螺旋轴
答:一个 n 度螺旋轴表示绕轴每转 2
角度后,在沿该轴的方向平移 T
n的
n
3 / 118
………………………………………………最新资料推荐………………………………………
点子在空间有规则地做周期性无限重复排列,这些点子的总体称为空 间点阵(布喇菲点阵),即平移矢量 h1d、h2d、h3d 中 n1,n2,n3 取整数时 所对应的点的排列。空间点阵是晶体结构周期性的数学抽象。 6.基元 答:组成晶体的最小基本单元,它可以由几个原子(离子)组成,整个晶体 可以看成是基元的周期性重复排列而构成。 7.格点(结点) 答: 空间点阵中的点子代表着结构中相同的位置,称为结点。 8.固体物理学原胞 答:固体物理学原胞是晶格中的最小重复单元,它反映了晶格的周期性。 取一结点为顶点,由此点向最近邻的三个结点作三个不共面的矢量, 以此三个矢量为边作的平行六面体即固体物理学原胞。固体物理学原 胞的结点都处在顶角位置上,原胞内部及面上都没有结点,每个固体 物理学原胞平均含有一个结点。 9.结晶学原胞 答:使三个基矢的方向尽可能的沿空间对称轴的方向,以这样三个基矢为 边作的平行六面体称为结晶学原胞,结晶学原胞反映了晶体的对称性,
答:若晶体绕某一固定轴转 2 角度后自身重合,则此轴称为 n 度旋转对称 n
轴。 18.4 度旋转对称轴 答:若晶体绕某一固定轴转 900 角度后自身重合,则此轴称为 4 度旋转对称
轴。
19.6 度旋转对称轴 答:若晶体绕某一固定轴转 600 角度后自身重合,则此轴称为 6 度旋转对称
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1. 晶体的微观结构、原胞、W-S 原胞、惯用单胞的概念、常见的晶体结构、晶面与晶向的概念,并能进行必要的计算;倒格子与布里渊区、晶体X 射线衍射,能计算几何结构因子和衍射极大条件。

2. 晶体结合的普遍特性;离子键结合和范德瓦耳斯结合的结合能计算。

3. 简谐近似和最近邻近似,双原子链的晶格振动;周期边界条件,晶格振动的量子化与声子,色散关系;爱因斯坦模型和德拜模型,晶体的比热,零点振动能计算。

4. 经典自由电子论:电子运动方程,金属的直流电导,霍耳效应,金属热导率。

量子自由电子论:能态密度,费米分布,费米能级,电子热容量。

5. 布洛赫定理及其证明;近自由电子近似的思想一维和二维近自由电子近似的能带计算,紧束缚近似的思想,紧束缚近似的计算(S 能带的的色散关系)。

理解半导体Ge 、Si 的能带结构。

6.波包的准经典运动概念,布洛赫电子的速度,加速度和有效质量和相应的计算,空穴的概念;导体、半导体和绝缘体的能带解释,原子能级和能带的对应;朗道能级,回旋共振,德×哈斯—范×阿尔芬效应,碱金属和贵金属的费米面。

7.分布函数法和恒定外电场下玻耳兹曼方程的推导。

理解电子声子相互作用,晶格散射和电导,电阻的来源。

8. 半导体基本的能带结构,半导体中的施主和受主杂质,P 型半导体和N 型半导体,半导体中的费米统计分布。

PN 结平衡势垒。

1.1 在结晶学中, 晶胞是按晶体的什么特性选取的?在结晶学中, 晶胞选取的原则是既要考虑晶体结构的周期性又要考虑晶体的宏观对称性.1.2六角密积属何种晶系? 一个晶胞包含几个原子?六角密积属六角晶系, 一个晶胞(平行六面体)包含两个原子.1.3在晶体衍射中,为什么不能用可见光?晶体中原子间距的数量级为1010-米,要使原子晶格成为光波的衍射光栅,光波的波长应小于1010-米. 但可见光的波长为7.6−4.0710-⨯米, 是晶体中原子间距的1000倍. 因此, 在晶体衍射中,不能用可见光.2.1共价结合, 两原子电子云交迭产生吸引, 而原子靠近时, 电子云交迭会产生巨大的排斥力, 如何解释?共价结合, 形成共价键的配对电子, 它们的自旋方向相反, 这两个电子的电子云交迭使得体系的能量降低, 结构稳定. 但当原子靠得很近时, 原子内部满壳层电子的电子云交迭, 量子态相同的电子产生巨大的排斥力, 使得系统的能量急剧增大.2.2为什么许多金属为密积结构?金属结合中, 受到最小能量原理的约束, 要求原子实与共有电子电子云间的库仑能要尽可能的低(绝对值尽可能的大). 原子实越紧凑, 原子实与共有电子电子云靠得就越紧密, 库仑能就越低. 所以, 许多金属的结构为密积结构.3.1什么叫简正振动模式?简正振动数目、格波数目或格波振动模式数目是否是一回事?为了使问题既简化又能抓住主要矛盾,在分析讨论晶格振动时,将原子间互作用力的泰勒级数中的非线形项忽略掉的近似称为简谐近似. 在简谐近似下, 由N 个原子构成的晶体的晶格振动, 可等效成3N 个独立的谐振子的振动. 每个谐振子的振动模式称为简正振动模式, 它对应着所有的原子都以该模式的频率做振动, 它是晶格振动模式中最简单最基本的振动方式. 原子的振动, 或者说格波振动通常是这3N 个简正振动模式的线形迭加.简正振动数目、格波数目或格波振动模式数目是一回事, 这个数目等于晶体中所有原子的自由度数之和, 即等于3N .3.2长光学支格波与长声学支格波本质上有何差别?长光学支格波的特征是每个原胞内的不同原子做相对振动, 振动频率较高, 它包含了晶格振动频率最高的振动模式. 长声学支格波的特征是原胞内的不同原子没有相对位移, 原胞做整体运动, 振动频率较低, 它包含了晶格振动频率最低的振动模式, 波速是一常数. 任何晶体都存在声学支格波, 但简单晶格(非复式格子)晶体不存在光学支格波.3.3温度一定,一个光学波的声子数目多呢, 还是声学波的声子数目多?频率为ω的格波的(平均) 声子数为11)(/-=T k B e n ωω .因为光学波的频率O ω比声学波的频率A ω高, (1/-T k B O e ω )大于(1/-Tk B A e ω ), 所以在温度一定情况下, 一个光学波的声子数目少于一个声学波的声子数目.3.4长声学格波能否导致离子晶体的宏观极化?长光学格波所以能导致离子晶体的宏观极化, 其根源是长光学格波使得原胞内不同的原子(正负离子)产生了相对位移. 长声学格波的特点是, 原胞内所有的原子没有相对位移. 因此, 长声学格波不能导致离子晶体的宏观极化.3.5你认为简单晶格存在强烈的红外吸收吗?实验已经证实, 离子晶体能强烈吸收远红外光波. 这种现象产生的根源是离子晶体中的长光学横波能与远红外电磁场发生强烈耦合. 简单晶格中不存在光学波, 所以简单晶格不会吸收远红外光波.3.6爱因斯坦模型在低温下与实验存在偏差的根源是什么? 按照爱因斯坦温度的定义, 爱因斯坦模型的格波的频率大约为Hz 1013, 属于光学支频率. 但光学格波在低温时对热容的贡献非常小, 低温下对热容贡献大的主要是长声学格波. 也就是说爱因斯坦没考虑声学波对热容的贡献是爱因斯坦模型在低温下与实验存在偏差的根源.3.7在甚低温下, 德拜模型为什么与实验相符?在甚低温下, 不仅光学波得不到激发, 而且声子能量较大的短声学格波也未被激发, 得到激发的只是声子能量较小的长声学格波. 长声学格波即弹性波. 德拜模型只考虑弹性波对热容的贡献. 因此, 在甚低温下, 德拜模型与事实相符, 自然与实验相符.4.1 波矢空间与倒格空间有何关系? 为什么说波矢空间内的状态点是准连续的?波矢空间与倒格空间处于统一空间, 倒格空间的基矢分别为321 b b b 、、, 而波矢空间的基矢分别为32N N / / /321b b b 、、1N , N 1、N 2、N 3分别是沿正格子基矢321 a a a 、、方向晶体的原胞数目.倒格空间中一个倒格点对应的体积为*321) (Ω=⨯⋅b b b ,波矢空间中一个波矢点对应的体积为N N b N b N b *332211)(Ω=⨯⋅,即波矢空间中一个波矢点对应的体积, 是倒格空间中一个倒格点对应的体积的1/N . 由于N 是晶体的原胞数目, 数目巨大, 所以一个波矢点对应的体积与一个倒格点对应的体积相比是极其微小的. 也就是说, 波矢点在倒格空间看是极其稠密的. 因此, 在波矢空间内作求和处理时, 可把波矢空间内的状态点看成是准连续的.4.2在布里渊区边界上电子的能带有何特点?电子的能带依赖于波矢的方向, 在任一方向上, 在布里渊区边界上, 近自由电子的能带一般会出现禁带. 若电子所处的边界与倒格矢n K 正交, 则禁带的宽度)(2n K V E g =, )(n K V 是周期势场的付里叶级数的系数.不论何种电子, 在布里渊区边界上, 其等能面在垂直于布里渊区边界的方向上的斜率为零, 即电子的等能面与布里渊区边界正交4.3当电子的波矢落在布里渊区边界上时, 其有效质量何以与真实质量有显著差别?晶体中的电子除受外场力的作用外, 还和晶格相互作用. 设外场力为F , 晶格对电子的作用力为F l , 电子的加速度为)(1l m F F a +=.但F l 的具体形式是难以得知的. 要使上式中不显含F l , 又要保持上式左右恒等, 则只有F a *1m =.显然, 晶格对电子的作用越弱, 有效质量m*与真实质量m 的差别就越小. 相反, 晶格对电子的作用越强, 有效质量m *与真实质量m 的差别就越大. 当电子的波矢落在布里渊区边界上时, 与布里渊区边界平行的晶面族对电子的散射作用最强烈. 在晶面族的反射方向上, 各格点的散射波相位相同, 迭加形成很强的反射波. 正因为在布里渊区边界上的电子与晶格的作用很强, 所以其有效质量与真实质量有显著差别4.4电子的有效质量*m 变为∞的物理意义是什么?仍然从能量的角度讨论之. 电子能量的变化 m E m E m E 晶格对电子作的功外场力对电子作的功外场力对电子作的功)d ()(d )(d *+=[]电子对晶格作的功外场力对电子作的功)d ()(d 1E E m -=. 从上式可以看出,当电子从外场力获得的能量又都输送给了晶格时, 电子的有效质量*m 变为∞. 此时电子的加速度01*==F a m ,即电子的平均速度是一常量. 或者说, 此时外场力与晶格作用力大小相等, 方向相反.4.5紧束缚模型下, 内层电子的能带与外层电子的能带相比较, 哪一个宽? 为什么?以s 态电子为例. 由图5.9可知, 紧束缚模型电子能带的宽度取决于积分s J 的大小, 而积分 r R r R r r r d )()]()([)(*n at s n at N at s s V V J ----=⎰ϕϕΩ的大小又取决于)(r at s ϕ与相邻格点的)(n at s R r -ϕ的交迭程度. 紧束缚模型下, 内层电子的)(r at s ϕ与)(n at s R r -ϕ交叠程度小, 外层电子的)(r at s ϕ与)(n at s R r -ϕ交迭程度大. 因此, 紧束缚模型下, 内层电子的能带与外层电子的能带相比较, 外层电子的能带宽.4.6等能面在布里渊区边界上与界面垂直截交的物理意义是什么?将电子的波矢k 分成平行于布里渊区边界的分量//k 和垂直于布里渊区边界的分量k ┴. 则由电子的平均速度)(1k E k ∇= ν得到////1k E∂∂=ν,⊥⊥∂∂=k E 1ν. 等能面在布里渊区边界上与界面垂直截交, 则在布里渊区边界上恒有⊥∂∂k E /=0, 即垂直于界面的速度分量⊥ν为零. 垂直于界面的速度分量为零, 是晶格对电子产生布拉格反射的结果. 在垂直于界面的方向上, 电子的入射分波与晶格的反射分波干涉形成了驻波.5.1一维简单晶格中一个能级包含几个电子?设晶格是由N 个格点组成, 则一个能带有N 个不同的波矢状态, 能容纳2N 个电子. 由于电子的能带是波矢的偶函数, 所以能级有(N /2)个. 可见一个能级上包含4个电子.5.2本征半导体的能带与绝缘体的能带有何异同?在低温下, 本征半导体的能带与绝缘体的能带结构相同. 但本征半导体的禁带较窄, 禁带宽度通常在2个电子伏特以下. 由于禁带窄, 本征半导体禁带下满带顶的电子可以借助热激发, 跃迁到禁带上面空带的底部, 使得满带不满, 空带不空, 二者都对导电有贡献.6.1你是如何理解绝对零度时和常温下电子的平均动能十分相近这一点的?自由电子论只考虑电子的动能. 在绝对零度时, 金属中的自由(价)电子, 分布在费密能级及其以下的能级上, 即分布在一个费密球内. 在常温下, 费密球内部离费密面远的状态全被电子占据, 这些电子从格波获取的能量不足以使其跃迁到费密面附近或以外的空状态上, 能够发生能态跃迁的仅是费密面附近的少数电子, 而绝大多数电子的能态不会改变. 也就是说, 常温下电子的平均动能与绝对零度时的平均动能一定十分相近.6.2为什么温度升高, 费密能反而降低?当0≠T 时, 有一半量子态被电子所占据的能级即是费密能级. 温度升高, 费密面附近的电子从格波获取的能量就越大, 跃迁到费密面以外的电子就越多, 原来有一半量子态被电子所占据的能级上的电子就少于一半, 有一半量子态被电子所占据的能级必定降低. 也就是说, 温度升高, 费密能反而降低.6.3为什么价电子的浓度越大, 价电子的平均动能就越大?由于绝对零度时和常温下电子的平均动能十分相近,我们讨论绝对零度时电子的平均动能与电子浓度的关系.价电子的浓度越大价电子的平均动能就越大, 这是金属中的价电子遵从费密-狄拉克统计分布的必然结果. 在绝对零度时, 电子不可能都处于最低能级上, 而是在费密球中均匀分布. 由(6.4)式3/120)3(πn k F =可知, 价电子的浓度越大费密球的半径就越大,高能量的电子就越多, 价电子的平均动能就越大. 这一点从(6.5)和(6.3)式看得更清楚. 电子的平均动能E 正比与费密能0F E , 而费密能又正比与电子浓度3/2n :()3/22232πn m E F =,()3/2220310353πn m E E F ==.所以价电子的浓度越大, 价电子的平均动能就越大.6.4对比热和电导有贡献的仅是费密面附近的电子, 二者有何本质上的联系?对比热有贡献的电子是其能态可以变化的电子. 能态能够发生变化的电子仅是费密面附近的电子. 因为, 在常温下, 费密球内部离费密面远的状态全被电子占据, 这些电子从格波获取的能量不足以使其跃迁到费密面附近或以外的空状态上, 能够发生能态跃迁的仅是费密面附近的电子, 这些电子吸收声子后能跃迁到费密面附近或以外的空状态上.对电导有贡献的电子, 即是对电流有贡献的电子, 它们是能态能够发生变化的电子.)(00ε⋅∂∂+=v τe E f f f可知, 加电场后,电子分布发生了偏移. 正是这偏移 )(0ε⋅∂∂v τe E f部分才对电流和电导有贡献. 这偏移部分是能态发生变化的电子产生的. 而能态能够发生变化的电子仅是费密面附近的电子, 这些电子能从外场中获取能量, 跃迁到费密面附近或以外的空状态上. 而费密球内部离费密面远的状态全被电子占拒, 这些电子从外场中获取的能量不足以使其跃迁到费密面附近或以外的空状态上. 对电流和电导有贡献的电子仅是费密面附近电子的结论从(6.83)式x k S x x E S v e j F ετπ∇=⎰d 4222和立方结构金属的电导率 ES v e k S x F ∇=⎰d 4222τπσ看得更清楚. 以上两式的积分仅限于费密面, 说明对电导有贡献的只能是费密面附近的电子.总之, 仅仅是费密面附近的电子对比热和电导有贡献, 二者本质上的联系是: 对比热和电导有贡献的电子是其能态能够发生变化的电子, 只有费密面附近的电子才能从外界获取能量发生能态跃迁.6.5为什么价电子的浓度越高, 电导率越高?电导σ是金属通流能力的量度. 通流能力取决于单位时间内通过截面积的电子数(参见思考题18). 但并不是所有价电子对导电都有贡献, 对导电有贡献的是费密面附近的电子. 费密球越大, 对导电有贡献的电子数目就越多. 费密球的大小取决于费密半径 3/12)3(πn k F =.可见电子浓度n 越高, 费密球越大, 对导电有贡献的电子数目就越多, 该金属的电导率就越高.6.6磁场与电场, 哪一种场对电子分布函数的影响大? 为什么?磁场与电场相比较, 电场对电子分布函数的影响大. 因为磁场对电子的作用是洛伦兹力, 洛伦兹力只改变电子运动方向, 并不对电子做功. 也就是说, 当只有磁场情况下, 非磁性金属中价电子的分布函数不会改变. 但在磁场与电场同时存在的情况下, 由于产生了附加霍耳电场, 磁场对非磁性金属电子的分布函数的影响就显现出来. 但与电场相比, 磁场对电子分布函数的影响要弱得多.二. (25分)1. 证明立方晶系的晶列[hkl ]与晶面族(hkl )正交.2. 设晶格常数为a , 求立方晶系密勒指数为(hkl )的晶面族的面间距.三. (25分)设质量为m 的同种原子组成的一维双原子分子链, 分子内部的力系数为β1, 分子间相邻原子的力系数为β2, 分子的两原子的间距为d , 晶格常数为a ,1. 列出原子运动方程.2. 求出格波的振动谱ω(q ).对于晶格常数为a 的SC 晶体1. 以紧束缚近似求非简并s 态电子的能带.2. 画出第一布里渊区[110]方向的能带曲线, 求出带宽.3.当电子的波矢k =a πi +a πj 时,求导致电子产生布拉格反射的晶面族的面指数.一. 填空(20分, 每题2分)1.对晶格常数为a 的SC 晶体,与正格矢R =a i +2a j +2a k 正交的倒格子晶面族的面指数为( 122 ), 其面间距为( a 32π).2.典型离子晶体的体积为V , 最近邻两离子的距离为R , 晶体的格波数目为( 33R V), 长光学波的( 纵 )波会引起离子晶体宏观上的极化.3. 金刚石晶体的结合类型是典型的(共价结合)晶体, 它有( 6 )支格波.4. 当电子遭受到某一晶面族的强烈反射时, 电子平行于晶面族的平均速度(不为 )零, 电子波矢的末端处在(布里渊区)边界上.5. 两种不同金属接触后, 费米能级高的带(正)电.对导电有贡献的是 (费米面附近)的电子.二. (25分)1.设d 为晶面族()hkl 的面间距为, n 为单位法矢量, 根据晶面族的定义,晶面族()hkl 将c b a 、、分别截为l k h 、、等份, 即 a =⋅n a cos (a ,n )==a cos (a ,n )=hd ,b =⋅n b cos (b ,n )= a cos (b ,n ) =kd ,c =⋅n c cos (c ,n )= a cos (c ,n ) =ld .于是有n =a d h i +a d k j +a d l k =a d(h i +k j +l k ). (1)其中, i 、j 、k 分别为平行于c b a 、、三个坐标轴的单位矢量. 而晶列[]hkl 的方向矢量为=R ha i +ka j +la k=a (h i +k j +l k ). (2)由(1)、(2)两式得n =2a dR ,即n 与R 平行. 因此晶列[]hkl 与晶面()hkl 正交.2. 立方晶系密勒指数为(hkl )的晶面族的面间距22222222l k h a al a k a h d hkl hkl ++=++==k j i K πππππ三. (25分)1.原子运动方程)(2t qna i n Ae u ω-=)(12t qna i n Be u ω-+=1. 1. 格波的振动谱ω(q )=()2/12/1222121222212sin 16422⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛+-±+qa m m m m ββββββ四. (30分)1. 紧束缚近似非简并s 态电子的能带()a k a k a k J C E E z y x s s ats s cos cos cos 2)(++--=k2.[110]方向的能带曲线带宽为8J s 。

相关文档
最新文档