2019年考研数学三真题及解析
考研数学三真题解析

x2
【答案】(1) y(x) = xe 2 . (2)
【解析】(1)
y(
x)
=
e−
−
xdx
C
+
1 2x
x2
e2
e−xdx
=
x2
e2
(C
+
x ).
x2
因为 y(1) = e ,故 C = 0 ,所以 y(x) = xe 2 .
(2)由旋转体体积公式,
V = π
2
C. 与 , 2 都有关.
D. 与 , 2 都无关.
【答案】A
【解析】X − Y ~ N (0, 2 2 ,所以 P{ X − Y 1} = (1− 0 ) = ( −1− 0) = 2( 1 ) −1;
2
2
2
选A
二、填空题:9~14 小题,每小题 4 分,共 24 分.
当x = 0:
������+′(0)
=
lim
������→0+
������(������)
− ������
������(0)
=
lim
������→0+
������2������ − ������
1
=
lim
������→0+
������ 2������������������������ ������
的规范形为( )
A. y12 + y22 + y32
B. y12 + y22 − y32 C. y12 − y22 − y32
D. − y12 − y22 − y32
2019年考研数学(三)真题及答案解析(完整版)

【解析】令 un
1 n3
, vn
1n
,故(A)(C)排除。令 un
1 n3
, vn
1n
1 ln n
,故(D)
排除,对于选项(B),由于 vn 条件收敛,则 lim vn 0 ,且 lim unvn lim vn 0 ,
n1 n
n n
n nun n n
根据正项级数判别法 nun 绝对收敛,则 unvn 绝对收敛。综上,故选(B).
(C)3.
(D)4.
【答案】(C)
【解析】 x tan x ~ 1 x3, 故 k 3. 3
(2)已知方程 x5 5x k 0 有 3 个不同的实根,则 k 的取值范围( )
(A) (, 4) (B) (4, ) (C)[4, 4] (D) (4, 4)
【答案】(D)
【解析】令 f x x5 5x k ,则 f x 5x4 5 5 x4 1 5 x2 1 x2 1 ,
则 x 1, f x 0 ; 1 x 1, f x 0 ; x 1, f x 0 ;
又 lim f x , lim f x ,综合单调性知 f 1 0, f 1 0 时才有三个根,
x
x
即 f 1 1 5 k 0, f 1 1 5 k 0, 则 4 k 4 。
n 2 2 3
n n+1 n n+1
(10)
曲线
y
x
sin
x
2
cos
x
2
x
3 2
的拐点坐标为
【答案】
【解析】 y ' sin x x cos x 2sin x x cos x sin x
y '' cos x x sin x cos x x sin x ,令 y '' 0得x 0或x
(完整版)2019考研数学三真题及参考答案解析

2019全国研究生考试数学三真题及参考答案解析一、选择题1.()为同阶无穷小,则与时,若当=-→k xx x x ktan 0 A.0 B.1 C.2 D.3 2.的取值范围为()个不同的实根,则有已知k k x x 3055=+- A.()4-∞-, B.()∞+,4 C.]44[,- D.),(44- 3.c ,b ,a ,x C C y ce by y a y x -x x 则的通解为已知e )e (21++==+'+''的值为( )A.1,0,1B.1,0,2C.2,1,3D.2,1,44.的是()条件收敛,则下列正确绝对收敛,已知∑∑∞=∞=11n nn n nv nu A.条件收敛nn n v u ∑∞=1 B.绝对收敛∑∞=1n nn v uC.)收敛(nn nv u +∑∞=1D.)发散(nn nv u +∑∞=15个的基础解析有的伴随矩阵,且为阶矩阵,为已知204*=Ax A A A 线性无关的解,则) ()(=*A r A.0 B.1 C.2 D.36.设A 是3阶实对称矩阵,E 是3阶单位矩阵.若E A A 22=+,且4=A ,则二次型Ax x T 的规范形为A.232221y y y ++.B.232221y y y -+.C.232221y y y --.D.232221y y y ---.7.设B A ,为随机事件,则)()(B P A P =的充分必要条件是A.).()()(B P A P B A P +=YB.).()()(B P A P AB P =C.).()(A B P B A P =D.).()(B A P AB P =8.设随机变量X 与Y 相互独立,且都服从正态分布),(2σμN ,则{}1<-Y X P A.与μ无关,而与2σ有关. B.与μ有关,而与2σ无关. C.与2,σμ都有关. D.与2,σμ都无关.二.填空题,9~14小题,每小题4分,共24分.9.()=⎪⎪⎭⎫⎝⎛+++⨯+⨯∞→nn n n 11321211lim Λ 10. 曲线⎪⎭⎫⎝⎛-+=232cos 2sin ππ<<x x x y 的拐点坐标为 11. 已知()t t x f xd 114⎰+=,则()=⎰x x f x d 10212. A, B 两种商品的价格为A p ,B p ,A 商品的价格需求函数为222500B B A A p p p p +--,则当A p =10,B p =20时,A 商品的价格需求弹性AA η(0>AA η)=13. 设⎪⎪⎪⎭⎫ ⎝⎛---=1101111012a A ,⎪⎪⎪⎭⎫⎝⎛=a b 10,若b Ax =有无穷多解,则a= 14 设随机变量X 的概率密度为⎪⎩⎪⎨⎧<<=,其他,020,2)(x xx f )(x F 为X 的分布函数,X E 为X 的数学期望,则{}=->1X X F P E )( . 三、解答题15.已知函数⎩⎨⎧≤+>=010)(2x xe x x x f x x ,求的极值并求)(f )('f x x16.设)(v u f ,具有连续的2阶偏导数,求),,(),(y x y x f xy y x g -+-=22222y gy x g x g ∂∂+∂∂∂+∂∂ 17.)(x y 显微分方程2221'x e xxy y =-满足条件e y =)1(的特解.(1)求)(x y(2)区域D {})(0,21,x y y x y x ≤≤≤≤)(,D 绕轴旋转的旋转体的体积 18.求曲线)0(sin >=-x x e y x与x 轴之间图形的面积。
2019考研数学三真题及答案

ax 22
b) x
ax 33
ax
a n
a
x
n
x
0, 0,
a11x11
a 2x 22
(a2 b)3x 3
3
3
a nx n nn
0,
a1
x 1
a 2
x 2
a x 33
(a n
b) x n
0,
n a
其中 i1 i
0.
试讨论
a 1
,
a 2
,
, a n 和 b 满足何种关系时,
f ( x) (1)设 f(x)为不恒等于零的奇函数,且 f (0) 存在,则函数 g(x) x
(A)在 x=0 处左极限不存在.(B)有跳跃间断点 x=0. (C)在 x=0 处右极限不存在.(D)有可去间断点 x=0.[D] 【分析】由题设,可推出 f(0)=0,再利用在点 x=0 处的导数定义进行讨论即可. 【详解】显然 x=0 为 g(x)的间断点,且由 f(x)为不恒等于零的奇函数知,f(0)=0.
A 2
,
3
4A相, 互A独立.
A 2
,
3
4A两, 两A独立.
三、(本题满分8 分)
设:
f ( x)
1 x
1 sin x
1 (1
x)
,
x
[
1 2
,1).
试补充定义 f(1)使得 f(x)在 [21 ,1]上连续.
四、(本题满分8 分)
2 f 设 f(u,v)具有二阶连续偏导数,且满足 u2
2 f v2
求幂级数 n1
2n ( x 1) 的和函数 f(x)及其极值.
七、(本题满分9 分)
2019考研数学三【解析版】【无水印】

所以 r( A*) = 0 .
6.设 A 是三阶实对称矩阵,E 是三阶单位矩阵,若 A2 + A =2E ,且 A = 4 ,则二次型 xT Ax 的规范形是
(
)
(A) y12 + y22 + y32 (B) y12 + y22 − y32 (C) y12 − y22 − y32
(D) − y12 − y22 − y32
,0
<
x
<
2
,
F(x) 为其分布函数,
E(X )
其数学期望,则
0, 其他
P{F ( X ) > E( X ) −1} =
.
【答案】 2 . 3
0, x < 0
∫ 【详解】 F (x=)
P{X ≤ x=}
1 4
x2
,
0
≤
x
<
2
,= E( X )
= 2 x2 dx
4
.
02
3
1, x ≥ 2
∫ P{F ( X ) > E( X ) −1} =P{F ( X ) > 1} =P{X > 2 } =1−
EQA = EPA
PA ⋅ ∂QA = 10 × 40 = 0.4 . QA ∂PA 1000
3
1 0 −1 0
13.已知= 矩阵 A
1
1
−1
,
b
=
1
.若线性方程组
Ax
=
b 有无穷多解,则
a
=
.
0 1 a2 −1 a
【答案】1.
【详解】对线性方程组的增广矩阵进行初等行变换:
1 0 −1 0 1 0 −1 0 1 0 −1 0
2019考研数学三真题及答案解析

2019考研数学三真题答案解析(完整版)1.3tan 3x x x --若要x - tan x 与x b 同阶无穷小,\ k = 3\选C2.54()5()5501f x x x k f x x x '=-+=-==±(1,1)()0,(),(,1)(1,),()0x f x f x x f x ''∈-<↓∈-∞-⋃+∞>,()f x ↑极大值(1)154f k k -=-++=+极小值(1)154f k k =-+=-lim ();lim ()x x f x f x →-∞→+∞=-∞=+∞若要550x x k -+=有3个不同的实根∴(1)0(1)04040f f k k -><+>-<即∴44(4,4)k -<<-即选D 。
3.解:∵通解为12()e e xxy C C x -=++∴e ,e 0x x x y ay by --'''++=为的两个解.即1λ=-为重根.22010402,1,a b a b a b a b λλ++=⇒-+=∆=-=⇒==∴e x 为e x y ay by c '''++=的特解:2exy y y c '''++=将e x y =代入e 2e e e 4x x x x c c ++=⇒=∴2,1,4a b c ===∴选D.4.1n n nu ¥=å 绝对收敛,1nn v n ¥=å 条件收敛n n u nu £ 1n n u ¥=\å绝对收敛.nv n有界.不妨设n v M n <n n nu v M u \£1n n M u ¥=å 收敛1n n n u v ¥=\å绝对收敛.故选B5.0Ax = 的基础解系中只有2个向量()24()n r A r A \-==-()0r A *\=\选A6.选(C )解:由22A A E +=得22λλ=+,λ为A 的特征值,2λ=-或1,又1234A =λλλ=,故1232,1,λλλ==-=规范形为222123y y y --,选(C )7.选(C )解:法一:()()()P AB P A P AB =-()()()P B A P B P AB =-()()()()P A P B P AB P B A =\=选(C )法二排除法(A )A B ==W 时排除(A )(B )若A 、B 互斥,且0()1,0()1,P A P x <<<<排除(B )(D )若A B ==W ,则()()1,()()0P AB P P AB P =W ==F =,排除(D)8.解:因为22(,)(,)X N u Y N u s s X 与Y 相互独立2(0,2)X Y N s \-{}11121222X Y P X Y Pss s -÷ç\-<=<=F -÷ç÷ç\与u 无关,即与2a 有关选择(A )9.11lim 12(1)nx n n +¥÷ç÷++ç÷ç÷×+11lim eenn x -++¥==10.3sin 2cos 22y x x x x p p ÷ç=+-<<÷ç÷çsin cos 2sin cos sin y x x x x x x x¢=+-=-令()cos sin cos sin 0y x x x x x x x =--=-=得0,x x p==0x <时,()0y x <0x >时,()0y x <不为拐点.0x p <<时,()0y x <32x pp >>时,()0y x >拐点为(),2p -11.解析:()()()1201201130113130104034120()d d 1d 31|311)341211(1)|1)1231818x f x xx t xt xx t x xx x ===-=-⋅+=-⋅+=-=-⎰⎰⎰⎰⎰⎰⎰⎰12.解析:2222(2)5002(2)5002A AA A AAA B A A B B A A B A A B B P Q Q P P P P P P P P P P P P P P P h ¶=-׶=-×----++=-+故10,20A B P P ==时,10404000.45001002008001000h ´===--+13.解析:2221010()111101110101010010101010110011A b a a a a a a -⎛⎫ ⎪=- ⎪ ⎪-⎝⎭--⎛⎫⎛⎫ ⎪ ⎪→→ ⎪ ⎪⎪ ⎪---⎝⎭⎝⎭当a =1时()()23r A r A b ==< ,Ax =b 有无穷多解.14.X 的概率密度为,02()20,else xx f x ⎧<<⎪=⎨⎪⎩3222210022221184d d |2223630()024121{()1}{()}{2}2}32d 2243xx EX x x x x x x F x x x P F X EX P F X P X P X x P X x x =⋅====<⎧⎪⎪=≤<⎨⎪≥⎪⎩≥-=≥=≥=<⎫=<<=⎬⎭==⎰⎰15.解:当0x >时22ln 2ln ()e ()e (2ln 2)x x x x x f x x f x x ¢===+当0x <时()e e x xf x x ¢=+当0x =时0000()(0)e 11lim ()lim lim lim e 10x xx x x x f x f x f x x x-----+-====-2000()(0)11lim ()lim lim 0x x x x f x f x f x x x----+-==-不存在\有()f x 在0x =点不可导.于是2ln e (2ln 2)0(),0e +e ,0x x x x x xf x x x x ,不存在ìï+>ïïï¢==íïïï<ïî令()0f x ¢=得121,1,ex x ==-于是有下列表x (,1)-¥--1(-1,0)010,e ÷ç÷ç÷ç1e1,e÷ç+¥÷ç÷ç()f x ¢-0+不存在-0+()f x ¯极小值极大值¯极小值于是有()f x 的极小值为2e 11(1)1,e e ef f -÷ç-=-=÷ç÷ç,极大值为(0)1f =16.解析:(,)(,)g x y xy f x y x y =-+-''2""""2''2""""22""""(,)(,)1u v uu uv vu vvu v uu vv vu vv uu uv vu vvgy f x y x y f x y x y x g f f f f x gx f f yg f f f f yx g f f f f x y∂=-+--+-∂∂=----∂∂=-+∂∂=-++-∂=-+-+∂∂所以:22""""212uu uu vv uu g g xg f f f f x x y y ∂∂∂++=---+-∂∂∂∂""13uu vvf f =--17.解析:(1)22x y xy ¢-=)2222222d d 22222ee d e e d e ex x x xx xx x x x y x C x C x C C通解--÷ç÷ç=×+÷ç÷÷ç÷ç÷ç=×+÷ç÷÷ç÷ç=+÷ç÷ç=òòò由(f C =+0C =所以22(e x f x (2)()22222221221222411e d e d e d e =e -e 222x x x x x V x x x x p p p p p ÷÷=÷÷÷=×==òòò18.[)2,2x k k p p p Î+时()(21)12(21)2(21)(21)22(21)2(21)(21)22(21)21(21)2e sin d sin de sin e e cos d e cos d =e cos d cos e +e (sin )d e e1e e 2k x k k xk k k x x x k k k x k k k x x k k k k k k S x x x x x x x xx xx x xS x p pp pp p ppp pp p ppppp p +-+-++---+-++---+--+-==-=-×+=-=+-=+òòòòò[)22,22x k k p p p Î++(22)22(22)(22)22(21)21)(22)2(21)2(22)(21)2(22)e sin d sin e -e cos d =-ecos d cos e -e (sin )d e e 1e e 2k x k k k x x k k k k k xx x k k k k k k S x xx x xx x x x xS p p pp p pp pp p pp ppp pp p p +-+++--++++---+++-+-+-+==-=+-=-+--=+òò((21)k p -+ùúû面积为(())()12(21)2(22)02202212e e e 21=12e e e 211e 112e e 21e 2e 1k k k k k k k SS p p p p pp p p p p p ¥=¥-+--+=¥---=----ù=++úû+++=++=--ååå19.设1(0,1,2,)n a x n ==⎰…(1)证明:数列{}n a 单调减少,且21(2,3,);2n n n a a n n --==+ (2)求1lim.nn n a a →∞-解析(1)111110(1)0.n n n n a a xxx x ----=-=-<⎰⎰⎰则{}n a 单调递减.1/2/222201sin sin cos sin (1sin ),2n n n n n n a x dxx t t tdt t t dt I I I n ππ+=-⋅=⋅-=-=+⎰⎰⎰则2222111,.(2)(2)n n n n n n n a I a a I n n n n ------===++则(2)由(1)知,{}n a 单调递减,则211111, 1.222n n n n n a n n n a a a n n n a ------=><<+++即由夹逼准则知,1lim1.nn n a a →∞-=20.解:123123(,,,,,)αααβββ2222111101102123443313111101011022001111a a a a r a a a a ⎛⎫ ⎪= ⎪ ⎪++-+⎝⎭⎛⎫⎪- ⎪ ⎪----⎝⎭①若a =1,则123123123123(,,)(,,)(,,,,,)r r r αααβββαααβββ==此时向量组(Ⅰ)与(Ⅱ)等价,令123(,,)A ααα=则31023()01120000A β⎛⎫⎪→-- ⎪⎪⎝⎭此时3123(32)(2)k k k βααα=-+-++②若a =-1,则()2(,)3r A r A B =≠=,向量组(Ⅰ)与(Ⅱ)不等价.③若1,1a ≠-,31001()01010011A β⎛⎫⎪→- ⎪⎪⎝⎭3123βααα=-+21.2212102201000200A x B y --⎡⎤⎡⎤⎢⎥⎢⎥=-=-⎢⎥⎢⎥⎢⎥⎢⎥-⎣⎦⎣⎦与相似(1)1231~413()()242210(2)010(1)(2)(2)00021,2,21211211201242000001210001001000022A Bx yx tr A tr B y x y E B x x A E A E λλλλλλλλλξλ∴-=+=⎧∴=⇒⇒⎨=-+=-⎩---=+=++-=-=-=-=---⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥=-+=-→→⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥-⎣⎦⎣⎦⎣⎦=-+=T 时, =(-,,)时,()2311321410440125201050211240000000004212122102221200100112004000000211,122040A E P ξλξξξξ-⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥-→-→-⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦---⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥=-=-→→⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥-⎣⎦⎣⎦⎣⎦---⎡⎤⎢⎥==⎢⎥⎢⎥⎣⎦TT =(-,,)时, =(-,,0), 111122P AP --⎡⎤⎢⎥=-⎢⎥⎢⎥⎣⎦1223310310100000113000100041010022010010001000000010010322030001100004000B E x B E x B E x λλλ⎡⎤⎡⎤⎢⎥⎢⎥=-+=→=⎢⎥⎢⎥⎢⎥⎢⎥-⎣⎦⎣⎦⎡⎤⎡⎤⎢⎥⎢⎥=-+=→=⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎡⎤⎡⎤⎢⎥⎢⎥=-=-→=⎢⎥⎢⎥⎢⎥⎢⎥-⎣⎦⎣⎦TT时, (-,,)时, (,,)时, (,,121232212212121211221()22122()1211030122001040130111212004101100()3000006100011011000P x x x P BP B P P B P P A PP P PP P iE -----⎡⎤⎢⎥==-⎢⎥⎢⎥⎣⎦-⎡⎤⎢⎥=-⎢⎥⎢⎥⎣⎦=-=---⎡⎤⎡⎤⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦---⎡⎤⎢⎥⎢⎥⎢⎥⎣⎦-⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦--→T) 故=03310010001101100010001100100311000030100011001103⎡⎤⎢⎥⎢⎥⎢⎥⎣⎦⎡⎤⎢⎥--⎢⎥→⎢⎥⎢⎥⎢⎥⎣⎦⎡⎤⎢⎥⎢⎥→⎢⎥⎢⎥⎢⎥⎣⎦22.(1)随机变量X 的分布函数为⎩⎨⎧<≥-=-0,00,1)(x x e x F x X {}{}{}{}())(1)()1(1,1,)(z F p z F p Y z X P Y z X P z XY P z Z P z F XXZ --+-=-=-≥+=≤=≤=≤=当0<z 时,()zX Z pe z F p z F =--=)(1)(当0≥z 时,()pe p z F p z F p z F z X X Z +--=--+-=-)1)(1()(1)()1()(则⎩⎨⎧≤>-=-0,0,)1()(z pe z e p z f z zZ (2)p EY EX XY E EZ EX 21)(,1-=⋅===()())21(221)()()()()(222p p EX DX Y E X E Y X E XZ E -=-+===当())()(2Z E XE XZ E =时,Z X ,不相关.即)21(221p p -=-,可得21=p .(3)因为{}{}01,1,11,1=≥-=≤=-≤≤X Y X P Z X P 又{}111--=≤e X P ,{}11-=-≤peZ P 则{}{}{}111,1-≤⋅≤≠-≤≤Z P X P Z X P ,故不独立.23.(1)由1222222222)(2)(==-=⎰⎰∞+----∞+πσμσμσμσμμA x deA dx eAx x 可得:π2=A .(2)设n x x x ,,,21 为样本值,似然函数为()()⎪⎩⎪⎨⎧>∑⎪⎪⎭⎫ ⎝⎛==--elsex x x e L n x nn ni i ,0,,,,2121212122μπσσμσ当μ>n x x x ,,,21 时,()()()()2122221ln 2ln 2ln 2ln ∑----==n i i x n n L μσσπσ令()()()0)(2112ln 1222222=∑-+-==n i i x n d L d μσσσσ,可得()nx ni ∑=-=1212μσ故2σ的最大似然估计量为()nXni ∑=-=1212μσ .。
2019年全国硕士研究生招生考试考研数学三真题及详解【圣才出品】

_
相互独立,并不能说明 P(A)=P(B)。对选项 D 来说,若令 B=A,等式恒成立,亦不
_
_
能说明 P(A)=P(B)。P(AB)=P(A)-P(AB),P(BA)=P(B)-P(AB),P
_
_
(AB)=P(BA)⇒P(A)=P(B)。故选 C。
8.设随机变量 X 与 Y 相互独立,且都服从正态分布 N(μ,σ2),则 P{|X-Y|<1(} )。 A.与 μ 无关,而与 σ2 有关 B.与 μ 有关,而与 σ2 无关 C.与 μ,σ2 都有关 D.与 μ,σ2 都无关 【答案】A
2.已知方程 x5-5x+k=0 有 3 个不同的实根,则 k 的取值范围( )。 A.(-∞,-4) B.(4,+∞) C.{-4,4} D.(-4,4) 【答案】D 【考点】简单函数的几何特征分析
1 / 23
圣才电子书 十万种考研考证电子书、题库视频学习平台
【解析】方程 x5-5x+k=0 有 3 个不同实根等价于曲线 y=x5-5x 与直线 y=-k 有
3 个不同的交点,因此研究曲线 y=x5-5x 的曲线特点即可。
令 f(x)=x5-5x,则 f(x)在 R 上连续,且 f′(x)=5x4-5。再令 f′(x)=0,得
x=±1。通过分析 f′(x)在稳定点 x=±1 左右两侧的符号,可知当 x∈(-∞,-1)时,
f′(x)>0,f(x)单调递增;当 x∈(-1,1)时,f′(x)<0,f(x)单调递减;当 x∈
圣才电子书 十万种考研考证电子书、题库视频学习平台
2019 年全国硕士研究生招生考试考研数学三真题及详解
一、选择题(1~8 小题,每小题 4 分。共 32 分,下列每题给出的四个选项中,只有 一个选项符合题目要求。)
2019考研数三真题及解析

2019年全国硕士研究生入学统一考试数学(三)试题及解析一、选择题:18小题,每小题4分,共32分.下列每题给出的四个选项中,只有一个选项符合题目要求的,请将所选项前的字母填在答题纸...指定位置上. (1)当0x →时,若tan x x -与k x 是同阶无穷小,则k =( )(A) 1(B) 2(C) 3(D) 4【答案】C【解析】0x →时,有3tan 3x x x --,故3k =.(2)已知方程550x x k -+=有3个不同的实根,则k 的取值范围( ) (A) (,4)-∞-(B) (4,)+∞(C) {4,4}- (D) (4,4)-【答案】D【解析】令5()5f x x x k =-+,令4()550f x x '=-=,可得1x =±, 当(,1)-∞-时,()0f x '>,()f x 单调递增; 当(1,1)-时,()0f x '<,()f x 单调递减; 当(1,)+∞时,()0f x '>,()f x 单调递增;而()f -∞=-∞,(1)4f k -=+,(1)4f k =-+,()f +∞=+∞,故若()f x 有3个不同的零点,则在区间(,1)-∞-,(1,1)-,(1,)+∞分别具有一个实根, 所以需满足(1)0f ->,(1)0f <,解得(4,4)k ∈-.(3)已知微分方程x y ay by ce '''++=的通解为12()xx y C C x e e -=++,则,,a b c 依次为( )(A) 1,0,1(B) 1,0,2 (C) 2,1,3(D) 2,1,4【答案】D【解析】由通解形式可得,12()xC C x e-+是对应齐次方程的解,故是1λ=-其二重特征值,所以其特征方程为2(1)0λ+=,即2210λλ++=,所以2,1a b ==;再将特解x e 带入原方程可得4c =.(4)若1n n nu ∞=∑绝对收敛,1nn v n ∞=∑条件收敛,则( ) (A)1n nn u v∞=∑条件收敛(B)1n nn u v∞=∑绝对收敛(C)1()nn n uv ∞=+∑收敛(D)1()nn n uv ∞=+∑发散【答案】B 【解析】因为1n n v n∞=∑条件收敛,故0()nv n n →→∞,所以存在0M >,使得n v M n ≤ 所以()n n n n n v u v nu M nu n ⎛⎫=⋅≤ ⎪⎝⎭,由比较判别法可得:因为1n n nu ∞=∑绝对收敛,故1n n n u v ∞=∑绝对收敛.令31n u n =,(1)nn v =-,则1()n n n u v ∞=+∑发散;令31n u n =,(1)ln n n v n -=,则1()n n n u v ∞=+∑收敛;故选项C 、D 均不成立. (5)设A 是4阶矩阵,*A 是A 的伴随矩阵,若线性方程组0Ax =的基础解系中只有2个向量,则*A 的秩是( )(A) 0(B) 1(C) 2(D) 3【答案】A【解析】因为0Ax =的基础解系中只有2个向量,故有()2n r A -=,即()422r A =-=,又因为*,()()1,()10,()1n r A n r A r A n r A n =⎧⎪==-⎨⎪<-⎩,所以*()0r A =.(6)设A 是3阶实对称矩阵,E 是3阶单位矩阵,若22A A E +=且4A =,则二次型T x Ax 的规范形为( )(A) 222123y y y ++ (B) 222123y y y +-(C) 222123y y y --(D) 222123y y y ---【答案】C 【解析】设矩阵A 的特征值为λ,由22A A E +=可得,22λλ+=,解得1,2λ=-,又因为1234A λλλ==,故A 的3个特征值为1,2,2--,所以二次型T x Ax 的规范形为222123y y y --.(7)设A ,B 为随机事件,则()()P A P B =的充分必要条件是( ) (A) ()()()P AB P A P B =+(B)()()()P AB P A P B =(C) ()()P AB P BA =(D) ()()P AB P AB =【答案】C【解析】由减法公式可得:()()()P AB P A P AB =-,()()()P BA P B P AB =-, 所以()()P A P B =的充要条件为()()P AB P BA =.(8)设随机变量X 与Y 相互独立,且都服从正态分布2(,)N μσ,则{1}P X Y -<( )(A) 与μ无关,而与2σ有关 (B) 与μ有关,而与2σ无关 (C) 与μ,2σ都有关(D) 与μ,2σ有无关【答案】A【解析】由已知可得,2(0,2)X YN σ-(0,1)N ,所以{1}{(P X Y P P -<=<=<<=Φ-Φ21=Φ-,所以{1}P X Y -<与μ无关,而与2σ有关. 二、填空题:914小题,每小题4分,共24分.请将答案写在答题纸指定位置上.9. 111lim 1223(1)nn n n →∞⎡⎤+++=⎢⎥⋅⋅+⎣⎦ .【答案】1e -【解析】原式1111111lim(1)lim(1)22311n n n n e n n n -→∞→∞=-+-++-=-=++.10.曲线3sin 2cos ()22y x x x x ππ=+-<<的拐点坐标为 .【答案】(,2)π-【解析】sin cos 2sin cos sin y x x x x x x x '=+-=-,cos sin cos sin y x x x x x x ''=--=-,令0y ''=得0x =或x π=,当(0,)x U δ∈,0y ''<;所以(0,2)不是拐点;当x π>时,0y ''>;当x π<时,0y ''<,故(,2)π-为拐点. 11.已知1()f x =⎰,则120()x f x dx =⎰.【答案】118- 【解析】331112000()()()033x x xf x dx f x f x dx '=-=-⎰⎰⎰134420011121(1)(1)3412318x x -=-⨯+=-⋅+=⎰.12.,A B 两商品的价格分别为,A B P P ,需求函数225002A A A B B Q P P P P =--+,10,20A B P P ==,求A商品对自身价格的需求弹性(0)AA AAηη>=.【答案】25【解析】20B P =,250020800A A A Q P P =--+,2(220)130020A A A A A A A A Q P P P P Q P P η∂=⋅=--⋅∂--,当10A P =时,25η=. 13.2101111011A a -⎛⎫ ⎪=- ⎪ ⎪-⎝⎭,01b a ⎛⎫ ⎪= ⎪ ⎪⎝⎭,Ax b =有无穷多解,求a = .【答案】1【解析】由已知可得,()(,)3r A r A b =<,化简增广矩阵222101010101010(,)1111010101010110110011A b a a a a a a ---⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪=-→→ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪----⎝⎭⎝⎭⎝⎭, 所以1a =.14.设随机变量X 的概率密度为,02()20,xx f x else⎧<<⎪=⎨⎪⎩,()F x 为X 的分布函数,EX 为X 的数学期望,则{()1}P F X EX >-=.【答案】23【解析】由已知可得,224()23x EX xf x dx dx +∞-∞===⎰⎰, 且分布函数20,0()(),0241,2xx xF x f t dt x x -∞<⎧⎪⎪==≤<⎨⎪≤⎪⎩⎰,所以22112{()1}{()}{}{34323X x P F X EX P F X P P X dx >-=>=>=>==. 【法二】易知()(0,1)Y F X U =,所以42{()1}{1}33P F X EX P Y >-=>-=. 三、解答题:1523小题,共94分.请将解答写在答题纸指定位置上.解答应写出文字说明、证明过程或演算步骤.15.已知2,0()1,0x x x x f x xe x ⎧>⎪=⎨+≤⎪⎩,求()f x ',并求()f x 的极值。
2019考研数学三真题解析

2019年全国硕士研究生入学统一考试数学(三)试题参考答案一、选择题:1~8小题,每小题4分,共32分.下列每题给出的四个选项中,只有一个选项是符合题目要求的.1、当0x →时,若tan x x −与kx 是同阶无穷小,则k =()A. 1. B. 2.C. 3. D.4.【答案】 C.【解析】当0x →时,31tan 3x xx −−,则=3k .2.已知方程550x x k −+=有3个不同的实根,则k 的取值范围为()A 、 (,4)−∞− B 、(4,)+∞C 、{}4,4−D 、(4,4)−【答案】 D.【解析】令5()5f x x x k =−+,由()0f x '=得1x =±,当1x <−时,()0f x '>,当11x −<<时,()0f x '<,当1x >时,()0f x '>,又由于lim ()x f x →−∞=−∞,lim ()x f x →+∞=+∞,方程要有三个不等实根,只需要(1)=40f k −+>,(1)4<0f k =−+,因此k 的取值范围为44k −<<.3.已知微分方程e x y ay by c '''++=的通解为12()e e xx y C C −=++,则,,a b c 依次为( )A 、1,0,1B 、 1,0,2C 、2,1,3D 、2,1,4【答案】 D.【解析】由通解形式知,121λλ==−,故特征方程为221=21=0λλλ+++(),所以2,1a b ==,又由于e x y =是+2x y y y ce '''+=的特解,代入得4c =.4、若1n n nu ∞=∑绝对收敛,1nn v n ∞=∑条件收敛,则( ) A 、1n nn u v∞=∑条件收敛B 、1n nn u v∞=∑绝对收敛C 、1()nn n uv ∞=+∑收敛D 、1()nn n uv ∞=+∑发散【答案】 B. 【解析】由1n n v n∞=∑条件收敛知,lim 0nn v n →∞=,故当n 充分大时,1n v n . 所以,nn n n n vu v nu nu n=⋅,由于1n n nu ∞=∑绝对收敛,所以1n n n u v ∞=∑绝对收敛.5、设A 是四阶矩阵,*A 是A 的伴随矩阵,若线性方程组=Ax 0的基础解系中只有2个向量,则*A 的秩是( ) A.0 B.1 C.2D.3【答案】 A.【解析】由于方程组基础解系中只有2个向量,则()2r A =,()3r A <,()0r A *=. 6、设A 是3阶实对称,E 是3阶单位矩阵,若2=2A +A E 且4=A ,则二次型T x Ax 的规范形为( )A. 222123y y y ++ B.222123y y y +− C.222123y y y −− D.222123y y y −−−【答案】 C.【解析】22λλ+=,则λ只能为2−或1,又由于4=A ,则特征值分别为-2,-2,1,则二次型的规范形为222123y y y −−. 7、设,A B 为随机事件,则()()P A P B =充分必要条件是A.()()().P A B P A P B =+UB.()()().P AB P A P B =C.()().P AB P BA =D.()().P AB P AB =【答案】C【解析】()()()()()()()()P AB P BA P A P AB P B P AB P A P B =⇔−=−⇔=;选C.8、设随机变量X 和Y 相互独立,且都服从正态分布2(,)N μσ,则{1}P X Y −<A.与μ无关,而与2σ有关. B.与μ有关,而与2σ无关. C.与μ,2σ都有关. D.与μ,2σ都无关.【答案】A【解析】2~(0,2X Y N −σ,所以{1}21P X Y −<=Φ=Φ=Φ−;选A二、填空题:9~14小题,每小题4分,共24分.9、111lim 1223(1)nn n n →∞⎡⎤+++=⎢⎥⋅⋅+⎣⎦____________ 【答案】1e .−【解析】111+++1223(1)1nn n n n n ⎡⎤⎛⎫= ⎪⎢⎥⨯⨯⨯++⎝⎭⎣⎦L ,则1lim e .1nn n n −→∞⎛⎫= ⎪+⎝⎭10、曲线π3πsin 2cos ()22y x x x x =+−<<的拐点坐标为____________ 【答案】 π2−(,). 【解析】令sin0y x x ''=−=,可得πx =,因此拐点坐标为π2−(,). 11、已知1()f x t =⎰,则120()d xf x x =⎰____________【答案】1(118−.【解析】依题意,()f x '=(1)0f =.因此,11123310000111()d ()d ()(13318x f x x f x x x f x x x ⎡⎤==−=−⎢⎥⎣⎦⎰⎰⎰. 12、A 、B 两商品的价格分别为、,需求函数,, ,求A 商品对自身价格的需求弹性____________ .【答案】0.4. 【解析】因为d (2)d A A A AA A B A A AP Q PP P Q P Q η=−⋅=−⋅−−,将,,1000A Q =代入,可得104000.41000AA η=⋅=. 13、2101111011a −⎛⎫ ⎪=− ⎪ ⎪−⎝⎭A ,01a ⎛⎫⎪= ⎪ ⎪⎝⎭b ,=Ax b 有无穷多解,求____________ 【答案】1.【解析】因为=Ax b 由无穷多解,故()()3r r =<A A,b ,对矩阵()A,b 作初等行变换,因为P A P B Q A =500-P A 2-P A P B +2P B 2P A =10P B =20h AA =h >0()P A =10P B =20a =21010()01010011a a −⎛⎫ ⎪→ ⎪ ⎪−−⎝⎭A,b ,故2110a a −=−=,因此1a =.14、为连续型随机变量,概率密度为, 为的分布函数,为的期望,求{}()1P F X EX >−=____________【答案】2.3【解答】由条件可得224()d d 23x EX xf x x x +∞−∞===⎰⎰,且可求得分布函数20,0,(),02,41, 2.x xF x x x <⎧⎪⎪=<⎨⎪⎪⎩故可得12{()1}{()}.33P F X EX P F X >−=>=三、解答题:15~23小题,共94分.解答应写出文字说明、证明过程或演算步骤.15、(本题满分10分)已知2,0,()e 1,0.x x x x f x x x ⎧>=⎨+⎩求()f x ',并求()f x 的极值.【答案】f ′(x )={2x 2x (lnx +1);x >0e x (x +1);x <0,极大值f (0)=1.极小值1(1)1e f −=−,2e 1()e ef −=.【解析】解:当x >0时:f ′(x )=(e 2xlnx −1)′=(e 2xlnx )′=e 2xlnx (2lnx +2)=2x 2x (lnx +1)当x <0:f ′(x )=e x +xe x =e x (x +1)因此f ′(x )={2x 2x (lnx +1);x >0e x (x +1);x <0当x =0:X f (x )=x2,0<x <20,elseìíïîïF (x )X EX Xf +′(0)=lim x→0+f (x )−f(0)x =lim x→0+x 2x −1x =lim x→0+e 2xlnx −1x =lim x→0+2xlnxx=−∞f −′(0)=lim x→0+f (x )−f(0)x =lim x→0+xe x x=lim x→0+e x =0当x >0时,f ′(0)<0,f (x )单调递减,当x <0时,f ′(0)>0,f (x )单调递增因此f (x )在x =0处取得极大值,且f (0)=1.令()0f x '=得,1x =−及1e x =. 又1(1)0,()0e f f ''''−>>,故极小值为1(1)1ef −=−,2e 1()e ef −=. 16、(本题满分10分)已知(,)f u v 具有二阶连续偏导数,且(,)(,)g x y xy f x y x y =−+−,求22222g g gx x y y ∂∂∂++∂∂∂∂.【答案】112213.f f ''''−−【解析】依题意知,12(,)(,)gy f x y x y f x y x y x∂''=−+−−+−∂, 12(,)(,)gx f x y x y f x y x y y∂''=−+−++−∂. 因为(,)f u v 具有二阶连续偏导数,故1221f f ''''=,因此,2111221221112222()()2gf f f f f f f x ∂''''''''''''''=−+−+=−−−∂, 21112212211221()()1gf f f f f f x y∂''''''''''''=−−−−=−+∂∂, 2111221221112222()()2gf f f f f f f y∂''''''''''''''=−−+−=−+−∂. 所以,22211222213.g g gf f x x y y∂∂∂''''++=−−∂∂∂∂17、(本题满分10分)已知()y x 满足微分方程22ex y xy '−=,且满足(1)y =(1)求()y x ;(2)若{}(,)12,0()D x y x y y x =,求区域D 绕x 轴旋转所得旋转体的体积.【答案】(1)22()e x y x =. (2)【解析】(1)22d d 22()e e e e (x xx x x x y x C C −−−⎛⎫⎰⎰=+⋅=+ ⎪ ⎪⎝⎭⎰因为(1)y =0C =,所以22()e .x y x =(2)由旋转体体积公式,222224211ππe )d πe d (e e).2x x V x x x ===−⎰⎰18、(本题满分10分)求曲线()esin 0xy x x −=与x 轴之间图形的面积.解:设在区间[π,(1)π]n n +(0,1,2,)n =上所围的面积记为n u ,则(1)π(1)πππe |sin |d (1)e sin d n n xnx n n n u x x x x ++−−==−⎰⎰;记esin d xI x x −=⎰,则e d cos (e cos cos de )x x x I x x x −−−=−=−−⎰⎰ ecos e dsin e cos (e sin sin de )xx x x x x x x x x −−−−−=−−=−−−⎰⎰e (cos sin )x x x I −=−+−,所以1e (cos sin )2xI x x C −=−++;因此(1)π(1)πππ11(1)()e (cos sin )(e e )22n nxn n n n u x x +−−+−=−−+=+;(这里需要注意cos π(1)nn =−)因此所求面积为ππππ111e 11e 221e 2e 1n n n n u −∞∞−−===+=+=+−−∑∑. 19、(本题满分10分)设()10,1,2n a x x n ==⋅⋅⋅⎰(1)证明数列{}n a 单调递减;且()212,32n n n a a n n −−==⋅⋅⋅+(2)求1lim−∞→n nn a a .(1)证明:110(0n n n a a x x +−=−<⎰,所以{}n a 单调递减.1333111212212220011(1)[(1)(1)]33n n n n a x d x x x x dx −−−=−−=−−−−⎰⎰1220110021(131()31(),3n n n n n x x x n x x x x n a a −−−−=−−=−−=−⎰⎰⎰从而有()212,32n n n a a n n −−==⋅⋅⋅+; (2)因为211n n n n n na a a a a a −−<<=,而21lim lim12n n n n a n a n →∞→∞−−==+,由夹逼准则知 1lim1nn n a a →∞−=.20、(本题满分11分)已知向量组I :()()()21231,1,4,1,0,4,1,2,3TT Ta ===+αααII :()()()21231,1,3,0,2,1,1,3,3TTTa a a =+=−=+βββ若向量组I 与II 等价,求a 的取值,并将3β用123,,ααα线性表示.【答案】1a ≠−;1a =时,3123(3)(2)k k k =−+−++βααα(k 为任意常数);当1a ≠±时,3123=−+βααα.【解析】令123(,,)=A ααα,123(,,)=B βββ,所以,21a =−A ,22(1)a =−B .因向量组I 与II 等价,故()()(,)r r r ==A B A B ,对矩阵(,)A B 作初等行变换.因为2222111101111101(,)102123011022.443313001111a a a a a a a a ⎛⎫⎛⎫ ⎪ ⎪=→− ⎪ ⎪ ⎪ ⎪++−+−−−−⎝⎭⎝⎭A B 当1a =时,()()(,)2r r r ===A B A B ;当1a =−时,()()2r r ==A B ,但(,)3r =A B ;当1a ≠±时,()()(,)3r r r ===A B A B . 综上,只需1a ≠−即可. 因为对列向量组构成的矩阵作初等行变换,不改变线性关系.①当1a =时,12331023(,,,)01120000⎛⎫⎪→−− ⎪ ⎪⎝⎭αααβ,故3112233x x x =++βααα的等价方程组为132332,2.x x x x =−⎧⎨=−+⎩故3123(3)(2)k k k =−+−++βααα(k 为任意常数);②当1a ≠±时,12331001(,,,)01010011⎛⎫⎪→− ⎪ ⎪⎝⎭αααβ,所以3123=−+βααα.21、(本题满分11分)已知矩阵22122002A x −−⎛⎫ ⎪=− ⎪⎪−⎝⎭与21001000B y ⎛⎫⎪=− ⎪ ⎪⎝⎭相似.(1)求x ,y ;(2)求可逆矩阵P 使得1P AP B −=.解:(1)相似矩阵有相同的特征值,因此有2221,,x y −+−=−+⎧⎪⎨=⎪⎩A B 又2(42)x =−−A ,2y =−B ,所以3,2x y ==−.(2)易知B 的特征值为2,1,2−−;因此2102001000r⎛⎫⎪−⎯⎯→ ⎪ ⎪⎝⎭A E ,取T 1(1,2,0)ξ=−,120001000r⎛⎫ ⎪⎯⎯→ ⎪ ⎪⎝⎭A+E ,取T 2(2,1,0)ξ=−,4012021000r⎛⎫ ⎪⎯⎯→− ⎪ ⎪⎝⎭A+E ,取T3(1,2,4)ξ=−令1123(,,)P ξξξ=,则有111200010002P AP −⎛⎫⎪=− ⎪ ⎪−⎝⎭;同理可得,对于矩阵B ,有矩阵2110030001P −⎛⎫ ⎪= ⎪ ⎪⎝⎭,122200010002P BP −⎛⎫ ⎪=− ⎪ ⎪−⎝⎭,所以111122P AP P BP −−=,即112112B P P APP −−=,所以112111212004P PP −−−−⎛⎫⎪== ⎪ ⎪⎝⎭. 22、(本题满分11分)设随机变量X 与Y 相互独立,X 服从参数为1的指数分布,Y 的概率分布为(1)P Y p =−=,(1)1P Y p ==−,(01p <<),令Z XY =.(1)求Z 的概率密度;(2)p 为何值时,X 与Z 不相关;(3)X 与Z 是否相互独立?【答案】(1)e ,0,()(1)e ,0.z Z zp z f z p z −⎧<=⎨−⎩(2)12p =;(3)不独立.【解析】(1)Z 的分布函数为()()(1,)(1,)Z F z P XY z P Y X z P Y X z ===−−+=,因为X 与Y 相互独立,且X 的分布函数为1e ,0,()0,0.x X x F x x −⎧−>=⎨⎩因此,e ,0,()[1()](1)()(1)(1e ),0.z Z X X zp z F z p F z p F z p z −⎧<=−−+−=⎨−−⎩所以,Z 的概率密度为e ,0,()()(1)e ,0.z Z Z zp z f z F z p z −⎧<'==⎨−⎩(2)当22(,)()0Cov X Z EXZ EX EZ EX EY EX EY DX EY =−⋅=⋅−⋅=⋅=时,X 与Z 不相关. 因为1DX =,12EY p =−,故1.2p = (3)不独立. 因为(01,1)(01,1)(01)P X Z P X XY P X ==,而1(1)(1)(1)(1e )1Z P Z F p −==−−≠,故(01,1)(01)(1)P X Z P X P Z ≠⋅, 所以X 与Z 不独立. 23、(本题满分11分)设总体X 的概率密度为22()22e ,,(;)0,,x A x f x x μσμσσμ−−⎧⎪=⎨⎪<⎩μ是已知参数,0σ>是未知参数,A 是常数. 12,,,n X X X 是来自总体X 简单随机样本.(1)求A ;(2)求2σ的最大似然估计量. 【解答】(1)由密度函数的规范性可知()d 1f x x +∞−∞=⎰,即222222()2220ed ed d 12x t t AAx t t μσσσμσσ−−−−+∞+∞+∞−∞====⎰⎰⎰,得A =(2)设似然函数22()22211()(;)i x nni i i L f x μσσσ−−====∏,取对数22221()1ln ()ln ]22ni n x L μσσσ=−=−∑; 求导数2221224241()()d ln ()1[]d 2222nin i i i x x L nμμσσσσσσ==−−=−+=−+∑∑,令导数为零解得2211()ni i x n σμ==−∑,故2σ的最大似然估计量为2211()ni i X n σμ==−∑.。
2019年考研数学三真题答案解析

vn M nun , nu n 绝对收敛,根据比较审敛法,故 B 绝对收敛. n n 1
1 ,则 D 错,因此选 B. 1 1 n 【方法二】 un 3 , vn 1 ,则 A、C 错, un 3 , vn n n ln n
6 / 13
当 x 0 时, f x xe 1 e xe 1 x e . 当 x =0 时, f 0 1 , f 0 lim
3 x 时, y ( x) 0 ,故拐点为 , 2 . 2
4 / 13
11.已知 f ( x) 【答案】
x
1
1 t 4 dt ,则 x 2 f ( x)dx
0
1
1 (1 2 2 ) 18
【答案解析】
1
0
x 2 f ( x) d x
1 0
x2
2019 考研数学三真题解析
一、选择题:1~8 小题,每小题 4 分,共 32 分,下列每题给出的四个选项中,只有一个选 项是符合题目要求的. 1.当 x 0 时,若 x tan x 与 x k 是同阶无穷小,则 k A. 1. C. 3. 【答案】C. 【答案解析】 x tan x 故选 C. 对泰勒不熟悉的同学,本题也可以用洛必达法则.
1 1 0 0 ________ . 1 , b 13. A 1 1 1 , AX b 有无穷多解,则 a = 2 0 1 a 1 a
【答案】 a 1 【答案解析】
5 / 13
2019考研数学三真题答案解析(完整版)

2 a b 0 1 a b 0
∴
x x e x 为 y ay by c e 的特解: y 2 y y c e
将 e x y 代入 e x 2 e x e x c e x c 4 ∴ ∴
a 2, b 1, c 4
所以:
2 g 2 g xg " " " " f uu f uu f vv 1 f uu 2 x xy y 2
" " 1 3 f uu f vv
(1) y ¢ - xy = 17.解析:
xd x
ห้องสมุดไป่ตู้
1 2 x
x2
e
x2 2
通解 y = e
x2 2
2 2 - y3 规范形为 y12 - y2 ,选(C)
7.选(C) 解:法一: P ( AB ) = P ( A) - P ( AB )
P ( B A) = P ( B ) - P ( AB ) P ( A) = P ( B ) \ P ( AB ) = P ( B A) 选(C)
法二 排除法 (A) A = B = W 时排除(A) (B)若 A、B 互斥,且 0 < P( A) < 1, 0 < P( x) < 1, 排除(B) (D)若 A = B = W ,则 ,排除(D) P ( AB ) = P (W) = 1, P ( AB ) = P (F) = 0 8.解:因为 X N (u , s 2 ) Y N (u , s 2 ) X 与 Y 相互独立
¥ 1 1 + 2e-p + e-2p ) å e-2 kp ( 2 k =0
2019考研数学三真题及答案

2019考研数学三试题和答案一、填空题(本题共6小题,每小题4分,满分24分.把答案填在题中横线上)(1)设,0,0,0,1cos )(=≠⎪⎩⎪⎨⎧=x x xx x f 若若λ其导函数在x=0处连续,则λ的取值范围是_____.(2)已知曲线b x a x y +-=233与x 轴相切,则2b 可以通过a 表示为=2b ________.(3)设a>0,,x a x g x f 其他若,10,0,)()(≤≤⎩⎨⎧==而D 表示全平面,则⎰⎰-=Ddxdyx y g x f I )()(=_______.(4)设n 维向量0,),0,,0,(<=a a a Tα;E 为n 阶单位矩阵,矩阵TE A αα-=,Ta E B αα1+=,其中A 的逆矩阵为B ,则a=______.(5)设随机变量X 和Y 的相关系数为0.9,若4.0-=X Z ,则Y 与Z的相关系数为________.(6)设总体X 服从参数为2的指数分布,n X X X ,,,21 为来自总体X的简单随机样本,则当∞→n 时,∑==ni i n X n Y 121依概率收敛于______.二、选择题(本题共6小题,每小题4分,满分24分.每小题给出的四个选项中,只有一项符合题目要求,把所选项前的字母填在题后的括号内)(1)设f(x)为不恒等于零的奇函数,且)0(f '存在,则函数x x f x g )()(=[](A)在x=0处左极限不存在.(B)有跳跃间断点x=0. (C)在x=0处右极限不存在.(D)有可去间断点x=0.(2)设可微函数f(x,y)在点),(00y x 取得极小值,则下列结论正确的是[](A)),(0y x f 在0y y =处的导数等于零.(B )),(0y x f 在0y y =处的导数大于零.(C)),(0y x f 在0y y =处的导数小于零.(D)),(0y x f 在0y y =处的导数不存在. (3)设2nn n a a p +=,2nn n a a q -=, ,2,1=n ,则下列命题正确的是[](A)若∑∞=1n na条件收敛,则∑∞=1n np与∑∞=1n nq都收敛. (B)若∑∞=1n na绝对收敛,则∑∞=1n np与∑∞=1n nq都收敛. (C)若∑∞=1n na条件收敛,则∑∞=1n np与∑∞=1n nq敛散性都不定. (D)若∑∞=1n na绝对收敛,则∑∞=1n np与∑∞=1n nq敛散性都不定.(4)设三阶矩阵⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=a b b b a b b b a A ,若A 的伴随矩阵的秩为1,则必有[] (A)a=b 或a+2b=0.(B)a=b 或a+2b ≠0.(C)a ≠b 且a+2b=0.(D)a ≠b 且a+2b ≠0.(5)设s ααα,,,21 均为n 维向量,下列结论不正确的是[](A)若对于任意一组不全为零的数s k k k ,,,21 ,都有02211≠+++s s k k k ααα ,则s ααα,,,21 线性无关.(B)若s ααα,,,21 线性相关,则对于任意一组不全为零的数s k k k ,,,21 ,都有.02211=+++s s k k k ααα(C)s ααα,,,21 线性无关的充分必要条件是此向量组的秩为s. (D)s ααα,,,21 线性无关的必要条件是其中任意两个向量线性无关. (6)将一枚硬币独立地掷两次,引进事件:1A ={掷第一次出现正面},2A ={掷第二次出现正面},3A ={正、反面各出现一次},4A ={正面出现两次},则事件[](A)321,,A A A 相互独立.(B)432,,A A A 相互独立. (C)321,,A A A 两两独立.(D)432,,A A A 两两独立.三、(本题满分8分) 设:).1,21[,)1(1sin 11)(∈--+=x x x x x f πππ试补充定义f(1)使得f(x)在]1,21[上连续.四、(本题满分8分)设f(u,v)具有二阶连续偏导数,且满足12222=∂∂+∂∂v fu f ,又)](21,[),(22y x xy f y x g -=,求.2222y g x g ∂∂+∂∂五、(本题满分8分) 计算二重积分.)sin(22)(22dxdy y x e I Dy x+=⎰⎰-+-π其中积分区域D=}.),{(22π≤+y x y x六、(本题满分9分)求幂级数∑∞=<-+12)1(2)1(1n nnx n x 的和函数f(x)及其极值.七、(本题满分9分)设F(x)=f(x)g(x),其中函数f(x),g(x)在),(+∞-∞内满足以下条件:)()(x g x f =',)()(x f x g =',且f(0)=0,.2)()(xe x g xf =+求F(x)所满足的一阶微分方程; 求出F(x)的表达式. 八、(本题满分8分)设函数f(x)在[0,3]上连续,在(0,3)内可导,且f(0)+f(1)+f(2)=3,f(3)=1.试证必存在)3,0(∈ξ,使.0)(='ξf 九、(本题满分13分) 已知齐次线性方程组⎪⎪⎪⎩⎪⎪⎪⎨⎧=+++++=+++++=+++++=+++++,0)(,0)(,0)(,0)(332211332211332211332211nn n n n n n n x b a x a x a x a x a x b a x a x a x a x a x b a x a x a x a x a x b a其中.01≠∑=ni ia试讨论n a a a ,,,21 和b 满足何种关系时,(1)方程组仅有零解;(2)方程组有非零解.在有非零解时,求此方程组的一个基础解系. 十、(本题满分13分) 设二次型)0(222),,(31232221321>+-+==b x bx x x ax AX X x x x f T 中二次型的矩阵A 的特征值之和为1,特征值之积为-12. 求a,b 的值;利用正交变换将二次型f 化为标准形,并写出所用的正交变换和对应的正交矩阵.十一、(本题满分13分) 设随机变量X 的概率密度为;],8,1[,0,31)(32其他若∈⎪⎩⎪⎨⎧=x xx fF(x)是X 的分布函数.求随机变量Y=F(X)的分布函数. 十二、(本题满分13分)设随机变量X 与Y 独立,其中X 的概率分布为⎪⎪⎭⎫ ⎝⎛7.03.021~X ,而Y 的概率密度为f(y),求随机变量U=X+Y 的概率密度g(u).答案一、填空题(本题共6小题,每小题4分,满分24分.把答案填在题中横线上)(1)设,0,0,0,1cos )(=≠⎪⎩⎪⎨⎧=x x xx x f 若若λ其导函数在x=0处连续,则λ的取值范围是2>λ.点拨当≠x 0可直接按公式求导,当x=0时要求用定义求导. 过程:当1>λ时,有,0,0,0,1sin 1cos )(21=≠⎪⎩⎪⎨⎧+='--x x xx x x x f 若若λλλ显然当2>λ时,有)0(0)(lim 0f x f x '=='→,即其导函数在x=0处连续.(2)已知曲线b x a x y +-=233与x 轴相切,则2b 可以通过a 表示为=2b 64a .点拨曲线在切点的斜率为0,即0='y ,由此可确定切点的坐标应满足的条件,再根据在切点处纵坐标为零,即可找到2b 与a 的关系. 过程:由题设,在切点处有03322=-='a x y ,有.22a x = 又在此点y 坐标为0,于是有300230=+-=b x a x ,故.44)3(6422202202a a a x a x b =⋅=-= 点睛:有关切线问题应注意斜率所满足的条件,同时切点还应满足曲线方程.(3)设a>0,,x a x g x f 其他若,10,0,)()(≤≤⎩⎨⎧==而D 表示全平面,则⎰⎰-=Ddxdyx y g x f I )()(=2a .点拨本题积分区域为全平面,但只有当10,10≤-≤≤≤x y x 时,被积函数才不为零,因此实际上只需在满足此不等式的区域内积分即可. 过程:⎰⎰-=Ddxdyx y g x f I )()(=dxdya x y x ⎰⎰≤-≤≤≤10,102=.])1[(212112a dx x x a dy dx a x x=-+=⎰⎰⎰+点睛:若被积函数只在某区域内不为零,则二重积分的计算只需在积分区域与被积函数不为零的区域的公共部分上积分即可.(4)设n 维向量0,),0,,0,(<=a a a Tα;E 为n 阶单位矩阵,矩阵 TE A αα-=,Ta E B αα1+=,其中A 的逆矩阵为B ,则a= -1 .点拨这里T αα为n 阶矩阵,而22a T =αα为数,直接通过E AB =进行计算并注意利用乘法的结合律即可. 过程:由题设,有)1)((T T a E E AB αααα+-= =TT T T a a E αααααααα⋅-+-11=TT T T a a E αααααααα)(11-+- =TT T a a E αααααα21-+-=Ea a E T =+--+αα)121(,于是有0121=+--a a ,即0122=-+a a ,解得.1,21-==a a 由于A<0,故a=-1.(5)设随机变量X 和Y 的相关系数为0.9,若4.0-=X Z ,则Y 与Z的相关系数为 0.9 . 点拨利用相关系数的计算公式即可. 过程:因为)4.0()()]4.0([()4.0,cov(),cov(---=-=X E Y E X Y E X Y Z Y=)(4.0)()()(4.0)(Y E X E Y E Y E XY E +-- =E(XY)–E(X)E(Y)=cov(X,Y), 且.DX DZ=于是有cov(Y,Z)=DZ DY Z Y ),cov(=.9.0),cov(==XY DYDX Y X ρ点睛:注意以下运算公式:DX a X D =+)(,).,cov(),cov(Y X a Y X =+ (6)设总体X 服从参数为2的指数分布,n X X X ,,,21 为来自总体X的简单随机样本,则当∞→n 时,∑==ni i n X n Y 121依概率收敛于21.点拨本题考查大数定律:一组相互独立且具有有限期望与方差的随机变量n X X X ,,,21 ,当方差一致有界时,其算术平均值依概率收敛于其数学期望的算术平均值:).(1111∞→→∑∑==n EX n X n ni i p n i i过程:这里22221,,,nX X X 满足大数定律的条件,且22)(i i iEX DX EX +==21)21(412=+,因此根据大数定律有∑==ni i n X n Y 121依概率收敛于.21112=∑=n i iEX n二、选择题(本题共6小题,每小题4分,满分24分.每小题给出的四个选项中,只有一项符合题目要求,把所选项前的字母填在题后的括号内)(1)设f(x)为不恒等于零的奇函数,且)0(f '存在,则函数x x f x g )()(=(A)在x=0处左极限不存在.(B)有跳跃间断点x=0. (C)在x=0处右极限不存在.(D)有可去间断点x=0.[D]点拨由题设,可推出f(0)=0,再利用在点x=0处的导数定义进行讨论即可.过程:显然x=0为g(x)的间断点,且由f(x)为不恒等于零的奇函数知,f(0)=0. 于是有)0(0)0()(lim )(lim)(lim 000f x f x f x x f x g x x x '=--==→→→存在,故x=0为可去间断点.【评注1】本题也可用反例排除,例如f(x)=x,则此时g(x)=,0,0,0,1=≠⎩⎨⎧=x x x x 可排除(A),(B),(C)三项,故应选(D).【评注2】若f(x)在x x =处连续,则.)(,0)()(lim000A x f x f A x x x f x x ='=⇔=-→.(2)设可微函数f(x,y)在点),(00y x 取得极小值,则下列结论正确的是(A)),(0y x f 在0y y =处的导数等于零.(B )),(0y x f 在0y y =处的导数大于零.(C)),(0y x f 在0y y =处的导数小于零.(D)),(0y x f 在0y y =处的导数不存在. [A]点拨可微必有偏导数存在,再根据取极值的必要条件即可得结论. 过程:可微函数f(x,y)在点),(00y x 取得极小值,根据取极值的必要条件知0),(00='y x f y ,即),(0y x f 在0y y =处的导数等于零,故应选(A). 【评注1】本题考查了偏导数的定义,),(0y x f 在0y y =处的导数即),(00y x f y ';而),(0y x f 在0x x =处的导数即).,(00y x f x '【评注2】本题也可用排除法分析,取22),(y x y x f +=,在(0,0)处可微且取得极小值,并且有2),0(y y f =,可排除(B),(C),(D),故正确选项为(A). (3)设2nn n a a p +=,2nn n a a q -=, ,2,1=n ,则下列命题正确的是(A)若∑∞=1n na条件收敛,则∑∞=1n np与∑∞=1n nq都收敛. (B)若∑∞=1n na 绝对收敛,则∑∞=1n np 与∑∞=1n nq 都收敛. (C)若∑∞=1n na条件收敛,则∑∞=1n np与∑∞=1n nq敛散性都不定. (D)若∑∞=1n na绝对收敛,则∑∞=1n np与∑∞=1n nq敛散性都不定.[B]点拨根据绝对收敛与条件收敛的关系以及收敛级数的运算性质即可找出答案. 过程:若∑∞=1n na绝对收敛,即∑∞=1n na收敛,当然也有级数∑∞=1n na收敛,再根据2nn n a a p +=,2nn n a a q -=及收敛级数的运算性质知,∑∞=1n np与∑∞=1n nq都收敛,故应选(B).(4)设三阶矩阵⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=a b b b a b b b a A ,若A 的伴随矩阵的秩为1,则必有 (A)a=b 或a+2b=0.(B)a=b 或a+2b ≠0. (C)a ≠b 且a+2b=0.(D)a ≠b 且a+2b ≠0.[C]点拨A 的伴随矩阵的秩为1,说明A 的秩为2,由此可确定a,b 应满足的条件.过程:根据A 与其伴随矩阵A*秩之间的关系知,秩(A)=2,故有0))(2(2=-+=b a b a ab b b a b bb a ,即有02=+b a 或a=b.但当a=b 时,显然秩(A)2≠,故必有a ≠b 且a+2b=0.应选(C). 点睛:n (n )2≥阶矩阵A 与其伴随矩阵A*的秩之间有下列关系:.1)(,1)(,)(,0,1,*)(-<-==⎪⎩⎪⎨⎧=n A r n A r n A r n A r(5)设s ααα,,,21 均为n 维向量,下列结论不正确的是(A)若对于任意一组不全为零的数s k k k ,,,21 ,都有02211≠+++s s k k k ααα ,则s ααα,,,21 线性无关.(B)若s ααα,,,21 线性相关,则对于任意一组不全为零的数s k k k ,,,21 ,都有.02211=+++s s k k k ααα(C)s ααα,,,21 线性无关的充分必要条件是此向量组的秩为s. (D)s ααα,,,21 线性无关的必要条件是其中任意两个向量线性无关.[B]点拨本题涉及到线性相关、线性无关概念的理解,以及线性相关、线性无关的等价表现形式.应注意是寻找不正确的命题.过程:(A):若对于任意一组不全为零的数s k k k ,,,21 ,都有02211≠+++s s k k k ααα ,则s ααα,,,21 必线性无关,因为若s ααα,,,21 线性相关,则存在一组不全为零的数s k k k ,,,21 ,使得02211=+++s s k k k ααα ,矛盾.可见(A )成立.(B):若s ααα,,,21 线性相关,则存在一组,而不是对任意一组不全为零的数s k k k ,,,21 ,都有.02211=+++s s k k k ααα (B)不成立.(C)s ααα,,,21 线性无关,则此向量组的秩为s ;反过来,若向量组s ααα,,,21 的秩为s ,则s ααα,,,21 线性无关,因此(C)成立.(D)s ααα,,,21 线性无关,则其任一部分组线性无关,当然其中任意两个向量线性无关,可见(D)也成立. 综上所述,应选(B).点睛:原命题与其逆否命题是等价的.例如,原命题:若存在一组不全为零的数s k k k ,,,21 ,使得02211=+++s s k k k ααα 成立,则s ααα,,,21 线性相关.其逆否命题为:若对于任意一组不全为零的数s k k k ,,,21 ,都有02211≠+++s s k k k ααα ,则s ααα,,,21 线性无关.在平时的学习过程中,应经常注意这种原命题与其逆否命题的等价性.(6)将一枚硬币独立地掷两次,引进事件:1A ={掷第一次出现正面},2A ={掷第二次出现正面},3A ={正、反面各出现一次},4A ={正面出现两次},则事件(A)321,,A A A 相互独立.(B)432,,A A A 相互独立. (C)321,,A A A 两两独立.(D)432,,A A A 两两独立.[C]点拨按照相互独立与两两独立的定义进行验算即可,注意应先检查两两独立,若成立,再检验是否相互独立. 过程:因为21)(1=A P ,21)(2=A P ,21)(3=A P ,41)(4=A P , 且41)(21=A A P ,41)(31=A A P ,41)(32=A A P ,41)(42=A A P 0)(321=A A A P ,可见有)()()(2121A P A P A A P =,)()()(3131A P A P A A P =,)()()(3232A P A P A A P =,)()()()(321321A P A P A P A A A P ≠,)()()(4242A P A P A A P ≠.故321,,A A A 两两独立但不相互独立;432,,A A A 不两两独立更不相互独立,应选(C).点睛:本题严格地说应假定硬币是均匀的,否则结论不一定成立. 三、(本题满分8分) 设).1,21[,)1(1sin 11)(∈--+=x x x x x f πππ试补充定义f(1)使得f(x)在]1,21[上连续.点拨只需求出极限)(lim 1x f x -→,然后定义f(1)为此极限值即可.过程:因为)(lim 1x f x -→=])1(1sin 11[lim 1x x x x --+-→πππ=x x xx x πππππsin )1(sin )1(lim 111---+-→=x x x xx ππππππππcos )1(sin cos lim 111-+---+-→=x x x x x x ππππππππππsin )1(cos cos sin lim11221----+-→=.1π由于f(x)在)1,21[上连续,因此定义 π1)1(=f ,使f(x)在]1,21[上连续.点睛:本题实质上是一求极限问题,但以这种形式表现出来,还考查了连续的概念.在计算过程中,也可先作变量代换y=1-x ,转化为求+→0y 的极限,可以适当简化.四、(本题满分8分)设f(u,v)具有二阶连续偏导数,且满足12222=∂∂+∂∂v fu f ,又)](21,[),(22y x xy f y x g -=,求.2222y g x g ∂∂+∂∂点拨本题是典型的复合函数求偏导问题:),(v u f g =,)(21,22y x v xy u -==,直接利用复合函数求偏导公式即可,注意利用.22u v f v u f ∂∂∂=∂∂∂过程:v f xu f y x g ∂∂+∂∂=∂∂, .v fy u f x y g ∂∂-∂∂=∂∂故v f v f x v u f xy u f y xg ∂∂+∂∂+∂∂∂+∂∂=∂∂2222222222, .2222222222v f v f y u v f xy u f x y g ∂∂-∂∂+∂∂∂-∂∂=∂∂ 所以222222222222)()(v f y x u f y x y g x g ∂∂++∂∂+=∂∂+∂∂=.22y x + 点睛:本题考查半抽象复合函数求二阶偏导. 五、(本题满分8分) 计算二重积分.)sin(22)(22dxdy y x e I Dy x+=⎰⎰-+-π其中积分区域D=}.),{(22π≤+y x y x点拨从被积函数与积分区域可以看出,应该利用极坐标进行计算. 过程:作极坐标变换:θθsin ,cos r y r x ==,有dxdyy x e e I Dy x)sin(22)(22+=⎰⎰+-π=.sin 2022dr r re d e r ⎰⎰-πππθ令2r t =,则tdte eI t sin 0⎰-=πππ. 记tdte A t sin 0⎰-=π,则tt de e A --⎰-=int 0π=]cos sin [0⎰----ππtdt e te t t=⎰--πcos ttde=]sin cos [0tdt e te t t ⎰--+-ππ=.1A e -+-π因此)1(21π-+=e A ,).1(2)1(2πππππe e e I +=+=-点睛:本题属常规题型,明显地应该选用极坐标进行计算,在将二重积分化为定积分后,再通过换元与分步积分(均为最基础的要求),即可得出结果,综合考查了二重积分、换元积分与分步积分等多个基础知识点.六、(本题满分9分)求幂级数∑∞=<-+12)1(2)1(1n n nx n x 的和函数f(x)及其极值.点拨先通过逐项求导后求和,再积分即可得和函数,注意当x=0时和为1.求出和函数后,再按通常方法求极值. 过程:.1)1()(1212∑∞=-+-=-='n n n xxx x f上式两边从0到x 积分,得).1ln(211)0()(202x dt t t f x f x+-=+-=-⎰由f(0)=1,得).1(),1ln(211)(2<+-=x x x f令0)(='x f ,求得唯一驻点x=0.由于,)1(1)(222x x x f +--=''01)0(<-=''f ,可见f(x)在x=0处取得极大值,且极大值为 f(0)=1.点睛:求和函数一般都是先通过逐项求导、逐项积分等转化为可直接求和的几何级数情形,然后再通过逐项积分、逐项求导等逆运算最终确定和函数.七、(本题满分9分)设F(x)=f(x)g(x),其中函数f(x),g(x)在),(+∞-∞内满足以下条件:)()(x g x f =',)()(x f x g =',且f(0)=0,.2)()(xe x g xf =+求F(x)所满足的一阶微分方程; 求出F(x)的表达式.点拨F(x)所满足的微分方程自然应含有其导函数,提示应先对F(x)求导,并将其余部分转化为用F(x)表示,导出相应的微分方程,然后再求解相应的微分方程. 过程:(1)由)()()()()(x g x f x g x f x F '+'='=)()(22x f x g + =)()(2)]()([2x g x f x g x f -+ =(22)x e -2F(x),可见F(x)所满足的一阶微分方程为.4)(2)(2x e x F x F =+'(2)]4[)(222C dx e e e x F dxx dx +⎰⋅⎰=⎰-=]4[42C dx e e x x +⎰-=.22x x Ce e -+将F(0)=f(0)g(0)=0代入上式,得 C=-1. 于是.)(22x x e e x F --=点睛:本题没有直接告知微分方程,要求先通过求导以及恒等变形引出微分方程的形式,从题型来说比较新颖,但具体到微分方程的求解则并不复杂,仍然是基本要求的范围. 八、(本题满分8分)设函数f(x)在[0,3]上连续,在(0,3)内可导,且f(0)+f(1)+f(2)=3,f(3)=1.试证必存在)3,0(∈ξ,使.0)(='ξf 点拨根据罗尔定理,只需再证明存在一点c )3,0[∈,使得)3(1)(f c f ==,然后在[c,3]上应用罗尔定理即可.条件f(0)+f(1)+f(2)=3等价于13)2()1()0(=++f f f ,问题转化为1介于f(x)的最值之间,最终用介值定理可以达到目的.过程:因为f(x)在[0,3]上连续,所以f(x)在[0,2]上连续,且在[0,2]上必有最大值M 和最小值m ,于是Mf m ≤≤)0(,M f m ≤≤)1(, Mf m ≤≤)2(.故.3)2()1()0(M f f f m ≤++≤由介值定理知,至少存在一点]2,0[∈c ,使.13)2()1()0()(=++=f f f c f因为f(c)=1=f(3),且f(x)在[c,3]上连续,在(c,3)内可导,所以由罗尔定理知,必存在)3,0()3,(⊂∈c ξ,使.0)(='ξf点睛:介值定理、微分中值定理与积分中值定理都是常考知识点,且一般是两两结合起来考.本题是典型的结合介值定理与微分中值定理的情形.九、(本题满分13分) 已知齐次线性方程组⎪⎪⎪⎩⎪⎪⎪⎨⎧=+++++=+++++=+++++=+++++,0)(,0)(,0)(,0)(332211332211332211332211nn n n n n nn x b a x a x a x a x a x b a x a x a x a x a x b a x a x a x a x a x b a其中.01≠∑=ni ia试讨论n a a a ,,,21 和b 满足何种关系时,(1)方程组仅有零解;(2)方程组有非零解.在有非零解时,求此方程组的一个基础解系. 点拨方程的个数与未知量的个数相同,问题转化为系数矩阵行列式是否为零,而系数行列式的计算具有明显的特征:所有列对应元素相加后相等.可先将所有列对应元素相加,然后提出公因式,再将第一行的(-1)倍加到其余各行,即可计算出行列式的值. 过程:方程组的系数行列式ba a a a a ba a a a ab a a a a a b a A n n n n++++= 321321321321=).(11∑=-+ni i n a b b当0≠b 时且1≠+∑=ni i a b 时,秩(A)=n ,方程组仅有零解.当b=0时,原方程组的同解方程组为.02211=+++n n x a x a x a由01≠∑=ni ia可知,),,2,1(n i a i =不全为零.不妨设01≠a ,得原方程组的一个基础解系为T a a )0,,0,1,(121 -=α,T a a )0,,1,0,(132 -=α,.)1,,0,0,(,1T n n a a-=α当∑=-=ni ia b 1时,有0≠b ,原方程组的系数矩阵可化为⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣⎡----∑∑∑∑====n i i n nni inni inni ia a a a a a a a a a a a a a a a a a a a 1321132131213211(将第1行的-1倍加到其余各行,再从第2行到第n 行同乘以∑=-n i i a 11倍)→ ⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎣⎡----∑=1001010100113211 n n i ia a a a a( 将第n 行n a -倍到第2行的2a -倍加到第1行,再将第1行移到最后一行)→ .0000100101010011⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡---由此得原方程组的同解方程组为12x x =,13x x =,1,x x n = .原方程组的一个基础解系为.)1,,1,1(T =α点睛:本题的难点在∑=-=n i ia b 1时的讨论,事实上也可这样分析:此时系数矩阵的秩为n-1(存在n-1阶子式不为零),且显然T )1,,1,1( =α为方程组的一个非零解,即可作为基础解系.十、(本题满分13分)设二次型)0(222),,(31232221321>+-+==b x bx x x ax AX X x x x f T ,中二次型的矩阵A 的特征值之和为1,特征值之积为-12. 求a,b 的值;利用正交变换将二次型f 化为标准形,并写出所用的正交变换和对应的正交矩阵.点拨特征值之和为A 的主对角线上元素之和,特征值之积为A 的行列式,由此可求出a,b 的值;进一步求出A 的特征值和特征向量,并将相同特征值的特征向量正交化(若有必要),然后将特征向量单位化并以此为列所构造的矩阵即为所求的正交矩阵.过程:(1)二次型f 的矩阵为.200200⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=b b a A设A 的特征值为).3,2,1(=i i λ由题设,有1)2(2321=-++=++a λλλ,.12242002002321-=--=-=b a b ba λλλ解得a=1,b=-2.(2)由矩阵A 的特征多项式)3()2(2020202012+-=+----=-λλλλλλA E ,得A 的特征值.3,2321-===λλλ对于,221==λλ解齐次线性方程组0)2(=-x A E ,得其基础解系 T )1,0,2(1=ξ,.)0,1,0(2T =ξ对于33-=λ,解齐次线性方程组0)3(=--x A E ,得基础解系 .)2,0,1(3T -=ξ由于321,,ξξξ已是正交向量组,为了得到规范正交向量组,只需将321,,ξξξ单位化,由此得T)51,0,52(1=η,T )0,1,0(2=η,.)52,0,51(3T -=η令矩阵[]⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡-==5205101051052321ηηηQ , 则Q 为正交矩阵.在正交变换X=QY 下,有⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=300020002AQ Q T ,且二次型的标准形为.322232221y y y f -+=点睛:本题求a,b ,也可先计算特征多项式,再利用根与系数的关系确定:二次型f 的矩阵A 对应特征多项式为)].2()2()[2(20020022b a a b b aA E +----=+----=-λλλλλλλ设A 的特征值为321,,λλλ,则).2(,2,2232321b a a +-=-=+=λλλλλ由题设得1)2(2321=-+=++a λλλ,.12)2(22321-=+-=b a λλλ解得a=1,b=2.十一、(本题满分13分)设随机变量X 的概率密度为;],8,1[,0,31)(32其他若∈⎪⎩⎪⎨⎧=x x x fF(x)是X 的分布函数.求随机变量Y=F(X)的分布函数.点拨先求出分布函数F(x)的具体形式,从而可确定Y=F(X),然后按定义求Y 的分布函数即可.注意应先确定Y=F(X)的值域范围)1)(0(≤≤X F ,再对y 分段讨论.过程:易见,当x<1时,F(x)=0;当x>8时,F(x)=1.对于]8,1[∈x ,有.131)(3132-==⎰x dt t x F x设G(y)是随机变量Y=F(X)的分布函数.显然,当0<y 时,G(y)=0;当1≥y 时,G(y)=1.对于)1,0[∈y ,有})({}{)(y X F P y Y P y G ≤=≤= =})1({}1{33+≤=≤-y X P y X P =.])1[(3y y F =+于是,Y=F(X)的分布函数为.1,10,0,1,,0)(≥<≤<⎪⎩⎪⎨⎧=y y y y y G 若若若点睛:事实上,本题X 为任意连续型随机变量均可,此时Y=F(X)仍服从均匀分布:当y<0时,G(y)=0;当1≥y 时,G(y)=1;当01<≤y 时,})({}{)(y X F P y Y P y G ≤=≤==)}({1y F X P -≤ =.))((1y y F F =-十二、(本题满分13分)设随机变量X 与Y 独立,其中X 的概率分布为⎪⎪⎭⎫ ⎝⎛7.03.021~X , 而Y 的概率密度为f(y),求随机变量U=X+Y 的概率密度g(u).点拨求二维随机变量函数的分布,一般用分布函数法转化为求相应的概率.注意X 只有两个可能的取值,求概率时可用全概率公式进行计算.过程:设F(y)是Y 的分布函数,则由全概率公式,知U=X+Y 的分布函数为}{)(u Y X P u G ≤+= =}2{7.0}1{3.0=≤++=≤+X u Y X P X u Y X P =}22{7.0}11{3.0=-≤+=-≤X u Y P X u Y P .由于X 和Y 独立,可见G(u)=}2{7.0}1{3.0-≤+-≤u Y P u Y P=).2(7.0)1(3.0-+-u F u F由此,得U 的概率密度)2(7.0)1(3.0)()(-'+-'='=u F u F u G u g=).2(7.0)1(3.0-+-u f u f点睛:本题属新题型,求两个随机变量和的分布,其中一个是连续型一个是离散型,要求用全概率公式进行计算,类似问题以前从未出现过,具有一定的难度和综合性.。
2019考研数学三真题及参考答案解析

(2) p为何值,X,Z不相关;
(3) X ,Z是否独立.
23.设随机变量
X
的概率密度为
f
(x,
2)
A
( x )2
e 2 2
,
x
0,
x
2 为已知参数, 为未知参数,A 常数,
X
,X
1
,,X
2
为取自总体X的简单随机样本
n
.
(1)求 A;
2
(2)求 的最大似然估计量
2019 年全国硕士研究生入学统一考试
故 f 1= e1 1 为极小值.
16. 解: g(x, y) xy f (x y, x y)
g x
y
(
f
u
fv),
g y
x(
fu
fv)
2g x 2
( fuu
fuv
fuv
fvv )
fuu
2 fuv
fvv
2g xy
1 (
fuu
fuv
fuv
fvv )
1
fuu
fvv
2g y 2
( fuu
f
0
lim x2x 1 lim e2xln x 1 lim 2x ln x ,
x x0
x0
x
x x0
f
0
lim xex 11 lim ex 1 .
x0
x
x0
故
f
x=
x2x 2 ln x
1
x
e
x
2
x0
.
x0
令 f x=0 ,得 x1 e1, x2 1.
(1)当 x 0, e1 , f x 0, f x单调递减,
2019研究生数学考试数三真题

2019年全国硕士研究生入学统一考试(数学三)试题及答案一、选择题:1~8小题,每小题4分,共32分。
下列每题给出的四个选项中,只有一个选项是符合题目要求的。
1.当0→x 时,若tan x x -与k x 是同阶无穷小,则k =( ) (A )1(B )2 (C )3 (D )42.已知方程550x x k -+=有3个不同的实根,则k 的取值范围是( ) (A ))4,(--∞(B )),4(+∞(C ))4,4(-(D )),44(-3.已知微分方程xce by y a y =+'+''的通解为x e e x C C y x++=-)(21,则a ,b ,c 依次为( )(A )1, 0, 1(B )1, 0, 2(C )2, 1, 3(D )2, 1, 44.若∑∞=1n n un 绝对收敛,1nn v n ∞=∑条件收敛,则( ) (A )∑∞=1n nn vu 绝对收敛(B )∑∞=1n nn vu 绝对收敛(C )∑∞=1n nn vu 收敛 (D )∑∞=1n nn vu 发散5.设A 是4阶矩阵,A*为A 的伴随矩阵,若线性方程组Ax=0的基础解系中只有2个向量,则=)(*A r ( ) (A )0(B )1(C )2(D )36.设A 是3阶实对称矩阵,E 是3阶单位矩阵,若E A A 22=+,且4=A ,则二次型Axx T的规范形为( ) (A )222123y y y ++ (B )232221y y y -+ (C )232221y y y --(D )232221y y y ---7.设A ,B 为随机事件,则P(A)=P(B)的充分必要条件是( ) (A )()()()P A B P A P B =+U (B ))()()(B P A P AB P = (C ))()(A B P B A P =(D ))()(AB P AB P =8.设随机变量X 和Y 相互独立,且都服从正态分布),(2σμN ,则=}1-P{<Y X ( ) (A )与μ无关,与σ2有关(B )与μ有关,与σ2无关(C )与μ、σ2都有关(D )与μ、σ2都无关二、填空题:9~14小题,每小题4分,共24分。
2019年数学三真题答案解析(pdf)

co
而�)i n-1
n=
(-1)"发散,�Fl ln(n +
1)
收敛,可知�(u n+l! n�l
n )的敛散性是不确定的.
则C、D都不正确.
2 I I )/ =
再判断 n-1 汇)i n的敛散性:由于nl-im=
o·,
U n)! n
n
nu" I飞弝了
=O,且� n 二,] nun绝对收敛,由比较判别法
令y"=O,得x 1 =O,x2 =穴,再判断X 1 ,X 2 两点的左右两侧二阶导数是否异号;
在X 1 左侧y"<o,右侧y"<o,故(0,2)不是拐点;
Xz左侧y"<O,x 2
右侧区间丘竺)内y">o,所以拐点为(六' — 2
2).
故应填(六'-2).
1
(11)—(1-2,/2)
18 解
Ia 由分部积分法:『
故应填1.
( 1 4 、丿
2 _3
0\
a
1 -
1 .....I .
=仁-X , O<x<2,
解 由随机变量X的概率密度f(x)
可知X的分布函数
lo, 其他,
< 厂�X
Q,
2
2
F(X)� 了, O¾x< 2,EX�I. xf(x)dx�L x·fdx�f,
l l, X�2,
卢> P{F(X)>EX-1}
故应填一 118 (1-2迈).
(12) 0.4
解 当PB =20时,Q A =500 — Pi — 20PA + 2• 202 =1300 - 20P A -Pi,
数学(三)真题 参考答案及解析

(15)已知函数
(f x)
x2x,
xex
1,
x x
0 0 ,求
f( x),并求
(f x)的极值.
【答案】
f( x)
2x2(x ln x 1),
(x
1)e
x
,
x x
0, 0.e
2
e1
和1
e1
为
(f x)的极小值;1为
(f x)的
极大值.
7
中公学员内部专用
版权所有 翻版必究
【解析】当 x 0 时, f( x)=(x2x) =(e2xln x) =e2xln(x 2lnx 2)=2x2(x lnx 1);
大值.
(16)设函数 (f u,v)具有二阶连续偏导数,函数 g(x,y) xy (f x y,x y),
8
中公学员内部专用
版权所有 翻版必究
求
2g x2
2g xy
2g y 2
.
【答案】1 3 f11 f22 .
【解析】因为 (f u,v)具有二阶连续偏导数,所以 f12 f21 .
由复合函数求导法则可知
0
(12)以 pA , pB 分别表示 A , B 两种商品的价格,设商品 A 的需求函数为
QA
500
p
2 A
pA
pB
2 pB2
,则当
pA
10,pB
20
时,商品
A 的需求量对自身价
格的弹性AA (AA 0) 为_______.
【答案】 0.4
【解析】由题干得
QA pA
=
2 pA
pB
.
因为
AA
pA QA
2019年考研数学三真题与解析

2019年考研数学三真题解析一、选择题 1—8小题.每小题4分,共32分.1.当0x →时,若tan x x -与k x 是同阶无穷小,则k =( )(A )1 (B )2 (C )3 (D )4【答案】(C )【详解】当0x →时,331tan ()3x x x o x =++,所以331tan ()3x x x o x -=-+,所以3k =. 2.已知方程550x x k -+=有三个不同的实根,则k 的取值范围是( )(A )(,4)-∞- (B )(4,)+∞ (C )(4,0)- (D )(4,4)-【答案】(D ) 【详解】设5()5f x x x k =-+,则42(),(),()555(1)(1)(1),f f f x x x x x '-∞=-∞+∞=+∞=-=++-令()0f x '=得121,1x x =-=且(1)20,(1)20f f ''''-=-=,也就是函数在11x =-处取得极大值(1)4f k -=+,在21x =处取得极小值(1)4f k =-;由于方程有三个不同实根,必须满足(1)40(1)20f k f k -=+>⎧⎨=-<⎩,也就得到(4,4)k ∈-.3.已知微分方程xy ay by ce '''++=的通解为12()x x y C C x e e -=++,则,,a b c 依次为( )(A )1,0,1 (B )1,0,2 (C )2,1,3 (D )2,1,4 【答案】(D )【详解】(1)由非齐次线性方程的通解可看出121r r ==-是特征方程20r ar b ++=的实根,从而确定2,1a b ==;(2)显然,*xy e =是非齐次方程的特解,代入原方程确定4c =. 4.若级数1n n nu ∞=∑绝对收敛,1nn v n∞=∑条件收敛,则( ) (A )1n nn u v∞=∑条件收敛 (B )1n nn u v∞=∑绝对收敛 (C )1n nn u v∞=∑收敛 (D )1n nn u v∞=∑发散(注:题目来自网上,我感觉选项(C )应该有误差,否则(A ),(B )选项显然没有(C )选项优越,若(A ),(B )中有一个正确,则(C )一定正确.题目就不科学了. 【答案】(B ) 【详解】由于1n n v n ∞=∑条件收敛,则lim 0nn v n →∞=,也就是有界; 从而,nn n n n v u v nu M nu n =⋅≤,由正项级数的比较审敛法,1n n n u v ∞=∑绝对收敛.5.设A 是四阶矩阵,*A 为其伴随矩阵,若线性方程组0Ax =基础解系中只有两个向量,则(*)r A =( )(A )0 (B )1 (C )2 (D )3【答案】(A )【详解】线性方程组0Ax =基础解系中只有两个向量,也就是4()2()213r A r A n -=⇒=<-=, 所以(*)0r A =.6.设A 是三阶实对称矩阵,E 是三阶单位矩阵,若22A A E +=,且4A =,则二次型T x Ax 的规范形是 ( )(A )222123y y y ++ (B )222123y y y +- (C )222123y y y -- (D )222123y y y ---【答案】(C )【详解】假设λ是矩阵A 的特征值,由条件22A A E +=可得220λλ+-=,也就是矩阵A 特征值只可能是1和2-.而1234A λλλ==,所以三个特征值只能是1231,2λλλ===-,根据惯性定理,二次型的规范型为222123y y y --.7. 设,A B 为随机事件,则()()P A P B =的充分必要条件是 ( )(A )()()()P A B P A P B =+U (B ) ()()()P AB P A P B = (C )()()P AB P B A = (D )()()P AB P AB =【答案】(C )【详解】选项(A )是,A B 互不相容;选项(B )是,A B 独立,都不能得到()()P A P B =; 对于选项(C ),显然,由()()(),()()()P AB P A P AB P B A P B P AB =-=-,()()()()()()()()P AB P B A P A P AB P B P AB P A P B =⇔-=-⇔=8.设随机变量X 与Y 相互独立,且均服从正态分布2(,)N μσ.则{1}P X Y -<( )(A )与μ无关,而与2σ有关 (B )与μ有关,而与2σ无关 (C )与μ,2σ都有关 (D )与μ,2σ都无关【答案】(A )【详解】由于随机变量X 与Y 相互独立,且均服从正态分布2(,)N μσ,则2~(0,2)X Y N σ-,从而{1}{11}21P X Y P X Y P -<=-≤-<=≤≤=Φ-只与2σ有关.二、填空题(本题共6小题,每小题4分,满分24分. 把答案填在题中横线上)9.111lim 1223(1)nn n n →∞⎛⎫+++= ⎪⨯⨯⨯+⎝⎭L . 【答案】1e -解: 11111lim lim 11223(1)1nnn n n n n e →∞→∞⎛⎫⎛⎫+++=-= ⎪ ⎪⨯⨯⨯++⎝⎭⎝⎭L10.曲线3sin 2cos ()22y x x x x ππ=+-<<的拐点坐标是( ) 【答案】(,2)π-【详解】sin 2cos y x x x =+,cos sin y x x x '=-,sin y x x ''=-,sin cos y x x x '''=--; 令sin 0y x x ''=-=得120,x x π==,且()0f π'''≠,所以(,2)π-是曲线的拐点; 而对于点(0,0),由于(0)0f '''=,而(4)(0)0f ≠,所以不是曲线的拐点.11.已知函数1()f x =⎰,则120()x f x dx =⎰ .【答案】118-. 【详解】(1)用定积分的分部积分:111233140000011111()()()|(1)3331218x f x dx f x dx x f x x x -==-=-+=⎰⎰⎰⎰ (2)转换为二重积分:1112221001()3tx f x dx x dx x dx t ==-=-=⎰⎰⎰⎰⎰⎰12.以,A B P P 分别表示,A B 两个商品的价格.设商品A 的需求函数225002A A A B B Q P P P P =--+,则当10,20A B P P ==时,商品A 的需求量对自身价格弹性(0)AA AA ηη>= .【答案】0.4【详解】225002A A A B B Q P P P P =--+,当10,20A B P P ==时,1000A Q =则边际需求2AA B AQ P P P ∂=--∂, 商品A 的需求量对自身价格弹性为10400.41000A A A AA A A A EQ P Q EP Q P η∂==⋅=⨯=∂.13.已知矩阵2101111,011A a -⎛⎫ ⎪=- ⎪ ⎪-⎝⎭01b a ⎛⎫⎪= ⎪ ⎪⎝⎭.若线性方程组Ax b =有无穷多解,则a = . 【答案】1.【详解】对线性方程组的增广矩阵进行初等行变换:222101010101010(,)1111010101010110110011A b a a a a a a ---⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪=-→→ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪----⎝⎭⎝⎭⎝⎭显然,当且仅当1a =时,()(,)23r A r A b ==<线性方程组Ax b =有无穷多解.14.设随机变量X 的概率密度为,02()20,xx f x ⎧<<⎪=⎨⎪⎩其他,()F x 为其分布函数,()E X 其数学期望,则{()()1}P F X E X >-= .【答案】2.3【详解】20,01(){},0241,2x F x P X x x x x <⎧⎪⎪=≤=≤<⎨⎪≥⎪⎩,2204()23x E X dx ==⎰.12{()()1}{()}{133P F X E X P F X P X >-=>=>=-=.三、解答题15.(本题满分10分)已知函数2,0()1,0xx xx f x xe x ⎧>⎪=⎨+≤⎪⎩,求()f x ',并求函数()f x 的极值.【详解】当0x >时,22ln ()xx x f x xe ==,2()2(ln 1)xf x x x '=+;当0x <时,()1xf x xe =+,()(1)xf x x e '=+;在0x =处,22000()(0)12(ln 1)(0)limlim lim 1x x x x x f x f x x x f x x ++++→→→---'====-∞,所以()f x 在0x =处不可导.综合上述:22(ln 1),0()(1),0x xx x x f x x e x ⎧+>⎪'=⎨+<⎪⎩; 令()0f x '=得到1211,x x e=-=.当1x <-时,()0f x '<,当10x -<<时,()0f x '>,当10x e <<时,()0f x '<,当1x e>时,()0f x '>; 故11x =-是函数的极小值点,极小值为1(1)1f e --=-;0x =是函数的极大值点,极大值为(0)1f =;21x e=是函数的极小值点,极小值为21()e f e e -=.16.(本题满分10)设函数(,)f u v 具有二阶连续的偏导数,函数(,)z xy f x y x y =-+-,求22222z z zx x y y∂∂∂++∂∂∂∂. 【详解】12(,)(,)zy f x y x y f x y x y x∂''=-+--+-∂,12(,)(,)z x f x y x y f x y x y y ∂''=-+-++-∂21112212211122222zf f f f f f f x∂''''''''''''''=----=---∂,211221z f f x y ∂''''=-+∂∂,211122222z f f f y ∂''''''=-+-∂; 22211222213z z zf f x x y y∂∂∂''''++=--∂∂∂∂. 17.(本题满分10分)设函数()y x 是微分方程22x y xy e '-=满足条件(1)y =(1)求()y x 的表达式;(2)设平面区域{(,)|12,0()}D x y x y y x =≤≤≤≤,求D 绕x 轴旋转一周所形成的旋转体的体积. 【详解】(1)这是一个一阶线性非齐次微分方程.先求解对应的线性齐次方程0y xy '-=的通解:22x y Ce =,其中C 为任意常数; 再用常数变易法求22x y xy e'-=通解,设22()x y C x e=为其解,代入方程,得2222(),()x x C x e e C x ''==,1()C x C ==,也就是通解为:221)x y C e =把初始条件(1)y =10C =,从而得到22().x y x xe =(2)旋转体的体积为2222411()()2x x V y x dx xe dx e e πππ===-⎰⎰.18.(本题满分10分)求曲线sin (0)xy e x x -=≥与x 轴之间形成图形的面积.【详解】先求曲线与x 轴的交点:令sin 0xex -=得,0,1,2,x k k π==L当2(21)k x k ππ<<+时,sin 0xy e x -=>;当2(22)k x k πππ+<<+时,sin 0x y e x -=<.由不定积分1sin (sin cos )2x xe xdx e x x C --=-++⎰可得 2221sin (1)2k x k k e xdx e e πππππ+---=+⎰,22221sin (1)2k x k k e xdx e e πππππππ+----+=-+⎰所求面积为22202200220022220sin sin sin 11(1)(1)2211111(1)(1)22121k k xxx k k k k k k k k k k S exdx e xdx e xdxe e e e e e e e e e ππππππππππππππππππ∞∞+∞++---+==∞∞-----==-∞-----===-=++++=+=+=--∑∑⎰⎰⎰∑∑∑19.(本题满分10分)设1(0,1,2,)n a x n ==⎰L(1)证明:数列{}n a 单调减少,且21(2,3,)2n n n a a n n --==+L ;(2)求极限1lim n n n a a →∞-. 【详解】(1)证明:1n a x =⎰,110(0,1,2,)n n a x n ++==⎰L当(0,1)x ∈时,显然有1n n x x +<,1110(0n n n n a a x x ++-=-<⎰,所以数列{}n a 单调减少;先设220sin cos ,0,1,2,nn n I xdx dx n ππ===⎰⎰L则当2n ≥时,12222202sin sin cos (1)sin cos (1)()nn n n n n I xdx xd x n x xdxn I I πππ---==-=-=--⎰⎰⎰也就是得到22,0,1,1n n n I I n n ++==+L 令sin ,[0,]2x t t π=∈,则122222201sin cos sin sin 2nnn n n n n a xt tdt dt tdt I I I n πππ++===-=-=+⎰⎰⎰⎰ 同理,2211n n n n a I I I n --=-=-综合上述,可知对任意的正整数n ,均有212n n a n a n --=+,即21(2,3,)2n n n a a n n --==+L ; (2)由(1)的结论数列{}n a 单调减少,且21(2,3,)2n n n a a n n --==+L2111111222n n n n n a n n n a a a n n a n ------=>⇒>>+++ 令n →∞,由夹逼准则,可知1lim 1nn n a a →∞-=.20.(本题满分11分)已知向量组Ⅰ:12321111,0,2443a ααα⎛⎫⎛⎫⎛⎫⎪ ⎪ ⎪=== ⎪ ⎪ ⎪ ⎪ ⎪ ⎪+⎝⎭⎝⎭⎝⎭;向量组Ⅱ:12321011,2,3313a a a βββ⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪=== ⎪ ⎪ ⎪ ⎪ ⎪ ⎪+-+⎝⎭⎝⎭⎝⎭.若向量组Ⅰ和向量组Ⅱ等价,求常数a 的值,并将3β用123,,ααα线性表示.【详解】向量组Ⅰ和向量组Ⅱ等价的充分必要条件是123123123123(,,)(,,)(,,;,,)r r r αααβββαααβββ==1231232222111101111101(,,;,,)102123011022443313001111a a a a a a a a αααβββ⎛⎫⎛⎫ ⎪ ⎪=→- ⎪ ⎪ ⎪ ⎪++-+----⎝⎭⎝⎭(1)当1a =时,显然, 123123123123(,,)(,,)(,,;,,)2r r r αααβββαααβββ===,两个向量组等价.此时,123311111023(,,;)0112011200000000αααβ⎛⎫⎛⎫ ⎪ ⎪→-→-- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭, 方程组112233x x x αααβ++=的通解为123231210x x x k x -⎛⎫⎛⎫⎛⎫⎪ ⎪ ⎪==+- ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,也就是3123(23)(2)k k k βααα=-++-+,其中k 为任意常数;(2)当1a ≠时,继续进行初等行变换如下:12312322111101111101(,,;,,)011022011022001111001111a a a a a a αααβββ⎛⎫⎛⎫ ⎪ ⎪→-→- ⎪ ⎪ ⎪ ⎪----+-+⎝⎭⎝⎭显然,当1a ≠-且1a ≠时,123123123(,,)(,,;,,)3r r ααααααβββ==,同时()123101101101,,02202201111101001a a a βββ⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪→→→ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪-+-+⎝⎭⎝⎭⎝⎭,123(,,)3r βββ=,也就是 123123123123(,,)(,,)(,,;,,)2r r r αααβββαααβββ===,两个向量组等价.这时,3β可由123,,ααα线性表示,表示法唯一:3123βααα=-+.21.(本题满分11分)已知矩阵22122002A x -⎛⎫ ⎪=- ⎪ ⎪-⎝⎭与21001000B y ⎛⎫⎪=- ⎪ ⎪⎝⎭相似.(1)求,x y 之值;(2)求可逆矩阵P ,使得1P AP B -=.【详解】(1)由矩阵相似的必要条件可知:A BtrA trB ⎧=⎪⎨=⎪⎩,即2(24)241x y x y --+=-⎧⎨-+=+⎩,解得32x y =⎧⎨=-⎩.(2)解方程组221232(2)(2)(1)0002E A λλλλλλλ+--=--=+-+=+得矩阵A 的三个特征值1232,1,2λλλ==-=-;分别求解线性方程组()0(1,2,3)i E A x i λ-==得到分属三个特征值1232,1,2λλλ==-=-的线性无关的特征向量为:1231112,1,2004ξξξ-⎛⎫⎛⎫⎛⎫⎪ ⎪ ⎪=-=-= ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭.令()1123111,,212004P ξξξ-⎛⎫ ⎪==-- ⎪ ⎪⎝⎭,则1P 可逆,且11212P AP -⎛⎫ ⎪=- ⎪ ⎪-⎝⎭; 同样的方法,可求得属于矩阵B 的三个特征值1232,1,2λλλ==-=-的线性无关的特征向量为:1231100,3,00014ηηη-⎛⎫⎛⎫⎛⎫⎪ ⎪ ⎪=== ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭.令()2123110,,030001P ηηη-⎛⎫ ⎪== ⎪ ⎪⎝⎭,则2P 可逆,且12212P BP -⎛⎫⎪=- ⎪ ⎪-⎝⎭;由前面111122P AP P BP --=,可知令112111212004P PP --⎛⎫ ⎪==-- ⎪⎪⎝⎭,就满足1P AP B -=. 22.(本题满分11分)设随机变量,X Y 相互独立,X 服从参数为1的指数分布,Y 的概率分布为:{1}P Y p =-=,{1}1P Y p ==-,(01)p <<.令Z XY =.(1)求Z 的概率密度;(2)p 为何值时,,X Z 不相关;(3)此时,,X Z 是否相互独立.【详解】(1)显然X 的概率密度函数为,0()0,0x X e x f x x -⎧>=⎨≤⎩.先求Z XY =的分布函数:(){}{}{,1}{,1}(1){}{}1()(1())Z X X F z P Z z P XY z P X z Y P X z Y p P X z pP X z F z p F z =≤=≤=≤=+≥-=-=-≤+≥-=-+--()再求Z XY =的概率密度:,0()(())()(1)()0,0(1),0z Z Z X X z pe z f z F z pf z p f z z p e z -⎧<⎪'==-+-==⎨⎪->⎩(2)显然()1,()1;()12E X D X E Y p ===-;由于随机变量,X Y 相互独立,所以()()()()12E Z E XY E X E Y p ===-;22()()()()24E XZ E X Y E X E Y p ===-;(,)()()()12COV X Z E XZ E X E Z p =-=-;要使,X Z 不相关,必须(,)()()()120COV X Z E XZ E X E Z p =-=-=,也就是0.5p =时,X Z 不相关; (3),X Z 显然不相互独立,理由如下:设事件{1}A X =>,事件{1}B Z =<,则11(){1}x P A P X e dx e +∞--=>==⎰;11(){1}{1,1}{1,1}12P B P Z P X Y P X Y e -=<=>-=-+<==-;11(){1,1}{1,1}(1,}{1}{1}P AB P X Z P X XY P X Y P X P Y pe x -=><=><=><=>⋅=-=,当0.5p =时,显然()()()P AB P A P B ≠,也就是,X Z 显然不相互独立.23.(本题满分11分)设总体X 的概率密度为22()2,()0,x A e x f x x μσμσμ--⎧⎪≥=⎨⎪<⎩,其中μ是已知参数,σ是未知参数,A 是常数,12,,,n X X X L 是来自总体X 的简单随机样本. (1)求常数A 的值;(2)求2σ的最大似然估计量.【详解】(1)由()1f x dx +∞-∞=⎰可知222()201x Aedx ed μσμσ---+∞+∞===⎰⎰所以A =似然函数为212()22121,(,,;)(,)0,ni i X n n i n i n i A ex L X X X f x μσμσσσ=--=⎧∑⎪⎪≥==⎨⎪⎪⎩∏L 其他, 取对数,得22212211ln (,,,;)ln ln()()22nn ii n L X X X n A Xσσμσ==---∑L解方程221222221ln (,,,;)11()0()22()nn ii d L X X X n Xd σμσσσ==-+-=∑L ,得未知参数2σ的最大似然估计量为¶2211()n i i X n σμ==-∑.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2006年考研数学(三)真题一、填空题:1-6小题,每小题4分,共24分. 把答案填在题中横线上.(1)()11lim ______.nn n n -→∞+⎛⎫= ⎪⎝⎭(2)设函数()f x 在2x =的某邻域内可导,且()()e f x f x '=,()21f =,则()2____.f '''=(3)设函数()f u 可微,且()102f '=,则()224z f x y =-在点(1,2)处的全微分()1,2d _____.z =(4)设矩阵2112A ⎛⎫= ⎪-⎝⎭,E 为2阶单位矩阵,矩阵B 满足2BA B E =+,则=B .(5)设随机变量X Y 与相互独立,且均服从区间[]0,3上的均匀分布,则{}{}max ,1P X Y ≤=_______.(6)设总体X 的概率密度为()()121,,,,2x n f x e x X X X -=-∞<<+∞为总体X 的简单随机样本,其样本方差为2S ,则2____.ES =二、选择题:7-14小题,每小题4分,共32分. 每小题给出的四个选项中,只有一项符合题目要求,把所选项前的字母填在题后的括号内.(7)设函数()y f x =具有二阶导数,且()0,()0f x f x '''>>,x ∆为自变量x 在点0x 处的增量,d y y ∆与分别为()f x 在点0x 处对应的增量与微分,若0x ∆>,则(A) 0d y y <<∆. (B) 0d y y <∆<.(C) d 0y y ∆<<. (D) d 0y y <∆< . [ ] (8)设函数()f x 在0x =处连续,且()22lim1h f h h →=,则(A) ()()000f f -'=且存在 (B) ()()010f f -'=且存在(C) ()()000f f +'=且存在 (D)()()010f f +'=且存在 [ ] (9)若级数1n n a ∞=∑收敛,则级数(A) 1n n a ∞=∑收敛 . (B )1(1)n n n a ∞=-∑收敛.(C) 11n n n a a ∞+=∑收敛. (D) 112n n n a a ∞+=+∑收敛. [ ] (10)设非齐次线性微分方程()()y P x y Q x '+=有两个不同的解12(),(),y x y x C 为任意常数,则该方程的通解是(A)[]12()()C y x y x -. (B)[]112()()()y x C y x y x +-.(C)[]12()()C y x y x +. (D)[]112()()()y x C y x y x ++ [ ](11)设(,)(,)f x y x y ϕ与均为可微函数,且(,)0y x y ϕ'≠,已知00(,)x y 是(,)f x y 在约束条件(,)0x y ϕ=下的一个极值点,下列选项正确的是(A) 若00(,)0x f x y '=,则00(,)0y f x y '=.(B) 若00(,)0x f x y '=,则00(,)0y f x y '≠. (C) 若00(,)0x f x y '≠,则00(,)0y f x y '=.(D) 若00(,)0x f x y '≠,则00(,)0y f x y '≠. [ ](12)设12,,,s ααα均为n 维列向量,A 为m n ⨯矩阵,下列选项正确的是(A) 若12,,,s ααα线性相关,则12,,,s A A A ααα线性相关.(B) 若12,,,s ααα线性相关,则12,,,s A A A ααα线性无关. (C) 若12,,,s ααα线性无关,则12,,,s A A A ααα线性相关.(D) 若12,,,s ααα线性无关,则12,,,s A A A ααα线性无关. [ ](13)设A 为3阶矩阵,将A 的第2行加到第1行得B ,再将B 的第1列的1-倍加到第2列得C ,记110010001P ⎛⎫ ⎪= ⎪ ⎪⎝⎭,则(A)1C P AP -=. (B)1C PAP -=.(C)T C P AP =. (D)T C PAP =. [ ](14)设随机变量X 服从正态分布211(,)N μσ,Y 服从正态分布222(,)N μσ,且 {}{}1211P X P Y μμ-<>-<则必有(A) 12σσ< (B) 12σσ>(C) 12μμ< (D) 12μμ> [ ] 三 、解答题:15-23小题,共94分. 解答应写出文字说明、证明过程或演算步骤. (15)(本题满分7分)设()1sin ,,0,01arctan xy y yf x y x y xy xπ-=->>+,求 (Ⅰ) ()()lim ,y g x f x y →+∞=;(Ⅱ) ()0lim x g x +→. (16)(本题满分7分)计算二重积分d Dx y ,其中D 是由直线,1,0y x y x ===所围成的平面区域.(17)(本题满分10分)证明:当0a b π<<<时,sin 2cos sin 2cos b b b b a a a a ππ++>++.(18)(本题满分8分)在xOy 坐标平面上,连续曲线L 过点()1,0M ,其上任意点()(),0P x y x ≠处的切线斜率与直线OP 的斜率之差等于ax (常数>0a ).(Ⅰ) 求L 的方程;(Ⅱ) 当L 与直线y ax =所围成平面图形的面积为83时,确定a 的值.(19)(本题满分10分)求幂级数()()1211121n n n x n n -+∞=--∑的收敛域及和函数()s x .(20)(本题满分13分)设4维向量组()()()T T T1231,1,1,1,2,2,2,2,3,3,3,3,a a a ααα=+=+=+()T44,4,4,4a α=+,问a 为何值时1234,,,αααα线性相关?当1234,,,αααα线性相关时,求其一个极大线性无关组,并将其余向量用该极大线性无关组线性表出. (21)(本题满分13分)设3阶实对称矩阵A 的各行元素之和均为3,向量()()TT121,2,1,0,1,1αα=--=-是线性方程组0Ax =的两个解.(Ⅰ)求A 的特征值与特征向量;(Ⅱ)求正交矩阵Q 和对角矩阵Λ,使得T Q AQ =Λ;(Ⅲ)求A 及632A E ⎛⎫- ⎪⎝⎭,其中E 为3阶单位矩阵.(22)(本题满分13分)设随机变量X 的概率密度为()1,1021,0240,X x f x x ⎧-<<⎪⎪⎪=≤<⎨⎪⎪⎪⎩ 其他,令()2,,Y X F x y =为二维随机变量(,)X Y 的分布函数. (Ⅰ)求Y 的概率密度()Y f y ;(Ⅱ)Cov(,)X Y ;(Ⅲ)1,42F ⎛⎫- ⎪⎝⎭.(23)(本题满分13分)设总体X 的概率密度为(),01,;1,12,0,x f x x θθθ<<⎧⎪=-≤<⎨⎪⎩其他,其中θ是未知参数()01θ<<,12n ,...,X X X 为来自总体X 的简单随机样本,记N 为样本值12,...,n x x x 中小于1的个数.(Ⅰ)求θ的矩估计;(Ⅱ)求θ的最大似然估计2006年考研数学(三)真题解析二、填空题:1-6小题,每小题4分,共24分. 把答案填在题中横线上.(1)()11lim 1.nn n n -→∞+⎛⎫= ⎪⎝⎭【分析】将其对数恒等化ln e N N =求解. 【详解】()(1)111ln lim (1)ln 1lim lim eennn n n n n n n n n n -→∞-++⎛⎫⎛⎫- ⎪ ⎪⎝⎭⎝⎭→∞→∞+⎛⎫== ⎪⎝⎭,而数列{}(1)n -有界,1lim ln 0n n n →∞+⎛⎫= ⎪⎝⎭,所以1lim(1)ln 0nn n n →∞+⎛⎫-= ⎪⎝⎭. 故 ()101lim e 1nn n n -→∞+⎛⎫== ⎪⎝⎭.(2)设函数()f x 在2x =的某邻域内可导,且()()e f x f x '=,()21f =,则()322e .f '''=【分析】利用复合函数求导即可.【详解】由题设知,()()e f x f x '=,两边对x 求导得 ()()()2e ()e f x f x f x f x '''==,两边再对x 求导得 ()()23()2e ()2e f x f xf x f x ''''==,又()21f =, 故 ()323(2)2e 2e f f '''==.(3)设函数()f u 可微,且()102f '=,则()224z f x y =-在点(1,2)处的全微分()1,2d 4d 2d .z x y =-【分析】利用二元函数的全微分公式或微分形式不变性计算.【详解】方法一:因为22(1,2)(1,2)(4)84z f x y x x ∂'=-⋅=∂,()22(1,2)(1,2)(4)22z f x y y y∂'=-⋅-=-∂, 所以 ()()()1,21,21,2d d d 4d 2d z z zx y x y x y ⎡⎤∂∂=+=-⎢⎥∂∂⎣⎦. 方法二:对()224z f x y =-微分得 ()222222d (4)d(4)(4)8d 2d z f x y x y f x y x x y y ''=--=--, 故 ()()1,2d (0)8d 2d 4d 2d z f x y x y '=-=-.(4)设矩阵2112A ⎛⎫= ⎪-⎝⎭,E 为2阶单位矩阵,矩阵B 满足2BA B E =+,则=B 2 .【分析】 将矩阵方程改写为AX B XA B AXB C ===或或的形式,再用方阵相乘的行列式性质进行计算即可.【详解】 由题设,有 ()2B A E E -=于是有 4B A E -=,而11211A E -==-,所以2B =.(5)设随机变量X Y 与相互独立,且均服从区间[]0,3上的均匀分布,则{}{}max ,1P X Y ≤= 19.【分析】 利用X Y 与的独立性及分布计算.【详解】 由题设知,X Y 与具有相同的概率密度1,3()30,x f x ⎧≤≤⎪=⎨⎪⎩ 0 其他.则 {}{}{}max ,11,1P X Y P X Y ≤=≤≤{}{}11P X P Y =≤≤{}()2120111d 39P X x ⎛⎫=≤== ⎪⎝⎭⎰.【评注】 本题属几何概型,也可如下计算,如下图:则 {}{}{}1max ,11,19S P X Y P X Y S ≤=≤≤==阴. (6)设总体X 的概率密度为()()121,,,,2xn f x e x X X X -=-∞<<+∞为总体X 的简单随机样本,其样本方差为2S ,则2 2.ES =【分析】利用样本方差的性质2ES DX =即可. 【详解】因为()d e d 02xx EX xf x x x +∞+∞--∞-∞===⎰⎰,22222000()d e d e d e 2e d 2x x x x x EX x f x x x x x x x x +∞+∞+∞+∞---+∞--∞-∞====-+⎰⎰⎰⎰2e 2e d 2e 2xx xx x +∞-+∞--+∞=-+=-=⎰,所以 ()22202DX EX EX =-=-=,又因2S 是DX 的无偏估计量,所以 22ES DX ==.二、选择题:7-14小题,每小题4分,共32分. 每小题给出的四个选项中,只有一项符合题目要求,把所选项前的字母填在题后的括号内.(7)设函数()y f x =具有二阶导数,且()0,()0f x f x '''>>,x ∆为自变量x 在点0x 处的增量,d y y ∆与分别为()f x 在点0x 处对应的增量与微分,若0x ∆>,则(A) 0d y y <<∆. (B) 0d y y <∆<.(C) d 0y y ∆<<. (D) d 0y y <∆< . [ A ]【分析】 题设条件有明显的几何意义,用图示法求解.【详解】 由()0,()0f x f x '''>>知,函数()f x 单调增加,曲线()y f x =凹向,作函数()y f x =的图形如右图所示,显然当0x ∆>时,00d ()d ()0y y f x x f x x ''∆>==∆>,故应选(A). (8)设函数()f x 在0x =处连续,且()22lim1h f h h →=,则(A) ()()000f f -'=且存在 (B) ()()010f f -'=且存在 (C) ()()000f f +'=且存在 (D)()()010f f +'=且存在 [ C ] 【分析】从()22lim1h f h h→=入手计算(0)f ,利用导数的左右导数定义判定(0),(0)f f -+''的存在性.【详解】由()22lim1h f h h→=知,()20lim 0h f h →=.又因为()f x 在0x =处连续,则()20(0)lim ()lim 0x h f f x f h →→===.令2t h =,则()()22(0)1limlim (0)h t f h f t f f h t++→→-'===. 所以(0)f +'存在,故本题选(C ).(9)若级数1n n a ∞=∑收敛,则级数(A) 1n n a ∞=∑收敛 . (B )1(1)n n n a ∞=-∑收敛.(C) 11n n n a a ∞+=∑收敛. (D) 112n n n a a ∞+=+∑收敛. [ D ] 【分析】 可以通过举反例及级数的性质来判定.【详解】 由1n n a ∞=∑收敛知11n n a ∞+=∑收敛,所以级数112n n n a a ∞+=+∑收敛,故应选(D).或利用排除法:取1(1)n n a n =-,则可排除选项(A),(B);取(1)n n a =-,则可排除选项(C).故(D)项正确.(10)设非齐次线性微分方程()()y P x y Q x '+=有两个不同的解12(),(),y x y x C 为任意常数,则该方程的通解是(A)[]12()()C y x y x -. (B)[]112()()()y x C y x y x +-.(C)[]12()()C y x y x +. (D)[]112()()()y x C y x y x ++ [ B ]【分析】 利用一阶线性非齐次微分方程解的结构即可.【详解】由于12()()y x y x -是对应齐次线性微分方程()0y P x y '+=的非零解,所以它的通解是 []12()()Y C y x y x =-,故原方程的通解为[]1112()()()()y y x Y y x C y x y x =+=+-,故应选(B).【评注】本题属基本题型,考查一阶线性非齐次微分方程解的结构:*y y Y =+.其中*y 是所给一阶线性微分方程的特解,Y 是对应齐次微分方程的通解.(11)设(,)(,)f x y x y ϕ与均为可微函数,且(,)0y x y ϕ'≠,已知00(,)x y 是(,)f x y 在约束条件(,)0x y ϕ=下的一个极值点,下列选项正确的是(A) 若00(,)0x f x y '=,则00(,)0y f x y '=.(B) 若00(,)0x f x y '=,则00(,)0y f x y '≠. (C) 若00(,)0x f x y '≠,则00(,)0y f x y '=.(D) 若00(,)0x f x y '≠,则00(,)0y f x y '≠. [ D ] 【分析】 利用拉格朗日函数(,,)(,)(,)F x y f x y x y λλϕ=+在000(,,)x y λ(0λ是对应00,x y 的参数λ的值)取到极值的必要条件即可.【详解】 作拉格朗日函数(,,)(,)(,)F x y f x y x y λλϕ=+,并记对应00,x y 的参数λ的值为0λ,则000000(,,)0(,,)0x y F x y F x y λλ⎧'=⎪⎨'=⎪⎩, 即0000000000(,)(,)0(,)(,)0x x y y f x y x y f x y x y λϕλϕ⎧''+=⎪⎨''+=⎪⎩ .消去0λ,得00000000(,)(,)(,)(,)0x y y x f x y x y f x y x y ϕϕ''''-=, 整理得 000000001(,)(,)(,)(,)x y x y f x y f x y x y x y ϕϕ'''='.(因为(,)0y x y ϕ'≠), 若00(,)0x f x y '≠,则00(,)0y f x y '≠.故选(D).(12)设12,,,s ααα均为n 维列向量,A 为m n ⨯矩阵,下列选项正确的是(A) 若12,,,s ααα线性相关,则12,,,s A A A ααα线性相关.(B) 若12,,,s ααα线性相关,则12,,,s A A A ααα线性无关. (C) 若12,,,s ααα线性无关,则12,,,s A A A ααα线性相关. (D) 若12,,,s ααα线性无关,则12,,,s A A A ααα线性无关. [ A ]【分析】 本题考查向量组的线性相关性问题,利用定义或性质进行判定. 【详解】 记12(,,,)s B ααα=,则12(,,,)s A A A AB ααα=. 所以,若向量组12,,,s ααα线性相关,则()r B s <,从而()()r AB r B s ≤<,向量组12,,,sA A A ααα也线性相关,故应选(A).(13)设A 为3阶矩阵,将A 的第2行加到第1行得B ,再将B 的第1列的1-倍加到第2列得C ,记110010001P ⎛⎫ ⎪= ⎪ ⎪⎝⎭,则(A)1C P AP -=. (B)1C PAP -=.(C)T C P AP =. (D)T C PAP =. [ B ]【分析】利用矩阵的初等变换与初等矩阵的关系以及初等矩阵的性质可得. 【详解】由题设可得110110*********,010010010001001001001B A C B A --⎛⎫⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪ ⎪=== ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭ ,而 1110010001P --⎛⎫⎪= ⎪ ⎪⎝⎭,则有1C PAP -=.故应选(B). (14)设随机变量X服从正态分布211(,)N μσ,Y 服从正态分布222(,)N μσ,且 {}{}1211P X P Y μμ-<>-<则必有(A) 12σσ< (B) 12σσ>(C) 12μμ< (D) 12μμ> [ A ] 【分析】 利用标准正态分布密度曲线的几何意义可得. 【详解】 由题设可得12112211X Y P P μμσσσσ⎧-⎫⎧-⎫<><⎨⎬⎨⎬⎩⎭⎩⎭,则 12112121σσ⎛⎫⎛⎫Φ->Φ- ⎪ ⎪⎝⎭⎝⎭,即1211σσ⎛⎫⎛⎫Φ>Φ ⎪ ⎪⎝⎭⎝⎭.其中()x Φ是标准正态分布的分布函数.又()x Φ是单调不减函数,则1211σσ>,即12σσ<.故选(A).三 、解答题:15-23小题,共94分. 解答应写出文字说明、证明过程或演算步骤. (15)(本题满分7分)设()1sin ,,0,01arctan xy y yf x y x y xy xπ-=->>+,求 (Ⅰ) ()()lim ,y g x f x y →+∞=;(Ⅱ) ()0lim x g x +→. 【分析】第(Ⅰ)问求极限时注意将x 作为常量求解,此问中含,0∞⋅∞∞型未定式极限;第(Ⅱ)问需利用第(Ⅰ)问的结果,含∞-∞未定式极限.【详解】(Ⅰ) ()()1sin lim ,lim 1arctan y y x y y y g x f x y xy x π→+∞→∞⎛⎫- ⎪⎪==-+⎪ ⎪⎝⎭ sin 11111lim 1arctan arctan y x y x y x x x x y ππ→∞⎛⎫ ⎪⎪-⎪⎪-=-=- ⎪ ⎪+ ⎪ ⎪ ⎪⎝⎭.(Ⅱ) ()200011arctan lim lim lim arctan arctan x x x x x x x g x x x x xππ+++→→→--+⎛⎫=-= ⎪⎝⎭ (通分) 22222000112arctan 2(1)1lim lim lim 22x x x x x x x x x x x x x x ππππ+++→→→-+-+-+++==== (16)(本题满分7分)计算二重积分d Dx y ,其中D 是由直线,1,0y x y x ===所围成的平面区域.【分析】画出积分域,将二重积分化为累次积分即可.【详解】积分区域如右图.因为根号下的函数为关于x 的一次函数,“先x 后y ”积分较容易,所以100d d y Dx y y x =⎰⎰()3112220002122d d 339y y xy y y y y =--==⎰⎰ (17)(本题满分10分)证明:当0a b π<<<时,sin 2cos sin 2cos b b b b a a a a ππ++>++.【分析】 利用“参数变易法”构造辅助函数,再利用函数的单调性证明. 【详解】 令()sin 2cos sin 2cos ,0f x x x x x a a a a a x b πππ=++---<≤≤<, 则 ()sin cos 2sin cos sin f x x x x x x x x ππ'=+-+=-+,且()0f π'=.又 ()cos sin cos sin 0f x x x x x x x ''=--=-<,(0,s i n 0x x x π<<>时),故当0a x b π<≤≤<时,()f x '单调减少,即()()0f x f π''>=,则()f x 单调增加,于是()()0f b f a >=,即sin 2cos sin 2cos b b b b a a a a ππ++>++.(18)(本题满分8分)在xOy 坐标平面上,连续曲线L 过点()1,0M ,其上任意点()(),0P x y x ≠处的切线斜率与直线OP 的斜率之差等于ax (常数>0a ).(Ⅰ) 求L 的方程;(Ⅱ) 当L 与直线y ax =所围成平面图形的面积为83时,确定a 的值.【分析】(Ⅰ)利用导数的几何意义建立微分方程,并求解;(Ⅱ)利用定积分计算平面图形的面积,确定参数.【详解】(Ⅰ) 设曲线L 的方程为()y f x =,则由题设可得y y ax x '-=,这是一阶线性微分方程,其中1(),()P x Q x ax x=-=,代入通解公式得()11d d 2e ed x x x xy ax x C x ax C ax Cx -⎛⎫⎰⎰=+=+=+ ⎪⎝⎭⎰, 又(1)0f =,所以C a =-.故曲线L 的方程为 2y ax ax =-(0)x ≠. (Ⅱ) L 与直线y ax =(>0a )所围成平面图形如右图所示. 所以()220d D ax ax ax x ⎡⎤=--⎣⎦⎰ ()220482d 33a x x x a =-==⎰,故2a =.(19)(本题满分10分)求幂级数()()1211121n n n x n n -+∞=--∑的收敛域及和函数()s x .【分析】因为幂级数缺项,按函数项级数收敛域的求法计算;利用逐项求导或积分并结合已知函数的幂级数展开式计算和函数.【详解】记121(1)()(21)n n n x u x n n -+-=-,则2321121(1)()(1)(21)lim lim (1)()(21)n n n n n n n nx u x n n xx u x n n ++-+→∞→∞-++==--. 所以当21,1x x <<即时,所给幂级数收敛;当1x >时,所给幂级数发散;当1x =±时,所给幂级数为1(1)(1),(21)(21)n nn n n n -----,均收敛, 故所给幂级数的收敛域为[]1,1-在()1,1-内,()12112111(1)(1)()22()(21)(21)2n n n nn n x x s x x xs x n n n n -+-∞∞==--===--∑∑,而 12112211211(1)1(),()(1)211n n n n n n x s x s x x n x --∞∞--==-'''==-=-+∑∑, 所以 1112001()(0)()d d arctan 1x x s x s s t t t x t ''''-===+⎰⎰,又1(0)0s '=, 于是 1()arctan s x x '=.同理1110()(0)()d arctan d xxs x s s t t t t '-==⎰⎰()20201arctan d arctan ln 112xxt t t t x x x t =-=-++⎰, 又 1(0)0s =,所以 ()211()arctan ln 12s x x x x =-+.故 ()22()2arctan ln 1s x x x x x =-+.()1,1x ∈-.由于所给幂级数在1x =±处都收敛,且()22()2arctan ln 1s x x x x x =-+在1x =± 处都连续,所以()s x 在1x =±成立,即()22()2arctan ln 1s x x x x x =-+,[]1,1x ∈-. (20)(本题满分13分)设4维向量组()()()T T T1231,1,1,1,2,2,2,2,3,3,3,3,a a a ααα=+=+=+()T44,4,4,4a α=+,问a 为何值时1234,,,αααα线性相关?当1234,,,αααα线性相关时,求其一个极大线性无关组,并将其余向量用该极大线性无关组线性表出.【分析】因为向量组中的向量个数和向量维数相同,所以用以向量为列向量的矩阵的行列式为零来确定参数a ;用初等变换求极大线性无关组.【详解】记以1234,,,αααα为列向量的矩阵为A ,则 312341234(10)12341234a aA a a a a ++==+++. 于是当0,010A a a ===-即或时,1234,,,αααα线性相关.当0a =时,显然1α是一个极大线性无关组,且2131412,3,4αααααα===;当10a =-时,1α 2α 3α 4α9234183412741236A -⎛⎫ ⎪- ⎪= ⎪- ⎪-⎝⎭, 由于此时A 有三阶非零行列式9231834000127--=-≠-,所以123,,ααα为极大线性无关组,且123441230αααααααα+++==---,即.(21)(本题满分13分)设3阶实对称矩阵A 的各行元素之和均为3,向量()()T T 121,2,1,0,1,1αα=--=-是线性方程组0Ax =的两个解.(Ⅰ) 求A 的特征值与特征向量;(Ⅱ) 求正交矩阵Q 和对角矩阵Λ,使得T Q AQ =Λ;(Ⅲ)求A 及632A E ⎛⎫- ⎪⎝⎭,其中E 为3阶单位矩阵. 【分析】 由矩阵A 的各行元素之和均为3及矩阵乘法可得矩阵A 的一个特征值和对应的特征向量;由齐次线性方程组0Ax =有非零解可知A 必有零特征值,其非零解是0特征值所对应的特征向量.将A 的线性无关的特征向量正交化可得正交矩阵Q ;由T Q AQ =Λ可得到A 和632A E ⎛⎫- ⎪⎝⎭. 【详解】 (Ⅰ) 因为矩阵A 的各行元素之和均为3,所以1311331131A ⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪== ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,则由特征值和特征向量的定义知,3λ=是矩阵A 的特征值,T (1,1,1)α=是对应的特征向量.对应3λ=的全部特征向量为k α,其中k 为不为零的常数.又由题设知 120,0A A αα==,即11220,0A A αααα=⋅=⋅,而且12,αα线性无关,所以0λ=是矩阵A 的二重特征值,12,αα是其对应的特征向量,对应0λ=的全部特征向量为 1122k k αα+,其中12,k k 为不全为零的常数.。