自动控制理论实验指导(新)
自动控制原理实验指导

实验四 控制系统的稳定性判据一、实验目的熟练掌握系统的稳定性的判断方法。
二、基础知识及MATLAB 函数用MATLAB 求系统的瞬态响应时,将传递函数的分子、分母多项式的系数分别以s 的降幂排列写为两个数组num 、den 。
由于控制系统分子的阶次m 一般小于其分母的阶次n ,所以num 中的数组元素与分子多项式系数之间自右向左逐次对齐,不足部分用零补齐,缺项系数也用零补上。
1.直接求根判稳roots()控制系统稳定的充要条件是其特征方程的根均具有负实部。
因此,为了判别系统的稳定性,就要求出系统特征方程的根,并检验它们是否都具有负实部。
MATLAB 中对多项式求根的函数为roots()函数。
若求以下多项式的根24503510234++++s s s s ,则所用的MATLAB 指令为: >> roots([1,10,35,50,24])ans =-4.0000-3.0000-2.0000-1.0000特征方程的根都具有负实部,因而系统为稳定的。
2.劳斯稳定判据routh ()劳斯判据的调用格式为:[r, info]=routh(den)该函数的功能是构造系统的劳斯表。
其中,den 为系统的分母多项式系数向量,r 为返回的routh 表矩阵,info 为返回的routh 表的附加信息。
以上述多项式为例,由routh 判据判定系统的稳定性。
den=[1,10,35,50,24];[r,info]=routh(den)r=1 35 2410 50 030 24 042 0 024 0 0info=[ ]由系统返回的routh 表可以看出,其第一列没有符号的变化,系统是稳定的。
注意:routh ()不是MATLAB 中自带的功能函数,须加载routh.m 文件(自编)才能运行。
三、实验内容1.系统的特征方程式为010532234=++++s s s s ,试用两种判稳方式判别该系统的稳定性。
自动控制原理实验指导书

⾃动控制原理实验指导书⽬录第⼀章⾃动控制原理实验 (1)实验⼀典型环节模拟⽅法及动态特性 (1)实验⼆典型⼆阶系统的动态特性 (4)实验三典型调节规律的模拟电路设计及动态特性测试 (6)实验四调节系统的稳态误差分析 (8)实验五三阶系统模拟电路设计及动态特性和稳定性分析 (11)实验六单回路系统中的PI调节器参数改变对系统稳定性影响 (13)实验七典型⾮线性环节的模拟⽅法 (15)实验⼋线性系统的相平⾯分析 (17)第⼆章控制理论实验箱及DS3042M(40M)⽰波器简介 (19)第⼀节⾃动控制理论实验箱的简介 (19)第⼆节数字存储⽰波器简介 (20)第⼀章⾃动控制原理实验实验⼀典型环节模拟⽅法及动态特性⼀、实验⽬的1、掌握⽐例、积分、实际微分及惯性环节的模拟⽅法。
2、通过实验熟悉各种典型环节的传递函数和动态特性。
⼆、实验设备及器材配置1、⾃动控制理论实验系统。
2、数字存储⽰波器。
3、数字万⽤表。
4、各种长度联接导线。
三、实验内容分别模拟⽐例环节、积分环节、实际微分环节、惯性环节,输⼊阶跃信号,观察变化情况。
1、⽐例环节实验模拟电路见图1-1所⽰传递函数:K R R V V I -=-=120阶跃输⼊信号:2V实验参数:(1) R 1=100K R 2=100K(2) R 1=100K R 2=200K2、积分环节实验模拟电路见图1-2所⽰传递函数:ST V V I I O 1-= ,其中T I阶跃输⼊信号:2V 实验参数:(1) R=100K C=1µf(2) R=100K C=2µf 3、实际微分环节实验模拟电路见图1-3所⽰传递函数:K ST S T V V D D I O +-=1 其中 T D =R 1C K=12R R 阶跃输⼊信号:2V实验参数:(1) R 1=100K R 2=100K (2)R 1=100K R 2=200K C=1µf4、惯性环节实验模拟电路见图1-4所⽰传递函数:1+-=TS K V V I O 其中 T=R 2C K=12R R 阶跃输⼊:2V 实验参数:(1) R 1=100K R 2=100K C=1µf(2) R=100K R 2=100K C=2µfR四、实验步骤1、熟悉实验设备并在实验设备上分别联接各种典型环节。
自动控制原理实验实验指导书

自动控制原理实验目录实验一二阶系统阶跃响应(验证性实验) (1)实验三控制系统的稳定性分析(验证性实验) (9)实验三系统稳态误差分析(综合性实验) (15)预备实验典型环节及其阶跃响应一、实验目的1.学习构成典型环节的模拟电路,了解电路参数对环节特性的影响。
2.学习典型环节阶跃响应测量方法,并学会由阶跃响应曲线计算典型环节传递函数。
二、实验内容搭建下述典型环节的模拟电路,并测量其阶跃响应。
1.比例(P)环节的模拟电路及其传递函数示于图1-1。
2.惯性(T)环节的模拟电路及其传递函数示于图1-2。
3.积分(I)环节的模拟电路及其传递函数示于图1-3。
4. 比例积分(PI)环节的模拟电路及其传递函数示于图1-4。
5.比例微分(PD)环节的模拟电路及其传递函数示于图1-5。
6.比例积分微分(PID)环节的模拟电路及其传递函数示于图1-6。
三、实验报告1.画出惯性环节、积分环节、比例积分环节、比例微分环节、比例积分微分环节的模拟电路图,用坐标纸画出所记录的各环节的阶跃响应曲线。
2.由阶跃响应曲线计算出惯性环节、积分环节的传递函数,并与由模拟电路计算的结果相比较。
附1:预备实验典型环节及其阶跃响应效果参考图比例环节阶跃响应惯性环节阶跃响应积分环节阶跃响应比例积分环节阶跃响应比例微分环节阶跃响应比例积分微分环节阶跃响应附2:由模拟电路推导传递函数的参考方法1. 惯性环节令输入信号为U 1(s) 输出信号为U 2(s) 根据模电中虚短和虚断的概念列出公式:整理得进一步简化可以得到如果令R 2/R 1=K ,R 2C=T ,则系统的传递函数可写成下面的形式:()1KG s TS =-+当输入r(t)为单位脉冲函数时 则有输入U 1(s)=1输出U 2(s)=G(s)U 1(s)= 1KTS-+由拉氏反变换可得到单位脉冲响应如下:/(),0t TK k t e t T-=-≥ 当输入r(t)为单位阶跃函数时 则有输入U 1(s)=1/s输出U 2(s)=G(s)U 1(s)= 11K TS s-+由拉氏反变换可得到单位阶跃响应如下:/()(1),0t T h t K e t -=--≥当输入r(t)为单位斜坡函数时 则有输入U 1(s)=21s输出U 2(s)=G(s)U 1(s)=2323R R C T R R =+2Cs12Cs-(s)U R10-(s)U 21R R +-=12212)Cs (Cs 1(s)U (s)U )(G R R R s +-==12212)Cs 1((s)U (s)U )(G R R R s +-==由拉氏反变换可得到单位斜坡响应如下:/()(1),0t T c t Kt KT e t -=--≥2. 比例微分环节令输入信号为U 1(s) 输出信号为U 2(s) 根据模电中虚短和虚断的概念列出公式:(s)(s)(s)(s)(s)U100-U U 0U 2=1R1R23(4)CSU R R '''---=++由前一个等式得到 ()1()2/1U s U s R R '=- 带入方程组中消去()U s '可得1()1()2/11()2/12()1134U s U s R R U s R R U s R R R CS+=--+由于14R C〈〈,则可将R4忽略,则可将两边化简得到传递函数如下: 2()23232323()(1)1()11123U s R R R R R R R R G s CS CS U s R R R R R ++==--=-++如果令K=231R R R +, T=2323R R C R R +,则系统的传递函数可写成下面的形式:()(1)G s K TS =-+当输入r(t)为单位脉冲函数时,单位脉冲响应不稳定,讨论起来无意义 当输入r(t)为单位阶跃函数时 则有输入U 1(s)=1/s输出U 2(s)=G(s)U 1(s)=(1)K TS S-+由拉氏反变换可得到单位阶跃响应如下:()(),0h t KT t K t δ=+≥当输入r(t)为单位斜坡函数时 则有输入U 1(s)=21s输出U 2(s)=G(s)U 1(s)=2(1)K TS S -+由拉氏反变换可得到单位斜坡响应如下:(),0c t Kt KT t =+≥实验一 二阶系统阶跃响应(验证性实验)一、实验目的研究二阶系统的两个重要参数阻尼比ξ和无阻尼自然频率n ω对系统动态性能的影响。
自动控制原理实验

自控理论实验指导(一)第一部分 实验系统概述一. 实验系统硬件资源自控理论EL-AT-II 型实验系统主要由计算机、A/D&D/A 采集卡、自动控制理论实验箱组成如图1,其中计算机根据不同的实验分别起信号产生、测量、显示、系统控制和数据处理的作用,A/D&D/A 采集卡负责数据采集和计算机USB 口通信,实验箱主要构造被控模拟对象。
实验箱、面板实验面板主要由以下几部分构成,如图2:图2 实验箱面板布局(1) 模拟仿真模块:本实验系统有八组由放大器、电阻、电容组成的实验模块。
每个模块中都有一个由UA741构成的放大器和若干个电阻、电容。
这样通过对这八个实验模块的灵活组合便可构造出各种型式和阶次的模拟环节和控制系统。
(2) 二极管、稳压管、电阻、电容区:该区域主要是为模拟非线性环节提供所需元件。
(3) A/D&D/A 卡模块:该区域是引出A/D&D/A 卡的输入输出端,一共引出两路输出端DA1、DA2、两路输入端AD1、AD2。
有一个按钮复位键,可对A/D&D/A 卡进行复位。
A/D&D/A 卡的输入和输出电压范围为-5V~+5V 。
做时域分析实验时,DA1输出阶跃信号,AD1为系统输出数据采集口(相当于示波器的Y 轴输入端),。
(4) 电源模块:电源模块有一个实验箱电源开关,有四个开关电源提供的DC 电源端子,分别是+12V 、-12V 、+5V 、GND ,这些端子给外扩模块提供电源。
1 图1 实验系统构成(5) 模拟开关模块:模拟开关是专门为积分环节的电容放电而设定的,实验时需将积分环节的电容并接在模拟开关上。
(6) 变阻箱、变容箱模块:该模块有2个变阻箱、1个变容箱。
只要按动变阻箱、变容箱数字旁边的“+”、“-”按钮便可调节电阻电容的值,而且电阻电容值可以直接读出。
二. 实验系统软件1. 软件启动接通实验箱电源,在Windows 桌面上或“开始-程序”中双击“Cybernation_A.exe ”快捷方式,便可启动软件如图3所示。
自动控制原理(实验指导书)

⾃动控制原理(实验指导书)⽬录实验⼀典型环节的模拟研究(验证型)(2)实验⼆典型系统的瞬态响应和稳定性(设计型)(9)实验三动态系统的数值模拟(验证型)(15)实验三动态系统的频率特性研究(综合型)(16)实验四动态系统的校正研究(设计型)(18)附录XMN—2学习机使⽤⽅法简介(20)实验⼀典型环节的模拟研究⼀、实验⽬的:1、了解并掌握XMN-2型《⾃动控制原理》学习机的使⽤⽅法,掌握典型环节模拟电路的构成⽅法,培养学⽣实验技能。
2、熟悉各种典型线性环节的阶跃响应曲线。
3、了解参数变化对典型环节动态特性的影响。
⼆、实验设备Uo(S)=(K+TS 1)S1?)1()()(21210210CS R R RR R R R S U S U i +++≈(1-19)⽐较式(1-17)和(1-19)得K=21R R R +T=C R R R R ?+2121 (1-20)当输⼊为单位阶跃信号,即Ui(t)=1(t)时,Ui(S)=1/S 。
则由式(1-17)得到111)()(23111022100210++?+++=S C R S C R C R C R S C R R R R S U S U i (1-24) 考虑到R 1》R 2》R 3,则式(1-24)可近似为S C R R R S C R R R S U S U i 2021100101)()(++≈(1-25)⽐较式(1-23)和(1-25)得K P =1R R , T 1=R 0C 1T D =2021C R R R ? (1-26)当输⼊为单位阶跃信号,即Ui(t)=1(t)时,Ui(S)=1/S 。
则由式(1-23)得到U o (S)=(K P +ST 11+T D S )S 1?五、实验报告要求:1、实验前计算确定典型环节模拟电路的元件参数各⼀组,并推导环节传递函数参数与模拟电路电阻、电容值的关系以及画出理想阶跃响应曲线。
2、实验观测记录。
自动控制原理1实验指导书

《自动控制原理Ⅰ》实验指导书2013年9月修订实验一 典型环节及其阶跃响应一. 实验目的1.学习构成典型环节的模拟电路。
2.熟悉各种典型环节的阶跃响应曲线,了解参数变化对典型环节动态特性的影响。
3.学会由阶跃响应曲线计算典型环节的传递函数。
4.掌握仿真分析软件multisim的使用。
二. 物理模拟说明用电子线性运算放大器和各种反馈电路能够模拟线性系统典型环节。
同时,模拟典型环节是有条件的,即是将运算放大器视为满足以下条件的理想放大器:(1)输入阻抗为∞,进入运算放大器的电流为零,同时输出阻抗为零;(2)电压增益为∞;(3)通频带为∞;(4)输入与输出间呈线性特性.可是,实际运算放大器毕竟不是理想的;电子元件和电路仍然有惯性(尽管非常小)其通频带有限,并非达到∞,输入输出功率也是有限的;一般的运算放大器,在开环使用时,其通频带仅为10-100Hz,当将其接成K=1的比例器,其通频带也不过MHz左右。
所以,以线性运算放大器和各种反馈电路去模拟系统的各种线性和非线环节也不是无条件的,它仍然是在一定条件下,在一定程度上模拟出线性典型环节的特性,超出条件的范围和要求过份精确都是办不到的。
因此,需要说明以下几点事项:(1)用实际的运算放大器模拟线性系统各种典型环节都是有条件的近似关系,不可能得到理想化典型环节的特性。
其主要原因是:1实际运算放大器输出幅值受其电源所限,根本不可能达到∞,此即非线性影响;2实际运算放大器不是无惯性的。
尽管惯性很小,但通频带不会达到∞。
(2)实际运算放大器输出幅值受限的非线性因素对所有各种模拟环节都有影响,但情况迥异。
对比例环节、惯性环节、积分环节、比例积分环节和振荡环节,只要控制了输入量的大小或是输入量施加的时间长短(对于积分或比例积分环节),不使其输出在工作期间内达到最高饱和度,则非线性因素对上述环节特性的影响可以避免;但是非线性因素对模拟比例微分环节和微分环节的影响却无法避免。
自动控制理论实验指导书

自动控制理论实验指导书第一章硬件资源EL-AT-II型实验系统主要由计算机、AD/DA采集卡、自动控制原理实验箱、打印机(可选)组成如图1,其中计算机根据不同的实验分别起信号产生、测量、显示、系统控制和数据处理的作用,打印机主要记录各种实验数据和结果,实验箱主要构造被控模拟对象。
显示器打印机计算机 AD/DA卡实验箱电路图1 实验系统构成实验箱面板如图2所示:图2 实验箱面板下面主要介绍实验箱的构成:一、系统电源EL-AT-II系统采用本公司生产的高性能开关电源作为系统的工作电源主要技术性能指标为:1.输入电压:AC 220V2.输出电压/电流:+12V/0.5A,-12V/0.5A,+5V/2A 3.输出功率:22W4.工作环境:-5℃~+40℃。
二、 AD/DA采集卡AD/DA采集卡如图3采用ADUC812芯片做为采集芯片,负责采样数据- 1 -自动控制理论实验指导书 .及与上位机的通信,其采样位数为12位,采样率为10KHz。
在卡上有一块32KBit的RAM62256,用来存储采集后的数据。
AD/DA采集卡有两路输出(DA1、DA2)和四路输入(AD1、AD2、AD3、AD4),其输入和输出电压均为-5V~+5V。
图3 AD/DA采集卡另外在AD/DA卡上有一个9针RS232串口插座用来连接AD/DA卡和计算机,20针的插座用来和控制对象进行通讯。
三、实验箱面板实验箱面板布局如图4所示。
AD/DA卡输入输出模块实验模块1 实验模块2 二极管区 EL-CAT-II 电阻、电容、二极管区实验模块3 变阻箱、变容箱模块实验模块5 实验模块6 实验模块7 图4 实验箱面板布局实验箱面板主要由以下几部分构成: 1.实验模块本实验系统有八组由放大器、电阻、电容组成的实验模块。
每个模块中都有一个由UA741构成的放大器和若干个电阻、电容。
这样通过对这八个实验模块的灵活组合便可构造出各种型式和阶次的模拟环节和控制系统。
自动控制原理实验指导书(学生版)

编著 李蔓华 陈昌虎 李晓高自动控制理论实验指导书目录实验装置简介·························································(3-4·)实验一控制系统典型环节的模拟·················(5-6)实验二一阶系统的时域响应及参数测定·····(6-7)实验三二阶系统的瞬态响应分析·················(8-9)实验四频率特性的测试·······························(9-13)实验五PID控制器的动态特性······················(13-15)实验六典型非线性环节·································(15-18)实验七控制系统的动态校正(设计性实验)··(19)备注:本实验指导书适用于自动化、电子、机设专业,各专业可以根据实验大纲选做实验。
自动控制理论实验指导

(3)阶跃信号接到示波器上,调节实验箱和示波器的幅度旋钮。使跳变幅度为为一格(模拟为+1V)。
(4)1<ξ:
令R1=100k、R2=51k、R3=200k、C1=1uF、C2=1uF。K=R2/R1=2,T1=R2C1=51*1=0.051s,T2=R3C2=200*1=0.2s。
1)将接地夹就近接于待测信号的地端。
2)将信号探头接于待测信号。
3)调整示波器的输入幅度档位选择开关,选择合适的档位使信号幅度便于观察。
4)将输入幅度档位选择开关中心的旋钮顺时针旋到底。
5)选择时间“TIME/DIV”使波形正确显示。调节“微调”旋钮使波形稳定。
6)将波形水平方向压缩为重合于Y轴的一条竖线,其底端点位于0点,或选择扫描时间使波形为一条水平带。
其中: 阻尼自然频率
、β=ζ t
、 、
按下阶跃信号按钮,观察示波器的衰减震荡波形。如图3-5所示。
图3-5衰减震荡波形
(6)ξ=0:令R3=0,属于无阻尼状态,系统的响应为等幅震荡波形,无阻尼自然角频率为 。
五.实验报告:
1.绘制出实验的原理图,并标明参数。
2.绘制出实验的波形。分析各波形结果。
例如:从输入的方波读出幅度所占Y轴的格数为6。
则6*0.63=3.8
从Y轴的3.8处读出X轴上的时间值为1格,此时时间档位的值为5ms,则1*5ms=5ms。
(7)将实验结果填入表2-1中。
表2-1实验结果
1.T的理论值
2.电压
3..实测T值
4.误差
R
C
T0
E(V)
0.632E对应的t(格)
时间单位t0(ms/格)
自动控制理论实验指导书(新)

自动控制理论实验指导书实验1 典型环节的模拟研究一、实验目的1.了解并掌握TD -ACC+设备的使用方法及各典型环节模拟电路的构成方法。
2.熟悉各种典型环节的理想阶跃响应曲线和实际阶跃响应曲线。
3.了解参数变化对典型环节动态特性的影响。
二、实验设备TD -ACC+型实验系统一套;数字示波器、万用表。
三、实验内容及步骤1.实验准备:将信号源单元的“ST ”插针与“S ”端插针用“短路块”短接。
将开关设在“方波”档,分别调节调幅和调频电位器,使得“OUT ”端输出的方波幅值为2V ,周期为10s 左右。
2.观测各典型环节对阶跃信号的实际响应曲线 (1) 比例( P )环节① 按模拟电路图1-1接好线路。
注意:图中运算放大器的正相输入端已经对地接了100K 的电阻,实验中不需要再接。
以后的实验中用到的运放也如此。
② 将模拟电路输入 (U i ) 端与信号源的输出端“OUT ”相连接;用示波器观测模拟电路的输入 (U i ) 端和输出 (U o ) 端,观测实际响应曲线U o (t ),记录实验波形及结果于表1-1中。
表1-1阶跃响应: U O (t )=K (t ≥0) 其中 K =R 1R 0⁄实验参数理论计算示波器观测值输入输出波形0R 1Ro 1i 0U R U R =i U o Uo iU U Ωk 200Ωk 1000.5Ωk 2001R 0=200kΩ;R 1=100kΩ或200kΩ图1-1U i R 0R 1RR 10K 10K U o(2) 积分( I )环节①按图1-2接好线路。
② 将模拟电路输入 (U i ) 端与信号源的输出端“OUT ”相连接;用示波器观测模拟电路的输入 (U i ) 端和输出 (U o ) 端,观测实际响应曲线U o (t ),测量积分时间T ,记录实验波形及结果于表1-2中。
表1-2阶跃响应: o 01()U t t R C=(t ≥0) 注意:积分时间T 是指积分初始时间到输出值等于输入值时的时间。
自控理论实验实验指导书(LABVIEW)

目录一.自动控制理论实验指导1.概述 (1)2.实验一典型环节的电路模拟和软件仿真研究 (5)3.实验二典型系统动态性能和稳定性分三典型环节(或系统)的析 (12)4.实验频率特性测量 (16)5.实验四线性系统串联校正 (21)6.实验五典型非线性环节的静态特性 (26)7.实验六非线性系统相平面法 (31)8.实验七非线性系统描述函数法 (37)9.实验八极点配置全状态反馈控制 (42)10.实验九采样控制系统动态性能和稳定性分析的混合仿真研究 (49)11.实验十采样控制系统串联校正的混合仿真研究 (53)二.自动控制理论对象实验指导1.实验一直流电机转速控制实验 (57)2.实验二温度控制实验 (60)3.实验三水箱液位控制实验 (62)三.自动控制理论软件说明1.概述 (64)2.安装指南及系统要求 (67)3.功能使用说明 (69)4.使用实例 (79)概述一.实验系统功能特点1.系统可以按教学需要组合,满足“自动控制原理”课程初级和高级实验的需要。
只配备ACT-I实验箱,则实验时另需配备示波器,且只能完成部分基本实验。
要完成和软件仿真、混合仿真有关的实验必须配备上位机(包含相应软件)及USB2.0通讯线。
2.ACT-I实验箱内含有实验必要的电源、信号发生器以及非线性和高阶电模拟单元,可根据教学实验需要进行灵活组合,构成各种典型环节和系统。
此外,ACT-I实验箱内还可含有数据处理单元,用于数据采集、输出以及和上位机的通讯。
3.配备PC微机作操作台时,将高效率支持“自动控制原理”的教学实验。
系统提供界面友好、功能丰富的上位机软件。
PC微机在实验中,除了满足软件仿真需要外,又可成为测试所需的虚拟仪器、测试信号发生器以及具有很强柔性的数字控制器。
4.系统的硬件、软件设计,充分考虑了开放型、研究型实验的需要。
除了指导书所提供的10个实验外,还可自行设计实验。
二.系统构成实验系统由上位PC微机(含实验系统上位机软件)、ACT-I实验箱、USB2.0通讯线等组成。
实验 自动控制原理实验指导书

自动控制原理实验指导书吴鹏松编班级学号姓名2012 年 3 月前言自动控制原理实验是自动化类学科的重要理论课程实验。
本科自动控制原理分为经典控制理论和现代控制理论基础两部分,自动控制原理实验主要是针对经典控制理论的实验,采用的运算电路来进行的。
现代控制理论实验由于模型比较复杂,采用MATLAB软件进行数字仿真实验。
离散控制系统实验与计算机控制系统实验是有很大区别的,不能简单的认为在自动控制原理实验箱上就能进行计算机控制系统实验。
自动控制原理实验预习时需要对电路图进行理论分析和综合,可以借助MATLAB软件进行辅助分析和综合。
自动控制原理实验指导书不包括实验箱和实验软件的使用说明,相关的内容参考实验软件LABACT软件中的帮助文件。
由于作者水平有限,书中错误之处在所难免,恳请广大师生及读者提出宝贵意见及建议。
编者目录实验一典型环节的模拟研究实验二二阶系统特征参数对系统性能的影响实验三典型系统的动态特性与稳定性测试实验四开环增益与零极点对系统性能的影响实验五典型系统的频率特性测试实验六线性系统的串联校正实验七A/D与D/A 转换及零界阶保持器实验八离散控制系统动态性能和稳定性的混合仿真研究实验九非线性系统的相平面法分析实验十非线性系统的描述函数法分析附录1 教学考核方法附录2 实验课安排时间要求实验一 典型环节的模拟研究一.实验目的1.通过搭建典型环节模拟电路,熟悉并掌握自动控制综合实验台的使用方法。
2.熟悉各种典型环节的的阶跃响应。
3.研究参数变化对典型环节阶跃响应的影响。
4.掌握ACES 软件的使用方法。
二.实验仪器1.自动控制综合实验箱 2.计算机 3.LABACT 软件三.实验内容1.观察比例环节的阶跃响应曲线典型比例环节模拟电路如图1-1所示,比例环节的传递函数为: K s U s U i =)()(0图1-1 典型比例环节模拟电路(1) 比例系数(放大倍数)选取: A .当K=1、K=2、K=5时,分别观测阶跃响应曲线,并记录输入信号输出信号波形;B .比例放大倍数 K=R2/R1;(2) 阶跃信号设置:阶跃信号的幅值选择1伏(或5伏)(3) 连接虚拟示波器:A .将输入阶跃信号用排题线与示波器通道CH1相连接;B .将比例环节输出信号(实验电路A2的“OUT2”)与示波器通道CH2相连接。
自动控制理论实验指导书

自动控制理论实验指导书《自动控制理论》是一门理论性和实践性都很强的专业基础课。
实验课是本课程不可少的教学环节。
通过实验课可以使学生掌握基本的实验方法和操作技能。
认真地进行实验,有助于加深对理论知识的理解;有助于培养动手能力;有助于养成良好的工作习惯;有助于培养应用型人才。
本实验指导书安排以下几项实验:实验一一、二阶系统的模型及阶跃响应的动态分析实验二控制系统根轨迹实验实验三频率特性的测试实验四控制系统的校正实验时间安排如下:实验一在第三章时域分析法结束之后进行;实验二在第四章根轨迹法结束之后进行;实验三在第五章频率法结束之后进行;实验四在第六章控制系统的校正结束之后进行。
实验仪器设备:微型计算机一台实验报告:实验报告是实验工作的最终总结,是反映分析能力和工作能力的重要手段,要求学生独立完成,每人一份。
实验报告主要内容有:1、实验名称、专业班级、本人姓名、同组人员名单、实验日期、实验地点;2、实验目的、要求;3、实验内容、步骤、方法;4、实验数据及记录或绘制的实验曲线;5、分析实验数据,写出心得体会,总结经验,提出改进意见。
实验一 一、二阶系统的模型及阶跃响应的动态分析一、实验目的1、熟悉并掌握MATLAB 在自动控制仿真中的应用。
2、学习时域响应的测试方法,树立时域的概念。
3、明确一、二阶系统的阶跃响应及其性能指标与结构参数的关系。
二、实验内容1、建立一阶系统的模型,观察并测量不同时间常数T 的阶跃响应及性能指标调节时间t s 。
2、建立二阶系统的模型,观察并测量不同阻尼比ξ时的阶跃响应及性能指标调节时间t s 、超调量σ%。
三、实验原理及方法1、一阶系统 传递函数()11s +=Ts φ,系统结构如图所示运用MATLAB 建立系统模型,选取参数T 分别为0.1、0.5、1秒时,分别观测系统的阶跃响应曲线,测试并纪录性能指标调节时间t s 。
2、二阶系统 传递函数()2222s nn ns s ωξωωφ++=建立系统模型,参数选取见下表,分别观测系统的阶跃响应曲线,测试并纪录性能指标调节时间t s、超调量σ%。
自动控制理论实验指导(新)

⾃动控制理论实验指导(新)《⾃动控制理论》课程实验指导⼀、实验注意事项1、接线前务必熟悉实验线路的原理及实验⽅法。
2、实验接线前必须先断开总电源与各分电源开关,严禁带电接线。
接线完毕,检查⽆误后,才可进⾏实验。
3、实验⾃始⾄终,实验板上要保持整洁,不可随意放置杂物,特别是导电的⼯具和多余的导线等,以免发⽣短路等故障。
4、实验完毕,应及时关闭各电源开关,并及时清理实验板⾯,整理好连接导线并放置到规定的位置。
5、实验前必须充分预习实验指导书。
⼆、实验模拟装置使⽤注意事项1、⽆源阻容元件可供每个运算放⼤器使⽤。
2、运算放⼤器是有源器件,故连在运算放⼤器上的阻容元件只能供本运算放⼤器选⽤。
3、信号幅值不宜过⼤,按指导书中指⽰的幅值。
否则,可能使运算放⼤器处于饱和状态。
三、每次实验内容第⼀次:实验⼆第⼆次:实验三第三次:实验四备注:实验⼀作为实验前的预习及热⾝实验⼀控制系统典型环节的模拟⼀、实验⽬的1)、熟悉数字⽰波器的使⽤⽅法2)、掌握⽤运放组成控制系统典型环节的电⼦电路 3)、测量典型环节的阶跃响应曲线4)、通过实验了解典型环节中参数的变化对输出动态性能的影响⼆、实验仪器1)、THSSC-1实验箱⼀个 2)、数字⽰波器⼀台三、实验原理以运算放⼤器为核⼼元件,由其不同的R-C 输⼊⽹络和反馈⽹络组成的各种典型环节,如图1-1所⽰。
图中Z 1和Z 2为复数阻抗,它们都是由R 、C 构成。
基于图中A 点的电位为虚地,略去流⼊运放的电流,则由图1-1得:由上式可求得由下列模拟电路组成的典型环节的传递函数及其单位阶跃响应。
1)、⽐例环节⽐例环节的模拟电路如图1-2所⽰:图1-1、运放的反馈连接1u o图1-2 ⽐例环节(1) )(12Z Z u u S G i o =-=2100200)(12===KKZ Z S G2)、惯性环节图1-3、惯性环节3)、积分环节图1-4、积分环节4)、⽐例微分环节(PD ),其接线图如图及阶跃响应如图1-5所⽰。
自动控制理论实验指导书4

%100%max ⨯-=∞∞Y Y Y σ实验一 典型环节及其阶跃响应一、实验目的1. 掌握控制模拟实验的基本原理和一般方法。
2. 掌握控制系统时域性能指标的测量方法。
二、实验仪器1. EL-AT-III 型自动控制系统实验箱一台 2. 计算机一台 三、实验原理1.模拟实验的基本原理:控制系统模拟实验采用复合网络法来模拟各种典型环节,即利用运算放大器不同的输入网络和反馈网络模拟各种典型环节,然后按照给定系统的结构图将这些模拟环节连接起来,便得到了相应的模拟系统。
再将输入信号加到模拟系统的输入端,并利用计算机等测量仪器,测量系统的输出,便可得到系统的动态响应曲线及性能指标。
若改变系统的参数,还可进一步分析研究参数对系统性能的影响。
2. 时域性能指标的测量方法: 超调量Ó %:1) 启动计算机,在桌面双击图标 [自动控制实验系统] 运行软件。
2) 检查USB 线是否连接好,在实验项目下拉框中选中任实验,点击按钮,出现参数设置对话框设置好参数按确定按钮,此时如无警告对话框出现表示通信 正常,如出现警告表示通信不正常,找出原因使通信正常后才可以继续进行实验。
3) 连接被测量典型环节的模拟电路。
电路的输入U1接A/D 、D/A 卡的DA1 输出,电路的输出U2接A/D 、D/A 卡的AD1输入。
检查无误后接通电源。
4) 在实验项目的下拉列表中选择实验一[典型环节及其阶跃响应] 。
5) 鼠标单击按钮,弹出实验课题参数设置对话框。
在参数设置对话框中设置相应的实验参数后鼠标单击确认等待屏幕的显示区显示实验结果。
6) 用软件上的游标测量响应曲线上的最大值和稳态值,代入下式算出超调量:T P与T S:利用软件的游标测量水平方向上从零到达最大值与从零到达95%稳态值所需的时间值,便可得到T P与T S。
四、实验内容构成下述典型一阶系统的模拟电路,并测量其阶跃响应:1.比例环节的模拟电路及其传递函数如图1-1。
自动控制理论实验指导书

《自动控制理论》实验指导书李烽黄效国张黎军编北京科技大学机械工程学院2007年6月前言“自动控制理论”所研究的对象是非常广泛的,它可以是物理或化学性质绝无相似的对象(例如,机械的、电子的……),在归结成微分方程或传递函数后,却常会发现它们互相之间有共同之处,往往方程形式完全相同,所差的仅是参数和输入输出信号。
在工程实践中,研究电信号远比研究机械量等来得方便,用电子元件构成的系统可以很方便地实施,便于更改,便于定性及定量地观察。
因此,用研究电系统的方法来模拟其它物理系统,从而间接地研究这些系统,这是一种相当实用的手段。
另外,实际系统中的各种变量参数往往是不容易或无法测得的。
因此,利用本实验所介绍的观察动态特性曲线的方法来识别传递函数,是实践中研究系统特性并进一步校正系统的工程实用方法,有着重要的实用价值。
“自动控制理论”课程中的书本教学往往是大量公式的推导,不容易形成形象化的概念,配套实验的引入,使学生们将课堂理论直接用于研究实际的物理系统,从而加深对课堂内容的理解,提高分析和解决问题的能力,可以提高学习兴趣并获得成就感。
目录实验守则 (1)实验一典型环节及二阶系统阶跃响应 (2)(一)比例环节的阶跃响应 (3)(二)积分环节的阶跃响应 (9)(三)惯性环节的阶跃响应 (11)(四)比例积分微分环节的阶跃响应 (13)(五)二阶系统的阶跃响应 (14)实验二控制系统稳定性分析 (20)附录一T H K K L-5型实验箱使用简介 (25)附录二“T H K K L-5软件”虚拟示波器的使用 (31)实验守则1.实验前必须认真预习实验指导书,对所要进行的实验项目有基本的了解。
2.认真听指导老师讲解实验要点,做到心中有数。
3.遵循课堂秩序,不影响他人实验。
4.按实验要求进行实验,不做无关的操作。
5.爱护实验设备,严禁违章操作和野蛮操作。
6.注意用电安全,不随意打开仪器触摸内部结构。
如有意外,应立即切断本组桌上的电源开关,并向指导教师报告。
自动控制实验指导书THKKL-5型.docx

第一章控制理论实验 ....................................................... 错谋!未定义书签。
实验一典型环节的电路模拟 (1)实验二二阶系统的瞬态响应 (12)实验三高阶系统的瞬态响应和稳定性分析 (15)综合实验:测量RC串联电路的R和CZ值提示:利用实验一中惯性环节阶跃响应特性;设置R=l~10k,C=0.1〜1U;实验室准备:示波器、实验箱指导教师准备:被测RC串联电路实验准备(学生):测量原理探讨;构思实验过程实验报告要求:说明测量原理、测量过程、测量结果、误差范I韦I估计实验四线性定常系统的稳态误差 (17)实验五典型坏节利系统频率特性的测量 (22)实验六线性定常系统的串联校正 (29)实验七典型非线性环节的静态特性 (36)实验八非线性系统的描述函数法......................................... 错误!未定义书签。
实验九非线性系统的相平面分析法....................................... 错误!未定义书签。
实验十系统能控性与能观性分析........................................ 错误!未定义书签。
实验十一控制系统极点的任意配置....................................... 错误!未定义书签。
实验十二具有内部模型的状态反馈控制系统.............................. 错误!未定义书签。
实验十三状态观测器及其应用.......................................... 错误!未定义书签。
实验十四采样控制系统的分析.......................................... 错误!未定义书签。
实验十五采样控制系统的动态校止...................................... 错误!未定义书签。
自动控制实验指导

实验一 控制系统典型环节的模拟一、实验目的1、熟悉超低频扫描示波器的使用方法;2、掌握用运放组成控制系统典型环节的电子模拟电路;3、测量典型环节的阶跃响应曲线;4、通过本实验了解典型环节中参数的变化对输出动态性能的影响。
二、实验仪器1、控制理论电子模拟试验箱一台;2、超低频慢扫描双踪示波器一台;3、万能表一只。
三、实验原理以运算放大器为核心元件,由其不同的输入R-C 网络和反馈R-C 网络构成控制系统的各种典型环节。
四、实验内容1、示波器的调节:打开双踪示波器,选CH1作为触发信号,DC/AC 档选择DC 档,y轴衰减细调和x 轴扫描时间细调均打到校正位置。
“+” “-”触发选择“-”触发位置,Y 1、Y 2探头在没特殊说明下均选⨯1档。
2、典型环节的测量 (a):比例环节(图1-1)1)(1=s G 2)(2=s G图1-1 比例环节原理图分别选择两组不同的R1,R2将所测量的结果填入下表1-1:表1-1分别画出K=1,K=2的阶跃响应波形,并比较二者的差别:(b): 积分环节(图1-2)s s G 1.0/1)(1= s s G 2.0/1)(2=图1-2 积分环节原理图分别选择R=100k Ω,R=200 k Ω作为参数,画出相应的阶跃响应波形图,并观察波形分析积分环节的特点。
(c):惯性环节(图1-3)11.01)(1+=s s G 101.01)(2+=s s G图1-3 惯性环节的原理图分别选择不同参数:C 1=1µF,C 2=0.1µF,画出相应的阶跃响应波形图,观察时间常数τ和上升时间s t 填入下表1-2,并和实际计算值比较是否吻合。
表1-2其阶跃响应的波形图:(d):微分环节(图1-4)21.0)(1+=s s G 101.0)(2+=s s G图1-4微分环节的原理图按照图1-4接好线路,示波器探头Y 2选⨯10档,y 轴衰减粗调打1V 位置,分别选择R=51 K Ω,C=1µF,Rf=100K Ω和R=100 K Ω,C=0.1µF,Rf=100K Ω两组参数,观察示波器画出阶跃响应波形并比较两组不同参数的差别。
自控原理实验指导书

实验一典型环节及其阶跃响应一、实验目的1、学习构成典型环节的模拟电路。
2、熟悉各种典型环节的阶跃响应曲线。
3、了解参数变化对典型环节动态特性的影响,并学会由阶跃响应曲线计算典型环节的传递函数。
二、实验内容各典型环节的模拟电路及结构图如下:图1-1-1 比例环节电路图图1-2-1 惯性环节电路图图1-1-2 比例环节结构图2-2 惯性环节结构图图1-3-1 积分环节电路图图1-4-1 微分环节电路图图1-3-2 积分环节结构图图1-4-2 微分环节结构图三、实验步聚1、 将输入端ui 与数据通道接口板上的DAO 连接、输出端uo 与实验平台信号引出区的INO 孔连接。
(若无特别声明,其它实验中涉及运放电路板及ui 及uo 均按此连线,不再赘述)。
2、 启动计算机,运行“系统设置”菜单,选择串口。
(若无特别声明,其它实验中均同此,不再赘述。
如不选择,则设为默认值,选择COM1通讯端口)3、 打开“自动控制原理实验系统”,打开“实验选择”菜单,选择“典型环节及其阶跃响应”实验。
4、 选择“参数设置”命令,设置采样周期,采样点数和设定电压。
5、 选择“运行观测”命令,观察阶跃响应曲线,改变模拟电路参数后,再重新观察阶跃响应曲线的变化。
6、 为了更好的观察曲线,再“参数设置”命令中,设置“曲线放大”倍数,“运行观测”。
7、 记录波形及数据(保存结果、打印图象)。
8、 连接其它模拟电路,重复步骤3、4、5、6注:打印图像只有在曲线放大为“1”时打印(其它实验相同)四、实验报告1、 画出惯性环节、积分环节、比例微分环节的电路图和所记录的响应曲线。
2、 由阶跃响应曲线计算出惯性环节、积分环节的传递函数,并与值比较。
图1-5-1 比例微分环节电路图传递函数为:G(s) = (R3/R2) ((R1+R2)CS+1)图1-5-2 比例微分环节结构图实验二二阶系统阶跃响应一、实验目的1、研究二阶系统的阻尼比ξ和无阻尼自然频率ω对系统动态性能的影响。
自动控制理论实验指导(新)解析

2-2得:
图2-3为一阶系统的单位阶跃响应曲线。
当t= T时,C(T)=1–e-¹=0.632。这表示当C(t)上升到稳定值的63.2%时,对应的时间就是一阶系统的时间常数T,根据这个原理,由图2-3可测得一阶系统的时间常数T。由上式(1)可知,系统的稳态值为1,因而该系统的跟踪阶跃输入的稳态误差ess = 0。
令G(S)=1/(0.5S+1),则其相应的模拟电路如图6-2所示。测量时示波器的X轴停止扫描,把扫频电源的正弦信号同时送到被测环节的输入端和示波器的X轴,被测环节的输出送到示波器的Y轴,如图6-3所示。
(实验时取R1=R2=510K,C=1uF)
图4-2惯性环节的模拟电路图
图4-3相频特性测试的接线图
四、实验内容与步骤
1、根据图3-1,调节相应的参数,使系统的开环传递函数为:
2、令ui(t)=1V,在示波器上观察不同K(K=10,5,2,0.5)时的单位
阶跃响应的波形,并由实验求得相应的Mp、tp和ts的值。
3、调节开环增益K,使二阶系统的阻尼比=1/2 =0.707,观察并记录
此时的单位阶跃响应波形和Mp、tp和ts的值。
3、把实测求得的传递函数与理论值进行比较,并分析产生差异的原因。
2)、数字示波器一台
三、实验原理
以运算放大器为核心元件,由其不同的R-C输入网络和反馈网络组成的各种典型环节,如图1-1所示。图中Z1和Z2为复数阻抗,它们都是由R、C构成。
基于图中A点的电位为虚地,略去流入运放的电流,则由图1-1得:
由上式可求得由下列模拟电
路组成的典型环节的传递函数及
其单位阶跃响应。
当扫频电源输出一个正弦信号,则在示波器的屏幕上呈现一个李沙育图形------椭圆。据此,可测得在该输入信号频率下得相位值:
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
《自动控制理论》课程实验指导一、实验注意事项1、接线前务必熟悉实验线路的原理及实验方法。
2、实验接线前必须先断开总电源与各分电源开关,严禁带电接线。
接线完毕,检查无误后,才可进行实验。
3、实验自始至终,实验板上要保持整洁,不可随意放置杂物,特别是导电的工具和多余的导线等,以免发生短路等故障。
4、实验完毕,应及时关闭各电源开关,并及时清理实验板面,整理好连接导线并放置到规定的位置。
5、实验前必须充分预习实验指导书。
二、实验模拟装置使用注意事项1、无源阻容元件可供每个运算放大器使用。
2、运算放大器是有源器件,故连在运算放大器上的阻容元件只能供本运算放大器选用。
3、信号幅值不宜过大,按指导书中指示的幅值。
否则,可能使运算放大器处于饱和状态。
三、每次实验内容第一次:实验二第二次:实验三第三次:实验四备注:实验一作为实验前的预习及热身实验一控制系统典型环节的模拟一、实验目的1)、熟悉数字示波器的使用方法2)、掌握用运放组成控制系统典型环节的电子电路3)、测量典型环节的阶跃响应曲线4)、通过实验了解典型环节中参数的变化对输出动态性能的影响二、实验仪器1)、THSSC-1实验箱一个2)、数字示波器一台三、实验原理以运算放大器为核心元件,由其不同的R-C输入网络和反馈网络组成的各种典型环节,如图1-1所示。
图中Z1和Z2为复数阻抗,它们都是由R、C构成。
基于图中A点的电位为虚地,略去流入运放的电流,则由图1-1得:由上式可求得由下列模拟电路组成的典型环节的传递函数及其单位阶跃响应。
1)、比例环节比例环节的模拟电路如图1-2所示:图1-1、运放的反馈连接i u R =410k-++-1VR =820ku o接示波器12图1-2 比例环节(1))(12ZZuuSGio=-=2100200)(12===KKZZSG2u o2)、惯性环节图1-3、惯性环节3)、积分环节图1-4、积分环节4)、比例微分环节(PD ),其接线图如图及阶跃响应如图1-5所示。
)(3 11/1)(12TSRCS R CSZ Z S G ====RC T =积分时间常数式中0u ot)(2 111*R /1/)(21212212+=+=+==TS KCS R R R CSR CSR Z Z S G iu R-++C-1V u o接示波器u o图1-5 比例微分环节5)、比例积分环节,其接线图单位阶跃响应如图1-6所示。
图1-6 比例积分环节6)、振荡环节,其原理框图、接线图及单位阶跃响应分别如下所示。
图1-7 振荡环节原理框图C R T , K (4))1( )1(* /1/)(1D 1211211212==+=+=+==R R S T K CS R R R CS R CS R R Z Z S G D 其中CR T , K (5))11()11(*1 )1(/1)(2212212112121212==+=+=+=+=+==R R S T K CSR R R CS R R R CS R CS R R CS R Z Z S G I 式中0Ku oKu o1u (t)o图1-8 振荡环节接线图图1-8为振荡环节的模拟线路图,它是由惯性环节,积分环节和一个反号器组成。
根据它们的传递函数,可以画出图1-7所示的方框图,图中欲使图1-8为振荡环节,须调整参数K 和T 1,使0<ξ<1,呈欠阻尼状态。
即环节的单位阶跃响应呈振荡衰减形式。
四、实验内容与步骤1、分别画出比例、惯性、积分、微分和振荡环节的电子电路图。
2、按下列各典型环节的传递函数,调节相应的模拟电路的参 数。
观察并记录其单位阶跃响应波形。
1)、比例环节 G 1(S)=1和G 2(S)=22)、积分环节 G 1(S)=1/S 和G 2(S)=1/(0.5S ) 3)、比例微分环节 G 1(S)=2+S 和G 2(S)=1+2S1111222112121i o 211222111011KT 212T 1 , 12 ,2 /// (S)U (S)UT K K )1()( :(8) . C R T , C R T , /K ====++=++=++==+====n n n n n n T T K S S T K T S S T K K S S T K S T S K S G R R ωξξωωωξωω则可求得开环传递函数为由图4)、惯性环节 G 1(S)=1/(S+1)和G 2(S)=1/(0.5S+1)5)、比例积分环节(PI )G (S )=1+1/S 和G (S )=2(1+1/2S )五、注意事项1)、输入的单位阶跃信号取自实验箱中的函数信号发生器。
2)、电子电路中的电阻取千欧,电容为微法。
六、实验报告要求1)、画出六种典型环节的实验电路图,并注明相应的参数。
2)、画出各典型环节的单位阶跃响应波形,并分析参数对响应曲线的影响。
3)、写出实验心得与体会。
七、实验思考题1)、用运放模拟典型环节时,其传递函数是在哪两个假设条件下近似导出的?2)、积分环节和惯性环节主要差别是什么?在什么条件下,惯性环节可以近似地视为积分环节?在什么条件下,又可以视为比例环节?3)、如何根据阶跃响应的波形,确定积分环节和惯性环节的时间常数?101.010)( )6221++=++=S S K S S T K S G 振荡环节实验二 一阶系统的时域响应及参数测定一、 实验目的1)、观察一阶系统在单位阶跃和斜坡输入信号作用下的瞬态响应。
2)、根据一阶系统的单位阶跃响应曲线确定一阶系统的时间常数。
二、 实验仪器1)、THSSC-1实验箱一个 2)、数字示波器一台 三、 实验原理图2-1为一阶系统的模拟电路图。
由该图可知i o =i 1-i 2 根据上式,画出图2-2所示的方框图,其中T=R 0C 。
由图 图2-1一阶系统模拟电路图 2-2得:图2-3为一阶系统的单位阶跃响应曲线。
当t = T 时,C (T )=1 –e -¹=0.632。
这表示当C (t )上升到稳定值的63.2%时,对应的时间就是一阶系统的时间常数T ,根据这个原理,由图2-3可测得一阶系统的时间常数T 。
由上式(1)可知,系统的稳态值为1,因而该系统的跟踪阶跃输入的稳态误差e ss = 0。
这表明一阶系统能跟踪斜坡信号输入,但有稳态误差存在。
其误差的大小CSu CSu R u R ooo o /1R u /1u o i -=∆-=-即eT1-O O i -1(t)u , /111)1(1(S) U , /1)( 1(t),(t)u 11)()( t i o i TS S TS S S S U TS S U S U =+-=+===+=得取拉氏反变换则系统的输出为即令1u (t )o t图2-3iu R -++C-1Vu o接示波器0R 0i 1i 2i 0为系统的时间常数T。
四、实验内容与步骤1、根据图2-1所示的模拟电路,调整R0和C的值,使时间常数T=1S和T=0.1S。
2、u I(t)=1V时,观察并记录一阶系统的时间常数T分别为1S和0.1S时的单位阶跃响应曲线,并标注时间坐标轴。
3、当u I(t)=t时,观察并记录一阶系统时间常数T为1S和0.1S时的响应曲线,其中斜坡信号可以通过实验箱中的三角波信号获得,或者把单位阶跃信号通过一个积分器获得。
五、实验报告1、根据实验,画出一阶系统的时间常数T=1S时的单位阶跃响应曲线,并由实测的曲线求得时间常数T。
2、观察并记录一阶系统的斜坡响应曲线,并由图确定跟踪误差e ss,这一误差值与由终值定理求得的值是否相等?分析产生误差的原因。
六、实验思考题一阶系统为什么对阶跃输入的稳态误差为零,而对单位斜坡输入的稳态误差为T?2、阶系统的单位斜坡响应能否由其单位阶跃响应求得?试说明之。
实验三 二阶系统的瞬态响应分析一、实验目的1、熟悉二阶模拟系统的组成。
2、研究二阶系统分别工作在ξ=1, 0<ξ <1, 和ξ > 1三种状态下的单 位阶跃响应。
3、分析增益K 对二阶系统单位阶跃响应的超调量M P 、峰值时间tp 和调 整时间ts 。
4、研究系统在不同K 值时对斜坡输入的稳态跟踪误差。
二、实验仪器1)、THSSC-1实验箱一个 2)、数字示波器一台 三、实验原理图3-1 二阶系统的模拟电路图3-1为二阶系统的模拟电路图, 它是由惯性环节、积分环节和反号器 组成。
图3-2为图3-1的原理方框图, 图中K=R 2/R 1, T 1=R 2C 1,T 2=R 3C 2。
由图3-2求得二阶系统的闭环传递函 图3-2 二阶系统原理框图:(1))/()/(1)/()()( 2112212221数为而二阶系统标准传递函T T K S T S T T K K S T S T T KS U S U i O ++=++=调节开环增益K 值,不仅能改 变系统无阻尼自然振荡频率ωn 和ξ 的值,可以得到过阻尼(ξ>1)、临界 阻尼(ξ=1)和欠阻尼(ξ<1)三种 情况下的阶跃响应曲线。
(1)、当K >0.625, 0 < ξ < 1, 图3-3 0 < ξ < 1时的阶跃响应曲线系统处在欠阻尼状态,它的单位阶跃响应表达式为:(2)、当K=0.625时,ξ=1,系统 处在临界阻尼状态,它的单位阶 跃响应表达式为:如图3-4为二阶系统工作临界阻尼 时的单位响应曲线。
(3)、当K < 0.625时,ξ> 1,系 统工作在过阻尼状态,它的单位阶跃响应曲线和临界阻尼时的单位阶 图3-4 ξ=1时的阶跃响应曲线跃响应一样为单调的指数上升曲线,但后者的上升速度比前者缓慢。
四、实验内容与步骤1、根据图3-1,调节相应的参数,使系统的开环传递函数为:(2) 2)(222nn nS S S G ωξωω++=t625.0 , 10 , 5.0T , 2.0T 4 ,(2),(1) 211221K K S S KT T T T K n n ======ξωξω则若令得和式对比式线态下的单位阶跃响应曲为二阶系统在欠阻尼状图式中3-3 . 1 (3)) 1sin(111)( 2212ξωωξξωξξω-=-+--=--n d d to tgt t u en etn o n t t u ωω-+-=)1(1)()12.0(5.0)(+=S S KS G2、令ui(t)=1V,在示波器上观察不同K(K=10,5,2,0.5)时的单位阶跃响应的波形,并由实验求得相应的M p、t p和t s的值。
3、调节开环增益K,使二阶系统的阻尼比ξ=1/√ 2 =0.707 ,观察并记录此时的单位阶跃响应波形和M p、t p和t s的值。