反比例函数几何意义

合集下载

21.5.3反比例函数的几何意义课件

21.5.3反比例函数的几何意义课件

解析
本题考查了反比例函数的性质以及等比数列求和 公式。首先根据 x^2n = 9 求出 x^n 的值,然后 将原式变形为等比数列求和的形式进行计算即可 。
解析
本题考查了反比例函数的性质以及不等式组的解 法。首先根据题意列出不等式组求解即可得出 m 的取值范围。
06
总结回顾与课后作业布置
重点难点总结回顾
21.5.3反比例函数 的几何意义课件
汇报人:XXX 2024-01-26
目录
• 反比例函数基本概念 • 反比例函数与直线交点问题 • 反比例函数与面积问题 • 反比例函数在几何图形中应用 • 拓展延伸:反比例函数综合题解析 • 总结回顾与课后作业布置
01
反比例函数基本概念
定义与性质
定义:形如 $y = frac{k}{x}$($k$ 为常 数,$k neq 0$)的函数称为反比例函 数。
在三角形中应用
面积与底高的反比例关系
在三角形中,当底边长度固定时,面积与高成反比例关系; 同样,当高固定时,面积与底边长度成反比例关系。
相似三角形的边长与面积关系
对于两个相似的三角形,其对应边长之比等于相似比的平方 ,而面积之比等于相似比的平方。利用反比例函数可以方便 地求解相关问题。
在四边形中应用
本题考查了反比例函数与一次 函数的交点问题,通过已知条 件列出方程组求解即可。
已知反比例函数 y = k/x (k > 0) 的图象上有两点 A(x1, y1) 和 B(x2, y2),且 x1 < x2,试 比较 y1 和 y2 的大小。
本题考查了反比例函数的增减 性,根据反比例函数的性质, 当 k > 0 时,在每个象限内, y 随 x 的增大而减小。因此, 由于 x1 < x2,可以得出 y1 > y2。

反比例函数中K的几何意义 (1)

反比例函数中K的几何意义 (1)

1 2
|k|.
∴ k=±4.
又双曲线的一支在第二象限,
∴ k=-4.
从而知两个函数的解析式分别为y=
-4 x
和y=-x+4.
18
2009.4
例1
如图2,在函数y=
1 x
的图
y A
像 上 有 三 点 A 、B 、C , 过 这 三 点 分 别
B C
向 x 轴 、y 轴 作 垂 线 ,过 每 一 点 所 作 的
x
两 条 垂 线 与 x 轴 、y 轴 围 成 的 矩 形 面
O
图2
积分别为SA、SB、SC,则( ).
A. SA>SB>SC
B. SA<SB<SC

y=
k x
,∴
xy=k.
y
∴ S=|k|.
PN
过双曲线上任意一点作x轴、
x
y轴的垂线,所得的矩形面积为
MO
常数|k|.
S△PNO=S△PMO=
1 2
|k|.
图1
16
2009.4
课程
资源
思 路·方 法
在解有关反比例函数的面积问题时,若能灵活运用k的几何意
义,会给解题带来方便,现举例说明.
一、比较面积大小
C. S A<SC<SB
D. SA=S B=SC
简解:根据反比例函数k的几何意义可知SA=1,SB=1,SC=1.
∴ SA=S B=SC . 选D.
二、求面积
例2
如 图 3 ,如 果 函 数 y = - x 与 y = -
4 x
的 图 像 交 于 A 、B 两 点 ,过 点
A作AC垂直于y轴,垂足为点C,则△BOC的面积为

反比例函数中k的几何意义的应用

反比例函数中k的几何意义的应用

反比例函数中k的几何意义的应用
k在反比例函数中具有重要的几何意义,以下列举一些它的应用。

1. 直线反比例函数:k反映直线斜率的倒数,即斜率m=-k。

当给定直
线k值时,由定点和k值可以求出斜率m,从而可以绘制出这条直线。

2. 圆反比例函数:k反映圆半径r的倒数,即r=1/k。

当给定圆k值时,由定点和k值可以求出圆半径,从而可以绘制出这个圆。

3. 抛物线反比例函数:k反映抛物线的开口方向,当k > 0时,抛物线
向右开口;当k < 0时,抛物线向左开口。

4. 双曲线反比例函数:k反映双曲线的开口方向,当k>0时,双曲线
开口向右;当k<0时,双曲线开口向左。

5. 其他函数反比例函数:k可以反映此类函数中曲线的凹凸,当k > 0时,曲线是凹曲线;当k < 0时,曲线是凸曲线。

总之,k在反比例函数中应用广泛,几乎所有的函数都可以用反比例函
数表示。

它的几何意义非常重要,不仅仅可以根据k值绘制出各种曲线,而且可以了解曲线的开口方向以及凹凸方向。

因此,k在反比例函
数绘制中发挥着重要的作用。

反比例函数中k的几何意义在解题中的运用

反比例函数中k的几何意义在解题中的运用

反比例函数中k的几何意义在解题中的运用反比例函数中k的几何意义,在解题中具有重要的意义.反比例函数与其他知识的关联运用,依旧离不开反比例函数中k的几何意义.一、k的几何意义过双曲线图像上任一点作坐标轴的垂线段,与原点构造的直角三角过双曲线图像上任一点作坐标轴的垂线段,与原点构造的直角三角形面积等于.已知反比例函数在第一象限的图象如图所示,点在其图象上,点例1 已知反比例函数在第一象限的图象如图所示,点在其图象上,点且,为多少?为x轴正半轴上一点,连接、,且,为多少根据k的几何意义,如图作轴,垂足为.所以.因为,所以.解析根据如图,在平面直角坐标系中,过点M(0,2)的直线l与x轴平行,且练习如图,在平面直角坐标系中,过点直线l分别与反比例函数和的图象交于点P、点Q(1)求点P的坐标;(2)若△POQ的面积为8,求k的值.因为点P在双曲线上,过M(0,2)的直线l与x轴平行,所以点P的纵解 因为点坐标为y=2,则横坐标x=3.所以点P的坐标为P(3,2)所以.因为,所以,所以或.因为图象在第二象限,所以.二、k的几何意义与线段比,面积比的知识关联如图,反比例函数的图象与矩形的两边相交于两点,若是的中例2 如图,反比例函数的图象与矩形的两边相交于两点,若是的中点,,求k的值.双曲线上存在点E与点F,根据k的几何意义,连接O E、OF,解析双曲线上存在点有.又因为点E是AB的中点,所以.可得;.所以点F是CB的中点.所以.可得.因为图象在第一象限,所以k=8.知识关联:此题用到k的几何意义、线段比与面积比的知识关联.三、k的几何意义与三角形相似知识的关联例3 如图,一次函数的图象与轴交于点如图,一次函数的图象与轴交于点A,与反比例函数的图象交于点B, BC垂直轴于点C.若△ABC的面积为1,求k的值.因为点B在反比例函数图象上,得由,得,得假设直线与y轴解析因为点交与点D,则点D(-1,0),OD=1.BC//OD得△ABC~△ADO,可得:.由OD=1得BC=2,把y=2代入得x=1.5.所以点B坐标为(1. 5,2).把x=1. 5,y=3代入中得k=8/3.知识关联:此题用到k的几何意义、三角形相似、线段比与面积比的知识关联.如图,若双曲线与边长为5的等边的边OA, AB分别相交于C, D两练习如图,若双曲线与边长为点,且OC=3BD,求k的值.解析过点作轴于点,过点作轴于点过点作轴于点,过点作轴于点.因为为等边三角形,,可得~,所以.又因为得.设,则.可得即.在中,可得..,所以图象在第一象限,所以作为九年级复习阶段,做好知识间的关联学习,对构成学生的知识系统具有很好的作用.。

反比例函数K的几何意义

反比例函数K的几何意义

反比例函数K 的几何意义知识引入反比例函数)0(≠=k x k y 中k 的几何意义:双曲线)0(≠=k xky 上任意一点向两坐标轴作垂线,两垂线与坐标轴围成的矩形面积为k 。

理由:如下图,过双曲线上任意一点P 作x 轴、y 轴的垂线PM PN 、所得的矩形PMON 的面积PMON S PM PN y x xy =⋅=⋅=矩形;ky x=,xy k ∴=即S k =,即过双曲线上任意一点作x 轴、y 轴的垂线,所得的矩形面积均为k 。

下面两个结论是上述结论的拓展: 如下图,则有k xy S S AOB OPA 2121===∆∆ (1)如图①,OPA OCD OPC ADCP S S S S ∆∆∆==梯形;图①图②(2)如图②,BPE ACE OAPB OBCA S S S S ∆∆==梯形梯形;典型例题题型一:K 意义的直接运用【例1】(2013•宜昌)如图,点B 在反比例函数()02>=x xy 的图象上,横坐标为1,过点B 分别向x 轴,y 轴作垂线,垂足分别为A C 、,则矩形OABC 的面积为_______2、(2013•淄博)如图,矩形AOBC 的面积为4,反比例函数xky =的图象的一支经过矩形对角线的交点P ,则该反比例函数的解析式是__________【变式练习】:1、如图,A 是反比例函数图象上一点,过点A 作AB y ⊥轴于点B ,点P 在x 轴上:ABP∆的面积为2,则这个反比例函数的解析式为______________.2、如图,A B 、为双曲线xy 12-=上的点,AD x ⊥轴于D ,BC y ⊥轴于点C ,则四边形ABCD 的面积为。

题型二:知K 求面积【例2】①双曲线xy 4=在第一象限内的图像如图所示,作一条平行于x 轴的直线分别交双曲线于A 点,交y 轴于B 点,点C 为x 轴上一点,连结AC 交y 轴于D 点,连结BC ,若DBC ∆的面积为3,则ABD ∆的面积为。

反比例函数性质-对称性与几何意义ppt

反比例函数性质-对称性与几何意义ppt

的面积求K值时,一定要注意图像所在 的象限,从而确定K的符号。
能力提高,拓展思维--典型例题 确定解析式
反比例函数
k y= x
与一次函数y=-x-k的图象相交
于点A,过点A作AB垂直于x轴于点B,已知三角形AOB 的面积等于2,直线y=-x-k与x轴相交于点C,求反比 例函数与一次函数的解析式。 y
4 2.若在反比例函数 y 中也用同样的方法分别 x 取P,Q两点填写表格: 4 y x
P(1,-4) Q(2,-2)
S1的值 4
S2的值
S1与S2 关系
与k的关 系
4
s1=s2
s1=s2=|k|
于是:我们发现了反比例函数的几何意义
k 对于反比例函数 y x 点Q是其图像上的任意 一点,作QA垂直于y轴, 作QB垂直于X轴,矩 形QABO的面积与k有 |k| 什么关系SAOBQ= 三角形QAO与三角形 QBO的面积和k又有什 K 么关系呢?SQAO=SQBO=
如图,点M是反比例函数 为 2 .
y=
4 x
图象上的一
点,MP⊥x轴于P.则△POM的面积
y
M
o P
x
应用新知,加深理解--几何意义应用
应用三、已知面积,求K
﹣ 12 下面各点 PA⊥x轴于A.则△POA的面积为6,则k= --------。
也在这个反比例函数图象上的是( B )
A(2,3) B(-2,6) C(2,6)
y A
o C x
(2)若一次函数y=ax+1经过A
点,求此一次函数的解析式。 B
(3)若一次函数与x轴相交于点C,
求∠AOC的度数和|AO|: |AC|的值
K

反比例函数几何意义公式

反比例函数几何意义公式

反比例函数几何意义公式摘要:1.反比例函数的定义和几何意义2.反比例函数的几何意义公式3.反比例函数图形与系数的关系4.反比例函数在实际生活中的应用5.总结正文:在我们学习数学的时候,反比例函数是一个重要的知识点。

它不仅具有丰富的理论意义,还在实际生活中有着广泛的应用。

本文将介绍反比例函数的几何意义公式,以及反比例函数图形与系数的关系,帮助大家更好地理解和应用反比例函数。

首先,我们来回顾一下反比例函数的定义。

反比例函数是指形如y = k/x (其中k为常数,x≠0)的函数。

在这个定义中,x和y分别代表自变量和因变量,k为比例系数。

那么,反比例函数的几何意义是什么呢?反比例函数的几何意义在于,它表示了平面上一点到原点的距离与该点到另一固定点的距离的比值。

换句话说,反比例函数描述了平面上一点与原点及另一固定点之间距离的比例关系。

接下来,我们来看一下反比例函数的几何意义公式。

设点P(x,y)到原点O的距离为PO,到固定点A的距离为PA,那么反比例函数的几何意义公式可以表示为:PO / PA = k其中k为反比例函数的比例系数。

根据这个公式,我们可以看出反比例函数图形的几何意义:在平面直角坐标系中,点P(x,y)与原点O和固定点A 的距离比例为k。

反比例函数图形与系数的关系也非常明显。

当k>0时,反比例函数图形为第一、三象限;当k<0时,反比例函数图形为第二、四象限。

此外,反比例函数图形的分支数量与k有关。

当k>1时,反比例函数图形有两个分支;当0<k<1时,反比例函数图形有四个分支;当k=1时,反比例函数图形为一个点;当k<0时,反比例函数图形无分支。

最后,我们来看一下反比例函数在实际生活中的应用。

反比例函数在实际生活中有很多应用,比如物理中的电磁学、力学等领域,经济学中的成本与收益分析等。

通过了解反比例函数的几何意义和公式,我们可以更好地解决实际问题。

总之,反比例函数是一个既有理论意义又有实际应用的数学知识点。

1.2反比例函数k的几何意义(第4课时)ppt课件

1.2反比例函数k的几何意义(第4课时)ppt课件

o
A
x
o
A
x
18
2.如图,点P是反比例函数图象上的一点,过点P分别向x轴、y轴作垂线,若阴影部分面 积为1,则这个反比例函数的关系式是 .
y 2 y
x
y
P
P
C oO D
xx
y k (k 0) 的面积不变性
x
y P( x, y) S K k ( k 0 )
22
0
Q
x
y
P( x , y)
x 0
3
1
平面直. 角坐标系内任意一点P(x,y)
P到x轴的距离是这点纵坐标的绝对值即是
P到y轴的距离是6这点横坐的绝对值即0是.5
y
y
x
y
p
N
M
ox
4
1.如图,点P(3,2)在反比例
函数 y k 图像上 则K=( 6 ),过xP作PA⊥x轴,
PB⊥y轴,则OA=( 3), PA=( 2),S矩形OAPB=( )6
如图s矩形oapbsoap10反比例函数上一点px0y0过点p分别作pay轴pbx轴垂足分别为ab则矩形aobp的面积为且saopsbop1112则有面积分别为轴引垂线经过三点分别向的图像上有三点occobboaaocoboas2s3b1c1s1s3s213已知点p是反比例函数14谢谢大家再见15九年级数学组16垂足分别为轴的垂线apoa过反比例函数图象上任一点p分别作x轴y轴的垂线垂足分别为ab它们与坐标轴形成的矩形面积是不变的
oA
x
y
CE B F
x
O
A
16
过反比例函数图象上任一点P分别作x轴、y轴的垂线,垂足分别为A,B,它们与
坐标(轴2形)过 成的P 矩分 形面积是别 不变x轴 的。作 ,y轴 的,垂 足 线分 A,B别 ,

反比例函数k的几何意义

反比例函数k的几何意义

知识讲解1.反比例函数的概念如图所示,过双曲线)0(k≠=kxy上任一点),(yxP作x轴、y轴的垂线PM、PN,垂足为M、N,所得矩形PMON的面积S=PM∙PN=|y|∙|x|.,yxk=∴||kSkxy==,。

这就说明,过双曲线上任意一点作x轴、y轴的垂线,所得到的矩形的面积为常数|k|。

这是系数k几何意义,明确了k的几何意义,会给解题带来许多方便。

(请学生思考,图中三角形OEF的面积和系数k的关系。

)2.反比例函数的图象在用描点法画反比例函数y=kx的图象时,应注意自变量x的取值不能为0,应从1或-1开始对称取点.例题1函数y=1x-(x>0)的图象大致是( )例题2 函数y=kx+1与函数y=kx在同一坐标系中的大致图象是( )yOxAyO xByOxCyOxD y y y y3.反比例函数y=kx 中k 的意义注意:反比例函数y=k x (k ≠0)中比例系数k 的几何意义,即过双曲线y=kx(k ≠0)上任意一点引x 轴、y 轴垂线,所得矩形面积为│k │.例题1:如图,P 、C 是函数x4y =(x>0)图像上的任意两点,过点P 作x 轴的垂线PA,垂足为A ,过点C 作x 轴的垂线CD,垂足为D ,连接OC 交PA 于点E ,设⊿POA 的面积为S1,则S1= ,梯形CEAD 的面积为S2,则S1与S2的大小关系是S1 S2, ⊿POE 的面积S3和梯形CEAD 的面积为S2的大小关系是S2 S3.例题1图 例题2图 例题3图例题2:如图所示,直线l 与双曲线)0(ky >=k x交A 、B 两点,P 是AB 上的点,试比较⊿AOC 的面积S1,⊿BOD 的面积S2,⊿POE 的面积S3的大小: 。

例题3:如图所示,点A(x1,y1)、B(x2,y2)都在双曲线)0x (k>=xy 上,且x2-x1=4,y1-y2=2;分别过点A 、B 向x 轴、y 轴作垂线,垂足分别为C 、D 、E 、F ,AC 与BF 相交于G 点,四边形FOCG 的面积为2,五边形AEODB 的面积为14,那么双曲线的解析式为 。

反比例函数中K的几何意义

反比例函数中K的几何意义
新知探索
k 1、点B(-5,-4)在函数y= x 的图像上,则k=
S 2、点B(-4,-5)也在该图像上,则 = 矩形AOCB
S ,
= 矩形AOCB


S 3、点B(m,n)在函数y= k图像上,则
= 矩形AOCB

x
14
k
12
y=
x
10
8
6
4
F
E
2
A
20
15
10
5
O
5
10
15
20
2
B
C
4
6
8
10
归纳总结:
过反比例函数y= 为A,C,则
kx中任意一点B(m,n)分别作x轴,y轴的垂线,垂足分别
归纳总结:S矩形ABCO=|k| |k|
S OEF= 2
练习:如图所示,A是反比例函数图象上一点,过点A 作ABy轴于点B,点P在x轴上, ABP的面积 为2,求反比例函数的关系式。
思考:如何求 ABP的面积? ABP的面积与 ABO的面积有何关系?
2
1
O
1
2
3
4
5
6
7
8
0.5
1
1.5
拓展提升2:
如图,过y轴正半轴上的任意一点P做x轴的平行线,分别
与反比例函数y =
4 x
和y
=
2 x
的图像交于A和B,若点C是x
轴上任一点,连接AC,BC,求 ABC的面积。
5.5
5
4.5 4
3.5
A
4 y= x
3
P
B
2
2.5
y= x

反比例函数K的几何意义

反比例函数K的几何意义
(2)A、C落在反比例函数的图象上, 设矩形平移后A坐标是(2,6-b),C坐标是(6,4-b), ∵A、C落在反比例函数的图象上, ∴k=2(6-b)=6(4-b), ∴b=3, 即矩形平移后A的坐标是(2,3), 代入反比例函数的解析式得:k=2×3=6,
【山东·全国考题回访】
1.(2014·济南中考)如图,△OAC和△BAD都是等
如图,过y轴正半轴上的任意一点P,作x轴 的平行线,分别与反比例函数y=-4/x和 y=2/x交于点A和点B,若点C是x轴上任意一 点,连接AC、BC,则△ABC的面积为
点B,D在反比例函数y=b/x(b<0)的图象上,
AB∥CD∥x轴,AB,CD在x轴的两侧,AB=3,CD=2,
AB与CD的距离为5,则a-b的值是
则S△OBC=
1·(-x)·22y=6.解得k=xy=-6. 2
答案:-6
如图,直线l⊥x轴于点P,且与反比例函数 y1=k1/x(x>0)及y2=k2/x(x>0)的图像分别交于点A, B,连接OA,OB,已知△OAB的面积为3,则k1-k2 的值等于( )
如图△P1OA1,△P2A1A2是等腰直角三角形,点P1, P2在函数y=4/x(x>0)的图象上,斜边OA1,A1A2 都在x轴上,则点A2的坐标是______.
答案:6
(1)直接写出B、C、D三点的坐标;
(2)若将矩形向下平移,矩形的两个顶点恰好同 时落在反比例函数的图象上,猜想是哪两个点, 并求矩形的平移距离和反比例函数的解析式.
(1)∵四边形ABCD是矩形,平行于x轴,且AB=2,AD=4, 点A的坐标为(2,6). ∴AB=CD=2,AD=BC=4, ∴B(2,4),C(6,4),D(6,6);
腰直角三角形,∠ACO=∠ADB=90°,反比例函数 y= k 在第一象限的图象经过点B,若OA2-AB2=12, 则kx的值为_______.

专题12 反比例函数比例系数k的几何意义(解析版)

专题12 反比例函数比例系数k的几何意义(解析版)

1专题12 反比例函数比例系数k 的几何意义知识对接考点一、反比例函数比例系数k 的几何意义(1)意义:从反比例函数y =(k≠0)图象上任意一点向x 轴和y 轴作垂线,垂线与坐标轴所围成的矩形面积为|k|,以该点、一个垂足和原点为顶点的三角形的面积为1/2|k|. (2)常见的面积类型:失分点警示已知相关面积,求反比例函数的表达式,注意若函数图象在第二、四象限,则k <0. 例:已知反比例函数图象上任一点作坐标轴的垂线所围成矩形为3,则该反比例函数解析式为:3y x =或3y x =-专项训练一、单选题1.如图,已知反比例函数2y x=-的图像上有一点P ,过点P 作PA x ⊥轴,垂足为点A ,则POA的面积是( )A .2B .1C .1-D .12【答案】B 【分析】设(),P x y ,则POA 的面积是1122x y xy ••=,再结合2y x=-即可求解.【详解】解:设(),P x y ,则POA 的面积是1122x y xy ••=,∵2y x=-∵22xy =-=∵POA 的面积是1212⨯=.故选:B . 【点睛】本题考查了反比例函数与图形的面积计算,解题的关键是熟练运用数形结合的思想. 2.如图,在平面直角坐标系中,A ,B 是反比例函数ky x=在第一象限的图象上的两点,且其横坐标分别为1,4,若AOB 的面积为54,则k 的值为()A .23B .1C .2D .154【答案】A 【分析】过点A 作AC y ⊥轴,过点B 作BD x ⊥轴,反向延长AC BD 、交于点E ,利用割补法表示出AOB 的面积,即可求解. 【详解】解:过点A 作AC y ⊥轴,过点B 作BD x ⊥轴,反向延长AC BD 、交于点E ,如下图:则四边形ODEC 为矩形3点AB 、的横坐标分别为1,4, 则(1,)(4,)4kA kB 、,(0,)(4,0)(4,)C kDE k 、、11154143224244AOBAOCOBDABEODEC k k SS SSSk k k ⎛⎫=---=-⨯⨯-⨯⨯-⨯⨯-= ⎪⎝⎭矩形解得23k = 故选A【点睛】此题考查了反比例函数的有关性质,涉及了割补法求解三角形面积,熟练掌握反比例函数的有关性质是解题的关键.3.若图中反比例函数的表达式均为4y x=,则阴影面积为4的有( )A .1个B .2个C .3个D .4个【答案】B 【分析】根据反比例函数比例系数k 的几何意义,反比例函数的性质以及三角形的面积公式,分别求出四个图形中阴影部分的面积,即可求解. 【详解】解:图1中,阴影面积为xy =4; 图2中,阴影面积为12xy =12×4=2; 图3中,阴影面积为2×12xy =2×12×4=4; 图4中,阴影面积为4×12xy =4×12×4=8; 则阴影面积为4的有2个. 故选:B . 【点睛】本题考查了反比例函数ky x=中k 的几何意义,即过双曲线上任意一点引x 轴、y 轴垂线,所得矩形面积为|k |,是经常考查的一个知识点;这里体现了数形结合的思想,做此类题一定要正确理解k 的几何意义.也考查了反比例函数的对称性,三角形的面积.4.如图,点A 是反比例函数4y x=-图象上的一个动点,过点A 作AB ∵x 轴,AC ∵y 轴,垂足分别为B ,C ,则矩形ABOC 的面积为( )A .-4B .2C .4D .8【答案】C 【分析】根据反比函数的几何意义,可得矩形ABOC 的面积等于比例系数的绝对值,即可求解. 【详解】解:∵点A 是反比例函数4y x=-图象上的一个动点,过点A 作AB ∵x 轴,AC ∵y 轴,∵矩形ABOC 的面积44-= . 故选:C . 【点睛】本题主要考查了反比函数的几何意义,熟练掌握本题主要考查了反比例函数()0ky k x=≠ 中k 的几何意义,即过双曲线上任意一点引x 轴、y 轴垂线,所得矩形面积等于k 是解题的关键.5.如图,等腰ABC 中,5AB AC ==,8BC =,点B 在y 轴上,//BC x 轴,反比例函数ky x=(0k >,0x >)的图象经过点A ,交BC 于点D .若AB BD =,则k 的值为( )5A .60B .48C .36D .20【答案】A 【分析】过A 作AE ∵BC 于E 交x 轴于F ,则AF ∵y 轴,根据矩形的性质得到EF =OB ,根据勾股定理得到3AE =,设OB =a ,则A (4,3),(5,)a D a +,即可得到4(3)5k a a =+=,解方程求得a 的值,即可得到D 的坐标,进而求得k 的值. 【详解】解:过A 作AE ∵BC 于E 交x 轴于F , ∵5AB AC ==,8BC =, ∵142BE BC ==,∵3AE ==, 设OB =a , ∵BD =AB =5, ∵A (4,3),(5,)a D a +, ∵反比例函数ky x=(0k >,0x >)的图象经过点A ,交BC 于点D . ∵4(3)5k a a =+=, 解得:a =12, ∵51260k =⨯=, 故选择:A .【点睛】本题考查了反比例函数图象上点的坐标特征,等腰三角形的性质,勾股定理,表示出点的坐标是解题的关键.6.在平面直角从标系中,30°的直角三角尺直角顶点与坐标原点重合,双曲线11ky x =(x >0),经过点B ,双曲线22k y x=(x <0),经过点C ,则12k k =( )A .﹣3B .3 C.D【答案】A 【分析】作AM ∵x 轴于M ,BN ∵x 轴于N ,由反比例函数系数k 的几何意义得到k 1=2S ∵AOM ,k 2=﹣2S ∵BON,解直角三角形求得o tan 30OB OA =∵AOM ∵∵OBN ,得到2=3AOM BOMSOA SOB ⎛⎫= ⎪⎝⎭进而得到123k k =-. 【详解】作AM ∵x 轴于M ,BN ∵x 轴于N , ∵S ∵AOM =12|k 1|,S ∵BON =12|k 2|,∵k 1>0,k 2<0,∵k 1=2S ∵AOM ,k 2=﹣2S∵BON , 在Rt ∵AOB 中,∵BAO =30°,7∵o tan 30OB OA = ∵∵AOM +∵BON =90°=∵AOM +∵OAM , ∵∵OAM =∵BON , ∵∵AMO =∵ONB =90°, ∵∵AOM ∵∵OBN ,∵2=3AOM BOMS OA S OB ⎛⎫= ⎪⎝⎭, ∵12232AOMBOMk S k S ==--, 故选A .【点睛】本题主要考查了反比例函数比例系数k 的几何意义,相似三角形的性质与判定,解题的关键在于能够熟练掌握相关知识进行求解. 7.如图,A 、B 是双曲线y =kx图象上的两点,过A 点作AC ∵x 轴于点C ,交OB 于点D ,BD =2OD ,且ADO 的面积为8,则DCO 的面积为( )A .12B .1C .32D .2【答案】B 【分析】过点B 作BH x ⊥轴于点H ,根据反比例函数比例系数k 的几何意义,即可得到ADO △的面积与梯形CDBH 的面积相等,再根据DCO BOH △∽△,即可求得DCO 的面积.【详解】解:过点B作BH∵x轴于点H,∵AC∵x轴于点C,∵AOC的面积与BOH的面积相等,∵ADO的面积与梯形CDBH的面积相等,∵ADO的面积为8,∵梯形CDBH的面积为8,∵DC//BH,∵DOC∵BOH,∵BD=2OD,∵DOC与BOH的相似比为1:3,∵DOC与BOH的面积比为1:9,设DCO的面积比为x,则x:(x+8)=1:9,解得:x=1,故选:B.【点睛】本题考查了反比例函数比例系数k的几何意义,三角形的相似及相似的性质,得到ADO△的面积与梯形CDBH的面积相等和DOC BOH∽是解决本题的关键.8.如图,平行于y轴的直线l分别与反比例函数kyx=(x>0)和1yx=-(x>0)的图象交于M、N两点,点P是y轴上一动点,若∵PMN的面积为2,则k的值为()A.2B.3C.4D.5【答案】B9【分析】由题意易得点M 到y 轴的距离即为∵PMN 以MN 为底的高,点M 、N 的横坐标相等,设点1,,,k M a N a a a ⎛⎫⎛⎫- ⎪ ⎪⎝⎭⎝⎭,则有11k k MN a a a +⎛⎫=--= ⎪⎝⎭,进而根据三角形面积公式可求解.【详解】解:由平行于y 轴的直线l 分别与反比例函数k y x =(x >0)和1y x=-(x >0)的图象交于M 、N 两点,可得:点M 到y 轴的距离即为∵PMN 以MN 为底的高,点M 、N 的横坐标相等,设点1,,,k M a N a a a ⎛⎫⎛⎫- ⎪ ⎪⎝⎭⎝⎭,∵11k k MN a a a+⎛⎫=--= ⎪⎝⎭, ∵∵PMN 的面积为2, ∵111222PMNk SMN a a a+=⋅=⨯⨯=, 解得:3k =; 故选B . 【点睛】本题主要考查反比例函数与几何的综合,熟练掌握反比例函数与几何的综合是解题的关键. 9.如图,过x 轴正半轴上的任意一点P ,作y 轴的平行线,分别与反比例函数y 3=x(x >0)和y 6=x-(x >0)的图象交于B 、A 两点.若点C 是y 轴上任意一点,则∵ABC 的面积为( )A .3B .6C .9D .92【答案】D 【分析】设P (a ,0),由直线APB 与y 轴平行,得到A 和B 的横坐标都为a ,将x =a 代入反比例函数y 6x-=和y 3x =中,分别表示出A 和B 的纵坐标,进而由AP +BP 表示出AB ,三角形ABC的面积12⨯=AB×P的横坐标,求出即可.【详解】解:设P(a,0),a>0,则A和B的横坐标都为a,将x=a代入反比例函数y6x=-中得:y6a=-,故A(a,6a-);将x=a代入反比例函数y3x=中得:y3a=,故B(a,3a),∵AB=AP+BP639a a a+==,则S∵ABC12=AB•x P19922aa=⨯⨯=,故选D.【点睛】本题主要考查反比例函数图象k的几何意义,解决本题的关键是要熟练掌握反比例函数k的几何意义.10.如图.在平面直角坐标系中,∵AOB的面积为278,BA垂直x轴于点A,OB与双曲线y=kx相交于点C,且BC∵OC=1∵2,则k的值为()A.﹣3B.﹣94C.3D.92【答案】A【分析】过C作CD∵x轴于D,可得∵DOC∵∵AOB,根据相似三角形的性质求出S∵DOC,由反比例11函数系数k 的几何意义即可求得k . 【详解】解:过C 作CD ∵x 轴于D ,∵BC OC=12, ∵OCOB =23, ∵BA ∵x 轴, ∵CD ∵AB , ∵∵DOC ∵∵AOB , ∵DOC AOB S S ∆∆=(OC OB )2=(23)2=49, ∵S ∵AOB =278, ∵S ∵DOC =49S ∵AOB =49×278=32,∵双曲线y =kx在第二象限,∵k =﹣2×32=﹣3,故选:A . 【点睛】本题主要考查了反比例函数系数k 的几何意义,相似三角形的性质和判定,根据相似三角形的性质和判定求出S ∵DOC 是解决问题的关键. 二、填空题11.如图,平面直角坐标系中,O 是坐标原点,点A 是反比例函数()0ky k x=≠图象上的一点,过点A 分别作AM x ⊥轴于点M ,AN y ⊥轴于点N .若四边形AMON 的面积为12,则k 的值是__________.【答案】-12【分析】根据反比例函数的比例系数k的几何意义得到12k=,然后根据反比例函数的性质确定k的值.【详解】解:四边形AMON的面积为12,12k∴=,反比例函数图象在二四象限,k∴<,12k∴=-,故答案为:12-.【点睛】本题考查了反比例函数函数k的几何意义:在反比例函数kyx=图象中任取一点,过这一个点向x轴和y轴分别作垂线,与坐标轴围成的矩形的面积是定值||k.12.如图,在反比例函数3yx=的图象上有一动点A,连接AO并延长交图象的另一支于点B,在第二象限内有一点C,满足AC=BC,当点A运动时,点C始终在函数kyx=的图象上运动,tan∵CAB=2,则k的值为_____【答案】﹣12【分析】连接OC,过点A作AE∵x轴于点E,过点C作CF∵y轴于点F,通过角的计算找出∵AOE=∵COF,结合“∵AEO=90°,∵CFO=90°”可得出∵AOE∵∵COF,根据相似三角形的性质得出比例式,再由tan∵CAB=2,可得出CF•OF的值,进而得到k的值.【详解】如图,连接OC,过点A作AE∵x轴于点E,过点C作CF∵y轴于点F.∵由直线AB与反比例函数3yx=的对称性可知A、B点关于O点对称,∵AO=BO.又∵AC=BC,∵CO∵AB.∵∵AOE+∵AOF=90°,∵AOF+∵COF=90°,∵∵AOE=∵COF.又∵∵AEO=90°,∵CFO=90°,∵∵AOE∵∵COF,∵AE OE AO CF OF CO==,∵tan∵CABOCOA==2,∵CF=2AE,OF=2OE.又∵AE•OE=3,CF•OF=|k|,∵|k|=CF•OF=2AE×2OE=4AE×OE=12,∵k=±12.∵点C在第二象限,∵k=﹣12.故答案为:﹣12.13【点睛】本题考查了反比例函数图象上点的坐标特征、反比例函数的性质以及相似三角形的判定及性质,锐角三角函数,解答本题的关键是求出CF•OF=12.解答该题型题目时,巧妙的利用了相似三角形的性质找出对应边的比例,再结合反比例函数图象上点的坐标特征找出结论.13.如图,点P在反比例函数4yx=-的图像上,过点P作PA x⊥轴于点A,则POA的面积是_______.【答案】2【分析】设出点P的坐标,∵OAP的面积等于点P的横纵坐标的积的一半,把相关数值代入即可.【详解】解:设点P的坐标为(x,y).∵P(x,y)在反比例函数4yx=-的图象上,∵4 xy=-,∵122POAS xy==,故答案为:2.【点睛】题考查了反比例函数比例系数k的几何意义:在反比例函数ky=x图象中任取一点,过这一个点向x轴和y轴分别作垂线,与坐标轴围成的矩形的面积是定值|k|.14.如图所示,反比例函数kyx=(0k≠,0x>)的图像经过矩形OABC的对角线AC的中15点D .若矩形OABC 的面积为8,则k 的值为________.【答案】2 【分析】过点D 作DE ∵OA 于点E ,由矩形的性质可知:S ∵AOC =12S 矩形OABC =4,从而可求出∵ODE 的面积,利用反比例函数中k 的几何意义即可求出k 的值. 【详解】如图,过点D 作DE OA ⊥于点E ,设,k D m m ⎛⎫ ⎪⎝⎭,则OE m =,k DE m=, ∵点D 是矩形OABC 的对角线AC 的中点, ∵2OA m =,2k OC m=, ∵矩形OABC 的面积为8, ∵228kOA OC m m⋅=⋅=, ∵2k =, 故答案为:k =2.【点睛】本题考查了反比例函数系数k 的几何意义,解题的关键是求出矩形的面积. 15.如图,点A 与点B 分别在函数11(0)k y k x=>与220)k y k x =<(的图象上,线段AB 的中点M 在y 轴上.若∵AOB 的面积为3,则12k k -的值是___.【答案】6【分析】设A(a,b),B(-a,d),代入双曲线得到k1=ab,k2=-ad,根据三角形的面积公式求出ab+ad=6,即可得出答案.【详解】解:作AC∵x轴于C,BD∵x轴于D,∵AC∵BD∵y轴,∵M是AB的中点,∵OC=OD,设A(a,b),B(-a,d),代入得:k1=ab,k2=-ad,∵S∵AOB=3,∵111()23 222b d a ab ad+--=,∵ab+ad=6,∵k1-k2=6,故答案为:6.【点睛】本题主要考查对反比例函数系数的几何意义,反比例函数图象上点的坐标特征,三角形的面积等知识点的理解和掌握,能求出ab+ad=6是解此题的关键.三、解答题16.如图,一次函数122y x=-的图象分别交x轴、y轴于A、B,P为AB上一点且PC为17AOB 的中位线,PC 的延长线交反比例函数ky x=(0k >)的图象于点Q ,32OQCS =.(1)求A 点和B 点的坐标; (2)求k 的值和Q 点的坐标.【答案】(1)A (4,0),B (0,-2);(2)3k =,Q 的坐标为(2 ,32).【分析】(1)因为一次函数y =12x -2的图象分别交x 轴,y 轴于A ,B ,所以当y =0时,可求出A 的横坐标,当x =0时可求出B 的纵坐标,从而可得解.(2)因为三角形OQC 的面积是Q 点的横纵坐标乘积的一半,且等于32,所以可求出k 的值,PC 为中位线,可求出C 的横坐标,也是Q 的横坐标,代入反比例函数可求出纵坐标. 【详解】解:(1)设A 点的坐标为(a ,0),B 点坐标为(0,b ), 分别代入y =12x -2,解方程得a =4,b =-2, ∵A (4,0),B (0,-2); (2)∵PC 是∵AOB 的中位线, ∵PC ∵x 轴,即QC ∵OC , 又Q 在反比例函数ky x=的图象上, ∵2S ∵OQC =k ,∵k =2×32=3,∵PC 是∵AOB 的中位线, ∵C (2,0), 可设Q (2,q )∵Q 在反比例函数ky x=的图象上, ∵q =32,∵点Q 的坐标为(2 ,32).【点睛】本题考查反比例函数的综合运用,熟练掌握并应用反比例函数ky x=(0k >)中k 的几何意义是解题的关键.17.点O 为平面直角坐标系的原点,点A 、C 在反比例函数ay x=的图象上,点B 、D 在反比例函数by x=的图象上,且0a b >>.(1)若点A 的坐标为()6,4,点B 恰好为OA 的中点,过点A 作AN x ⊥轴于点N ,交b y x=的图象于点P . ∵请求出a 、b 的值; ∵试求OBP 的面积.(2)若////AB CD x 轴,32CD AB ==,AB 与CD 间的距离为6,试说明-a b 的值是否为某一固定值?如果是定值,试求出这个定值;若不是定值,请说明理由.【答案】(1)∵a =24,b =6∵92;(2)是定值为92.【分析】(1)∵把A ()6,4代入反比例函数ay x=即可求出a ,根据点B 为OA 的中点,求出B 点坐标,代入by x=即可求出b ;∵根据k 的几何意义求出∵AOP 的面积,再连接BP ,根据中线的性质即可求解;19(2)先分析,A C 分别位于a y x =的两个分支,,B D 分别位于 by x=的两个分支;再利用反比例函数系数k 的几何意义,表示S ∵AOB 和S ∵COD ,再根据三角形的面积公式,AB 与CD 之间的距离为6,即求出答案. 【详解】(1)∵把A ()6,4代入反比例函数ay x=,得a =6×4=24 ∵点B 为OA 的中点, ∵B (3,2)把B (3,2)代入反比例函数by x=,得b =3×2=6 ∵∵S ∵AOP = S ∵AON -S ∵NOP = 1122a b -=9 ∵B 点是OA 的中点, ∵BP 是∵AOP 的中线∵OBP 的面积=12×9=92;(2)如图,当,A C 在a y x =的第一象限的图像上时,,B D 在by x=的第一象限的图像上时////AB CD x 轴,32CD AB ==,∴AOBS=1122AOM BOM S S a b -=-△△, COD S =△1122CON DON S S a b -=-△△∴COD S =△AOBS1=2AOB S AB OM ⨯△,12COD S CD ON =⨯△OM ON ∴=则点A 与点C 重合,点B 与点D 重合 即AB 与CD 间的距离为0,,A C ∴分别位于a y x =的两个分支,,B D 分别位于 by x=的两个分支; 如图,延长AB 、CD 交y 轴于点E 、F ,∵点A 、C 在反比例函数a y x =的图象上,点B 、D 在反比例函数by x=的图象上,a >b >0,////AB CD x 轴,∵AB 与CD 间的距离为6, ∵OE +OF =6 ∵S ∵AOE =12a =12a =S ∵COF ,S ∵BOE =12b =12b =S ∵DOF ,∵S ∵AOB =S ∵AOE −S ∵BOE =12a −12b =12AB •OE =34OE ,S ∵COD =S ∵COF −S ∵DOF =12a −12b =12CD •OF =34OF ,∵S ∵AOB +S ∵COD =a −b =34OE +34OF =34(OE +OF )=92.92a b ∴-=. 【点睛】本题考查反比例函数图象上点的坐标特征以及反比例函数系数k 的几何意义,理解反比例函数系数k 的几何意义是正确解答的关键.18.如图,点C 在反比例函数y 1=x 的图象上,CA ∵y 轴,交反比例函数y 3=x 的图象于点A ,CB ∵x 轴,交反比例函数y 3=x的图象于点B ,连结AB 、OA 和OB ,已知CA =2,则∵ABO的面积为__.【答案】4【分析】设A(a,3a),则C(a,1a),根据题意求得a=1,从而求得A(1,3),C(1,1),进一步求得B(3,1),然后作BE∵x轴于E,延长AC交x轴于D,根据S∵ABO=S∵AOD+S梯形ABED ﹣S∵BOE和反比例函数系数k的几何意义得出S∵ABO=S梯形ABED,即可求得结果.【详解】解:设A(a,3a),则C(a,1a),∵CA=2,∵31a a-=2,解得a=1,∵A(1,3),C(1,1),∵B(3,1),作BE∵x轴于E,延长AC交x轴于D,∵S∵ABO=S∵AOD+S梯形ABED﹣S∵BOE,S∵AOD=S∵BOE32 =,∵S∵ABO=S梯形ABED12=(1+3)(3﹣1)=4;故答案为:4.【点睛】本题考查了反比例函数系数k的几何意义和三角形的面积,得出S∵ABO=S梯形ABED是解题的关键.19.如图是反比例函数2yx=与反比例函数在第一象限中的图象,点P是4yx=图象上一动21点, P A ∵X 轴于点A ,交函数2y x =图象于点C ,PB ∵Y 轴于点B ,交函数 2y x=图象于点D ,点D 的横坐标为a .(1)用字母a 表示点P 的坐标; (2)求四边形ODPC 的面积;(3)连接DC 交X 轴于点E ,连接DA 、PE ,求证:四边形DAEP 是平行四边形. 【答案】(1)P (2a ,2a);(2)2;(3)见解析【分析】(1)先求出点D 的纵坐标得到点P 的纵坐标,代入解析式即可得到点P 的横坐标; (2)利用矩形的面积计算公式及反比例函数k 值的几何意义,利用OBD OAC OAPB S S S ∆∆--四边形,即可求出答案;(3)证明∵DPC ∵∵EAC ,即可得到结论. 【详解】解:(1)∵点D 的横坐标为a ,且点D 在函数2y x=图象上, ∵点D 的纵坐标2y a=, 又PB ∵y 轴,且点P 在4y x=图象上, ∵点P 的纵坐标2y a=, ∵点P 的横坐标为x =2a , ∵P (2a ,2a);23(2)∵224OAPB S a a =⨯=四边形,ΔΔ1212OBD OAC S S a a==⨯⨯=, ∵D C 422O P S =-=四边形;(3)∵P A ∵x 轴于点A ,交函数2y x=图象于点C , ∵点C 的坐标为(2a ,1a), 又P (2a ,2a),∵PC =CA =1a, ∵DP ∵AE ,∵∵PDE =∵DEA ,∵DP A =∵P AE , ∵∵DPC ∵∵EAC , ∵DP =AE ,∵四边形DAEP 是平行四边形. 【点睛】此题考查反比例函数的性质,反比例函数图象与几何图形,平行四边形的判定定理,反比例函数k 值的几何意义,熟练掌握反比例函数的性质及计算方法是解题的关键.20.如图,点A (﹣2,y 1)、B (﹣6,y 2)在反比例函数y =kx(k <0)的图象上,AC ∵x轴,BD ∵y 轴,垂足分别为C 、D ,AC 与BD 相交于点E .(1)根据图象直接写出y 1、y 2的大小关系,并通过计算加以验证;(2)结合以上信息,从∵四边形OCED 的面积为2,∵BE =2AE 这两个条件中任选一个作为补充条件,求k 的值.你选择的条件是 (只填序号). 【答案】(1)12y y >,见解析;(2)见解析,∵(也可以选择∵) 【分析】(1)观察函数的图象即可作出判断,再根据A 、B 两点在反比例函数图象上,把两点的坐标代入后作差比较即可;(2)若选择条件∵,由面积的值及OC 的长度,可得OD 的长度,从而可得点B 的坐标,把此点坐标代入函数解析式中,即可求得k ;若选择条件∵,由DB =6及OC =2,可得BE 的长度,从而可得AE 长度,此长度即为A 、B 两点纵坐标的差,(1)所求得的差即可求得k . 【详解】(1)由于图象从左往右是上升的,即自变量增大,函数值也随之增大,故12y y >; 当x =-6时,26ky =-;当x =-2时,12k y =- ∵12263k k ky y -=-+=-,k <0∵120y y -> 即12y y > (2)选择条件∵∵AC ∵x 轴,BD ∵y 轴,OC ∵OD ∵四边形OCED 是矩形 ∵OD ∙OC =2 ∵OC =2 ∵OD =1 即21y =∵点B 的坐标为(-6,1)把点B 的坐标代入y =kx中,得k =-6若选择条件∵,即BE =2AE ∵AC ∵x 轴,BD ∵y 轴,OC ∵OD ∵四边形OCED 是矩形 ∵DE =OC ,CE =OD ∵OC =2,DB =6 ∵BE =DB -DE =DB -OC =4 ∵122AE BE == ∵AE =AC -CE =AC -OD =12y y - 即122y y -=由(1)知:1223ky y -=-= ∵k =-6 【点睛】本题考查了反比例函数的图象和性质、矩形的判定与性质、大小比较,熟练掌握反比例函数的图象与性质是解决本题的关键.2521.如图,一次函数()20y kx k k =-≠的图象与反比例函数1(10)m y m x-=-≠的图象交于点C ,与x 轴交于点A ,过点C 作CB y ⊥轴,垂足为B ,若3ABC S =△.(1)求点A 的坐标及m 的值;(2)若AB = 【答案】(1)(2,0),m =-5;(2)2455y x -=+【分析】(1)在直线y =kx +k 中令y =0可求得A 点坐标;连接CO ,得OBCABCS S==3,根据反比例函数比例系数的几何意义,即可求解;(2)利用勾股定理求出OB =2,设C (b ,2),代入反比例函数,求出C 点坐标,再利用待定系数法,即可求解. 【详解】解:(1)在()20y kx k k =-≠中,令y =0可得02kx k =-,解得x =2, ∵A 点坐标为(2,0);连接CO , ∵CB ∵y 轴, ∵CB ∵x 轴,∵OBCABCSS==3,∵点C 在反比例函数1(10)m y m x-=-≠的图象上, ∵126BOCm S-==,∵反比例函数1(10)m y m x-=-≠的图象在二、四象限, ∵16m -=-,即:m =-5; (2)∵点A (2,0), ∵OA =2,又∵AB =∵在Rt AOB 中,OB 2=,∵CB ∵y 轴, ∵设C (b ,2), ∵62b-=,即b =-3,即C (-3,2), 把C (-3,2)代入2y kx k =-,得:232k k =--,解得:k =25-,∵一次函数的解析式为:2455y x -=+.【点睛】本题主要考查待定系数法求函数解析式及函数图象的交点坐标,掌握两函数图象的交点坐标满足两函数解析式是解题的关键,注意反比例函数y =kx中k 的几何意义的应用. 22.如图,过C 点的直线y =﹣12x ﹣2与x 轴,y 轴分别交于点A ,B 两点,且BC =AB ,过点C 作CH ∵x 轴,垂足为点H ,交反比例函数y =kx(x >0)的图象于点D ,连接OD ,∵ODH 的面积为627(1)求k 值和点D 的坐标;(2)如图,连接BD ,OC ,点E 在直线y =﹣12x ﹣2上,且位于第二象限内,若∵BDE 的面积是∵OCD 面积的2倍,求点E 的坐标.【答案】(1)12k =,点 D 坐标为(4,3);(2)点E 的坐标为(-8,2) 【分析】(1)结合反比例函数k 的几何意义即可求解k 值;由⊥CH x 轴可知//CH y 轴,利用平行线分线段成比例即可求解D 点坐标;(2)//CH y 可知OCD ∆和BCD ∆的面积相等,由函数图像可知BDE ∆、BCD ∆、CED ∆的面积关系,再结合题意2BDE OCD S S ∆∆=,即可求CD 边上高的关系,故作EF CD ⊥,垂足为F ,即可求解E 点横坐标,最后由E 点在直线AB 上即可求解. 【详解】解∵(1)设点 D 坐标为(m ,n ), 由题意得116,1222OH DH mn mn ⋅==∴=.∵点 D 在ky x=的图象上,12k mn ∴==. ∵直线122y x =--的图象与x 轴交于点A ,∵点A 的坐标为(-4,0). ∵CH ⊥x 轴,CH //y 轴. 1.4AO ABOH AO OH BC∴==∴==. ∴点D 在反比例函数12y x=的图象上, ∴点 D 坐标为(4,3)(2)由(1)知CDy 轴,BCD OCD S S ∴=△△.2,3BDE OCD EDC BCD S S S S =∴=△△△△.过点E 作EF ⊥CD ,垂足为点 F ,交y 轴于点M , 1111,,32222EDCBCDSCD EF S CD OH CD EF CD OH =⋅=⋅∴⋅=⨯⋅.312.8EF OH EM ∴==∴=.∵点 E 的横坐标为-8.∵点E 在直线122y x =--上,∵点E 的坐标为(-8,2).【点睛】本题考查一次函数与反比例函数的综合运用、三角形面积问题、k 的几何意义,属于中档难度的综合题型.解题的关键是掌握一次函数与反比例函数的相关性质和数形结合思想. 23.如图,直线l 分别交x 轴,y 轴于A 、B 两点,交反比例函数(0)ky k x=≠的图象于P 、Q 两点.若2AB BP =,且AOB 的面积为4(1)求k 的值;(2)当点P 的横坐标为1-时,求POQ △的面积. 【答案】(1)-6;(2)8 【分析】(1)过P 作PE 垂直于x 轴,垂足为E ,证明ABO APE ∽.根据相似三角形的性质可得2AO OE =,49ABO APESS=,由此可得9APES =,3PEOS=.再由反比例函数比例系数k 的几何意义即可求得k 值.(2)先求得(1,6)P -,(0,4)B ,再利用待定系数法求得直线PB 的解析式为24y x=-+.与反29比例函数的解析式联立方程组,解方程组求得(3,2)Q -.再根据PO POQO BQ BS SS=+即可求解. 【详解】(1)过P 作PE 垂直于x 轴,垂足为E ,∵PE//BO , ∵ABO APE ∽. ∵2AB BP =,4AOB S =△,∵2AO OE =,22439ABO APESS ⎛⎫== ⎪⎝⎭, ∵9APES=,3PEDS=.∵1||32k =⨯,||6k =,即6k =-. (2)由(1)知6y x-=,∵(1,6)P -. ∵2AB PB =,∵2PBOS=,∵||4BO =,(0,4)B .设直线PB 的解析式为y kx b =+,将点(1,6)P -、(0,4)B 代入y kx b =+,得64k bb =-+⎧⎨=⎩.解得24k b =-⎧⎨=⎩.∵直线PB 的解析式为24y x =-+.联立方程组624y x y x -⎧=⎪⎨⎪=-+⎩,解得13x =,21x =-, ∵(3,2)Q -.∵()1||2POQQOBPOB Q P SSSOB x x =+=⨯-14482=⨯⨯=.【点睛】本题是一次函数与反比例函数的综合题,熟练运用反比例函数比例系数k 的几何意义是解决问题的关键.。

反比例函数的几何意义

反比例函数的几何意义

反比例函数的几何意义
反比例函数的几何意义为:过反比例函数图象上任一点P作x轴、y轴的垂线PM、PN,垂足为M、N则矩形PMON的面积S=PM·PN=|y|·|x|=|xy|=|k|。

所以,对双曲线上任意一点作x轴、y轴的垂线,它们与x轴、y轴所围成的矩形面积为常数,从而有k的绝对值。

一般地,如果两个变量x、y之间的关系可以表示成y=k/x (k为常数,k≠0)的形式,那么称y是x的反比例函数。

因为y=k/x是一个分式,所以自变量X的取值范围是X≠0。

而y=k/x有时也被写成xy=k或y=k·x^(-1)。

表达式为:x 是自变量,y是因变量,y是x的函数。

在 y=k/x(k ≠ 0)这一反比例函数函数当中,要想对系数 k 的几何意义进行全面掌握,就必须掌握以下几点:
第一,应促使学生明确当 y=k/x 这一双曲线距离坐标轴越远时,就会产生越大的 |k| 值;第二,在对一般情况下和
特殊情况下的反比例函数进行分析的过程中,能够对方程所形成的过程产生深刻认知,在此基础上学生才可以灵活
应用反比例函数表达式进行图形面积的计算,在这一过程中,学生可以通过观察图像面积的方式,对反比例函数中 K 值进行确定。

例如,下图例题中“在 y=k/x(k ≠ 0)这一反比例函数函数当中,其中 K 值呈现出重要的几何意义。

即在 y=k/x 这一反比例函数中取P点(P属于任意一点),假设 PM、PN 分别为 P 与 x 轴和 y 轴之间的垂线,在
此基础上形成的 PMON 这一矩形,以 S=PM·PN=|y|·|x|=|xy|=|k|,将 O、P 相连,得出 S △ POM=S △ PON=k/2”。

反比例函数几何意义课件

反比例函数几何意义课件
当矩形的长和宽成反比例关系时,其面积保持恒 定。
三角形面积
在某些特定条件下,如等底三角形,高与底边长 度成反比例关系时,面积保持恒定。
平行四边形面积
当平行四边形的相邻两边长度成反比例关系时, 其面积保持恒定。
长度问题
线段长度
在几何图形中,若两条线段长度 成反比例关系,则一条线段长度 增加时,另一条线段长度减少。
06

重点知识点总结
01
反比例函数的定义
形如 $y = frac{k}{x}$ (其中 $k$ 是常数且 $k neq 0$) 的函数称为反比
例函数。
02
反比例函数的图像
反比例函数的图像是双曲线,且当 $k > 0$ 时,双曲线位于第一、三
象限;当 $k < 0$ 时,双曲线位于第二、四象限。
03
解析
由于切线 m 与 x 轴平行,所以切线的斜率为 0。对反比 例函数求导,并令导数为 0,解出 x4。再代入原方程求 出 y4。
求法线方程类问题
题目一
解析
题目二
解析
已知反比例函数 y = k/x (k > 0) 在点 R(x5, y5) 处的法线方 程为 n,求 n 的方程。
对反比例函数求导,得到在点 R 处的导数值即为切线的斜率 。法线的斜率是切线斜率的负 倒数。利用点斜式方程,求出 法线 n 的方程。
反比例函数与其他知识点的联系
反比例函数与一次函数、二次函数等知识点有密切联系。例如,反比例函数的图像可以与一次函数的图像相交或 相切,形成特定的几何图形。通过拓展延伸,可以让学生更好地掌握相关知识点之间的联系和区别。
THANKS.
关系
曲线与反比例函数图像交点

中考专题复习-反比例函数K的几何意义

中考专题复习-反比例函数K的几何意义

y
3上的点,过
x
点A、B两点分别向x轴、y轴作垂线,若S阴影=1,
则S1+S2= ____4____. y
A
2 S1
B
S2
O
x
2
模型一:反比例函数与矩形的面积
变式2:如图,A在双曲线 y 1 上,点B在双曲线
y3
x
上,且AB∥x轴,C、D在x 轴上,若四边形
x
ABCD为矩形,则它的面积为 2 .
反比例函数中k的几何意义
模型一:反比例函数与矩形的面积
如图,点P(m,n)是反比例函数y k 图象上的 一点,过点P分别向x轴、y轴作垂线,垂足分x别是点A
(2)、过BP,分则别S矩作形xO轴 APB,=y_轴|_k_|的 ___垂__线 . ,垂足分别为A, B,
则S矩形OAPB OA AP | m | • | n || k | (如y图所示).
E O
模型一:反比例函数与矩形的面积
变式3:如图,点P在反比例函数
y 4 上,PA⊥y轴,
x
M、N为x轴上两动点,则S
-4
APMN
=

小组讨论
1、S APMN与 k 有
怎样的关系?
图1
图2
模型一:反比例函数与矩形的面积
变式3:如图,点P在反比例函数
y 4 上,PA⊥y轴,
x
M、N为x轴上两动点,则S
结论1: 过双曲线上任意一点作x轴、y 轴的垂线,所得矩形的面积S 为定值,即S=|k|.
B P(m,n)
OA
x
模型一:反比例函数与矩形的面积
练习1:
如图,已知点P是反比例函=4,则k的取值为
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
y
A
SAOC 6
o
B C
x
S四边形OFBE 2
,则k 的值

y
E
C
B F
O
A
图4
x
提升运用

例1
8 已知如图 , 反比例函数y 与一次函数y x 2的 x y 图像交于A,B两点。 求(1) A,B两点的坐标; (2)AOB的面积。
O B A
N
M C D
x
随堂巩固

12 练习:1、如图,已知反比例函数y 的图象与一次函数 x y kx 4的图象相交于P, Q两点, 并且P点的纵坐标是6.
/
y
P(m,n)
o x P/ A
AP 2n , AP 2m 1 / S AP AP / PAP 2 1 2n 2m 2 2K
/
练习
k 1.如图,反比例函数 y=x(k≠0)的图象上有一点 A,AB 平行于 x 轴交 y 轴于点 B,△ABO 的面积是 1,则反比 例函数的解析式是( C ) 1 1 A.y= B.y= 2x x 2 1 C.y=x D.y=4x
4 2 3.双曲线 y= 与 y= 在第一象限内的图象如图所示,作 x x 一条平行于 y 轴的直线分别交双曲线于 A,B 两点,连接 OA,OB,则△AOB 的面积为( A) A.1 B.2 C.3 D.4
4 4.如图,函数 y=-x 与函数 y=-x的图象相交于 A,B 两 点,过 A,B 两点分别作 y 轴的垂线,垂足分别为点 C,D, 则四边形 ACBD 的面积为( D ) A.2 B.4 C.6 D.8
k 练习3、如图,已知,A,B是双曲线 y (k 0) x 上的两点,
(1)若A(2,3),求K的值
y
(2)在(1)的条件下,若点B的横坐 标为3,连接OA,OB,AB,求△OAB 的面积。
o
A
B
x
(3)若A,B两点的横 坐标分别为a,2a,线 段AB的延长线交X轴 于点C,若 求K的值
3 2.如图,P(x,y)是反比例函数 y=x的图象在第一象限分
支上的一个动点,PA⊥x 轴于点 A,PB⊥y 轴于点 B,随着 自变量 x 的增大,矩形 OAPB 的面积( A ) A.不变 B.增大 C.减小 D.无法确定
变式:如图,在直角坐标系中,点A是x轴正 3 半轴上的一个定点,点B是双曲线 y x(x 0) 上的一个动点,当点B的横坐标逐渐增大 时, △OAB 的面积将会(C) y • A.逐渐增大 • B.不变 B • C.逐渐减小 • D.先增大后减小 x O A
反比例函数 K的几何意义
y
k y (k 0) x
(x, y) P
的面积不变性
0 y
Q
x
( P x, y)
0 x
K S 2 S K
(2)当k符号不确定的情况 下须分类讨论
注意:(1)面积与P的位置无关
k y x y
B D
k y y x
A D
P(m,n)
A C
o
x
B
o
C
x
1 s K 2
y
(1)求这个一次函数的解析 式; (2)求POQ的面积.
Q
M
N
P o x
练习2、如图,已知反比例函数
与矩形ABCO交于点M,N,连 接OM,ON,M(3,2),S四边形
OMBN=6,求反比例函数的解析
式及B点,N点的坐标.
k 解:设反比例函数的解析式为 y= ,把 M(3,2)代入 y x k 6 = ,得 k=6,∴反比例函数的解析式为 y= ,∴S△OMA x x =S△ONC=3.∵S 四边形 OMBN=6,∴S 矩形 OABC=6+3+3= 12.∵OA=3, ∴AB=4, ∴B(3, 4). ∵OC· CN=6, ∴CN 3 3 = ,∴N2,4. 2
5.如图,A 是反比例函数图象上一点,过点 A 作 AB⊥y 轴于 点 B,点 P 在 x 轴上,△ABP 的面积为 2,则这个反比例函
4 y= . 数的解析式为_________ x
6 6.已知反比例函数 y= 在第一象限的图象如图所示, x 点 A 在其图象上,点 B 为 x 轴正半轴上一点,连接 AO,
S△ABC=︱K︱
SABCD=2︱K︱
PB ⊥ y轴于点B,直线PC经过原点。
sPBC k
P、C两点关于原点对称, PO CO S PBO S PBC 1 S CBO k 2 S PBO S CBO k
SPPA 2 k
解:设P m, n , 则 p m, n .
6 . AB,且 AO=AB,则 S△AOB=____
4 7.如图,在反比例函数 y=- (x>0)的图象上有三点 P1, x P2,P3,它们的横坐标依次为 1,2,3,分别过这三个点作 x 轴、y 轴的垂线,设图中阴影部分的面积依次为 S1,S.如图4,矩形OABC的两边在坐标轴上,且与反比例函数 k y 的图像交于点E、F,其中点E、 x F分别是BC、AB的中点,若四边形OFBE的面积
相关文档
最新文档