南京市2019-2020学年中考数学二模试题(I)卷
江苏省南京市2019-2020学年中考第二次模拟数学试题含解析
![江苏省南京市2019-2020学年中考第二次模拟数学试题含解析](https://img.taocdn.com/s3/m/e7acf143a1c7aa00b42acb65.png)
江苏省南京市2019-2020学年中考第二次模拟数学试题一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.如图,在平面直角坐标系xOy中,点A(1,0),B(2,0),正六边形ABCDEF沿x轴正方向无滑动滚动,每旋转60°为滚动1次,那么当正六边形ABCDEF滚动2017次时,点F的坐标是()A.(2017,0)B.(2017,12)C.(2018,3)D.(2018,0)2.如图,将△ABC绕点C顺时针旋转,点B的对应点为点E,点A的对应点为点D,当点E恰好落在边AC上时,连接AD,若∠ACB=30°,则∠DAC的度数是( )A.60o B.65o C.70o D.75o3.如图,Rt△AOB中,∠AOB=90°,OA在x轴上,OB在y轴上,点A、B的坐标分别为(3,0),(0,1),把Rt△AOB沿着AB对折得到Rt△AO′B,则点O′的坐标为()A.35 22(,)B.332,)C.2352(,)D.4332,)4.如图是抛物线y=ax2+bx+c(a≠0)的图象的一部分,抛物线的顶点坐标是A(1,4),与x轴的一个交点是B(3,0),下列结论:①abc>0;②2a+b=0;③方程ax2+bx+c=4有两个相等的实数根;④抛物线与x轴的另一个交点是(﹣2.0);⑤x(ax+b)≤a+b,其中正确结论的个数是()A.4个B.3个C.2个D.1个5.一、单选题二次函数的图象如图所示,对称轴为x=1,给出下列结论:①abc<0;②b2>4ac;③4a+2b+c<0;④2a+b=0..其中正确的结论有:A.4个B.3个C.2个D.1个6.为了锻炼学生身体素质,训练定向越野技能,某校在一公园内举行定向越野挑战赛.路线图如图1所示,点E为矩形ABCD边AD的中点,在矩形ABCD的四个顶点处都有定位仪,可监测运动员的越野进程,其中一位运动员P从点B出发,沿着B﹣E﹣D的路线匀速行进,到达点D.设运动员P的运动时间为t,到监测点的距离为y.现有y与t的函数关系的图象大致如图2所示,则这一信息的来源是()A.监测点A B.监测点B C.监测点C D.监测点D7.在圆锥、圆柱、球、正方体这四个几何体中,主视图不可能...是多边形的是()A.圆锥B.圆柱C.球D.正方体8.一、单选题如图,几何体是由3个大小完全一样的正方体组成的,它的左视图是()A.B.C.D.9.如图1,在△ABC中,D、E分别是AB、AC的中点,将△ADE沿线段DE向下折叠,得到图1.下列关于图1的四个结论中,不一定成立的是()A.点A落在BC边的中点B.∠B+∠1+∠C=180°C.△DBA是等腰三角形D.DE∥BC10.下列哪一个是假命题()A.五边形外角和为360°B.切线垂直于经过切点的半径C.(3,﹣2)关于y轴的对称点为(﹣3,2)D.抛物线y=x2﹣4x+2017对称轴为直线x=211.关于x的一元二次方程x2+8x+q=0有两个不相等的实数根,则q的取值范围是( )A.q<16 B.q>16C.q≤4D.q≥412.下列说法正确的是()A.某工厂质检员检测某批灯泡的使用寿命采用普查法B.已知一组数据1,a,4,4,9,它的平均数是4,则这组数据的方差是7.6C.12名同学中有两人的出生月份相同是必然事件D.在“等边三角形、正方形、等腰梯形、矩形、正六边形、正五边形”中,任取其中一个图形,恰好既是中心对称图形,又是轴对称图形的概率是1 3二、填空题:(本大题共6个小题,每小题4分,共24分.)13.如图,在平面直角坐标系中,点P(﹣1,a)在直线y=2x+2与直线y=2x+4之间,则a的取值范围是_____.14.如图,AD ∥BE ∥CF ,直线l 1,l 2与这三条平行线分别交于点A ,B ,C 和点D ,E ,F ,23=AB BC ,DE=6,则EF= .15.已知a ,b ,c ,d 是成比例的线段,其中3cm a =,2cm b =,6cm c =,则d =_______cm . 16.如图,将△AOB 以O 为位似中心,扩大得到△COD ,其中B (3,0),D (4,0),则△AOB 与△COD 的相似比为_____.17.如图,AB 是⊙O 的直径,点E 是»BF的中点,连接AF 交过E 的切线于点D ,AB 的延长线交该切线于点C ,若∠C =30°,⊙O 的半径是2,则图形中阴影部分的面积是_____.18.计算(+1)(-1)的结果为_____.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)在平面直角坐标系xOy 中,点M 的坐标为()11,x y ,点N 的坐标为()22,x y ,且12x x ≠,12y y =,我们规定:如果存在点P ,使MNP ∆是以线段MN 为直角边的等腰直角三角形,那么称点P 为点M 、N 的“和谐点”.(1)已知点A 的坐标为()1,3,①若点B 的坐标为()3,3,在直线AB 的上方,存在点A ,B 的“和谐点”C ,直接写出点C 的坐标; ②点C 在直线x =5上,且点C 为点A ,B 的“和谐点”,求直线AC 的表达式.(2)⊙O 的半径为r ,点()1,4D 为点()1,2E 、(),F m n 的“和谐点”,且DE =2,若使得DEF ∆与⊙O 有交点,画出示意图直接写出半径r 的取值范围.20.(6分)某商店销售A 型和B 型两种电脑,其中A 型电脑每台的利润为400元,B 型电脑每台的利润为500元.该商店计划再一次性购进两种型号的电脑共100台,其中B 型电脑的进货量不超过A 型电脑的2倍,设购进A 型电脑x 台,这100台电脑的销售总利润为y 元.求y 关于x 的函数关系式;该商店购进A 型、B 型电脑各多少台,才能使销售总利润最大,最大利润是多少?实际进货时,厂家对A 型电脑出厂价下调a (0<a <200)元,且限定商店最多购进A 型电脑60台,若商店保持同种电脑的售价不变,请你根据以上信息,设计出使这100台电脑销售总利润最大的进货方案.21.(6分)在一节数学活动课上,王老师将本班学生身高数据(精确到1厘米)出示给大家,要求同学们各自独立绘制一幅频数分布直方图,甲绘制的如图①所示,乙绘制的如图②所示,经王老师批改,甲绘制的图是正确的,乙在数据整理与绘图过程中均有个别错误.写出乙同学在数据整理或绘图过程中的错误(写出一个即可);甲同学在数据整理后若用扇形统计图表示,则159.5﹣164.5这一部分所对应的扇形圆心角的度数为 ;该班学生的身高数据的中位数是 ;假设身高在169.5﹣174.5范围的5名同学中,有2名女同学,班主任老师想在这5名同学中选出2名同学作为本班的正、副旗手,那么恰好选中一名男同学和一名女同学当正,副旗手的概率是多少?22.(8分)(1)问题发现如图1,在Rt △ABC 中,∠A=90°,AB AC =1,点P 是边BC 上一动点(不与点B 重合),∠PAD=90°,∠APD=∠B ,连接 CD .(1)①求PB CD的值;②求∠ACD 的度数. (2)拓展探究如图 2,在Rt △ABC 中,∠A=90°,AB AC =k .点P 是边BC 上一动点(不与点B 重合),∠PAD=90°,∠APD=∠B ,连接CD ,请判断∠ACD 与∠B 的数量关系以及PB 与CD 之间的数量关系,并说明理由.(3)解决问题如图 3,在△ABC 中,∠B=45°,AB=42,BC=12,P 是边BC 上一动点(不与点B 重合),∠PAD=∠BAC ,∠APD=∠B ,连接CD .若 PA=5,请直接写出CD 的长.23.(8分)据城市速递报道,我市一辆高为2.5米的客车,卡在快速路引桥上高为2.55米的限高杆的上端,已知引桥的坡角∠ABC 为14°,请结合示意图,用你学过的知识通过数据说明客车不能通过的原因.(参考数据:sin14°=0.24,cos14°=0.97,tan14°=0.25)24.(10分)(1)计算:20(2)(3)12sin 60π︒-+-+-; (2)化简:2121()a a a a a--÷-. 25.(10分)如图,在平面直角坐标系中,矩形OABC 的顶点B 坐标为(4,6),点P 为线段OA 上一动点(与点O 、A 不重合),连接CP ,过点P 作PE ⊥CP 交AB 于点D ,且PE =PC ,过点P 作PF ⊥OP 且PF =PO (点F 在第一象限),连结FD 、BE 、BF ,设OP =t .(1)直接写出点E 的坐标(用含t 的代数式表示): ;(2)四边形BFDE 的面积记为S ,当t 为何值时,S 有最小值,并求出最小值;(3)△BDF能否是等腰直角三角形,若能,求出t;若不能,说明理由.26.(12分)“足球运球”是中考体育必考项目之一.兰州市某学校为了解今年九年级学生足球运球的掌握情况,随机抽取部分九年级学生足球运球的测试成绩作为一个样本,按A,B,C,D四个等级进行统计,制成了如下不完整的统计图.(说明:A级:8分﹣10分,B级:7分﹣7.9分,C级:6分﹣6.9分,D级:1分﹣5.9分)根据所给信息,解答以下问题:(1)在扇形统计图中,C对应的扇形的圆心角是_____度;(2)补全条形统计图;(3)所抽取学生的足球运球测试成绩的中位数会落在_____等级;(4)该校九年级有300名学生,请估计足球运球测试成绩达到A级的学生有多少人?27.(12分)已知:如图,在△ABC中,AB=13,AC=8,cos∠BAC=513,BD⊥AC,垂足为点D,E是BD的中点,联结AE并延长,交边BC于点F.(1)求∠EAD的余切值;(2)求BFCF的值.参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.C【解析】【分析】本题是规律型:点的坐标;坐标与图形变化-旋转,正六边形ABCDEF一共有6条边,即6次一循环;因为2017÷6=336余1,点F滚动1次时的横坐标为2F滚动7次时的横坐标为8,纵坐F滚动2107次时的纵坐标与相同,横坐标的次数加1,由此即可解决问题.【详解】.解:∵正六边形ABCDEF一共有6条边,即6次一循环;∴2017÷6=336余1,∴点F滚动1次时的横坐标为2,点F滚动7次时的横坐标为8,∴点F滚动2107次时的纵坐标与相同,横坐标的次数加1,∴点F滚动2107次时的横坐标为2017+1=2018∴点F滚动2107次时的坐标为(2018),故选C.【点睛】本题考查坐标与图形的变化,规律型:点的坐标,解题关键是学会从特殊到一般的探究方法,是中考常考题型.2.D【解析】【详解】由题意知:△ABC≌△DEC,∴∠ACB=∠DCE=30°,AC=DC,∴∠DAC=(180°−∠DCA)÷2=(180°−30°)÷2=75°.故选D.【点睛】本题主要考查了旋转的性质,解题的关键是掌握旋转的性质:①对应点到旋转中心的距离相等.②对应点与旋转中心所连线段的夹角等于旋转角.③旋转前、后的图形全等.3.B【解析】【分析】连接OO′,作O′H⊥OA于H.只要证明△OO′A是等边三角形即可解决问题.【详解】连接OO′,作O′H⊥OA于H,在Rt △AOB 中,∵tan ∠BAO=OB OA =3 ∴∠BAO=30°,由翻折可知,∠BAO′=30°,∴∠OAO′=60°,∵AO=AO′,∴△AOO′是等边三角形,∵O′H ⊥OA ,∴OH=32, ∴332, ∴O′(32,32), 故选B .【点睛】本题考查翻折变换、坐标与图形的性质、等边三角形的判定和性质、锐角三角函数等知识,解题的关键是发现特殊三角形,利用特殊三角形解决问题.4.B【解析】【分析】通过图象得到a 、b 、c 符号和抛物线对称轴,将方程24ax bx c ++=转化为函数图象交点问题,利用抛物线顶点证明()+x ax b a b ≤+.【详解】由图象可知,抛物线开口向下,则0a <,0c >,Q 抛物线的顶点坐标是()1,4A ,∴抛物线对称轴为直线12b x a=-=,∴2b a =-,∴0b >,则①错误,②正确;方程24ax bx c ++=的解,可以看做直线4y =与抛物线2y ax bx c =++的交点的横坐标, 由图象可知,直线4y =经过抛物线顶点,则直线4y =与抛物线有且只有一个交点,则方程24ax bx c ++=有两个相等的实数根,③正确;由抛物线对称性,抛物线与x 轴的另一个交点是()1,0-,则④错误;不等式()x ax b a b +≤+可以化为2ax bx c a b c ++≤++, Q 抛物线顶点为()1,4,∴当1x =时,y a b c =++最大,∴2ax bx c a b c ++≤++故⑤正确.故选:B .【点睛】本题是二次函数综合题,考查了二次函数的各项系数与图象位置的关系、抛物线对称性和最值,以及用函数的观点解决方程或不等式.5.B【解析】试题解析:①∵二次函数的图象的开口向下,∴a<0,∵二次函数的图象y 轴的交点在y 轴的正半轴上,∴c>0,∵二次函数图象的对称轴是直线x=1,12b a,∴-= ∴2a+b=0,b>0 ∴abc<0,故正确;②∵抛物线与x 轴有两个交点,240b ac ∴->,24b ac ∴>, 故正确;③∵二次函数图象的对称轴是直线x=1,∴抛物线上x=0时的点与当x=2时的点对称,即当x=2时,y>0∴4a+2b+c>0,故错误;④∵二次函数图象的对称轴是直线x=1,12b a,∴-=∴2a+b=0, 故正确.综上所述,正确的结论有3个.故选B.6.C【解析】试题解析:A 、由监测点A 监测P 时,函数值y 随t 的增大先减少再增大.故选项A 错误;B 、由监测点B 监测P 时,函数值y 随t 的增大而增大,故选项B 错误;C 、由监测点C 监测P 时,函数值y 随t 的增大先减小再增大,然后再减小,选项C 正确;D 、由监测点D 监测P 时,函数值y 随t 的增大而减小,选项D 错误.故选C .7.C【解析】【分析】根据各几何体的主视图可能出现的情况进行讨论即可作出判断.【详解】A. 圆锥的主视图可以是三角形也可能是圆,故不符合题意;B. 圆柱的主视图可能是长方形也可能是圆,故不符合题意;C. 球的主视图只能是圆,故符合题意;D. 正方体的主视图是正方形或长方形(中间有一竖),故不符合题意,故选C.【点睛】本题考查了简单几何体的三视图——主视图,明确主视图是从物体正面看得到的图形是关键. 8.D【解析】试题分析:观察几何体,可知该几何体是由3个大小完全一样的正方体组成的,它的左视图是,故答案选D.考点:简单几何体的三视图.9.A【解析】【分析】根据折叠的性质明确对应关系,易得∠A=∠1,DE 是△ABC 的中位线,所以易得B 、D 答案正确,D 是AB 中点,所以DB=DA ,故C 正确.【详解】根据题意可知DE 是三角形ABC 的中位线,所以DE ∥BC ;∠B+∠1+∠C=180°;∵BD=AD ,∴△DBA 是等腰三角形.故只有A 错,BA≠CA .故选A .【点睛】主要考查了三角形的内角和外角之间的关系以及等腰三角形的性质.还涉及到翻折变换以及中位线定理的运用.(1)三角形的外角等于与它不相邻的两个内角和.(1)三角形的内角和是180度.求角的度数常常要用到“三角形的内角和是180°这一隐含的条件.通过折叠变换考查正多边形的有关知识,及学生的逻辑思维能力.解答此类题最好动手操作.10.C【解析】分析:根据每个选项所涉及的数学知识进行分析判断即可.详解:A 选项中,“五边形的外角和为360°”是真命题,故不能选A ;B 选项中,“切线垂直于经过切点的半径”是真命题,故不能选B ;C 选项中,因为点(3,-2)关于y 轴的对称点的坐标是(-3,-2),所以该选项中的命题是假命题,所以可以选C ;D 选项中,“抛物线y=x 2﹣4x+2017对称轴为直线x=2”是真命题,所以不能选D.故选C.点睛:熟记:(1)凸多边形的外角和都是360°;(2)切线的性质;(3)点P (a ,b )关于y 轴的对称点为(-a ,b );(4)抛物线2 (0)y ax bx c a =++≠的对称轴是直线:2b x a=-等数学知识,是正确解答本题的关键.11.A【解析】∵关于x 的一元二次方程x 2+8x+q=0有两个不相等的实数根,∴△>0,即82-4q>0,∴q<16,故选 A.12.B【解析】【分析】分别用方差、全面调查与抽样调查、随机事件及概率的知识逐一进行判断即可得到答案.【详解】A. 某工厂质检员检测某批灯泡的使用寿命时,检测范围比较大,因此适宜采用抽样调查的方法,故本选项错误;B. 根据平均数是4求得a 的值为2,则方差为15 [(1−4)2+(2−4)2+(4−4)2+(4−4)2+(9−4)2]=7.6,故本选项正确;C. 12个同学的生日月份可能互不相同,故本事件是随机事件,故错误;D. 在“等边三角形、正方形、等腰梯形、矩形、正六边形、正五边形”六个图形中有3个既是轴对称图形,又是中心对称图形,所以,恰好既是中心对称图形,又是轴对称图形的概率是12,故本选项错误. 故答案选B.【点睛】本题考查的知识点是概率公式、全面调查与抽样调查、方差及随机事件,解题的关键是熟练的掌握概率公式、全面调查与抽样调查、方差及随机事件.二、填空题:(本大题共6个小题,每小题4分,共24分.)13.0a 2<<【解析】【分析】计算出当P 在直线y 2x 2=+上时a 的值,再计算出当P 在直线y 2x 4=+上时a 的值,即可得答案.【详解】解:当P 在直线y 2x 2=+上时,()a 212220=⨯-+=-+=,当P 在直线y 2x 4=+上时,()a 214242=⨯-+=-+=,则0a 2<<.故答案为0a 2<<【点睛】此题主要考查了一次函数与一元一次不等式,关键是掌握函数图象经过的点,必能使解析式左右相等. 14.1.【解析】试题分析:∵AD ∥BE ∥CF ,∴AB DE BC EF=,即263EF =,∴EF=1.故答案为1. 考点:平行线分线段成比例.15.4【解析】【分析】如果其中两条线段的乘积等于另外两条线段的乘积,则四条线段叫成比例线段.根据定义ad =cb ,将a ,b 及c 的值代入即可求得d .【详解】已知a ,b ,c ,d 是成比例线段,根据比例线段的定义得:ad =cb ,代入a =3,b =2,c =6,解得:d =4,则d =4cm .故答案为:4【点睛】本题主要考查比例线段的定义.要注意考虑问题要全面.16.3:1.【解析】∵△AOB 与△COD 关于点O 成位似图形,∴△AOB ∽△COD ,则△AOB 与△COD 的相似比为OB :OD=3:1,故答案为3:1 (或34).1723π 【解析】【分析】首先根据切线的性质及圆周角定理得CE 的长以及圆周角度数,进而利用锐角三角函数关系得出DE ,AD 的长,利用S △ADE ﹣S 扇形FOE =图中阴影部分的面积求出即可.【详解】解:连接OE ,OF 、EF ,∵DE 是切线,∴OE ⊥DE ,∵∠C =30°,OB =OE =2,∴∠EOC =60°,OC =2OE =4,∴CE =OC×sin60°=4sin 60⨯=o∵点E 是弧BF 的中点,∴∠EAB =∠DAE =30°,∴F ,E 是半圆弧的三等分点,∴∠EOF=∠EOB=∠AOF=60°,∴OE∥AD,∠DAC=60°,∴∠ADC=90°,∵CE=AE=23,∴DE=3,∴AD=DE×tan60°=333,⨯=∴S△ADE113333222AD DE=⋅=⨯⨯=∵△FOE和△AEF同底等高,∴△FOE和△AEF面积相等,∴图中阴影部分的面积为:S△ADE﹣S扇形FOE23360π2333260π.3⋅⨯=-=-故答案为3323π-【点睛】此题主要考查了扇形的面积计算以及三角形面积求法等知识,根据已知得出△FOE和△AEF面积相等是解题关键.18.1【解析】【分析】利用平方差公式进行计算即可.【详解】原式=()2﹣1=2﹣1=1,故答案为:1.【点睛】本题考查了二次根式的混合运算:先把各二次根式化为最简二次根式,在进行二次根式的乘除运算,然后合并同类二次根式.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(1)①点C 坐标为()1,5C 或()3,5C ';②y =x +2或y =-x +3;(2)217r ≤≤或517r ≤≤【解析】【分析】(1)①根据“和谐点”的定义即可解决问题;②首先求出点C 坐标,再利用待定系数法即可解决问题;(2)分两种情形画出图形即可解决问题.【详解】(1)①如图1.观察图象可知满足条件的点C 坐标为C (1,5)或C'(3,5);②如图2.由图可知,B (5,3).∵A (1,3),∴AB=3.∵△ABC 为等腰直角三角形,∴BC=3,∴C 1(5,7)或C 2(5,﹣1).设直线AC 的表达式为y=kx+b (k≠0),当C 1(5,7)时,357k b k b +=⎧⎨+=⎩,∴12k b =⎧⎨=⎩,∴y=x+2,当C 2(5,﹣1)时,351k b k b +=⎧⎨+=-⎩,∴14k b =-⎧⎨=⎩,∴y=﹣x+3.综上所述:直线AC 的表达式是y=x+2或y=﹣x+3.(2)分两种情况讨论:①当点F 在点E 左侧时:连接OD .则OD=221417+=,∴217r ≤≤.②当点F 在点E 右侧时:连接OE ,OD .∵E (1,2),D (1,3),∴22125+221417+=517r ≤≤综上所述:217r ≤≤517r ≤≤【点睛】本题考查了一次函数综合题、圆的有关知识、等腰直角三角形的判定和性质、“和谐点”的定义等知识,解题的关键是理解题意,灵活运用所学知识解决问题,学会用分类讨论的首先思考问题,属于中考压轴题.20. (1) =﹣100x+50000;(2) 该商店购进A 型34台、B 型电脑66台,才能使销售总利润最大,最大利润是46600元;(3)见解析.【解析】【分析】(1)根据“总利润=A 型电脑每台利润×A 电脑数量+B 型电脑每台利润×B 电脑数量”可得函数解析式;(2)根据“B 型电脑的进货量不超过A 型电脑的2倍且电脑数量为整数”求得x 的范围,再结合(1)所求函数解析式及一次函数的性质求解可得;(3)据题意得y=(400+a)x+500(100﹣x),即y=(a﹣100)x+50000,分三种情况讨论,①当0<a<100时,y随x的增大而减小,②a=100时,y=50000,③当100<m<200时,a﹣100>0,y随x的增大而增大,分别进行求解.【详解】(1)根据题意,y=400x+500(100﹣x)=﹣100x+50000;(2)∵100﹣x≤2x,∴x≥1003,∵y=﹣100x+50000中k=﹣100<0,∴y随x的增大而减小,∵x为正数,∴x=34时,y取得最大值,最大值为46600,答:该商店购进A型34台、B型电脑66台,才能使销售总利润最大,最大利润是46600元;(3)据题意得,y=(400+a)x+500(100﹣x),即y=(a﹣100)x+50000,3313≤x≤60,①当0<a<100时,y随x的增大而减小,∴当x=34时,y取最大值,即商店购进34台A型电脑和66台B型电脑的销售利润最大.②a=100时,a﹣100=0,y=50000,即商店购进A型电脑数量满足3313≤x≤60的整数时,均获得最大利润;③当100<a<200时,a﹣100>0,y随x的增大而增大,∴当x=60时,y取得最大值.即商店购进60台A型电脑和40台B型电脑的销售利润最大.【点睛】本题考查了一次函数的应用及一元一次不等式的应用,弄清题意,找出题中的数量关系列出函数关系式、找出不等关系列出不等式是解题的关键.21.(1) 乙在整理数据时漏了一个数据,它在169.5﹣﹣174.5内;(答案不唯一);(2)120°;(3)160或1;(4)3 5 .【解析】【分析】(1)对比图①与图②,找出图②中与图①不相同的地方;(2)则159.5﹣164.5这一部分的人数占全班人数的比乘以360°;(3)身高排序为第30和第31的两名同学的身高的平均数;(4)用树状图法求概率. 【详解】解:(1)对比甲乙的直方图可得:乙在整理数据时漏了一个数据,它在169.5﹣﹣174.5内;(答案不唯一)(2)根据频数分布直方图中每一组内的频数总和等于总数据个数;将甲的数据相加可得10+15+20+10+5=60;由题意可知159.5﹣164.5这一部分所对应的人数为20人,所以这一部分所对应的扇形圆心角的度数为20÷60×360=120°,故答案为120°;(3)根据中位数的求法,将甲的数据从小到大依次排列,可得第30与31名的数据在第3组,由乙的数据知小于162的数据有36个,则这两个只能是160或1. 故答案为160或1;(4)列树状图得:P (一男一女)=1220=35. 22.(1)1,45°;(2)∠ACD=∠B ,PB AB CD AC = =k ;(3710. 【解析】【分析】(1)根据已知条件推出△ABP ≌△ACD ,根据全等三角形的性质得到PB=CD ,∠ACD=∠B=45°,于是得到 1;PB CD= ()2根据已知条件得到△ABC ∽△APD ,由相似三角形的性质得到AB AP k AC AD ==,得到 ABP ∽△CAD ,根据相似三角形的性质得到结论;()3过A 作AH ⊥BC 于 H ,得到△ABH 是等腰直角三角形,求得 AH=BH=4, 根据勾股定理得到222245,3,AC AH CH PH PA AH =+==-=根据相似三角形的性质得到 AB AP AC AD =,推出△ABP ∽△CAD ,根据相似三角形的性质即可得到结论.【详解】(1)∵∠A=90°,1,AB AC= ∴AB=AC ,∴∠B=45°,∵∠PAD=90°,∠APD=∠B=45°, ∴AP=AD ,∴∠BAP=∠CAD ,在△ABP 与△ACD 中,AB=AC, ∠BAP=∠CAD ,AP=AD, ∴△ABP ≌△ACD ,∴PB=CD ,∠ACD=∠B=45°, ∴PB CD =1, (2),PB AB ACD B k CD AC ,∠=∠== ∵∠BAC=∠PAD=90°,∠B=∠APD , ∴△ABC ∽△APD ,AB AP k AC AD==Q ∵∠BAP+∠PAC=∠PAC+∠CAD=90°, ∴∠BAP=∠CAD ,∴△ABP ∽△CAD ,∴∠ACD=∠B ,,PB AB k CD AC== (3)过 A 作 AH ⊥BC 于 H ,∵∠B=45°,∴△ABH 是等腰直角三角形,∵BC=12,∴CH=8,∴2245,AC AH CH =+=∴PH=22PA AH -=3,∴PB=1,∵∠BAC=∠PAD=,∠B=∠APD ,∴△ABC ∽△APD ,∴AB AP AC AD=, ∵∠BAP+∠PAC=∠PAC+∠CAD ,∴∠BAP=∠CAD ,∴△ABP ∽△CAD ,∴,AB PB AC CD =即421,45CD = ∴102CD =. 过 A 作 AH ⊥BC 于 H ,∵∠B=45°,∴△ABH 是等腰直角三角形,∵BC=12,∴CH=8,∴AC ==∴,∴PB=7,∵∠BAC=∠PAD=,∠B=∠APD ,∴△ABC ∽△APD , ∴AB AP AC AD=, ∵∠BAP+∠PAC=∠PAC+∠CAD ,∴∠BAP=∠CAD ,∴△ABP ∽△CAD ,∴,AB PBAC CD =7,CD=∴2CD =【点睛】本题考查了等腰直角三角形的性质,全等三角形的判定和性质,相似三角形的判定和性质,勾股定理,熟练掌握相似三角形的判定和性质是解题的关键.23.客车不能通过限高杆,理由见解析【解析】【分析】根据DE ⊥BC ,DF ⊥AB ,得到∠EDF=∠ABC=14°.在Rt △EDF 中,根据cos ∠EDF=DF DE,求出DF 的值,即可判断.【详解】∵DE ⊥BC ,DF ⊥AB ,∴∠EDF=∠ABC=14°.在Rt △EDF 中,∠DFE=90°,∵cos ∠EDF=DF DE, ∴DF=DE•cos ∠EDF=2.55×cos14°≈2.55×0.97≈2.1.∵限高杆顶端到桥面的距离DF 为2.1米,小于客车高2.5米,∴客车不能通过限高杆.【点睛】考查解直角三角形,选择合适的锐角三角函数是解题的关键.24.(1)3(2)11a a +-. 【解析】 【分析】(1)根据幂的乘方、零指数幂、特殊角的三角函数值和绝对值可以解答本题;(3)根据分式的减法和除法可以解答本题.【详解】(1)())0223π12sin60︒-+-+-=4+1+|1﹣2×3=4+1+|133 13(2)2a 12a 1a a a --⎛⎫÷- ⎪⎝⎭=()()2a 1a 1a 2a 1a a+--+÷ =()()()2a 1a 1a ·a a 1+--=a1 a1 +-.【点睛】本题考查分式的混合运算、实数的运算、零指数幂、特殊角的三角函数值和绝对值,解答本题的关键是明确它们各自的计算方法.25.(1)、(t+6,t);(2)、当t=2时,S有最小值是16;(3)、理由见解析.【解析】【分析】【详解】(1)如图所示,过点E作EG⊥x轴于点G,则∠COP=∠PGE=90°,由题意知CO=AB=6、OA=BC=4、OP=t,∵PE⊥CP、PF⊥OP,∴∠CPE=∠FPG=90°,即∠CPF+∠FPE=∠FPE+∠EPG,∴∠CPF=∠EPG,又∵CO⊥OG、FP⊥OG,∴CO∥FP,∴∠CPF=∠PCO,∴∠PCO=∠EPG,在△PCO和△EPG中,∵∠PCO=∠EPG,∠POC=∠EGP,PC=EP,∴△PCO≌△EPG(AAS),∴CO=PG=6、OP=EG=t,则OG=OP+PG=6+t,则点E的坐标为(t+6,t),(2)∵DA∥EG,∴△PAD∽△PGE,∴AD PAGE PG=,∴46AD tt-=,∴AD=16t(4﹣t),∴BD=AB﹣AD=6﹣16t(4﹣t)=16t2﹣23t+6,∵EG⊥x轴、FP⊥x轴,且EG=FP,∴四边形EGPF为矩形,∴EF⊥BD,EF=PG,∴S四边形BEDF=S△BDF+S△BDE=12×BD×EF=12×(16t2﹣23t+6)×6=12(t﹣2)2+16,∴当t=2时,S有最小值是16;(3)①假设∠FBD为直角,则点F在直线BC上,∵PF=OP<AB,∴点F不可能在BC上,即∠FBD不可能为直角;②假设∠FDB为直角,则点D在EF上,∵点D在矩形的对角线PE上,∴点D不可能在EF上,即∠FDB不可能为直角;③假设∠BFD为直角且FB=FD,则∠FBD=∠FDB=45°,如图2,作FH⊥BD于点H,则FH=PA,即4﹣t=6﹣t,方程无解,∴假设不成立,即△BDF不可能是等腰直角三角形.26.(1)117;(2)答案见图;(3)B;(4)30.【解析】【分析】(1)先根据B等级人数及其百分比求得总人数,总人数减去其他等级人数求得C等级人数,继而用360°乘以C等级人数所占比例即可得;(2)根据以上所求结果即可补全图形;(3)根据中位数的定义求解可得;(4)总人数乘以样本中A等级人数所占比例可得.【详解】(1)∵总人数为18÷45%=40人,∴C等级人数为40﹣(4+18+5)=13人,则C对应的扇形的圆心角是360°×=117°,故答案为:117;(2)补全条形图如下:(3)因为共有40个数据,其中位数是第20、21个数据的平均数,而第20、21个数据均落在B等级,所以所抽取学生的足球运球测试成绩的中位数会落在B等级,故答案为:B.(4)估计足球运球测试成绩达到A级的学生有300×=30人.【点睛】本题考查了条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.27.(1)∠EAD的余切值为56;(2)BFCF=58.【解析】【分析】(1)在Rt△ADB中,根据AB=13,cos∠BAC=513,求出AD的长,由勾股定理求出BD的长,进而可求出DE的长,然后根据余切的定义求∠EAD的余切即可;(2)过D作DG∥AF交BC于G,由平行线分线段成比例定理可得CD:AD=CG:FG=3:5,从而可设CD=3x,AD=5x,再由EF∥DG,BE=ED,可知BF=FG=5x,然后可求BF:CF的值.【详解】(1)∵BD⊥AC,∴∠ADE=90°,Rt△ADB中,AB=13,cos∠BAC=5 13,∴AD=5,由勾股定理得:BD=12,∵E是BD的中点,∴ED=6,∴∠EAD的余切==56;(2)过D作DG∥AF交BC于G,∵AC=8,AD=5,∴CD=3,∵DG∥AF,∴=35,设CD=3x,AD=5x,∵EF∥DG,BE=ED,∴BF=FG=5x,∴==5 8 .【点睛】本题考查了勾股定理,锐角三角函数的定义,平行线分线段成比例定理.解(1)的关键是熟练掌握锐角三角函数的概念,解(2)的关键是熟练掌握平行线分线段成比例定理.。
南京市鼓楼区2019-2020学年第二学期九年级数学二模试卷
![南京市鼓楼区2019-2020学年第二学期九年级数学二模试卷](https://img.taocdn.com/s3/m/5feba83ef8c75fbfc67db2cd.png)
九年级(下)期中试卷数学注意事项 :本试卷共 6页,全卷满分 120分,考试时间为 120 分钟.考生答题全部答在答题卷指定位置 答在本试卷上无效 .、选择题 (本大题共 6小题,每小题 2分,共 12分.在每小题所给出的四个选项中 ,恰有 项是符合题目要求的 , 请将正确选项前的字母代号填在答题卷.相.应.位.置... 上 )1.计算 4+(-8)÷(-4)-(- 1) 的结果是A .2B . 32.铺设木地板时,每两块地板之间的缝隙不低于A .0.3 mmB . 0.4 mm 4C .7D .430.5 mm 且不超过 0.8 mm ,缝隙的宽度可以是C .0.6 mmD . 0.9 mm3.若△ ABC ∽△ DEF ,相似比为 1∶2,则△ ABC 与△ DEF 的面积的比为A . 2∶1B . 1∶ 2C .4∶1D .1∶44.今年 4 月 30 日,江苏省约有四百万辆车涌入高速公路,用科学记数法表示“四百万”是A .4×104B . 4×105C .4×106D .4×1075. 1975 年中国登山队成功登顶珠穆朗玛峰,下图是当年 5 月 18~28 日珠峰海拔 8km 、 9km 处风速变化的真实记录,从图中可得到的正确结论是 ① 同一天中,海拔越高,风速越大; ② 从风速变化考虑, 27 日适合登山; ③ 海拔 8 km 处的平均风速约为 20 m/s .6.如图,△ ABC 中,∠BAC =45°,∠ABC =60°,AB =4,D 是边 BC 上的一个动点,以 AD 为直径画⊙ O 分别交 AB 、AC 于点 E 、 F ,则弦 EF 长度的最小值为A . 3B . 6C .2 2D .2 3A .①②B .①③C .②③(第5题)二、填空题(本大题共 10小题,每小题 2分,共 20分.无需写出解答过程 ,请把答案直接 填写在答.题.卷.相.应.位.置.上)7.8的平方根是 ▲ ,8 的立方根是 ▲ .8.若式子 2 在实数范围内有意义,则 x 的取值范围是 ▲ .1-x 9.计算 32- 2 的结果是 ▲ .10.已知 3+ 5是关于 x 的方程 x 2-6x +m =0 的一个根,则 m = ▲ .11.若△ ABC 的三边长为 3、 4、5,则△ ABC 的外接圆半径 R 与内切圆半径 r 的差为 ▲ . 12.如图,四边形 ABCD 内接于⊙ O ,AC 平分∠ BAD .若∠ BDC = 40°,则∠ BCD 的度数为▲(第 13题)13.点 O 、A 、B 、C 在数轴上的位置如图所示, O 为原点, BC =3,OA =OC ,若 B 表示的数为 x ,则 A 表示的数为 ▲ .(用含 x 的代数式表示)16.如图是一张直角三角形卡片,∠ ACB =90°,AC =BC ,点 D 、E 分别在边 2 cm ,DB =4 cm , DE ⊥ AB .若将该卡片绕直线 DE 旋转一周,则形成的几何体的表面积为▲ cm 2.A B O C14.把一副三角板如图摆放, 15.若反比例函数 k y =k x的图像与一次函数 1和- 3,则关于 x的方程 k =mx x-n 的解是 ▲AB 、AC 上,AD = (第 12题)(第 14题)其中∠ C =∠y =mx + n 的图像的交点的横坐标为三、解答题(本大题共 11小题,共88分.请在答.题.卷.指.定.区.域. 内作答,解答时应写出文字说明 证明过程或演算步骤)17.( 6分)计算 (2a -1)2+ 2(2a -1)+3.19.(8分)如图,△ABC 中, D 、E 分别是边 AB 、AC 的中点, 1)求证:四边形 BDEF 是平行四边形; 2)直接写出当△ ABC 满足什么条件时,四边形20.( 7分)商店以 7元/件的进价购入某种文具 1 000件,按 10元/件的售价销售了 500 件.现对剩下的这种文具降价销售,如果要保证总利润不低于 2 000 元,那么剩下的文具最低定价是 多少元?21.( 8分)某篮球队员在篮球联赛中分别与甲队、乙队对阵各四场,下表是他的技术统计.场次对阵甲队对阵乙队得分(分)失误(次)得分(分)失误(次)第一场 25 2 27 3 第二场 30 0 31 1 第三场27 3 20 2 第四场2622641)他在对阵甲队和乙队的各四场比赛中,平均每场得分分别是多少?18.( 8分) 1)化简1- 2 ; x -1-x 2-1;2)解方程1x -12x 2-1=0.∠B =∠ DEF .点 F 是 BC 上一点,F C(第 19题)2)利用方差判断他在对阵哪个队时得分比较稳定;3)根据上表提供的信息,判断他在对阵哪个队时总体发挥较好,简要说明理由.22.(8分)甲盒中有标号为1、2、4的牌子,乙盒中有标号为1、2、3、4 的牌子,两个盒子均不透明,这些牌子除标号外无其他差别.小勇从甲盒中随机摸出一个牌子,标号为a,小婷从乙盒中随机摸出一个牌子,标号为b,若a<b,则小勇获胜;若a≥b,则小婷获胜.(第22题)1)求小勇获胜的概率;2)若小勇摸出的牌子标号为2,在不知道小婷标号的情况下,他获胜的概率是▲23.(9分)如图1,点A、B 在直线MN 上(A在 B 的左侧),点P 是直线MN 上.方.一点.若∠ PAN=x°,∠ PBN=y°,记< x,y >为P 的双角坐标.例如,若△ PAB 是等边三角形,则点P 的双角坐标为< 60,120>.(第23 题图1)(图2)1)如图2,若AB=22 cm,P<26.6,58>,求△ PAB 的面积;(参考数据:tan26.6 °≈0.50,tan58 °≈1.60.)2)在图 3 中用直尺和圆规作出点P < x,y >,其中y=2x 且y=x+30.(保留作图痕迹)80024.( 8分)如图, D 是△ABC 边 BC 上的点,连接 AD ,∠ BAD =∠ CAD , BD = CD .用两种不同方法证明 AB =AC .25.( 8分)已知二次函数 y =ax 2-6ax +5a (a 为常数)的图像为抛物线 C .(1)求证:不论 a 为何值,抛物线 C 与 x 轴总有两个不同的公共点;(2)设抛物线 C 交 x 轴于点 A 、B ,交 y 轴于点 D ,若△ ABD 的面积为 20,求 a 的值; (3)设点 E (2,4)、F (3,4),若抛物线 C 与线段 EF 只有一个公共点,结合函数图像,直接写出 a 的取值范围.26.( 9分)如图,矩形 ABCD 中,E 是 BC 的中点,连接 DE ,P 是 DE 上一点,∠ BPC =90°,延长 CP 交 AD 于点 F .⊙O 经过 P 、D 、F ,交 CD 于点 G .1)求证 DF =DP ;2)若 AB = 12,BC = 10,求 DG 的长; 3)连接 BF ,若 BF 是⊙O 的切线,直接写出( 第 24题 ) (备用图)B AC B的值.E (第 26题)27.( 9分)如图 1,汽车以速度 V ( m/s )匀速行驶,若一路绿灯通过路口 A 、B 、C 、 D 且 10≤ V ≤ 25,则称 V 为绿灯速度.已知各路口红灯、绿灯均每隔 30 s 交替一次,其余因素忽略不计.A B C D(第 27 题图 1)I .从红绿灯设置到绿灯速度设汽车在第 0秒出发,行驶 t s 后路程为 Sm .图 2 表示在某种红绿灯设置下汽车行驶的情况.1)路段 BC 的长度为 ▲ m ,路口 A 绿灯亮起 ▲ s 后路口 D 绿灯亮起; 2)求出射线 OC 3所对应的 V 的值,判断此时 V 是否为绿灯速度,并说明理由; 3)写出这种红绿灯设置下绿灯速度的取值范围,并在图 2 中画出对应的示意图. II .从绿灯速度到红绿灯设置(4)当 V =20 时,汽车经过的每个路口绿灯都恰好开始亮起.根据题意,在图 路口的红绿灯设置.S (m ) 24001400绿灯亮 红灯亮t (s )DCBA图 2 )80030 60 90 120 150 180 210 240 (图3)3 中画图表示各t(s)九年级(下)中考模拟试卷 II 参考答案及评分标准 【11】 说明:本评分标准每题给出了一种或几种解法供参考,如果考生的解法与本解答不同,参照本评 分标准的精神给分.一、选择题(本大题共 6小题,每小题 2分,共 12 分)二、 填空题(本大题共 10 小题,每小题 2 分, 共 20 分)7. ±2 2, 2. 8. x ≠1. 9. 2.9. 2 .10.4. 3 11.2.12. 100. 13 .- x - 3 . 14.225. 15.- 1,3.16.16π+ 16 2三、 解答题(本大题共 11 小题, 共 68 分)17.(本题 6 分)解:原式= (2a - 1)2+2(2a -1)+1+2= (2a -1+1)2+2 ........................................................................................... 3 分 =4a 2+2. ....................................................... 6 分18.(本题 8 分)1)解:原式= x +1 (x - 1)( x + 1)x +1-2(x - 1)( x +1) x -1=(x - 1)( x + 1)= 1 . .........................................................=x +1. .........................................................12)解:由( 1)可得: =0. .............................................x +1∵ 1≠ 0,∴ 分式方程无解. ...................................................19.(本题 8 分)( 1)证明:∵ 点 D 、E 分别是边 AB 、AC 的中点, ∴ DE 是△ ABC 的中位线.∴ DE ∥ BC . .......................................................... 2 分 ∴ ∠ B =∠ ADE . 又 ∠ B =∠ DEF .∴ ∠ ADE =∠ DEF . .................................................... 4 分BD ∥EF .DE ∥BC ,BD ∥EF ,2(x -1)(x + 1)2分4分6分 8分四边形BDEF 是平行四边形........................................... 6 分800又第 11 页 共 11 页1)解: x 甲=25+ 30+27+26 4=27 27+31+ 20+26x 乙= 4=26. 答:他对阵甲队的平均每场得分为 27 分,对阵乙队的平均每场得分为 26 分. 2)解: 2 (25-27)2+(30- 27) 2+(27-27)2+(26-27)2.................................... 3 分2=(27-26)2+(31-26) 2+(20-26)2+(26-26)2=15.5. ................................................................................. 4分s = 4= 15.5. ..................... 4 分由 s 甲2< s 乙2可知,他在对阵甲队时得分比较稳定. ............................ 5 分3)解:他在对阵甲队时总体发挥较好. ........................................ 6 分理由:由 x 甲> x 乙可知他对阵甲队时平均得分较高;由 s 甲2< s 乙2可知,他在对阵甲队时得分比较稳定; ............................ 7 分计算得他对阵甲队平均失误为 1.75 次,对阵乙队平均失误为 2.5 次,由 1.75 次< 2.5 次可知他在对阵甲队时失误较少. .............................. 8 分22.(本题 8 分) (a ,b ) 乙1 乙2 乙3 乙4 甲1 (1,1) (1,2) (1,3) (1,4) 甲2(2,1) (2,2) (2,3) (2,4) 甲4(4,1) (4,1)(4,3)(4,4)共有 12种等可能结果,其中小勇获胜(记作事件 A )只包含其中 5 个结果.................................................................................................................................... 5 分∴ P (A ) =152. ................................................... 6 分1 2)21. ..................................................................... 8分23.(本题 9 分)(1)解:过 P 作 PC ⊥AB ,垂足为 C ,在 Rt △PBC 中,∠ PBC =58°,tan58 °=B PC C ,2)答案不唯一,如 AB = BC .20.(本题 7 分) 解:设剩下的文具定价为 x 元/件.由题意得, 500(10-7)+500(x -7)≥2000. ............................... 4 分 解得 x ≥8. ........................................................... 6 分 ∴ x 的最小值为 8 . 答:剩下的文具最低定价 8 元.21.(本题 8 分)8分7分1)解:列表如下: 1分图 2)第 12 页 共 11 页在 Rt △PAC 中,∠ PAC =26.6 °,AB =AC - BC ,PC- PC = tan26.6 -°tan58 =°1∴ S △PAB =2×22× 16= 176 cm 2. ............................................ 6 分2)如图,点 P 即为所求. .................................................... 9 分24.(本题 8 分)证法 1:如图,过 D 作 DE ⊥AB ,DF ⊥AC ,垂足分别为 E 、 F .∠BAD =∠ CAD ,DE ⊥AB ,DF ⊥AC ,DE =DF ,∠BED =90°,∠DFC =90°. ................................. 1分 BD =CD ,Rt △BDE ≌Rt △CDF . ................................................ 2分∠B =∠ C . ........................................................ 3 分AB =AC . ........................................................... 4 分如图,延长 AD 到 E ,使 DE =AD . DE =AD ,BD =CD ,四边形 ABEC 是平行四边形. ..AC =BE , AC ∥BE . ..........∠BED =∠ CAD . ∠BAD =∠ CAD ,BC =PCtan583分tan26.6 PC ,AC,AC =PC tan26.64分解得PC ≈16 cm . ........................................................ 5分证法 2:5分 6分(第 24题证法1)( 第 24 题证法2)又第 13 页 共 11 页∠BED =∠ BAD .∴ AB =BE . .............................................................. 7 分 ∴ AB = AC . ............................................................ 8 分25.(本题 8 分)( 1)证明:当 y =0 时, ax 2-6ax + 5a =0. ................................... 1 分变形得, a (x -1)(x -5)= 0. ∴ x 1=1, x 2= 5.∴ 方程总有两个不相等的实数根. .......................................... 2 分 ∴ 不论 a 为何值,抛物线 C 与 x 轴总有两个不同的公共点; .................. 3 分 ( 2)解:∵ 当 x =0 时, y =5a .∴ D (0,5a ). .......................................................... 4 分 由( 1)得, AB =5- 1= 4. ∵ △ ABD 的面积为 20,121×4×| 5a | =20.解得 a =± 2.43)- ≤a ≤- 1.326.(本题 9 分) (1)证明:∵ ∠ BPC =90°,E 是 BC 的中点,∴ EC = EP . ............................................................ 1 分在矩形 ABCD 中, AD ∥ BC , △ DFP ∽△ ECP . .....DF EC= = 1.DP EP即 DF =DP . ...................2)解:连接 FG .∵ 在矩形 ABCD 中,∠ ADC = 90°, ∴FG 是⊙ O 的直径.∵ E 是 BC 的中点,1∴ EC =EP = 2BC = 5.∵ 在矩形 ABCD 中,∠ BCD = 90°, ∴ DE = 52+122= 13.∴ DF =DP =13-5=8. .......... ∵ ⊙O 中, DF =DP ,⌒⌒ ∴ DF =DP .∴ ∠ DGF =∠ DFC . 又 ∠ FDC =∠FDC , ∴ △ FDG ∽△ CDF .DF=DC . DG=DF.5分 6分 8分2分3分5分(第 26题)6分DGCB.E.第 14 页 共 11 页8= 12 DG = 816 DG =327.(本题 9 分)( 1) 600; .................................................................. 1 分10; .................................................................... 2 分1 400( 2)解:由 C 3(70,1 400)得: V =1 74000= 20 m/s . ........................... 3分此时 V 不是绿灯速度,因为由图像可知汽车在路口 D 遇到红灯,所以不是绿灯速度. ................... 4 分240(3) 15≤V ≤21430. ........................................................... 5分如图阴影部分即为所求. .................................................... 6 分(图 2)4)如图即为所求. .......................................................... 9 分7分9分3) 23. ...................................................................... S。
2020年江苏省南京市中考数学二模试卷含答案
![2020年江苏省南京市中考数学二模试卷含答案](https://img.taocdn.com/s3/m/79d2bc63ff00bed5b9f31d87.png)
23. 如图,港口 B 位于港口 A 的南偏西 45°方向,灯塔 C 恰好在 AB 的中点处.一艘海 轮位于港口 A 的正南方向,港口 B 的南偏东 45°方向的 D 处,它沿正北方向航行 18.5km 到达 E 处,此时测得灯塔 C 在 E 的南偏西 70°方向上,求 E 处距离港口 A 有多远? (参考数据:sin70°≈0.94,cos70°≈0.34,tan70°≈2.75)
10.【答案】
【解析】解:原式= =.
第 9 页,共 19 页
故答案为 . 先把二次根式化为最简二次根式,然后合并即可. 本题考查了二次根式的混合运算:先把二次根式化为最简二次根式,然后合并同类二次 根式即可.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质, 选择恰当的解题途径,往往能事半功倍.
在点 B 的右侧. (1)求 x 的取值范围; (2)当 AB=2BC 时,x 的值为______.
19. 某校 1200 名学生发起向贫困山区学生捐款活动,为了解捐款情况,学生会随机抽 取了部分学生的捐款金额,并用得到的数据绘制了如下统计图①和图②.
请根据以上信息,解答下列问题: (1)本次抽样调查的样本容量为______; (2)图①中“20 元”对应扇形的圆心角的度数为______°; (3)估计该校本次活动捐款金额为 15 元以上(含 15 元)的学生人数.
16. 如图,正方形 ABCD 与正方形 CEFG,E 是 AD 的中点,若 AB=2,则点 B 与点 F 之间的距离为______.
三、计算题(本大题共 1 小题,共 7.0 分) 17. 计算(x+ +2)÷(x- ).
第 2 页,共 19 页
四、解答题(本大题共 10 小题,共 81.0 分) 18. 如图,在数轴上点 A、B、C 分别表示-1、-2x+3、xƣ 页
南京玄武区数学】2019~2020年初三(下)二模试卷+答案
![南京玄武区数学】2019~2020年初三(下)二模试卷+答案](https://img.taocdn.com/s3/m/61007222c8d376eeafaa3111.png)
4(x+1)≤7x+13,
17.(8 分)解不等式组 A
x-8
并写出所有负整数解.
EA
E x-4< 3 ,
18.(7
分)先化简,再求值:EAA1aA-1E÷A EA
a-2+1aA AE
,其中
A
a= A
3+1. EA
19.(7 分)如图,在□ABCD 中,点 O 是边 BC 的中点,连接 DO 并延长,交 AB 延长线于
2019~2020 年【玄武区】初三(下)第二次学业质量检测 参考答案
题号
1~6
7~16
17~22 23~26
27
负责老师 李米乐 董若愚 宫雲飞 贺函 嵇伏年
一、选择题(本大题共 6 小题,每小题 2 分,共 12 分)
题号
1
2
3
4
5
6
答案
B
C
A
B
A
C
二、填空题(本大题共 10 小题,每小题 2 分,共 20 分)
2
11.已知反比例函数
y= A
x
,当
A
y<1
时,x
的取值范围是
▲
.
E
12.将面积为 3π cm2 的扇形围成一个圆锥的侧面,若扇形的圆心角是 120°,则该圆锥底面圆
的半径为 ▲ cm.
13.如图,∠1,∠2,∠3 是五边形 ABCDE 的 3 个外角,若∠A+∠B=210°,则∠1+∠2+
∠3= ▲ °.
1.据统计,全国共有 346 支医疗队,将近 42600 名医护工作者加入到支援湖北武汉的抗疫队
伍,将 42600 用科学记数法表示为
A.0.426×105
B.4.26×104
南京市联合体2019年中考二模数学试卷及答案
![南京市联合体2019年中考二模数学试卷及答案](https://img.taocdn.com/s3/m/34ce850ff61fb7360a4c6501.png)
数学试卷2019年中考数学模拟试题(二)注意事项:1 •本试卷共6页•全卷满分120分•考试时间为120分钟•考生答题全部答在答题卡上,答在本试卷上无效.2 •请认真核对监考教师在答题卡上所粘贴条形码的姓名、考试证号是否与本人相符合,再将自己的姓名、准考证号用0.5毫米黑色墨水签字笔填写在答题卡及本试卷上.3 •答选择题必须用 2B 铅笔将答题卡上对应的答案标号涂黑•如需改动,请用橡皮擦干净后,再选涂其他答案.答非选择题必须用 0.5毫米黑色墨水签字笔写在答题卡上的指定位置, 在其他位置答题一律无效.4•作图必须用2B 铅笔作答,并请加黑加粗,描写清楚.一、选择题(本大题共6小题,每小题2分,共12分•在每小题所给出的四个选项中,恰有一项是符合题目要求的,请将正确选项前的字母代号填涂在答题卡...相应位置 上) 11. —1的倒数为11A . 3B . 3C• —32.下列运算中, 5士申 H. 结果是a 6的是A .23a a12・ 2B . a - aC • (a 3)3( )B ・调查你所在的班级同学的身高情况. D .调查南京市电视台《今日生活》收视率.4.如图,在方格纸中选择标有序号①②③④的一个小正方形涂黑,使它与图中阴影部分组成的新图形为中心对称图形,该小正方形的序号是 ( )A .①B .②C .③D .④5.若干桶方便面摆放在桌面上,它的三个视图如下,则这一堆方便面共有( )A . 7 桶B . 8 桶C . 9 桶D . 10 桶3 •下面调查中,适合采用普查的是A •调查全国中学生心理健康现状. C .调查我市食品合格情况.(第4题)数学试卷6. 在厶ABC 中,/ ABC=30 °AB 边长为6, AC 边的长度可以在 1、3、5、7中取值,满足这些条件的互 不全等的三角形的个数是 ()A . 3个B . 4个C . 5个D . 6个、填空题(本大题共 10小题,每小题2分,共20分•不需写出解答过程,请把答案直接填写在答题卡 相应位置上) 7. 10的平方根为▲ .28. 因式分解: ab — a = __________ .9•点P 在第二象限内,且到两坐标轴的距离相等,则点P 的坐标可以为▲.(填一个即可)2x + y = 3,10•关于x y 的二元一次方程组」 的解为 ▲•x - y = 0k 12. 已知点A ( 1,y 1)、B ( «,y 2)在反比例函数y =- (k v 0)的图像上,则屮和y 的大小关系是▲.x13. 如图,在 O O 中,直径EF 丄CD ,垂足为 M ,若CD = 2花,EM = 5,则O O 的半径为 ▲ .11.如图,将正五边形ABCDE 的C 点固定,并依顺时针方向旋转,若要使得新五边形A'B'C'D'E'的顶点则至少要旋转—▲A寸OMN. V.F(13题)(第 15 题)D'落在直线BC 上, EO DCE14. 二次函数图像过点(-3,0)、(1, 0),且顶点的纵坐标为4,此函数关系式为▲.15. 如图,在△ ABC中,AB=AC= 3,高BD= 5,AE平分/ BAC,交BD于点E,贝U DE的长为▲.1 1 116. 若a1 =1,a2 =1,a3 =1,…,则a2014的值为______ ▲__ .(用含m的代数式表示)m 3] a2三、解答题(本大题共11小题,共88分•请在答题卡指定.区域内作答,解答时应写出文字说明、证明过程或演算步骤)17. (6分)计算:727—2COS30 0—1 — 7318. (8分)先化简再求值:2_1 1 ■■ ---- 4x―-,其中x是方程-2- x = 0的根.x -1 x -119. (8分)(1 )在一个不透明的盒子中,放入2个白球和1个红球,这些球除颜色外都相同.搅匀后从中任意摸出1个球,记录下颜色后放回袋中,再次搅匀后从中任意摸出1个球,请通过列表或树状图求2次摸出的球都是白球的概率;(2)现有一个可以自由转动的转盘,转盘被等分成60个相等的扇形,这些扇形除颜色外完全相同,其中40个扇形涂上白色,20个扇形涂上红色,转动转盘2次,指针2次都指向白色区域的概率为▲.20. (8分)为了解八年级学生每天的课外阅读情况,学校从八年级随机抽取了若干名学生,对他们的读书时间进行了调查并将收集的数据绘成了两幅不完整的统计图,请你依据图中提供的信息,解答下列问题:(说明:每组时间段含最小值不含最大值)(1)从八年级抽取了多少名学生?⑵①“ 2 - 2.5小时”的部分对应的扇形圆心角为▲度:②课外阅读时间的中位数落在▲内.(填时间段)⑶如果八年级共有800名学生,请估算八年级学生课外阅读时间不少于 1.5小时的有多少人?21. (8分)已知:如图,在ABC中,• ACB=90 , - CAB的平分线交BC于D , DE _ AB,垂足为E,连结CE,交AD于点H .(1)求证:AD _ CE ;(2)过点E作EF // BC交AD于点F,连结CF,求证:四边形EFCD为菱形.DC数学试卷22. (8分)如图,在一次夏令营活动中,小明同学从营地A出发,要到A地的北偏东60。
2019年江苏省南京市中考数学第二次模拟考试试卷附解析
![2019年江苏省南京市中考数学第二次模拟考试试卷附解析](https://img.taocdn.com/s3/m/19b8c52f54270722192e453610661ed9ad5155a4.png)
2019年江苏省南京市中考数学第二次模拟考试试卷学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项: 1.答题前填写好自己的姓名、班级、考号等信息 2.请将答案正确填写在答题卡上一、选择题1.若AD 为△ABC 的高,AD=1,BD=1,DC=3,则∠BAC 等于( ) A .105°或15°B .15°C .75°D .105°2.如图,四边形ABCD 为⊙O 的内接四边形,E 是BC 延长线上的一点,已知100BOD ∠=,则DCE ∠的度数为( )A .40°B .60°C .50°D .80°3.在等边三角形、平行四边形、矩形和圆这四个图形中,既是轴对称图形又是中心对称图形的有( ) .1个B .2个C .3个D .4个4.如图,在矩形ABCD 中,对角线AC 、BD 相交于点O ,若OA =2,则BD 的长为( )A .4B .3C .2D .15.下列语句中,正确的是 ( ) A .面积相等的两个三角形是全等三角形 B .三边对应相等的两个三角形全等 C .全等的两个三角形是轴对称图形 D .以上说法都不对6.若代数式237x −的值为 5,则x 为( ) A . 1x = 或2x = B .2x =−C .1x =±D .2x =±7.如图,把边长为2的正方形的局部进行图①~图④的变换,拼成图⑤,那么图⑤的面积是( )A .18B .16C .12D .88.A 厂库存钢材为100吨,每月用去15吨;B 厂库存钢材82吨,每月用去9吨.若经过x 个月后,两厂库存钢材相等,则x =( )A D OB C EA .3B .5C .2D .49.有一旅客带了30 kg 的行李乘飞机.按民航规定,旅客最多可免费携带20 k9的行李,超重部分每千克按飞机票价的1.5%支付行李费,现该旅客支付了120元的行李费,则他的飞机票价是( ) A .600元B .800元C .1000元D .1200元二、填空题10.已知sinA =23,则cosA = .tanA = . 11.如图,△ABC 的角平分线 BD 、CE 交于点0,∠A=36°,AB=AC ,则与△ABC 相似的三角形有 .12.如图所示,在矩形ABCD 中,横向阴影部分是矩形,另一阴影部分是平行四边形,依照图中所标注数据,计算可知空白部分的面积是 .13.直线3y x =−与32y x =−+的位置关系为 .(填“平行"或“相交"). 14.一个正方形的面积为21236a a ++(6a >−),则它的边长为 . 15.已知1a +1b =92()a b +,则b a a b +=_______.16.某工厂要生产 a 个零件,原计划每天生产 x 个,后来由于供货需要,每天多生产 b 个零件,则可提前 天完成.17.爷爷病了,需要挂100毫升的药液,小明守候在旁边,观察到输液流量是每分钟3毫升,输液10分钟后,吊瓶的空出部分容积是50毫升(如图),利用这些数据,计算整个吊瓶的容积是 毫升. 解答题三、解答题18.在平面直角坐标系中,AOB △的位置如图所示,已知90AOB ∠=,AO BO =,点A的坐标为(31)−,. (1)求点B 的坐标;(2)求过A O B ,,三点的抛物线的解析式;(3)设点B 关于抛物线的对称轴l 的对称点为1B ,求1AB B △的面积.19.如图,已知直线1y x m =+与x 轴、y 轴分别交于点A 、B ,与双曲线2ky x=(x <0)分别交于点C 、D ,且C 点的坐标为(1−,2). (1)分别求出直线AB 及双曲线的解析式; (2)求出点D 的坐标;(3)利用图象直接写出:当x 在什么范围内取值时,1y >2y .20. 下图是一个食品包装盒的侧面展开图. (1)请写出这个包装盒的多面体形状的名称;(2)请根据图中所标的尺寸,计算这个多面体的侧面积和全面积(侧面积与两个底面积之和).21.有一个抛两枚硬币的游戏,规则是:若出现两个正面,则甲赢;若出现一正一反,则乙 1赢;若出现两个反面,则甲、乙都不赢. (1)这个游戏是否公平?请说明理由;(2)如果你认为这个游戏不公平,那么请你改变游戏规则,设计一个公平的游戏; 如果你认为这个游戏公平,那么请你改变游戏规则,设计一个不公平的游戏.22.在如图的网格中有一个格点三角形ABC ,请在图中画一个与△ABC•相似且相似比不等于1的格点三角形.23.如图,已知线段 AB ,利用直尺和圆规将它分成3: 4 的两条线段.24.如图,将矩形纸片ABCD 沿对角线BD 折叠,点C 落在点E 处,BE 交AD 于点F ,连结AE .证明:(1)BF DF =.BAC(2)AE BD ∥.25.某气象研究中心观测一场沙尘暴从发生到结束的全过程,开始时风速平均增加2 km /h ,4 h 后,沙尘暴经过开阔的荒漠地,风速平均增加4 km /h ,一段时间风速保持不变.当沙尘暴遇到绿色植被区时,其风速平均减少l km /h ,最终停止.结合风速与时间的图象(如图所示)回答下列问题:(1)在y 轴括号内填入相应的数值; (2)沙尘暴从发生到结束,共经过多少时间?(3)求出当x ≥25时,风速y(km /h)与时间x(h)之间的函数解析式.26.如图,等腰三角形ABC 的高所在的直线与直角坐标系的y 轴重合,已知其顶点坐标分别为:A(1x −,2y )、B(2x −,1y −)、C(34y −,x ),求顶点A 的坐标.27.当细菌繁殖时,一个细菌分裂成两个,一个细菌在分裂n 次后,数量变成2n个.有一种分裂速度很快的细菌,它每12 min 分裂一次,如果现在盘子里有1000个这样的细菌,那么60 min 后,盘子里有多少个细菌?2 个小时后的数量是 1个小时后的多少倍?28.已知A 、B 、C 、D 是四个点,分别根据下列要求画图. (1)画线段AC ; (2)连结BD ; (3)画射线BC ; (4)画直线CD .29.将下列各数按从小 到大的次序排列,并用“<”号连结起来. 1211−,1413−,2423−,65−,4746−.612142447511132346−<−<−<−<−30.30.00l 0.0l −【参考答案】学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题1.A2.C3.B4.A5.B6.D7.B8.A9.B二、填空题10.3,511.△COD ,△BOE ,△BCE ,△BCD.12.2ab bc ac c −−+13.平行14.6a +15. 2516. a ax x b−+17. 120三、解答题 18.解:(1)作AC x ⊥轴,垂足为C ,作BD x ⊥轴垂足为D . 则90ACO ODB ∠=∠=,90AOC OAC ∴∠+∠=.又90AOB ∠=,90AOC BOD ∴∠+∠=OAC BOD ∴∠=∠.又,AO BO =ACO ODB ∴△≌△.13OD AC DB OC ∴====,.∴点B 的坐标为(13),.(2)因抛物线过原点,故可设所求抛物线的解析式为2y ax bx =+.将(31)(13)A B −,,,两点代入,得⎩⎨⎧=−=+1393b a b a ,解得51366a b ==;. 故所求抛物线的解析式为251366y x x =+. (3)在抛物线251366y x x =+中,对称轴l 的方程是13210b x a =−=−. 点1B 是B 关于抛物线的对称轴l 的对称点, 故1B 坐标1835⎛⎫−⎪⎝⎭, 在1AB B △中,底边1235B B =,高的长为2.故1AB B S △123232255=⨯⨯=. 19.(1)3+=x y ,xy 2−=;(2)(-2,1);(3)-2<x<-120.(1)这个多面体是六棱柱;(2)侧面积为6ab ;全面积为2336b ab +.21.(1)不公平.21()42P ==正正,21()42P ==正反 ∴甲的概率小于乙的概率.(2)公平游戏:如出现两个正面,则甲赢;出现两个反面,则乙赢.22.略23.如图,点 C 把AB 分成 3:4 的两条线段.24.解:(1)由条件可得ADB EBD ∠=∠(或ABF EDF △≌△),BF DF =∴ (2)由条件可证得AEB DBE ∠=∠(或EAD BDA ∠=∠),AE BD ∴∥25.(1)8,32;(2)57 h;(3)y=-x+57(25≤x≤57)26.∵等腰三角形是轴对称图形,高所在的直线与y轴重合,∴点B与点C关于y轴对称,∴23401x yy x−+−=⎧⎨−=⎩,解得12xy=⎧⎨=⎩,∴10x−=,24y=,∴顶点A的坐标为(0,4) .27.43.210⨯个,32倍28.29.612142447 511132346−<−<−<−<−30.0。
南京市2020版中考数学二模试题(I)卷
![南京市2020版中考数学二模试题(I)卷](https://img.taocdn.com/s3/m/2160634749649b6649d74778.png)
南京市2020版中考数学二模试题(I)卷姓名:________ 班级:________ 成绩:________一、单选题1 . 下列运算一定正确的是().A.B.C.D.2 . 如图,在矩形ABCD中,点E在AB边上,沿CE折叠矩形ABCD,使点B落在AD边上的点F处,若,,则的值为()A.B.C.D.3 . 如图是某几何体的三视图及相关数据,则该几何体的侧面积是()C.D.A.B.4 . 在-3,,0,四个数中,最小的数是()C.0D.A.-3B.5 . 不等式组的解集在数轴上表示正确的是()A.B.C.D.6 . 对于二次函数y=3(x-1)2,下列结论正确的是()A.当x取任何实数时,y的值总是正的B.其图象的顶点坐标为(0,1)C.当x>1时,y随x的增大而增大D.其图象关于x轴对称二、填空题7 . 化简_________.(结果要保留)8 . 计算:=_________.9 . 如图,在平面直角坐标系中,四边形是菱形,,且点的坐标为,则点的坐标分别为_______.10 . 泰州长江大桥全长62余公里,核准总投资93.7亿元,建设工期为五年半.用科学记数法表示总投资为元.11 . 如图,Rt△ABC中,∠C=90°,AC=2,BC=5,点D是BC边上一点且CD=1,点P是线段DB上一动点,连接AP,以AP为斜边在AP的下方作等腰Rt△AOP.当P从点D出发运动至点B停止时,点O的运动路径长为_____.12 . 为响应“书香校园”建设号召,在全校形成良好的人文阅读风尚,我县某中学随机抽取了部分学生平均每天的阅读时间,统计结果如图所示,则在本次调查中,阅读时间的中位数是_______小时,平均每人阅读时间是_______小时.三、解答题13 . 如图,已知,,的倍比的大,求,的度数.14 . 计算:(1)(y+2x)(y﹣2x)﹣4x(2y﹣x);(2)÷(x﹣)15 . 已知函数y=-4x2-2mx+m2与反比例函数y=的图象在第二象限内的一个交点的横坐标是-2,求此两个函数的解析式.16 . 一列快车由甲地开往乙地,一列慢车由乙地开往甲地,两车同时出发,匀速运动.快车离乙地的路程y1(km)与行驶的时间x(h)之间的函数关系,如图中线段AB所示;慢车离乙地的路程y2(km)与行驶的时间x(h)之间的函数关系,如图中线段OC所示.根据图象进行以下研究.解读信息:(1)甲、乙两地之间的距离为km;(2)快车的速度是km/h,慢车的速度是km/h.(3)求线段AB与线段OC的解析式;(4)快、慢两车在何时相遇?相遇时距离乙地多远?17 . 如图,在边长为1的正方形ABCD中,M是AD的中点,连接BM,BM的垂直平分线交BC的延长线于F,连接MF交CD于N.(1)求CF的长;(2)求证:BM=EF.18 . 若关于x的方程无解,求a的值?19 . 在直角坐标平面内,已知、两点的坐标分别是、,线段的垂直平分线交轴于点,求点的坐标.20 . 一只箱子里共有3个球,其中2个白球,1个红球,它们除颜色外均相同.(1)从箱子中任意摸出一个球是白球的概率是多少?(2)从箱子中任意摸出一个球,不将它放回箱子,搅匀后再摸出一个球,求两次摸出球的都是白球的概率,并画出树状图.21 . 在平面直角坐标系中,给出如下定义:形如y=(x﹣m)(x﹣m+1)与y=(x﹣m)(x﹣m﹣1)的两个二次函数的图象叫做兄弟抛物线.(1)试写出一对兄弟抛物线的解析式.(2)若二次函数y=x2﹣x(图象如图)与y=x2﹣bx+2的图象是兄弟抛物线.①求b的值.②若直线y=k与这对兄弟抛物线有四个交点,从左往右依次为A,B,C,D四个点,若点B,点C为线段AD三等分点,求线段BC的长.22 . 李娟同学为考察学校的用水情况,她在4 月份一周内同一时刻连续记录了水表的示数,记录结果如下表:李娟估计学校4月份的用水量是多少吨?23 . 已知为的直径,为上的一点,平分交于,,求四边形的面积.。
南京市联合体2019年中考数学二模试卷含答案解析+【精选五套中考模拟卷】
![南京市联合体2019年中考数学二模试卷含答案解析+【精选五套中考模拟卷】](https://img.taocdn.com/s3/m/ab736b243868011ca300a6c30c2259010202f309.png)
南京市联合体2019年中考数学二模试卷含答案解析一、选择题(本大题共6小题,每小题2分,共12分,在每小题所给出的四个选项中,恰有一项是符合题目要求的)1.I-2|的值是()A.-2B.2C.I-D.--222.已知某种纸一张的厚度约为0.0089cm,用科学记数法表示这个数为()A.8.9X10'5B.8.9X1O-4C.8.9X103D.8.9X10'23.计算a*(-a)②的结果是()A.aB.-a5C.a6D.-a64.如图,矩形ABCD的边AD长为2,AB长为1,点A在数轴上对应的数是-1,以A点为圆心,对角线AC长为半径画弧,交数轴于点E,则这个点E表示的实数是()5.已知一次函数y=ax-x-a+1(a为常数),则其函数图象一定过象限()A.一、二B.二、三C.三、四D.—、四6.在AABC中,AB=3,AC=2.当ZB最大时,BC的长是()A.1B.5C.M3D.'二7.计算:(:-)'2+(向1)°=—.8.因式分解:a3-4a=.9.计算:当业=.—V3—10.函数■的自变量X的取值范围是.211.某商场统计了去年1〜5月A,B两种品牌冰箱的销售情况.A品牌(台)1517161314B品牌(台)1014151620则这段时间内这两种品牌冰箱月销售量较稳定的是—(填“A”或“B”).12.如图,将三角板的直角顶点放在直尺的一边上,若Zl=55°,则Z2的度数为13.已知m、n是一元二次方程ax2+2x+3=0的两个根,若m+n=2,则mn=14.某小组计划做一批中国结,如果每人做6个,那么比计划多做了9个;如果每人做4个,那么比计划少7个.设计划做x个中国结,可列方程—.15.如图所示的“六芒星”图标是由圆的六等分点连接而成,若圆的半径为2必,则图中阴影部分的面积为.16.已知二次函数y=ax2+bx+c与自变量x的部分对应值如表:x-1013y-3131现给出下列说法:①该函数开口向下.②该函数图象的对称轴为过点(1,0)且平行于y轴的直线.③当x=2时,y=3.④方程ax2+bx+c=-2的正根在3与4之间.其中正确的说法为—.(只需写出序号)三、解答题(本大题共11小题,共88分.请在答题卷指定区域内作答,解答时应写出文字说明、证明过程或演算步骤)17.解不等式:1-空兰日坪,并写出它的所有正整数解.O£18.化简:—4-(x+2-—)x~2x~219.(1)解方程组[3x-2y=-lx+y=l(2)请运用解二元一次方程组的思想方法解方程组,,.、x+y'=320.网瘾低龄化问题已经引起社会各界的高度关注,有关部门在全国范围内对12-35岁的网瘾人群进行了简单的随机抽样调查,绘制出如图两幅统计图.全国12-35岁的网瘾人群分布扇形统计图全国12-35岁的网瘾人群分布条形统计图A»请根据图中的信息,回答下列问题:(1)这次抽样调查中共调查了—人,并请补全条形统计图;(2)扇形统计图中18 -23岁部分的圆心角的度数是—度;(3)据报道,目前我国12-35岁网瘾人数约为2000万,请估计其中12-23岁的人数.21.初三(1)班要从、乙、丙、丁这4名同学中随机选取2名同学参加学校毕业生代表座谈会,求下列事件的概率.(1)已确定甲参加,另外1人恰好选中乙;(2)随机选取2名同学,恰好选中甲和乙.22.将平行四边形纸片ABCD按如图方式折叠,使点C与A重合,点D落到D,处,折痕为EF.(1)求证:AABE丝AAD'F;(2)连接CF,判断四边形AECF是什么特殊四边形?证明你的结论.23.如图,两棵大树AB、CD,它们根部的距离AC=4m,小强沿着正对这两棵树的方向前进.如果小强的眼睛与地面的距离为1.6m,小强在P处时测得B的仰角为20.3°,当小强前进5m达到Q处时,视线恰好经过两棵树的顶端B和D,此时仰角为36.42°.(1)求大树AB的高度;(2)求大树CD的高度.(参考数据:sin20.3°F35,cos20.3°^0.94,tan20.3°F37;sin36.42°F59,cos36.42°^0.80, tan36.42°^0.74)24.把一根长80cm的铁丝分成两个部分,分别围成两个正方形.(1)能否使所围的两个正方形的面积和为250cm,并说明理由;(2)能否使所围的两个正方形的面积和为180颔2,并说明理由;(3)怎么分,使围成两个正方形的面积和最小?25.如图,正比例函数y=2x的图象与反比例函数y上的图象交于点A、B,AB=2后X(1)求k的值;(2)若反比例函数y土的图象上存在一点C,则当AABC为直角三角形,请直接写出点C的坐标.x26.如图,在。
江苏省南京市2019-2020学年中考第二次质量检测数学试题含解析
![江苏省南京市2019-2020学年中考第二次质量检测数学试题含解析](https://img.taocdn.com/s3/m/f7626e40844769eae009edfb.png)
江苏省南京市2019-2020学年中考第二次质量检测数学试题一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.如图,AB∥CD,∠ABK的角平分线BE的反向延长线和∠DCK的角平分线CF的反向延长线交于点H,∠K﹣∠H=27°,则∠K=()A.76°B.78°C.80°D.82°2.如图,二次函数y=ax2+bx+c(a≠0)的图象与x轴的正半轴相交于A,B两点,与y轴相交于点C,对称轴为直线x=2,且OA=OC.有下列结论:①abc<0;②3b+4c<0;③c>﹣1;④关于x的方程ax2+bx+c=0有一个根为﹣1a,其中正确的结论个数是()A.1 B.2C.3 D.43.若a=10,则实数a在数轴上对应的点的大致位置是()A.点E B.点F C.点G D.点H4.一个不透明的袋中有四张完全相同的卡片,把它们分别标上数字1、2、3、1.随机抽取一张卡片,然后放回,再随机抽取一张卡片,则两次抽取的卡片上数字之积为偶数的概率是()A.14B.12C.34D.565.如图,△ABC的面积为8cm2,AP垂直∠B的平分线BP于P,则△PBC的面积为()A.2cm2B.3cm2C.4cm2D.5cm26.人的头发直径约为0.00007m ,这个数据用科学记数法表示( ) A .0.7×10﹣4 B .7×10﹣5 C .0.7×104 D .7×105 7.如图是某零件的示意图,它的俯视图是( )A .B .C .D .8.已知点A(1,y 1)、B(2,y 2)、C(﹣3,y 3)都在反比例函数y =6x的图象上,则y 1、y 2、y 3的大小关系是( ) A .y 1<y 2<y 3B .y 3<y 2<y 1C .y 2<y 1<y 3D .y 3<y 1<y 29.计算6m 3÷(-3m 2)的结果是( ) A .-3m B .-2mC .2mD .3m10.若不等式组236x mx x <⎧⎨-<-⎩无解,那么m 的取值范围是( )A .m≤2B .m≥2C .m <2D .m >211.下列生态环保标志中,是中心对称图形的是( )A .B .C .D .12.有三张正面分别标有数字-2 ,3, 4 的不透明卡片,它们除数字不同外,其余全部相同,现将它们背面朝上洗匀后, 从中任取一张(不放回),再从剩余的卡片中任取一张, 则两次抽取的卡片上的数字之积为正偶数的概率是( ) A .49B .112C .13D .16二、填空题:(本大题共6个小题,每小题4分,共24分.) 13.如图,在平面直角坐标系中,函数y=kx(k >0)的图象经过点A (1,2)、B 两点,过点A 作x 轴的垂线,垂足为C ,连接AB 、BC .若三角形ABC 的面积为3,则点B 的坐标为___________.14.如图,AD ∥BE ∥CF ,直线l 1,l 2与这三条平行线分别交于点A ,B ,C 和点D ,E ,F ,23=AB BC ,DE=6,则EF= .15.三个小伙伴各出资a 元,共同购买了价格为b 元的一个篮球,还剩下一点钱,则剩余金额为__元(用含a 、b 的代数式表示)16. 如图,已知AB BC =,要使ABD CBD ∆≅∆,还需添加一个条件,则可以添加的条件是 .(只写一个即可,不需要添加辅助线)17.一个不透明的口袋中有2个红球,1个黄球,1个白球,每个球除颜色不同外其余均相同.小溪同学从口袋中随机取出两个小球,则小溪同学取出的是一个红球、一个白球的概率为_____.18. “五一”期间,一批九年级同学包租一辆面包车前去竹海游览,面包车的租金为300元,出发时,又增加了4名同学,且租金不变,这样每个同学比原来少分摊了20元车费.若设参加游览的同学一共有x 人,为求x ,可列方程_____.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)定义:在三角形中,把一边的中点到这条边的高线的距离叫做这条边的中垂距.例:如图①,在△ABC 中,D 为边BC 的中点,AE ⊥BC 于E ,则线段DE 的长叫做边BC 的中垂距. (1)设三角形一边的中垂距为d(d≥0).若d=0,则这样的三角形一定是 ,推断的数学依据是 .(2)如图②,在△ABC 中,∠B=15°,AB=32,BC=8,AD 为边BC 的中线,求边BC 的中垂距. (3)如图③,在矩形ABCD 中,AB=6,AD=1.点E 为边CD 的中点,连结AE 并延长交BC 的延长线于点F ,连结AC .求△ACF 中边AF 的中垂距.20.(6分)在平面直角坐标系中,O 为原点,点A (8,0)、点B (0,4),点C 、D 分别是边OA 、AB 的中点.将△ACD 绕点A 顺时针方向旋转,得△AC′D′,记旋转角为α.(I)如图①,连接BD′,当BD′∥OA时,求点D′的坐标;(II)如图②,当α=60°时,求点C′的坐标;(III)当点B,D′,C′共线时,求点C′的坐标(直接写出结果即可).21.(6分)A、B、C三人玩篮球传球游戏,游戏规则是:第一次传球由A将球随机地传给B、C两人中的某一人,以后的每一次传球都是由上次的传球者随机地传给其他两人中的某一人.(1)求两次传球后,球恰在B手中的概率;(2)求三次传球后,球恰在A手中的概率.22.(8分)如图,有四张背面完全相同的纸牌A,B,C,D,其正面分别画有四个不同的几何图形,将这四张纸牌背面朝上洗匀.从中随机摸出一张,求摸出的牌面图形是中心对称图形的概率;小明和小亮约定做一个游戏,其规则为:先由小明随机摸出一张纸牌,不放回,再由小亮从剩下的纸牌中随机摸出一张,若摸出的两张牌面图形都是轴对称图形小明获胜,否则小亮获胜,这个游戏公平吗?请用列表法(或树状图)说明理由(纸牌用A,B,C,D表示).23.(8分)某学校后勤人员到一家文具店给九年级的同学购买考试用文具包,文具店规定一次购买400个以上,可享受8折优惠.若给九年级学生每人购买一个,不能享受8折优惠,需付款1936元;若多买88个,就可享受8折优惠,同样只需付款1936元.请问该学校九年级学生有多少人?24.(10分)如图所示,抛物线y=x2+bx+c经过A、B两点,A、B两点的坐标分别为(﹣1,0)、(0,﹣3).求抛物线的函数解析式;点E为抛物线的顶点,点C为抛物线与x轴的另一交点,点D为y轴上一点,且DC=DE,求出点D的坐标;在第二问的条件下,在直线DE上存在点P,使得以C、D、P为顶点的三角形与△DOC相似,请你直接写出所有满足条件的点P的坐标.25.(10分)已知矩形ABCD的一条边AD=8,将矩形ABCD折叠,使得顶点B落在CD边上的P点处,如图1,已知折痕与边BC交于点O,连接AP、OP、OA.若△OCP与△PDA的面积比为1:4,求边CD的长.如图2,在(Ⅰ)的条件下,擦去折痕AO、线段OP,连接BP.动点M在线段AP上(点M 与点P、A不重合),动点N在线段AB的延长线上,且BN=PM,连接MN交PB于点F,作ME⊥BP 于点E.试问当动点M、N在移动的过程中,线段EF的长度是否发生变化?若变化,说明变化规律.若不变,求出线段EF的长度.26.(12分)计算:2tan45°-(-13)º13?-()27.(12分)解不等式组:2(2)3{3122x xx+>-≥-,并将它的解集在数轴上表示出来.参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.B【解析】如图,分别过K、H作AB的平行线MN和RS,∵AB ∥CD ,∴AB ∥CD ∥RS ∥MN ,∴∠RHB=∠ABE=12∠ABK ,∠SHC=∠DCF=12∠DCK ,∠NKB+∠ABK=∠MKC+∠DCK=180°, ∴∠BHC=180°﹣∠RHB ﹣∠SHC=180°﹣12(∠ABK+∠DCK ),∠BKC=180°﹣∠NKB ﹣∠MKC=180°﹣(180°﹣∠ABK )﹣(180°﹣∠DCK )=∠ABK+∠DCK ﹣180°, ∴∠BKC=360°﹣2∠BHC ﹣180°=180°﹣2∠BHC , 又∠BKC ﹣∠BHC=27°, ∴∠BHC=∠BKC ﹣27°,∴∠BKC=180°﹣2(∠BKC ﹣27°), ∴∠BKC=78°, 故选B . 2.B 【解析】 【分析】由二次函数图象的开口方向、对称轴及与y 轴的交点可分别判断出a 、b 、c 的符号,从而可判断①;由对称轴2b a -=2可知a=14b -,由图象可知当x=1时,y >0,可判断②;由OA=OC ,且OA <1,可判断③;把-1a代入方程整理可得ac 2-bc+c=0,结合③可判断④;从而可得出答案. 【详解】解:∵图象开口向下,∴a <0, ∵对称轴为直线x=2,∴2ba->0,∴b >0, ∵与y 轴的交点在x 轴的下方,∴c <0, ∴abc >0,故①错误. ∵对称轴为直线x=2,∴2b a -=2,∴a=14b -, ∵由图象可知当x=1时,y >0,∴a+b+c >0,∴4a+4b+4c>0,∴4⨯(14b -)+4b+4c>0, ∴3b+4c>0,故②错误.∵由图象可知OA<1,且OA=OC,∴OC<1,即-c<1,∴c>-1,故③正确.∵假设方程的一个根为x=-1a,把x=-1a代入方程可得1ba a+c=0,整理可得ac-b+1=0,两边同时乘c可得ac2-bc+c=0,∴方程有一个根为x=-c,由③可知-c=OA,而当x=OA是方程的根,∴x=-c是方程的根,即假设成立,故④正确.综上可知正确的结论有三个:③④.故选B.【点睛】本题主要考查二次函数的图象和性质.熟练掌握图象与系数的关系以及二次函数与方程、不等式的关系是解题的关键.特别是利用好题目中的OA=OC,是解题的关键.3.C【解析】【分析】根据被开方数越大算术平方根越大,可得答案.【详解】∴3<4,∵,∴3<a<4,故选:C.【点睛】本题考查了实数与数轴,利用被开方数越大算术平方根越大得出3<4是解题关键.4.C【解析】【分析】画树状图展示所有16种等可能的结果数,再找出两次抽取的卡片上数字之积为偶数的结果数,然后根据概率公式求解.【详解】画树状图为:共有16种等可能的结果数,其中两次抽取的卡片上数字之积为偶数的结果数为12,所以两次抽取的卡片上数字之积为偶数的概率=123 164,故选C.【点睛】本题考查了列表法与树状图法求概率,用到的知识点为:概率=所求情况数与总情况数之比.5.C【解析】【分析】延长AP交BC于E,根据AP垂直∠B的平分线BP于P,即可求出△ABP≌△BEP,又知△APC和△CPE 等底同高,可以证明两三角形面积相等,即可求得△PBC的面积.【详解】延长AP交BC于E.∵AP垂直∠B的平分线BP于P,∴∠ABP=∠EBP,∠APB=∠BPE=90°.在△APB和△EPB中,∵,∴△APB≌△EPB(ASA),∴S△APB=S△EPB,AP=PE,∴△APC和△CPE等底同高,∴S△APC=S△PCE,∴S△PBC=S△PBE+S△PCE S△ABC=4cm1.故选C.【点睛】本题考查了三角形面积和全等三角形的性质和判定的应用,关键是求出S△PBC=S△PBE+S△PCE S△ABC.6.B【解析】【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【详解】解:0.00007m,这个数据用科学记数法表示7×10﹣1.故选:B.【点睛】本题考查用科学记数法表示较小的数,一般形式为a×10﹣n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.7.C【解析】【分析】物体的俯视图,即是从上面看物体得到的结果;根据三视图的定义,从上面看物体可以看到是一个正六边形,里面是一个没有圆心的圆,由此可以确定答案.【详解】从上面看是一个正六边形,里面是一个没有圆心的圆.故答案选C.【点睛】本题考查了几何体的三视图,解题的关键是熟练的掌握几何体三视图的定义.8.B【解析】【分析】分别把各点代入反比例函数的解析式,求出y1,y2,y3的值,再比较出其大小即可.【详解】∵点A(1,y1),B(2,y2),C(﹣3,y3)都在反比例函数y=6x的图象上,∴y1=61=6,y2=62=3,y3=63=-2,∵﹣2<3<6,∴y3<y2<y1,故选B.【点睛】本题考查了反比例函数图象上点的坐标特征,反比例函数值的大小比较,熟练掌握反比例函数图象上的点的坐标满足函数的解析式是解题的关键.9.B【解析】【分析】根据单项式相除,把系数与同底数幂分别相除作为商的因式,对于只在被除式里含有的字母,则连同它的指数作为商的一个因式计算,然后选取答案即可.【详解】6m 3÷(﹣3m 2)=[6÷(﹣3)](m 3÷m 2)=﹣2m . 故选B. 10.A 【解析】 【分析】先求出每个不等式的解集,再根据不等式组解集的求法和不等式组无解的条件,即可得到m 的取值范围. 【详解】236x m x x <⎧⎨-<-⎩①②由①得,x <m , 由②得,x >1, 又因为不等式组无解, 所以m≤1. 故选A . 【点睛】此题的实质是考查不等式组的求法,求不等式组的解集,要根据以下原则:同大取较大,同小较小,小大大小中间找,大大小小解不了. 11.B【解析】试题分析:A 、不是中心对称图形,故本选项错误;B 、是中心对称图形,故本选项正确; C 、不是中心对称图形,故本选项错误;D 、不是中心对称图形,故本选项错误. 故选B .【考点】中心对称图形. 12.C 【解析】 画树状图得:∵共有6种等可能的结果,两次抽取的卡片上的数字之积为正偶数的有2种情况, ∴两次抽取的卡片上的数字之积为正偶数的概率是:2163=. 故选C.【点睛】运用列表法或树状图法求概率.注意画树状图法与列表法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件;树状图法适合两步或两步以上完成的事件. 二、填空题:(本大题共6个小题,每小题4分,共24分.) 13.(4,12). 【解析】 【分析】 由于函数y=kx(x >0常数k >0)的图象经过点A (1,1),把(1,1)代入解析式求出k=1,然后得到AC=1.设B 点的横坐标是m ,则AC 边上的高是(m-1),根据三角形的面积公式得到关于m 的方程,从而求出,然后把m 的值代入y=2x,即可求得B 的纵坐标,最后就求出了点B 的坐标. 【详解】 ∵函数y=kx(x >0、常数k >0)的图象经过点A (1,1), ∴把(1,1)代入解析式得到1=1k , ∴k=1,设B 点的横坐标是m , 则AC 边上的高是(m-1), ∵AC=1∴根据三角形的面积公式得到12×1•(m-1)=3, ∴m=4,把m=4代入y=2x, ∴B 的纵坐标是12, ∴点B 的坐标是(4,12). 故答案为(4,12). 【点睛】解答本题的关键是根据已知坐标系中点的坐标,可以表示图形中线段的长度.根据三角形的面积公式即可解答. 14.1. 【解析】试题分析:∵AD ∥BE ∥CF ,∴AB DE BC EF=,即263EF =,∴EF=1.故答案为1.考点:平行线分线段成比例. 15.(3a ﹣b )【解析】解:由题意可得,剩余金额为:(3a-b )元,故答案为:(3a-b ).点睛:本题考查列代数式,解答本题的关键是明确题意,列出相应的代数式.16.可添∠ABD=∠CBD或AD=CD.【解析】【分析】由AB=BC结合图形可知这两个三角形有两组边对应相等,添加一组边利用SSS证明全等,也可以添加一对夹角相等,利用SAS证明全等,据此即可得答案.【详解】.可添∠ABD=∠CBD或AD=CD,①∠ABD=∠CBD,在△ABD和△CBD中,∵AB BCABD CBD BD BD=⎧⎪∠=∠⎨⎪=⎩,∴△ABD≌△CBD(SAS);②AD=CD,在△ABD和△CBD中,∵AB BC AD CD BD BD=⎧⎪=⎨⎪=⎩,∴△ABD≌△CBD(SSS),故答案为∠ABD=∠CBD或AD=CD.【点睛】本题考查了三角形全等的判定,结合图形与已知条件灵活应用全等三角形的判定方法是解题的关键. 熟记全等三角形的判定方法有:SSS,SAS,ASA,AAS.17.1 3【解析】【分析】先画树状图求出所有等可能的结果数,再找出从口袋中随机摸出2个球,摸到的两个球是一红一白的结果数,然后根据概率公式求解.【详解】解:根据题意画树状图如下:共有12种等可能的结果数,其中从口袋中随机摸出2个球,摸到的一个红球、一个白球的结果数为4,所以从口袋中随机摸出2个球,则摸到的两个球是一白一黄的概率为41 123=.故答案为13.【点睛】此题考查的是用列表法或树状图法求概率.列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;解题时要注意此题是放回实验还是不放回实验.用到的知识点为:概率=所求情况数与总情况数之比.18.3004x-﹣300x=1.【解析】原有的同学每人分担的车费应该为3004x-,而实际每人分担的车费为300x,方程应该表示为:3004x-﹣300x=1.故答案是:3004x-﹣300x=1.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(1)等腰三角形;线段的垂直平分线上的点到两端的距离相等;(2)1;(3)9 5 .【解析】试题分析:(1)根据线段的垂直平分线的性质即可判断.(2)如图②中,作AE⊥BC于E.根据已知得出AE=BE,再求出BD的长,即可求出DE的长.(3)如图③中,作CH⊥AF于H,先证△ADE≌△FCE,得出AE=EF,利用勾股定理求出AE的长,然后证明△ADE∽△CHE,建立方程求出EH即可.解:(1)等腰三角形;线段的垂直平分线上的点到两端的距离相等(2)解:如图②中,作AE⊥BC于E.在Rt△ABE中,∵∠AEB=90°,∠B=15°,AB=3 ,∴AE=BE=3,∵AD为BC边中线,BC=8,∴BD=DC=1,∴DE=BD﹣BE=1﹣3=1,∴边BC的中垂距为1(3)解:如图③中,作CH⊥AF于H.∵四边形ABCD是矩形,∴∠D=∠EHC=∠ECF=90°,AD∥BF,∵DE=EC,∠AED=∠CEF,∴△ADE≌△FCE,∴AE=EF,在Rt△ADE中,∵AD=1,DE=3,∴AE= =5,∵∠D=EHC,∠AED=∠CEH,∴△ADE∽△CHE,∴= ,∴= ,∴EH= ,∴△ACF中边AF的中垂距为20.(I)(10,4)或(6,4)(II)C′(6,3(III)①C′(8,4)②C′(245,﹣125)【解析】【分析】(I)如图①,当OB∥AC′,四边形OBC′A是平行四边形,只要证明B、C′、D′共线即可解决问题,再根据对称性确定D″的坐标;(II)如图②,当α=60°时,作C′K⊥AC于K.解直角三角形求出OK,C′K即可解决问题;(III)分两种情形分别求解即可解决问题;【详解】解:(I)如图①,∵A(8,0),B(0,4),∴OB=4,OA=8,∵AC=OC=AC′=4,∴当OB∥AC′,四边形OBC′A是平行四边形,∵∠AOB=90°,∴四边形OBC′A是矩形,∴∠AC′B=90°,∵∠AC′D′=90°,∴B、C′、D′共线,∴BD′∥OA,∵AC=CO,BD=AD,∴CD=C′D′=12OB=2,∴D′(10,4),根据对称性可知,点D″在线段BC′上时,D″(6,4)也满足条件.综上所述,满足条件的点D坐标(10,4)或(6,4).(II)如图②,当α=60°时,作C′K⊥AC于K.在Rt△AC′K中,∵∠KAC′=60°,AC′=4,∴AK=2,3∴OK=6,∴C′(6,23).(III )①如图③中,当B 、C′、D′共线时,由(Ⅰ)可知,C′(8,4).②如图④中,当B 、C′、D′共线时,BD′交OA 于F ,易证△BOF ≌△AC′F ,∴OF=FC′,设OF=FC′=x , 在Rt △ABC′中,BC′=22AB AC -'=8,在RT △BOF 中,OB=4,OF=x ,BF=8﹣x , ∴(8﹣x )2=42+x 2, 解得x=3,∴OF=FC′=3,BF=5,作C′K ⊥OA 于K , ∵OB ∥KC′,∴KC OB '=FK OF =FC BF ', ∴4KC '=3FK =35,∴KC′=125,KF=95,∴OK=245,∴C′(245,﹣125).【点睛】本题考查三角形综合题、旋转变换、矩形的判定和性质、平行线的性质、勾股定理等知识,解题的关键是灵活应用所学知识解决问题,学会用分类讨论的思想思考问题,属于中考压轴题.21.(1)14;(2)14.【解析】试题分析:(1)直接列举出两次传球的所有结果,球球恰在B手中的结果只有一种即可求概率;(2)画出树状图,表示出三次传球的所有结果,三次传球后,球恰在A手中的结果有2种,即可求出三次传球后,球恰在A手中的概率.试题解析:解:(1)两次传球的所有结果有4种,分别是A→B→C,A→B→A,A→C→B,A→C→A.每种结果发生的可能性相等,球球恰在B手中的结果只有一种,所以两次传球后,球恰在B手中的概率是14;(2)树状图如下,由树状图可知,三次传球的所有结果有8种,每种结果发生的可能性相等.其中,三次传球后,球恰在A手中的结果有A→B→C→A,A→C→B→A这两种,所以三次传球后,球恰在A手中的概率是21 84 .考点:用列举法求概率.22.(1)34.(2)公平.【解析】【详解】试题分析:(1)首先根据题意结合概率公式可得答案;(2)首先根据(1)求得摸出两张牌面图形都是轴对称图形的有16种情况,若摸出两张牌面图形都是中心对称图形的有12种情况,继而求得小明赢与小亮赢的概率,比较概率的大小,即可知这个游戏是否公平.试题解析:(1)共有4张牌,正面是中心对称图形的情况有3种,所以摸到正面是中心对称图形的纸牌的概率是34;(2)列表得:共产生12种结果,每种结果出现的可能性相同,其中两张牌都是轴对称图形的有6种, ∴P (两张都是轴对称图形)=12,因此这个游戏公平. 考点:游戏公平性;轴对称图形;中心对称图形;概率公式;列表法与树状图法. 23.1人 【解析】解:设九年级学生有x 人,根据题意,列方程得:19361936?0.8x x 88⋅=+,整理得0.8(x+88)=x ,解之得x=1. 经检验x=1是原方程的解. 答:这个学校九年级学生有1人.设九年级学生有x 人,根据“给九年级学生每人购买一个,不能享受8折优惠,需付款1936元”可得每个文具包的花费是:1936x 元,根据“若多买88个,就可享受8折优惠,同样只需付款1936元”可得每个文具包的花费是:1936?x 88+,根据题意可得方程19361936?0.8x x 88⋅=+,解方程即可.24.(1)y=x 2﹣2x ﹣3;(2)D (0,﹣1);(3)P 点坐标(﹣13,0)、(13,﹣2)、(﹣3,8)、(3,﹣10).【解析】 【分析】(1)将A,B 两点坐标代入解析式,求出b,c 值,即可得到抛物线解析式;(2)先根据解析式求出C 点坐标,及顶点E 的坐标,设点D 的坐标为(0,m ),作EF ⊥y 轴于点F ,利用勾股定理表示出DC,DE 的长.再建立相等关系式求出m 值,进而求出D 点坐标;(3)先根据边角边证明△COD ≌△DFE ,得出∠CDE=90°,即CD ⊥DE ,然后当以C 、D 、P 为顶点的三角形与△DOC 相似时,根据对应边不同进行分类讨论:①当OC 与CD 是对应边时,有比例式OC ODDC DP=,能求出DP 的值,又因为DE=DC,所以过点P 作PG ⊥y 轴于点G ,利用平行线分线段成比例定理即可求出DG ,PG 的长度,根据点P 在点D 的左边和右边,得到符合条件的两个P 点坐标;②当OC 与DP 是对应边时,有比例式OC ODDP DC=,易求出DP ,仍过点P 作PG ⊥y 轴于点G ,利用比例式DG PG DPDF EF DE==求出DG ,PG 的长度,然后根据点P 在点D 的左边和右边,得到符合条件的两个P 点坐标;这样,直线DE 上根据对应边不同,点P 所在位置不同,就得到了符合条件的4个P 点坐标. 【详解】解:(1)∵抛物线y=x 2+bx+c 经过A (﹣1,0)、B (0,﹣3), ∴10{3b c c -+==-,解得2{3b c =-=-,故抛物线的函数解析式为y=x 2﹣2x ﹣3; (2)令x 2﹣2x ﹣3=0, 解得x 1=﹣1,x 2=3, 则点C 的坐标为(3,0), ∵y=x 2﹣2x ﹣3=(x ﹣1)2﹣4, ∴点E 坐标为(1,﹣4),设点D 的坐标为(0,m ),作EF ⊥y 轴于点F (如下图), ∵DC 2=OD 2+OC 2=m 2+32,DE 2=DF 2+EF 2=(m+4)2+12, ∵DC=DE ,∴m 2+9=m 2+8m+16+1,解得m=﹣1, ∴点D 的坐标为(0,﹣1);(3)∵点C (3,0),D (0,﹣1),E (1,﹣4), ∴CO=DF=3,DO=EF=1, 根据勾股定理,,在△COD 和△DFE 中,∵{90CO DFCOD DFE DO EF=∠=∠=︒=,∴△COD ≌△DFE (SAS ), ∴∠EDF=∠DCO , 又∵∠DCO+∠CDO=90°, ∴∠EDF+∠CDO=90°,∴∠CDE=180°﹣90°=90°,∴CD ⊥DE ,①当OC 与CD 是对应边时, ∵△DOC ∽△PDC ,∴OC ODDC DP=1DP ,解得 过点P 作PG ⊥y 轴于点G ,则DG PG DPDF EF DE==,即31DG PG ==解得DG=1,PG=13, 当点P 在点D 的左边时,OG=DG ﹣DO=1﹣1=0, 所以点P (﹣13,0), 当点P 在点D 的右边时,OG=DO+DG=1+1=2, 所以,点P (13,﹣2); ②当OC 与DP 是对应边时, ∵△DOC ∽△CDP , ∴OC ODDP DC=,即3DP ,解得,过点P 作PG ⊥y 轴于点G ,则DG PG DP DF EF DE ==,即31DG PG ==, 解得DG=9,PG=3,当点P 在点D 的左边时,OG=DG ﹣OD=9﹣1=8, 所以,点P 的坐标是(﹣3,8),当点P 在点D 的右边时,OG=OD+DG=1+9=10, 所以,点P 的坐标是(3,﹣10),综上所述,在直线DE 上存在点P ,使得以C 、D 、P 为顶点的三角形与△DOC 相似,满足条件的点P 共有4个,其坐标分别为(﹣13,0)、(13,﹣2)、(﹣3,8)、(3,﹣10).考点:1.相似三角形的判定与性质;2.二次函数动点问题;3.一次函数与二次函数综合题.25.(1)10;(2)25.【解析】【分析】(1)先证出∠C=∠D=90°,再根据∠1+∠3=90°,∠1+∠2=90°,得出∠2=∠3,即可证出△OCP∽△PDA;根据△OCP与△PDA的面积比为1:4,得出CP=12AD=4,设OP=x,则CO=8﹣x,由勾股定理得x2=(8﹣x)2+42,求出x,最后根据AB=2OP即可求出边AB的长;(2)作MQ∥AN,交PB于点Q,求出MP=MQ,BN=QM,得出MP=MQ,根据ME⊥PQ,得出EQ=12 PQ,根据∠QMF=∠BNF,证出△MFQ≌△NFB,得出QF=12QB,再求出EF=12PB,由(1)中的结论求出PB=228445+=,最后代入EF=12PB即可得出线段EF的长度不变【详解】(1)如图1,∵四边形ABCD是矩形,∴∠C=∠D=90°,∴∠1+∠3=90°,∵由折叠可得∠APO=∠B=90°,∴∠1+∠2=90°,∴∠2=∠3,又∵∠D=∠C,∴△OCP∽△PDA;∵△OCP与△PDA的面积比为1:4,∴,∴ CP=12AD=4设OP=x,则CO=8﹣x,在Rt△PCO中,∠C=90°,由勾股定理得x2=(8﹣x)2+42,解得:x=5,∴AB=AP=2OP=10,∴边CD的长为10;(2)作MQ∥AN,交PB于点Q,如图2,∵AP=AB,MQ∥AN,∴∠APB=∠ABP=∠MQP.∴MP=MQ,∵BN=PM,∴BN=QM.∵MP=MQ,ME⊥PQ,∴EQ=PQ.∵MQ∥AN,∴∠QMF=∠BNF,∴△MFQ≌△NFB.∴QF=FB,∴EF=EQ+QF=12(PQ+QB)=12PB,由(1)中的结论可得:PC=4,BC=8,∠C=90°,∴228445+=EF=125∴在(1)的条件下,当点M、N在移动过程中,线段EF的长度不变,它的长度为5【点睛】本题考查了相似三角形的判定与性质、全等三角形的判定与性质、勾股定理、等腰三角形的性质,关键是做出辅助线,找出全等和相似的三角形26.3【解析】【分析】先求三角函数,再根据实数混合运算法计算.【详解】解:原式=2×1-1-1333【点睛】此题重点考察学生对三角函数值的应用,掌握特殊角的三角函数值是解题的关键.27.-1≤x<4,在数轴上表示见解析.【解析】试题分析: 分别求出各不等式的解集,再求出其公共解集,并在数轴上表示出来即可.试题解析:()223{3x122x x+>-≥-①②,由①得,x<4;由②得,x⩾−1.故不等式组的解集为:−1⩽x<4. 在数轴上表示为:。
江苏省南京市2019-2020学年中考数学第二次调研试卷含解析
![江苏省南京市2019-2020学年中考数学第二次调研试卷含解析](https://img.taocdn.com/s3/m/d212afa1e009581b6bd9eba4.png)
江苏省南京市2019-2020学年中考数学第二次调研试卷一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.) 1.如图所示是小孔成像原理的示意图,根据图中所标注的尺寸,求出这支蜡烛在暗盒中所成像CD 的长( )A .16cm B .13cmC .12cm D .1cm2.如图,数轴上的,,A B C 三点所表示的数分别为a b c 、、,其中AB BC =,如果||||||acb >>那么该数轴的原点O 的位置应该在( )A .点A 的左边B .点A 与点B 之间C .点B 与点C 之间D .点C 的右边3.如图,两个转盘A ,B 都被分成了3个全等的扇形,在每一扇形内均标有不同的自然数,固定指针,同时转动转盘A ,B ,两个转盘停止后观察两个指针所指扇形内的数字(若指针停在扇形的边线上,当作指向上边的扇形).小明每转动一次就记录数据,并算出两数之和,其中“和为7”的频数及频率如下表:转盘总次数1020305010150180240330 450 “和为7”出现频数 2710163046 59 8111150 “和为7”出现频率0.200.350.330.320.300.300.330.340.330.33如果实验继续进行下去,根据上表数据,出现“和为7”的频率将稳定在它的概率附近,估计出现“和为7”的概率为( ) A .0.33B .0.34C .0.20D .0.354.若点()()()112233,,,,,x y x y x y 都是反比例函数21a y x--=的图象上的点,并且1230x x x <<<,则下列各式中正确的是(( ) A .132y y y <<B .231y y y <<C .321y y y <<D .123y y y <<5.1.桌面上放置的几何体中,主视图与左视图可能不同的是( ) A .圆柱 B .正方体 C .球 D .直立圆锥6.利用运算律简便计算52×(–999)+49×(–999)+999正确的是 A .–999×(52+49)=–999×101=–100899 B .–999×(52+49–1)=–999×100=–99900 C .–999×(52+49+1)=–999×102=–101898 D .–999×(52+49–99)=–999×2=–1998 7.中国幅员辽阔,陆地面积约为960万平方公里,“960万”用科学记数法表示为( ) A .0.96×107B .9.6×106C .96×105D .9.6×1028.如图,小明同学用自制的直角三角形纸板DEF 测量树的高度AB ,他调整自己的位置,设法使斜边DF 保持水平,并且边DE 与点B 在同一直线上.已知纸板的两条边DF =50cm ,EF =30cm ,测得边DF 离地面的高度AC =1.5m ,CD =20m ,则树高AB 为( )A .12mB .13.5mC .15mD .16.5m9.如图,在5×5的方格纸中将图①中的图形N 平移到如图②所示的位置,那么下列平移正确的是( )A .先向下移动1格,再向左移动1格B .先向下移动1格,再向左移动2格C .先向下移动2格,再向左移动1格D .先向下移动2格,再向左移动2格10.若一个凸多边形的内角和为720°,则这个多边形的边数为( ) A .4B .5C .6D .711.如图,矩形ABCD 中,AB=10,BC=5,点E ,F ,G ,H 分别在矩形ABCD 各边上,且AE=CG ,BF=DH ,则四边形EFGH 周长的最小值为( )A.55B.105C.103D.15312.小红上学要经过两个十字路口,每个路口遇到红、绿灯的机会都相同,小红希望上学时经过每个路口都是绿灯,但实际这样的机会是()A.12B.13C.14D.34二、填空题:(本大题共6个小题,每小题4分,共24分.)13.如图,将边长为1的正方形的四条边分别向外延长一倍,得到第二个正方形,将第二个正方形的四条边分别向外延长一倍得到第三个正方形,…,则第2018个正方形的面积为_____.14.函数y=3x 中自变量x的取值范围是________,若x=4,则函数值y=________.15.如图,在菱形ABCD中,点E、F在对角线BD上,BE=DF=13BD,若四边形AECF为正方形,则tan∠ABE=_____.16.如图,在平面直角坐标系中,点P(﹣1,a)在直线y=2x+2与直线y=2x+4之间,则a的取值范围是_____.17.已知菱形的周长为10cm,一条对角线长为6cm,则这个菱形的面积是_____cm1.18.请写出一个比2大且比4小的无理数:________.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)解方程:3122 x x=-+20.(6分)在如图的正方形网格中,每一个小正方形的边长为1;格点三角形ABC(顶点是网格线交点的三角形)的顶点A、C的坐标分别是(-4,6)、(-1,4);请在图中的网格平面内建立平面直角坐标系;请画出△ABC关于x轴对称的△A1B1C1;请在y轴上求作一点P,使△PB1C的周长最小,并直接写出点P的坐标.21.(6分)4×100米拉力赛是学校运动会最精彩的项目之一.图中的实线和虚线分别是初三•一班和初三•二班代表队在比赛时运动员所跑的路程y(米)与所用时间x(秒)的函数图象(假设每名运动员跑步速度不变,交接棒时间忽略不计).问题:(1)初三•二班跑得最快的是第接力棒的运动员;(2)发令后经过多长时间两班运动员第一次并列?22.(8分)如图,点P是⊙O外一点,请你用尺规画出一条直线PA,使得其与⊙O相切于点A,(不写作法,保留作图痕迹)23.(8分)如图,抛物线232 2y ax x=--(a≠0)的图象与x轴交于A、B两点,与y轴交于C点,已知B点坐标为(4,0).(1)求抛物线的解析式;(2)试探究△ABC的外接圆的圆心位置,并求出圆心坐标;(3)若点M是线段BC下方的抛物线上一点,求△MBC的面积的最大值,并求出此时M点的坐标.24.(10分)(1)问题发现如图1,在Rt△ABC中,∠A=90°,ABAC=1,点P是边BC上一动点(不与点B重合),∠PAD=90°,∠APD=∠B,连接CD.(1)①求PBCD的值;②求∠ACD的度数.(2)拓展探究如图2,在Rt△ABC中,∠A=90°,ABAC=k.点P是边BC上一动点(不与点B重合),∠PAD=90°,∠APD=∠B,连接CD,请判断∠ACD与∠B 的数量关系以及PB与CD之间的数量关系,并说明理由.(3)解决问题如图3,在△ABC中,∠B=45°,AB=42,BC=12,P 是边BC上一动点(不与点B重合),∠PAD=∠BAC,∠APD=∠B,连接CD.若PA=5,请直接写出CD的长.25.(10分)知识改变世界,科技改变生活.导航装备的不断更新极大方便了人们的出行.如图,某校组织学生乘车到黑龙滩(用C表示)开展社会实践活动,车到达A地后,发现C地恰好在A地的正北方向,且距离A地13千米,导航显示车辆应沿北偏东60°方向行驶至B地,再沿北偏西37°方向行驶一段距离才能到达C地,求B、C两地的距离.(参考数据:sin53°≈45,cos53°≈35,tan53°≈43)26.(12分)某电器商场销售甲、乙两种品牌空调,已知每台乙种品牌空调的进价比每台甲种品牌空调的进价高20%,用7200元购进的乙种品牌空调数量比用3000元购进的甲种品牌空调数量多2台.求甲、乙两种品牌空调的进货价;该商场拟用不超过16000元购进甲、乙两种品牌空调共10台进行销售,其中甲种品牌空调的售价为2500元/台,乙种品牌空调的售价为3500元/台.请您帮该商场设计一种进货方案,使得在售完这10台空调后获利最大,并求出最大利润.27.(12分)如图,数轴上的点A、B、C、D、E表示连续的五个整数,对应数分别为a、b、c、d、e.(1)若a+e=0,则代数式b+c+d=;(2)若a是最小的正整数,先化简,再求值:;(3)若a+b+c+d=2,数轴上的点M表示的实数为m(m与a、b、c、d、e不同),且满足MA+MD=3,则m的范围是.参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.D【解析】【分析】过O作直线OE⊥AB,交CD于F,由CD//AB可得△OAB∽△OCD,根据相似三角形对应边的比等于对应高的比列方程求出CD的值即可.【详解】过O作直线OE⊥AB,交CD于F,∵AB//CD,∴OF⊥CD,OE=12,OF=2,∴△OAB∽△OCD,∵OE、OF分别是△OAB和△OCD的高,∴OF CDOE AB=,即2126CD=,解得:CD=1.故选D.【点睛】本题考查相似三角形的应用,解题的关键在于理解小孔成像原理给我们带来的已知条件,熟记相似三角形对应边的比等于对应高的比是解题关键.2.C【解析】【分析】根据绝对值是数轴上表示数的点到原点的距离,分别判断出点A、B、C到原点的距离的大小,从而得到原点的位置,即可得解.【详解】∵|a|>|c|>|b|,∴点A到原点的距离最大,点C其次,点B最小,又∵AB=BC,∴原点O的位置是在点B、C之间且靠近点B的地方.故选:C.【点睛】此题考查了实数与数轴,理解绝对值的定义是解题的关键.3.A【解析】【分析】根据上表数据,出现“和为7”的频率将稳定在它的概率附近,估计出现“和为7”的概率即可.【详解】由表中数据可知,出现“和为7”的概率为0.33.故选A.【点睛】本题考查了利用频率估计概率:大量重复实验时,事件发生的频率在某个固定位置左右摆动,并且摆动的幅度越来越小,可以用频率的集中趋势来估计概率,这个固定的近似值就是这个事件的概率.用频率估计概率得到的是近似值,随实验次数的增多,值越来越精确. 4.B 【解析】 【分析】 【详解】解:根据题意可得:210a --p∴反比例函数处于二、四象限,则在每个象限内为增函数, 且当x <0时y >0,当x >0时,y <0, ∴2y <3y <1y . 5.B【解析】试题分析:根据从正面看得到的视图是主视图,从左边看得到的图形是左视图,从上面看得到的图形是俯视图,正方体主视图与左视图可能不同,故选B . 考点:简单几何体的三视图. 6.B 【解析】 【分析】根据乘法分配律和有理数的混合运算法则可以解答本题. 【详解】原式=-999×(52+49-1)=-999×100=-1. 故选B . 【点睛】本题考查了有理数的混合运算,解答本题的关键是明确有理数混合运算的计算方法. 7.B 【解析】试题分析:“960万”用科学记数法表示为9.6×106,故选B . 考点:科学记数法—表示较大的数. 8.D 【解析】 【分析】利用直角三角形DEF 和直角三角形BCD 相似求得BC 的长后加上小明同学的身高即可求得树高AB . 【详解】∵∠DEF=∠BCD=90°,∠D=∠D,∴△DEF∽△DCB,∴BC DC EF DE=,∵DF=50cm=0.5m,EF=30cm=0.3m,AC=1.5m,CD=20m,∴由勾股定理求得DE=40cm,∴20 0.30.4 BC=,∴BC=15米,∴AB=AC+BC=1.5+15=16.5(米).故答案为16.5m.【点睛】本题考查了相似三角形的应用,解题的关键是从实际问题中整理出相似三角形的模型.9.C【解析】【分析】根据题意,结合图形,由平移的概念求解.【详解】由方格可知,在5×5方格纸中将图①中的图形N平移后的位置如图②所示,那么下面平移中正确的是:先向下移动2格,再向左移动1格,故选C.【点睛】本题考查平移的基本概念及平移规律,是比较简单的几何图形变换.关键是要观察比较平移前后物体的位置.10.C【解析】【分析】设这个多边形的边数为n,根据多边形的内角和定理得到(n﹣2)×180°=720°,然后解方程即可.【详解】设这个多边形的边数为n,由多边形的内角和是720°,根据多边形的内角和定理得(n-2)180°=720°.解得n=6.故选C.【点睛】本题主要考查多边形的内角和定理,熟练掌握多边形的内角和定理是解答本题的关键.11.B【解析】作点E关于BC的对称点E′,连接E′G交BC于点F,此时四边形EFGH周长取最小值,过点G作GG′⊥AB于点G′,如图所示,∵AE=CG,BE=BE′,∴E′G′=AB=10,∵GG′=AD=5,∴E′G=2255E G GG''+'=,∴C四边形EFGH=2E′G=105,故选B.【点睛】本题考查了轴对称-最短路径问题,矩形的性质等,根据题意正确添加辅助线是解题的关键.12.C【解析】【分析】列举出所有情况,看每个路口都是绿灯的情况数占总情况数的多少即可得.【详解】画树状图如下,共4种情况,有1种情况每个路口都是绿灯,所以概率为14.故选C.二、填空题:(本大题共6个小题,每小题4分,共24分.)13.1【解析】【分析】先分别求出第1个、第2个、第3个正方形的面积,由此总结规律,得到第n个正方形的面积,将n=2018代入即可求出第2018个正方形的面积.【详解】。
【2020精品中考数学提分卷】南京市玄武区初三二模数学试卷+答案
![【2020精品中考数学提分卷】南京市玄武区初三二模数学试卷+答案](https://img.taocdn.com/s3/m/0bae58b4de80d4d8d05a4fb0.png)
南京市玄武区2019~2020学年度第二次调研测试九年级数学试卷一、选择题(本大题共6小题,每小题2分,共12分.在每小题所给出的四个选项中,恰有一项是符合题目要求的,请将正确选项前的字母代号填涂在答题卡...相应位置....上) 1.“五一”假期第一天,铁路南京站迎来假日旅客出行最高峰,截止上午十时,当天预售票已达317 000张.将317 000用科学记数法表示为( ) A .0.317×106B .3.17×106C .3.17×105D .31.7×1042.下列数中,使| x -2 |=x -2成立的是( ) A .-1B .0C .1D .23.某班全体同学“运动与健康”评价等级的扇形统计图如图所示,则A 等级所在扇形的圆心角度数为( ) A .72° B .105°C .108°D .126°4.已知a =22,b =33,c =55,则下列大小关系正确的是( ) A .a >b >c B .c >b >aC .b >a >cD .a >c >b5.如图,在□APBC 中,∠C =40°,若⊙O 与P A 、PB 相切于点A 、B ,则∠CAB =( ) A .40°B .50°C .60°D .70°6.如图,在正八边形ABCDEFGH 中,若四边形ADEH 的面积等于20,则阴影部分的面积等于( ) A .10 2B .20C .18D .20 2二、填空题(本大题共10小题,每小题2分,共20分.不需写出解答过程,请把答案直接填写在答题卡相应位置.......上) 7.9的平方根是 ;9的算术平方根是 . 8.使2-x 有意义的x 的取值范围是 . 9.计算3×155的结果是 . 10.分解因式4x 2-8xy +4y 2的结果是 .(第3题)(第6题)G(第5题)11.若2x =3,2y =5,则22x +y = .12.已知x 1、x 2是一元二次方程x 2+x +m =0的两个根,且x 1+x 2=2+x 1x 2,则m = . 13.已知反比例函数y =kx(k 为常数,k ≠0)中,函数y 与自变量x 的部分对应值如下表:的取值范围是 .14.如图,⊙O 的内接五边形ABCDE 的对角线AC 与BD 相交于点G ,∠E =92°,∠BAC=41°,则∠DGC = °.15.如图,在△ABC 中,D 、F 在BC 上,且BD =DF =FC ,连接AD 、AF ,E 、G 分别在AF 、AC 上,且ED ∥AB ,GF ∥AB ,则EDGF 的值为 .16.如图,4个形状、大小完全相同的菱形组成网格,菱形的顶点称为格点,已知菱形的一个内角为60°,A 、B 、C 都是格点,则tan ∠ABC = .三、解答题(本大题共11小题,共88分.请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤)17.(1)解方程 2x x -3=1- 1 3-x ;(2)解不等式组⎩⎪⎨⎪⎧2x +4≤3(x +2);3x -1<2,并把它的解集在数轴上表示出来.B(第14题)A BCEG (第15题)ABC(第16题)123(第17(2)题)-3 -2 -118.化简⎝ ⎛⎭⎪⎫ 1 x -y - y x 2-y 2÷xx +y .19.如图,在四边形ABCD 中,AC 、BD 相交于点O ,且AO =CO ,AB ∥CD .(1)求证AB =CD ;(2)若∠OAB =∠OBA ,求证:四边形ABCD 是矩形.20.甲、乙两人在相同的条件下各射靶5次,每次射靶的成绩情况如图:(1)请你根据图中的数据填写下表:(2(第19题)次数甲(第20题)乙21.一个不透明的袋中装有2个黄球,1个红球和1个白球,除颜色外都相同.(1)搅匀后,从袋中任意摸出一个球,恰好是黄球的概率是 ; (2)搅匀后,从袋中任意摸出两个球,求摸到一个红球和一个黄球的概率.22.现有甲、乙两个长方体蓄水池,将甲池中的水匀速注入乙池,甲、乙两个蓄水池中水的深度y (米)与注水时间x (小时)之间的函数图象如图所示.(1)分别求出甲、乙两个蓄水池中水的深度y 1、y 2与注水时间x 之间的函数表达式; (2)求点P 的坐标,并说明其实际意义.23.在△ABC 中,AB =6,AC =8,D 、E 分别在 AB 、AC 上,连接DE ,设BD =x (0<x<6),CE =y (0<y <8).(1)当x =2,y =5时,求证△AED ∽△ABC ; (2)若△ADE 和△ABC 相似,求y 与x 的函数表达式.(第22题)(第23题)BCAD E24.如图是在写字台上放置一本摊开的数学书和一个折叠式台灯时的截面示意图.已知摊开的数学书AB 长20 cm ,台灯上半节DE 长40 cm ,下半节DC 长50 cm .当台灯灯泡E 恰好在数学书AB 的中点O 的正上方时,台灯上、下半节的夹角即∠EDC =120°,下半节DC 与写字台FG 的夹角即∠DCG =75°.求BC 的长.(书的厚度和台灯底座的宽度、高度都忽略不计,F 、A 、O 、B 、C 、G 在同一条直线上.参考数据:sin75°≈0.97,cos75°≈0.26,2≈1.41,结果精确到0.1)25.已知二次函数y =x 2-(m +1)x +m (m 是常数).(1)求证:不论m 为何值,该二次函数的图像与x 轴总有公共点;(2)若把该二次函数的图像向左平移2个单位长度,再向上平移1个单位长度,所得图像的函数表达式为y =x 2,则m(3)若该二次函数的图像与x 轴交于点A 、B ,与y 轴交于点C ,顶点为D .当△ABC的面积与△ABD 的面积相等时,求m 的值.26.如图,在⊙O 中,AB 是弦,AC 与⊙O 相切于点A ,AB =AC ,连接BC ,点D 是BC的中点,连接AD 交⊙O 于点E ,连接OE 交AB 于点F . (1)求证OE ⊥AB ;(2)若AD =4,AC BC =32,求⊙O 的半径.75° F GEA C D120°O (第24题)B CA(第26题)27.如图,在矩形纸片ABCD 中,AD =3 cm ,AB =2 cm .将矩形纸片ABCD 沿直线l 折叠,使点A 落在边BC 上的A'处.设点A'与点B 的距离为x cm .(1)当直线l 恰好过点D 时,用直尺和圆规在图中作出直线l ,并求出x 的值.(保留作图痕迹,不写作法)(2)对于每一个确定的x 的值,都能画出与矩形纸片ABCD 某些边相交的直线l .请画出不同情形的示意图,并写出对应的x 的取值范围.(3)设直线l 与矩形纸片ABCD 的边相交于点E 、F ,从第(2)问所画的示意图中选择一个,直接写出EF 的长度(用含x 的代数式表示,并注明x 的取值范围).南京市玄武区2019~2020学年度第二次质量调研测试九年级数学评分标准一、选择题(本大题共6小题,每小题2分,共12分)7. ±3;3 8.x ≤2 9.3 10.4(x -y ) 2 11.45 12.-3 13.-8<x <-2 14.51 15.32 16.39三、解答题(本大题共11小题,共88分) 17.(本题10分)(1)解:方程两边同乘(x -3)得2x =x -3+1 2x -x =-2x =-2 ··········································································· ····· 4分 检验:当x =-2 时x -3=-1≠0∴x = -2 是原方程的根·························································· 4分(2)解:解不等式①,得x ≥-2. ··························································· 2分解不等式②,得x <1. ··························································· 4分 所以,不等式组的解集是-2≤x <1. ······································· 5分·································· 6分18.(本题6分) 解:原式=⎝⎛⎭⎪⎫x +y x 2-y 2 -y x 2-y 2 ÷xx +y································································ 2分 =x x 2-y 2·x +y x ············································································ 4分=1x -y······················································································· 6分 19. (本题8分) 证明:(1)∵ AB //CD ,∴ ∠ABO =∠CDO .∵∠AOB =∠COD . ···································································· 3分∵AO =CO .∴△ABO ≌△CDO (AAS ).∴AB =CD . ··············································································· 4分 (2)由(1)知AB =CD ,又∵ AB //CD ,∴四边形ABCD 为平行四边形, ∴BD =2OB ,AC =2OA , ∵ ∠OAB =∠OBA , ∴OA =OB , ∴AC =BD ,∴四边形ABCD 为矩形. ······························································· 8分20.(本题8分)(1)6,6; ························································································ 4分 (2)S 2甲=(5-6)2+(6-6)2+(7-6)2+(6-6)2+(6-6)25=25(环2);S 2乙=(3-6)2+(6-6)2+(6-6)2+(7-6)2+(8-6)25=145(环2); ·················· 7分在平均数相同的情况下,因为S 2甲<S 2乙,所以甲比乙成绩稳定. ················ 8分21.(本题7分)(1)12; ····························································································· 2分(2)任意摸出2个球,共有12种等可能的结果,即(红,白)、(红,黄1)、(红,黄2)、(白,红)、(白,黄1)、(白,黄2)、(黄1,红)、(黄1,白)、(黄1,黄2)、(黄2,红)、(黄2,白)、(黄2,黄1). ········································ 6分 其中一红一黄的结果有4种,所以所求概率13. ·································· 7分22.(本题8分)解:(1)设y 1=k 1x +b , y 2=k 2x +m ,因为y 1=k 1x +b 过点(0,4)、(3,0)所以⎩⎨⎧4=b0=3k 1+b ,解得⎩⎪⎨⎪⎧b =4k 1=-43所以y 1=-43x +4. ········································································· 2分又y 2=k 2x +m 过点(0,2)、(3,8)所以⎩⎨⎧2=m 8=3k 2+m ,解得⎩⎨⎧m =2k 2=2所以y 2=2x +2. ··········································································· 4分 (2)令y 1= y 2则-43x +4=2x +2.解得x =35,代入得y =165,即P (35,165). ·········································· 6分点P 表示注水时间35小时后,甲、乙两个蓄水池中水的深度都是165米. ········ 8分23.(本题7分)(1)证明:∵BD =2,CE =5,∴AD =4,AE =3, ∴AE AB =36=12 ,AD AC =48=12, 即AE AB =AD AC, 又∵∠A =∠A ,∴△ADE ∽△ACB . ···························································· 3分(2)解:由题知BD =x ,CE =y ,则AD =6-x ,AE =8-y . 当△ADE ∽△ACB 时,AE AB =ADAC ,即 6-x 8=8-y 6. ∴y =3x 4+72 . ········································································ 5分当△ADE ∽△ABC 时,AD AB =AEAC ,即6-x 6=8-y 8.∴y =4x3················································································· 7分24.(本题7分)解:过点D 作DF ⊥OE ,交OE 于点F ,过点D 作DH ⊥CG ,交CG 于点H . ·················································· 1分 ∵DC =50,∴DE =40.在Rt △DEF 中,∵cos ∠EDF =DFDE,∴DF =DE ·cos ∠EDF =40 ·cos45°=202. ·········································· 3分 在Rt △DCH 中, ∵cos ∠DCH =CH DC,∴CH =DC ·cos ∠DCH =50·cos75°=13. ············································· 5分∴BC =OH -OB -CH =DF -OB -CH =202-10-13≈5.2.答:BC 的长度为5.2 cm . ································································· 7分 25.(本题9分)证明:(1)令y =0,得x 2-(m +1)x +m =0,因为b 2-4ac =(m +1)2-4m =m 2-2m +1=(m -1)2≥0, 所以,方程x 2-(m +1)x +m =0有实数根,所以,不论m 为何值,该二次函数的图象与x 轴总有公共点.········ 3分 (2)3; ·················································································· 5分 (3)解:y =x 2-(m +1)x +m =(x -m +12)2-(m -1)24, 所以,点D 的坐标为(m +12,-(m -1)24).当y =0时,x 2-(m +1)x +m =0.解得x 1=m ,x 2=1.所以AB =|m-1|.当x =0时,点C 的坐标为(0,m ). 因为△ABC 的面积与△ABD 的面积相等, 所以12×|m -1|×|m |=12×|m -1|×|(m -1)24|,解得m =1(舍去),或 m =-1,或m =3±22.所以m =-1或m =3±22. ··········································· 9分26.(本题9分)(1)证明:连接OA .∵ AC 与⊙O 相切于点A , ∴OA ⊥AC ,即 ∠OAE +∠DAC =90°. ∵AB =AC ,D 是BC 的中点, ∴∠DAC =∠BAD , 又OA =OE , ∴∠OAE =∠OEA . ∴∠OEA +∠BAD =90°. 即∠AFE =90°.∴OE ⊥AB . ······································································ 4分(2)解:设⊙O 的半径为r .∵AC BC =32,∴ AC CD=3.CA(第26题)【2020年中考数学——精品提分卷】第 2 页 / 共 11 页 在Rt △ADC 中,AD =4,设CD =x ,则AC =3x .∴AC 2+CD 2=AC 2即(3x )2+x 2=42,解得x =22.∴AB =AC =26.又∵OE ⊥AB ,∴AF =12AB =6, ∵tan ∠F AE =tan ∠DAC =224=22. 在Rt △AEF 中,tan ∠F AE =EF AF =EF 6,∴EF =3. 在Rt △OAF 中,则OF 2+AF 2=OA 2.∴(6)2+(r -3)2=r 2.∴r =332 即⊙O 的半径为332. ··············································· 9分 27.(本题9分) (1)3-5,作图正确. ······································································· 4分(2)图1:0≤x ≤3- 5 图2:3-5<x ≤2 图3:2<x ≤3 ··························································································· 7分(3)选择图1:EF =32x 2+4 (0≤x ≤3-5) 选择图2:EF =x 2+44xx 2+4 (3-5<x ≤2) 选择图3:EF =2xx 2+4 (2<x ≤3) ················································· 9分。
2019-2020学年南京市江宁区中考数学二模试卷(有标准答案)
![2019-2020学年南京市江宁区中考数学二模试卷(有标准答案)](https://img.taocdn.com/s3/m/294902cf0b4c2e3f56276355.png)
江苏省南京市江宁区中考数学二模试卷、选择题:4. 一个几何体的三视图如图所示,则这个几何体是(5.某小组在“用频率估计概率”的实验中,统计了某种结果出现的频率,绘制了如图的折线图,那么符合袋子中有1个红球和2个黄球,它们只有颜色上的区别,从中随机地取出一个球是黄球掷一个质地均匀的正六面体骰子,落地时面朝上的点数是 直线l 1 // l 2 II 13,且l 1与l 2的距离为1, l 2与13的距离为3.把一块含有45°角的直角三角板如图放置, 顶点A 、B C 恰好分别落在三条直线上,则^ ABC 的面积为(1. A. 下列计算结果为负数的是( | - 3|B. (- 3) °C. -(+3)D. (- 3) 22. A.下列运算正确的是( )222、 3 5 —3a — a =3 B . (a ) =a 369632a ?a =a D. a + a =a3. 四名运动员参加了射击预选赛,他们成绩的平均环数[及其方差s 2如表所示.如果选出一个成绩较好且甲乙丙I 7 8 8 S21 1 1.2 A.甲 B.乙C.丙D.1.8C. 掷一枚质地均匀的硬币,落地时结果是“正面向上”D. 6.状态稳定的人去参赛,那么应选(B .A.二B 我I B C. 12D. 2542二、填空题(本大题共 10小题,每小题2分,共20分)人的眼睛可以看见的红光的波长是0.000077cm ,将0.000077用科学记数法表为10.如图,已知 。
为^ ABC 边 AB 上一点,AD=2BD DE// BC 交 AC 于 E, AE=@ 贝U EC=BC11.如图,在O 。
中,弦AB// CD 若ZABC=40,贝UZBOD=14.若一个圆锥底面圆的半径为3cm,高为4cm,则这个圆锥的侧面积为16.如图,AC=4,点B 是线段AC 的中点,直线l 过点C 且与AC 的夹角为60° ,则直线l 上有点P,使得 ZAPB=30 ,贝U PC 的长为x,一3-2 -11 2 3y=kx+b -5 431 0-113_ 3 -33_ -1 y=72- 2y=kx+b 与反比例函数15. 一次函数 则关于x 的不等式kx+b 的解集是7. 8. 分解因式:x 3- x= 9.函数户=- s+5中,自变量x 的取值范围是inx+ny=2nx-iTiy=l 13.直接写出计算结果: '电.12.已知■.兀一次方程组的解,贝U m+3n 的值为cnf.(结果保留兀)D3 OC,若x 与y 的部分对应值如表:三、解答题(本大题共11小题,共88分)仲危口)〉4K217 .解不等式组就氐_],并写出不等式组的整数解.[2^3~■- *18.化简分式:( 疽弋一)+ —,再从-2v xv 3的范围内选取一个你最喜欢的值代入求值.H 1 x 1 X -119 .已知关于x的方程x2- mx- 3x+m- 4=0 (m为常数).(1)求证:方程有两个不相等的实数根;(2)设x\ x2是方程的两个实数根,求(x1 - 1) ( x2 - 1)的值.20.如图,将^ ABC在网格中(网格中每个小正方形的边长均为1)依次进行位似变换、轴对称变换和平移变换后得到△ A3B3C3.(1)△ ABC^A A1BG的位似比等于 ;(2)在网格中画出△ ABQ关于y轴的轴对称图形△ AzBzG;(3)请写出△ A3B3G是由△ A2B2C2怎样平移得到的?(4)设点P (x, y) 为△ ABC内一点,依次经过上述三次变换后,点P的对应点的坐标为21.如图,在平行四边形ABCW,点E为AD的中点,延长CE交BA的延长线于点F.(1)求证:AB=AF(2)若BC=2AB ZBCD=110,求Z ABE的度数.22.为增强学生的身体素质,教育行政部门规定学生每天参加户外活动的平均时间不少于1小时.为了解学生参加户外活动的情况,对部分学生参加户外活动的时间进行抽样调查,并将调查结果绘制作成如下两 幅不完整的统计图,请你根据图中提供的信息解答下列问题「心A20 ---------- --k16-1,I™'4-■(1) 求户外活动时间为 1.5小时的人数,并补充频数分布直方图; (2) 表示户外活动时间 1小时的扇形圆心角的度数为 °;(3) 本次调查中学生参加户外活动的平均时间是否符合要求?户外活动时间的众数和中位数是多少? 23. 江苏卫视〈〈最强大脑》曾播出一期“辨脸识人”节目,参赛选手以家庭为单位,每组家庭由爸爸妈妈和宝宝3人组成,爸爸、妈妈和宝宝分散在三块区域,选手需在宝宝中选一个宝宝,然后分别在爸爸区域 和妈妈区域中正确找出这个宝宝的父母,不考虑其他因素,仅从数学角度思考,已知在某分期比赛中有A8 C 三组家庭进行比赛:(1) 选手选择A 组家庭的宝宝,在妈妈区域中正确找出其妈妈的概率; (2)如果任选一个宝宝(假如选 A 组家庭),通过列表或树状图的方法,求选手至少正确找对宝宝父母其 中一人的概率.24. 小明想利用所学数学知识测量学校旗杆高度,如图,旗杆的顶端垂下一绳子,将绳子拉直钉在地上,末端恰好在C 处且与地面成60°角,小明拿起绳子末端,后退至E 处,并拉直绳子,此时绳子末端 D 距离地面1.6m 且绳子与水平方向成 45°角.求旗杆 AB 的高度和小明后退的距离 寸裟1.73,结果精确到0.1m)EC.(参考数据:壶Q 1.41 ,0;小务:小寿1_汕时$小备*时间25. (9分)如图,正方形ABCD勺边长为2cm,以边BC为直径作半圆O,点E在AB上,且AE=1.5cm,连接DE(1)DE与半圆。
江苏省南京市2019-2020学年中考数学二模试卷含解析
![江苏省南京市2019-2020学年中考数学二模试卷含解析](https://img.taocdn.com/s3/m/34b15072f705cc17552709e8.png)
江苏省南京市2019-2020学年中考数学二模试卷一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.二次函数y=ax2+bx+c(a≠0)的部分图象如图,图象过点(-1,0),对称轴为直线x=2,下列结论:①4a+b=0;②9a+c>3b;③8a+7b+2c>0;④当x>-1时,y的值随x值的增大而增大.其中正确的结论有()A.1个B.2个C.3个D.4个2.如图是一个由5个相同的正方体组成的立体图形,它的主视图是()A.B. C.D.3.如图,在菱形ABCD中,E是AC的中点,EF∥CB,交AB于点F,如果EF=3,那么菱形ABCD的周长为()A.24 B.18 C.12 D.94.如图,将一块三角板的直角顶点放在直尺的一边上,当∠2=38°时,∠1=()A .52°B .38°C .42°D .60°5.在平面直角坐标系中,把直线y =x 向左平移一个单位长度后,所得直线的解析式为( )A .y =x +1B .y =x -1C .y =xD .y =x -26.已知二次函数2y ax bx c =++的图象与x 轴交于点()2,0-、()1,0x ,且112x <<,与y 轴的正半轴的交点在()0,2的下方.下列结论:①420a b c -+=;②0a b c -+<;③20a c +>;④210a b -+>.其中正确结论的个数是( )个.A .4个B .3个C .2个D .1个7.如图,在平面直角坐标系中,矩形OABC 的两边OA ,OC 分别在x 轴和y 轴上,并且OA=5,OC=1.若把矩形OABC 绕着点O 逆时针旋转,使点A 恰好落在BC 边上的A 1处,则点C 的对应点C 1的坐标为( )A .(﹣91255,) B .(﹣12955,) C .(﹣161255,) D .(﹣121655,) 8.2012﹣2013NBA 整个常规赛季中,科比罚球投篮的命中率大约是83.3%,下列说法错误的是A .科比罚球投篮2次,一定全部命中B .科比罚球投篮2次,不一定全部命中C .科比罚球投篮1次,命中的可能性较大D .科比罚球投篮1次,不命中的可能性较小9.某班为奖励在学校运动会上取得好成绩的同学,计划购买甲、乙两种奖品共20件.其中甲种奖品每件40元,乙种奖品每件30元.如果购买甲、乙两种奖品共花费了650元,求甲、乙两种奖品各购买了多少件.设购买甲种奖品x 件,乙种奖品y 件.依题意,可列方程组为( )A .204030650x y x y +=⎧⎨+=⎩B .204020650x y x y +=⎧⎨+=⎩ C .203040650x y x y +=⎧⎨+=⎩ D .704030650x y x y +=⎧⎨+=⎩10.如图,将边长为8㎝的正方形ABCD 折叠,使点D 落在BC 边的中点E 处,点A 落在F 处,折痕为MN ,则线段CN 的长是( )A.3cm B.4cm C.5cm D.6cm11.如图数轴的A、B、C三点所表示的数分别为a、b、c.若|a﹣b|=3,|b﹣c|=5,且原点O与A、B 的距离分别为4、1,则关于O的位置,下列叙述何者正确?()A.在A的左边B.介于A、B之间C.介于B、C之间D.在C的右边12.二次函数y=ax2+bx+c的图象在平面直角坐标系中的位置如图所示,则一次函数y=ax+b与反比例函数y=cx在同一平面直角坐标系中的图象可能是()A.B.C.D.二、填空题:(本大题共6个小题,每小题4分,共24分.)13.已知某二次函数图像的最高点是坐标原点,请写出一个符合要求的函数解析式:_______.14.方程1223x x=+的解为__________.15.图①是一个三角形,分别连接这个三角形的中点得到图②;再分别连接图②中间小三角形三边的中点,得到图③.按上面的方法继续下去,第n个图形中有_____个三角形(用含字母n的代数式表示).16.如图,把正方形铁片OABC置于平面直角坐标系中,顶点A的坐标为(3,0),点P(1,2)在正方形铁片上,将正方形铁片绕其右下角的顶点按顺时针方向依次旋转90°,第一次旋转至图①位置,第二次旋转至图②位置…,则正方形铁片连续旋转2017次后,点P 的坐标为____________________.17.如图,等腰△ABC 的周长为21,底边BC=5,AB 的垂直平分线DE 交AB 于点D ,交AC 于点E ,则△BEC 的周长为____.18.已知AD 、BE 是△ABC 的中线,AD 、BE 相交于点F ,如果AD=6,那么AF 的长是_____.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)已知,抛物线L :y=x 2+bx+c 与x 轴交于点A 和点B (-3,0),与y 轴交于点C (0,3). (1)求抛物线L 的顶点坐标和A 点坐标.(2)如何平移抛物线L 得到抛物线L 1,使得平移后的抛物线L 1的顶点与抛物线L 的顶点关于原点对称? (3)将抛物线L 平移,使其经过点C 得到抛物线L 2,点P (m ,n )(m >0)是抛物线L 2上的一点,是否存在点P ,使得△PAC 为等腰直角三角形,若存在,请直接写出抛物线L 2的表达式,若不存在,请说明理由.20.(6分)阅读材料:各类方程的解法求解一元一次方程,根据等式的基本性质,把方程转化为x=a 的形式.求解二元一次方程组,把它转化为一元一次方程来解;类似的,求解三元一次方程组,把它转化为解二元一次方程组.求解一元二次方程,把它转化为两个一元一次方程来解.求解分式方程,把它转化为整式方程来解,由于“去分母”可能产生增根,所以解分式方程必须检验.各类方程的解法不尽相同,但是它们有一个共同的基本数学思想--转化,把未知转化为已知.用“转化”的数学思想,我们还可以解一些新的方程.例如,一元三次方程x 3+x 2-2x=0,可以通过因式分解把它转化为x(x 2+x-2)=0,解方程x=0和x 2+x-2=0,可得方程x 3+x 2-2x=0的解.问题:方程x 3+x 2-2x=0的解是x 1=0,x 2= ,x 3= ;拓展:用“转化”23x x +=的解;应用:如图,已知矩形草坪ABCD 的长AD=8m ,宽AB=3m ,小华把一根长为10m 的绳子的一端固定在点B ,沿草坪边沿BA ,AD 走到点P 处,把长绳PB 段拉直并固定在点P ,然后沿草坪边沿PD 、DC 走到点C 处,把长绳剩下的一段拉直,长绳的另一端恰好落在点C .求AP 的长.21.(6分)如图,在楼房AB 和塔CD 之间有一棵树EF ,从楼顶A 处经过树顶E 点恰好看到塔的底部D点,且俯角α为45°,从楼底B 点1米的P 点处经过树顶E 点恰好看到塔的顶部C 点,且仰角β为30°.已知树高EF=6米,求塔CD 的高度(结果保留根号).22.(8分)如图,在ABC V 中,AB AC =,AE 是角平分线,BM 平分ABC ∠交AE 于点M ,经过B M ,两点的O e 交BC 于点G ,交AB 于点F ,FB 恰为O e 的直径.求证:AE 与O e 相切;当14cos 3BC C ==,时,求O e 的半径. 23.(8分)抚顺某中学为了解八年级学生的体能状况,从八年级学生中随机抽取部分学生进行体能测试,测试结果分为A ,B ,C ,D 四个等级.请根据两幅统计图中的信息回答下列问题:(1)本次抽样调查共抽取了多少名学生?(2)求测试结果为C 等级的学生数,并补全条形图;(3)若该中学八年级共有700名学生,请你估计该中学八年级学生中体能测试结果为D 等级的学生有多少名?(4)若从体能为A 等级的2名男生2名女生中随机的抽取2名学生,做为该校培养运动员的重点对象,请用列表法或画树状图的方法求所抽取的两人恰好都是男生的概率.24.(10分)如图,在△ABC中,(1)求作:∠BAD=∠C,AD交BC于D.(用尺规作图法,保留作图痕迹,不要求写作法).(2)在(1)条件下,求证:AB2=BD•BC.25.(10分)小明家的洗手盆上装有一种抬启式水龙头(如图1),完全开启后,把手AM的仰角α=37°,此时把手端点A、出水口B和点落水点C在同一直线上,洗手盆及水龙头的相关数据如图2.(参考数据:sin37°= 35,cos37°=45,tan37°=34)(1)求把手端点A到BD的距离;(2)求CH的长.26.(12分)某初级中学正在展开“文明城市创建人人参与,志愿服务我当先行”的“创文活动”为了了解该校志愿者参与服务情况,现对该校全体志愿者进行随机抽样调查.根据调查数据绘制了如下所示不完整统计图.条形统计图中七年级、八年级、九年级、教师分别指七年级、八年级、九年级、教师志愿者中被抽到的志愿者,扇形统计图中的百分数指的是该年级被抽到的志愿者数与样本容量的比.请补全条形统计图;若该校共有志愿者600人,则该校九年级大约有多少志愿者?27.(12分)某商场要经营一种新上市的文具,进价为20元,试营销阶段发现:当销售单价是25元时,每天的销售量为250件,销售单价每上涨1元,每天的销售量就减少10件写出商场销售这种文具,每天所得的销售利润(元)与销售单价(元)之间的函数关系式;求销售单价为多少元时,该文具每天的销售利润最大;商场的营销部结合上述情况,提出了A、B两种营销方案方案A:该文具的销售单价高于进价且不超过30元;方案B:每天销售量不少于10件,且每件文具的利润至少为25元请比较哪种方案的最大利润更高,并说明理由参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.B【解析】【分析】根据抛物线的对称轴即可判定①;观察图象可得,当x=-3时,y<0,由此即可判定②;观察图象可得,当x=1时,y>0,由此即可判定③;观察图象可得,当x>2时,的值随值的增大而增大,即可判定④. 【详解】由抛物线的对称轴为x=2可得=2,即4a+b=0,①正确;观察图象可得,当x=-3时,y<0,即9a-3b+c<0,所以,②错误;观察图象可得,当x=1时,y>0,即a+b+c>0,③正确;观察图象可得,当x>2时,的值随值的增大而增大,④错误.综上,正确的结论有2个.故选B.【点睛】本题考查了二次函数图象与系数的关系:二次函数y=ax2+bx+c(a≠0),二次项系数a决定抛物线的开口方向和大小,当a>0时,抛物线向上开口;当a<0时,抛物线向下开口;一次项系数b和二次项系数a 共同决定对称轴的位置,当a与b同号时(即ab>0),对称轴在y轴左;当a与b异号时(即ab<0),对称轴在y轴右;常数项c决定抛物线与y轴交点.抛物线与y轴交于(0,c);抛物线与x轴交点个数由△决定,△=b2-4ac>0时,抛物线与x轴有2个交点;△=b2-4ac=0时,抛物线与x轴有1个交点;△=b2-4ac <0时,抛物线与x轴没有交点.2.A【解析】【分析】根据从正面看得到的图形是主视图,可得答案.【详解】解:从正面看第一层是三个小正方形,第二层中间有一个小正方形,故选:A.【点睛】本题考查了简单组合体的三视图,从正面看得到的图形是主视图.3.A【解析】【分析】易得BC长为EF长的2倍,那么菱形ABCD的周长=4BC问题得解.【详解】∵E是AC中点,∵EF∥BC,交AB于点F,∴EF是△ABC的中位线,∴BC=2EF=2×3=6,∴菱形ABCD的周长是4×6=24,故选A.【点睛】本题考查了三角形中位线的性质及菱形的周长公式,熟练掌握相关知识是解题的关键. 4.A【解析】试题分析:如图:∵∠3=∠2=38°°(两直线平行同位角相等),∴∠1=90°﹣∠3=52°,故选A.考点:平行线的性质.5.A【解析】向左平移一个单位长度后解析式为:y=x+1.故选A.点睛:掌握一次函数的平移.6.B【解析】分析:根据已知画出图象,把x=−2代入得:4a−2b+c=0,把x=−1代入得:y=a−b+c>0,根据122c x x a ⋅=<-,不等式的两边都乘以a(a<0)得:c>−2a ,由4a−2b+c=0得22c a b -=-,而0<c<2,得到102c -<-<即可求出2a−b+1>0. 详解:根据二次函数y=ax 2+bx+c 的图象与x 轴交于点(−2,0)、(x 1,0),且1<x 1<2,与y 轴的正半轴的交点在(0,2)的下方,画出图象为:如图把x=−2代入得:4a−2b+c=0,∴①正确;把x=−1代入得:y=a−b+c>0,如图A 点,∴②错误;∵(−2,0)、(x 1,0),且1<x 1,∴取符合条件1<x 1<2的任何一个x 1,−2⋅x 1<−2,∴由一元二次方程根与系数的关系知122c x x a ⋅=<-, ∴不等式的两边都乘以a(a<0)得:c>−2a ,∴2a+c>0,∴③正确;④由4a−2b+c=0得22c a b -=-,而0<c<2,∴102c -<-< ∴−1<2a−b<0∴2a−b+1>0,∴④正确.所以①③④三项正确.故选B.点睛:属于二次函数综合题,考查二次函数图象与系数的关系, 二次函数图象上点的坐标特征, 抛物线与x 轴的交点,属于常考题型.7.A【解析】【分析】直接利用相似三角形的判定与性质得出△ONC 1三边关系,再利用勾股定理得出答案.【详解】过点C 1作C 1N ⊥x 轴于点N ,过点A 1作A 1M ⊥x 轴于点M ,由题意可得:∠C 1NO=∠A 1MO=90°,∠1=∠2=∠1,则△A 1OM ∽△OC 1N ,∵OA=5,OC=1,∴OA 1=5,A 1M=1,∴OM=4,∴设NO=1x ,则NC 1=4x ,OC 1=1,则(1x )2+(4x )2=9,解得:x=±35(负数舍去),则NO=95,NC 1=125, 故点C 的对应点C 1的坐标为:(-95,125). 故选A .【点睛】此题主要考查了矩形的性质以及勾股定理等知识,正确得出△A 1OM ∽△OC 1N 是解题关键.8.A【解析】试题分析:根据概率的意义,概率是反映事件发生机会的大小的概念,只是表示发生的机会的大小,机会大也不一定发生。
2019年江苏省南京市秦淮区中考数学二模试卷及答案详解
![2019年江苏省南京市秦淮区中考数学二模试卷及答案详解](https://img.taocdn.com/s3/m/24c5a89e76c66137ee0619c2.png)
2019年江苏省南京市秦淮区中考数学二模试卷一、选择题(本大题共6小题,每小题2分,共12分.在每小题所给出的四个选项中,恰有一项是符合题目要求的,请将正确选项前的字母代号填涂在答题卡相应位置上)1.(2分)如果a是无理数,那么下列各数中,一定是有理数的是()A.﹣a B.a2C.D.a02.(2分)下列各式计算结果不等于211的是()A.210+210B.212﹣210C.27×24D.215÷243.(2分)下列命题中,是真命题的是()A.平行四边形的四边相等B.平行四边形的对角互补C.平行四边形是轴对称图形D.平行四边形的对角线互相平分4.(2分)下列的立体图形中,有4个面的是()A.三棱锥B.三棱柱C.四棱锥D.四棱柱5.(2分)在平面直角坐标系中,点A、B的坐标分别是(0,3)、(﹣4,0),则原点到直线AB的距离是()A.2B.2.4C.2.5D.36.(2分)如图,在△ABC中,BC>AB>AC,D是边BC上的一个动点(点D不与点B、C重合),将△ABD沿AD折叠,点B落在点B'处,连接BB',B'C,若△BCB'是等腰三角形,则符合条件的点D的个数是()A.0个B.1个C.2个D.3个二、填空题(本大题共10小题,每小题2分,共20分.不需写出解答过程,请把答案直接填写在答题卷相应位置上)7.(2分)根据刘慈欣同名小说改编的电影《流浪地球》将中国独特的思想和价值观念融入对人类未来的畅想与探讨,该电影取得了巨大的成功,国内票房总收入为4 655 000 000元,用科学记数法表示4 655 000 000是.8.(2分)计算的结果是.9.(2分)分解因式:﹣x3+2x2﹣x=.10.(2分)甲、乙两个班级各20名男生测试“引体向上”,成绩如图所示:设甲、乙两个班级男生“引体向上”个数的方差分别为S2甲和S2乙,则S2甲S2乙.(填“>”,“<”或“=”)11.(2分)如图,点A、B在数轴上所表示的数分别是x、x+1,点C在线段AB上(点C 不与点A、B重合).若点C在数轴上表示的数是2x,则x的取值范围是.12.(2分)对于反比例函数y=,以下四个结论:①函数的图象在第一、三象限;②函数的图象经过点(﹣2,﹣2);③y随x的增大而减小;④当x>﹣2时,y<﹣2.其中所有正确结论的序号是.13.(2分)等边三角形外接圆的面积是4π,则该等边三角形的面积是.14.(2分)如图,AB是⊙O的直径,点C、D在半圆AB上,且==,连接AC、AD,则∠CAD的度数是°.15.(2分)如图,在矩形ABCD中,E是AD的中点,连接AC、BE,AC与BE交于点F,则△ABF的面积和四边形CDEF的面积的比值是.16.(2分)如图,在Rt△ABC中,∠C=90°,AC=2,BC=4.点M1、N1、P1分别在AC、BC、AB上,且四边形M1CN1P1是正方形,点M2、N2、P2分别在P1N1、BN1、BP1上,且四边形M2N1N2P2是正方形,…,点M n、N n、P n分别在P n﹣1N n﹣1、BN n﹣1、BP n﹣1上,且四边形M n N n﹣1N n P n是正方形,则BN2019的长度是.三、解答题(本大题共11小题,共88分.请在答题卷指定区域内作答,解答时应写出文字说明、证明过程或演算步骤)17.(6分)计算(﹣1)3+|﹣6|×2﹣1﹣.18.(6分)化简:÷(x+2﹣)19.(8分)如图,在四边形ABCD中,对角线AC与BD相交于点O,AC⊥BD,AC平分∠BAD.(1)给出下列四个条件:①AB=AD,②OB=OD,③∠ACB=∠ACD,④AD∥BC,上述四个条件中,选择一个合适的条件,使四边形ABCD是菱形,这个条件是(填写序号);(2)根据所选择的条件,证明四边形ABCD是菱形.20.(8分)在一只不透明的袋子中装有1个红色小球,2个黄色小球和若干个黑色小球,这些小球除颜色以外都一样.已知从袋中任意摸出1个红色小球的概率是.(1)袋中黑色小球的数量是个;(2)若从袋中随机摸出1个小球,记录好颜色后放回袋中并搅匀,再从袋中任意摸出1个小球,求两次摸出的都是黄色小球的概率是多少?21.(8分)我市某校招聘数学教师,本次招聘进行专业技能笔试和课堂教学展示两个项目的考核,这两项考核的满分均为100分,学校将这两个项目的得分按一定的比例计算出总成绩.经统计,参加考核的4名考生的两个项目的得分如下:考生序号1234专业技能笔试90708675课堂教学展示70908086(1)经过计算,1号考生的总成绩为78分,求专业技能笔试得分和课堂教学展示得分分别占总成绩的百分比;(2)若学校录取总成绩最高的考生,通过计算说明4名考生中哪一名考生会被录取?22.(8分)如图,某数学兴趣小组准备测量长江某处的宽度AB,他们在AB延长线上选择了一座与B距离为200m的大楼,在大楼楼顶的观测点C处分别观测点A和点B,利用测角仪测得俯角(从高处观测低处的目标时,视线与水平线所成的锐角)分别为8°和46°.求该处长江的宽度AB.(参考数据:sin8°≈0.14,cos8°≈0.99,tan8°≈0.16,sin46°≈0.72,cos46°≈0.69,tan46°≈1.04)23.(8分)点A(﹣1,0)是函数y=x2﹣2x+m2﹣4m的图象与x轴的一个公共点.(1)求该函数的图象与x轴的另一个公共点的坐标以及m的值;(2)将该函数图象沿y轴向上平移个单位后,该函数的图象与x轴只有一个公共点.24.(8分)两个运输小队分别从两个仓库以相同的工作效率调运一批物资,两队同时开始工作.第二小队工作5天后,由于技术问题检修设备5天,为赶上进度,再次开工后他们将工作效率提高到原先的2倍,结果和第一小队同时完成任务.在两队调运物资的过程中,两个仓库物资的剩余量yt与第一小队工作时间x天的函数图象如图所示.(1)①求线段AC所表示的y与x之间的函数表达式;②求点F的坐标,并解释点F的实际意义.(2)如果第二小队没有检修设备,按原来的工作效率正常工作,那么他们完成任务的天数是天.25.(8分)已知线段AB与点O,利用直尺和圆规按下列要求作△ABC(不写作法,保留作图痕迹).(1)在图①中,点O是△ABC的内心;(2)在图②中,点O是△ABC的重心.26.(10分)某商店第一个月以每件100元的价格购进200件衬衫,以每件150元的价格售罄.由于市场火爆,该商店第二个月再次购进一批衬衫,与第一批衬衫相比,这批衬衫的进价和数量都有一定的提高,其数量的增长率是进价增长率的2.5倍,该批衬衫仍以每件150元销售.第二个月结束后,商店对剩余的50件衬衫以每件120元的价格一次性清仓销售,商店出售这两批衬衫共盈利17500元.设第二批衬衫进价的增长率为x.(1)第二批衬衫进价为元,购进的数量为件.(都用含x的代数式表示,不需化简)(2)求x的值.27.(10分)如图,在矩形ABCD中,AB=5,BC=12,E为BC的中点.⊙O与边BC相切于点E,并交边AD于点M、N,AM=3.(1)求⊙O的半径;(2)将矩形ABCD绕点E顺时针旋转,旋转角为α(0°<α≤90°).在旋转的过程中,⊙O和矩形ABCD的边是否能够相切?若能,直接写出相切时,旋转角α的正弦值;若不能,请说明理由.2019年江苏省南京市秦淮区中考数学二模试卷参考答案与试题解析一、选择题(本大题共6小题,每小题2分,共12分.在每小题所给出的四个选项中,恰有一项是符合题目要求的,请将正确选项前的字母代号填涂在答题卡相应位置上)1.(2分)如果a是无理数,那么下列各数中,一定是有理数的是()A.﹣a B.a2C.D.a0【分析】根据有理数和无理数的定义解答.【解答】解:A、如果a是无理数,那么﹣a一定是无理数,故这个选项错误;B、如果a是无理数,那么a2可能是无理数,也可能是有理数,故这个选项错误;C、如果a是无理数,那么一定是无理数,故这个选项错误;D、如果a是无理数,那么a0一定是有理数,因为a0=1,故这个选项正确.故选:D.【点评】本题考查了有理数和无理数的定义,解题的关键是熟练掌握有理数和无理数的定义.2.(2分)下列各式计算结果不等于211的是()A.210+210B.212﹣210C.27×24D.215÷24【分析】分别根据合并同类项的法则、同底数幂的乘法法则,同底数幂的除法法则逐一判断即可.【解答】解:210+210=2×210=211,故选项A不合题意;212与210不是同类项,所以不能合并,故选项B符合题意;27×24=27+4=211,故选项C不合题意;215÷24=215﹣4=211,故选项D不合题意.故选:B.【点评】本题主要考查了同底数幂的乘除法,熟练掌握运算法则是解答本题的关键.3.(2分)下列命题中,是真命题的是()A.平行四边形的四边相等B.平行四边形的对角互补C.平行四边形是轴对称图形D.平行四边形的对角线互相平分【分析】利用平行四边形的性质分别判断后即可确定正确的选项.【解答】解:A、平行四边形的四条边不一定相等,故错误,是假命题;B、平行四边形的对角相等,故错误,是假命题;C、平行四边形是中心对称图形但不是轴对称图形,故错误,是假命题,D、平行四边形的对角线互相平分,故错误,是真命题,故选:D.【点评】本题考查了命题与定理的知识,解题的关键是能够了解平行四边形的性质,难度不大.4.(2分)下列的立体图形中,有4个面的是()A.三棱锥B.三棱柱C.四棱锥D.四棱柱【分析】根据棱柱和棱锥的组成情况,分别求得各立体图形的面数,再进行判断.【解答】解:A、三棱锥有一个底面,三个侧面组成,共4个面.B、三棱柱有二个底面,三个侧面组成,共5个面.C、四棱锥有一个底面,四个侧面组成,共5个面.D、四棱柱有二个底面,四个侧面组成,共6个面.故有4个面的是三棱锥.故选:A.【点评】本题考查了棱柱和棱锥的组成情况.要明确棱柱有两个底面,棱锥有一个底面.5.(2分)在平面直角坐标系中,点A、B的坐标分别是(0,3)、(﹣4,0),则原点到直线AB的距离是()A.2B.2.4C.2.5D.3【分析】由△AOB是直角三角形,利用直角三角形面积相等,将O到AB的距离转化为直角三角形OAB斜边上的高求解;【解答】解:∵点A、B的坐标分别是(0,3)、(﹣4,0),∴OA=3,OB=4,∴AB=5,△AOB是直角三角形,∴O到AB的距离为=;故选:B.【点评】本题考查坐标平面内点的特征;将将O到AB的距离转化为直角三角形OAB斜边上的高是解题的关键;6.(2分)如图,在△ABC中,BC>AB>AC,D是边BC上的一个动点(点D不与点B、C重合),将△ABD沿AD折叠,点B落在点B'处,连接BB',B'C,若△BCB'是等腰三角形,则符合条件的点D的个数是()A.0个B.1个C.2个D.3个【分析】根据折叠的性质和等腰三角形的性质即可得到结论.【解答】解:如图1,当BB′=B′C时,△BCB'是等腰三角形,如图2,当BC=BB′时,△BCB'是等腰三角形,故若△BCB'是等腰三角形,则符合条件的点D的个数是2,故选:C.【点评】本题考查了翻折变换(折叠问题),正确的作出图形是解题的关键.二、填空题(本大题共10小题,每小题2分,共20分.不需写出解答过程,请把答案直接填写在答题卷相应位置上)7.(2分)根据刘慈欣同名小说改编的电影《流浪地球》将中国独特的思想和价值观念融入对人类未来的畅想与探讨,该电影取得了巨大的成功,国内票房总收入为4 655 000 000元,用科学记数法表示4 655 000 000是 4.655×109.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n 的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:用科学记数法表示4 655 000 000是4.655×109.故答案为:4.655×109.【点评】此题考查了科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.8.(2分)计算的结果是2.【分析】首先利用二次根式乘法运算法则计算,进而合并同类项得出即可.【解答】解:=3﹣=2.故答案为:2.【点评】此题主要考查了二次根式的混合运算,正确掌握二次根式的运算法则是解题关键.9.(2分)分解因式:﹣x3+2x2﹣x=﹣x(x﹣1)2.【分析】先提取公因式﹣x,再利用完全平方公式进行二次分解.完全平方公式:(a﹣b)2=a2﹣2ab+b2.【解答】解:﹣x3+2x2﹣x,=﹣x(x2﹣2x+1)…(提取公因式)=﹣x(x﹣1)2.…(完全平方公式)【点评】本题考查了提公因式法,公式法分解因式,提取公因式后利用完全平方公式进行二次分解,注意分解要彻底.在提取负号时,要注意各项符号的变化.10.(2分)甲、乙两个班级各20名男生测试“引体向上”,成绩如图所示:设甲、乙两个班级男生“引体向上”个数的方差分别为S2甲和S2乙,则S2甲<S2乙.(填“>”,“<”或“=”)【分析】由扇形图得出个数的具体分布情况,再判断出“引体向上”个数分布较为稳定的班级即可得.【解答】解:由扇形图知,甲班男生“引体向上”个数分布情况为:5个的5人,6个5人,7个5人,8个5人,乙班男生“引体向上”个数分布情况为:5个的6人,6个4人,7个4人,8个6人,∴甲班男生“引体向上”个数分布较为均匀、稳定,∴S2甲<S2乙,故答案为:<.【点评】本题考查方差的意义.方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.11.(2分)如图,点A、B在数轴上所表示的数分别是x、x+1,点C在线段AB上(点C 不与点A、B重合).若点C在数轴上表示的数是2x,则x的取值范围是0<x<1.【分析】根据题意列出不等式组,解之可得.【解答】解:由题意知,解得0<x<1,故答案为:0<x<1.【点评】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.12.(2分)对于反比例函数y=,以下四个结论:①函数的图象在第一、三象限;②函数的图象经过点(﹣2,﹣2);③y随x的增大而减小;④当x>﹣2时,y<﹣2.其中所有正确结论的序号是①②.【分析】根据反比例函数的性质,k=4>0,函数位于一、三象限,在每一象限y随x的增大而减小.【解答】解:①∵k=4>0,∴它的图象在第一、三象限,故正确;②把点(﹣2,﹣2)代入反比例函数y=,成立,故正确;③当x>0时,y随x的增大而减小,故错误.④当x>﹣2时,y<﹣2或y>0,所以错误;故答案为:①②.【点评】本题考查了反比例函数y=(k≠0)的性质:①当k>0时,图象分别位于第一、三象限;当k<0时,图象分别位于第二、四象限.②当k>0时,在同一个象限内,y随x的增大而减小;当k<0时,在同一个象限,y随x的增大而增大.13.(2分)等边三角形外接圆的面积是4π,则该等边三角形的面积是3.【分析】如图,⊙O为等边△ABC的外心,连接OB,OC,作OH⊥BC,利用垂径定理得到BH=CH,利用圆的面积公式得到OB=2,再计算出∠OBC=30°,则根据含30度的直角三角形三边的关系得到OH=1,BH=,所以BC=2BH=2,然后计算△OBC 的面积得到△ABC的面积.【解答】解:如图,⊙O为等边△ABC的外心,连接OB,OC,作OH⊥BC,则BH=CH,∵π•OB2=4π,∴OB=2,∵∠BOC=2∠A=120°,∴∠OBC=30°,在Rt△BOH中,OH=OB=1,BH=OH=,∴BC=2BH=2,∴△ABC的面积=3S△OBC=3××1×2=3.故答案为3.【点评】本题考查了三角形的外接圆与外心:三角形外接圆的圆心是三角形三条边垂直平分线的交点,叫做三角形的外心.也考查了等边三角形的性质.14.(2分)如图,AB是⊙O的直径,点C、D在半圆AB上,且==,连接AC、AD,则∠CAD的度数是30°.【分析】连接OC,OD,利用圆周角定理和三角形的内角和解答即可.【解答】解:连接OC,OD,∵AB是⊙O的直径,点C、D在半圆AB上,且==,∴∠AOC=∠COD=∠DOB=60°,∴∠DAB=30°,∠CAO=60°,∴∠CAD=30°,故答案为:30.【点评】本题考查的是圆周角定理,熟知在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半是解答此题的关键.15.(2分)如图,在矩形ABCD中,E是AD的中点,连接AC、BE,AC与BE交于点F,则△ABF的面积和四边形CDEF的面积的比值是.【分析】依据AE∥BC即可得到△AEF∽△CAB;设△AEF的面积为s,则△ABF的面积为2s,△CEF的面积为2s,△CDE的面积为3s,四边形CDEF的面积为5s,进而得出结论S四边形CDEF=S△ABF.【解答】解:连接CE,∵四边形ABCD是矩形,∴AE∥BC,AD=BC,∵E是AD的中点,∴AE=AD=BC,即=,∴△AEF∽△CBF,则===,设△AEF的面积为s,则△ABF的面积为2s,△CEF的面积为2s,∴△ACE的面积为3s,∵E是AD的中点,∴△CDE的面积为3s,∴四边形CDEF的面积为5s,∴S四边形CDEF=S△ABF,即△ABF的面积和四边形CDEF的面积的比值是,故答案为:.【点评】本题主要考查了相似三角形的判定和性质,矩形的性质等知识;熟练掌握矩形的性质,证明三角形相似是解决问题的关键.16.(2分)如图,在Rt△ABC中,∠C=90°,AC=2,BC=4.点M1、N1、P1分别在AC、BC、AB上,且四边形M1CN1P1是正方形,点M2、N2、P2分别在P1N1、BN1、BP1上,且四边形M2N1N2P2是正方形,…,点M n、N n、P n分别在P n﹣1N n﹣1、BN n﹣1、BP n﹣1上,且四边形M n N n﹣1N n P n是正方形,则BN2019的长度是.【分析】根据相似三角形的性质求出BN1,BN2,BN3的值,找出规律即可求出BN2019的长度.【解答】解:∵N1P1∥AC,∴△B1N1P1∽△BCA,∴,设N1P1=x,则,解得:x=,∴,同理,∵N2P2∥AC,∴△P1N1B∽△P2N2B,设P2N2=y,∴,解得:y=,∴=.同理,BN3==,∴BN2019的长度是.故答案为:.【点评】此题属规律性题目,考查了相似三角形的性质及正方形的性质,解答此题的关键是求出BN1,BN2,BN3的值,找出规律,根据此规律求解.三、解答题(本大题共11小题,共88分.请在答题卷指定区域内作答,解答时应写出文字说明、证明过程或演算步骤)17.(6分)计算(﹣1)3+|﹣6|×2﹣1﹣.【分析】直接利用绝对值的性质以及负指数幂的性质、立方根的性质分别化简得出答案.【解答】解:原式=﹣1+6×﹣3=﹣1+3﹣3=﹣1.【点评】此题主要考查了实数运算,正确化简各数是解题关键.18.(6分)化简:÷(x+2﹣)【分析】首先把括号里的式子进行通分,然后把除法运算转化成乘法运算,进行约分化简.【解答】解:÷(x+2﹣)=÷()=•=.故答案为.【点评】分式的四则运算是整式四则运算的进一步发展,在计算时,首先要弄清楚运算顺序,先去括号,再进行分式的乘除.19.(8分)如图,在四边形ABCD中,对角线AC与BD相交于点O,AC⊥BD,AC平分∠BAD.(1)给出下列四个条件:①AB=AD,②OB=OD,③∠ACB=∠ACD,④AD∥BC,上述四个条件中,选择一个合适的条件,使四边形ABCD是菱形,这个条件是④(填写序号);(2)根据所选择的条件,证明四边形ABCD是菱形.【分析】(1)根据题目中的条件即可得到结论;(2)根据垂直和角平分线的定义得到∠BAO=∠DAO,∠AOB=∠AOD=90°,根据全等三角形的性质得到AB=AD,推出AB=BC,根据菱形的判定定理即可得到结论;【解答】解:(1)这个条件是④;故答案为:④;(2)∵AC⊥BD,AC平分∠BAD,∴∠BAO=∠DAO,∠AOB=∠AOD=90°,∵AO=AO,∴△ABO≌△ADO,∴AB=AD,∵AD∥BC,∴∠ACB=∠DAC,∴∠BAC=∠ACB,∴AB=BC,∴AD=BC,∴四边形ABCD是菱形;【点评】本题考查了菱形的判定,全等三角形的判定和性质,角平分线的定义,平行线的性质,正确的识别图形是解题的关键.20.(8分)在一只不透明的袋子中装有1个红色小球,2个黄色小球和若干个黑色小球,这些小球除颜色以外都一样.已知从袋中任意摸出1个红色小球的概率是.(1)袋中黑色小球的数量是1个;(2)若从袋中随机摸出1个小球,记录好颜色后放回袋中并搅匀,再从袋中任意摸出1个小球,求两次摸出的都是黄色小球的概率是多少?【分析】(1)设袋中黑色小球的数量是x个,根据概率公式列出算式,求出x的值即可得出答案;(2)先画出树状图得出所有等情况数和两次摸出的都是黄色小球的情况数,然后根据概率公式即可得出答案.【解答】解:(1)设袋中黑色小球的数量是x个,根据题意得:=,解得:x=1,经检验x=1是方程的解,答:袋中黑色小球的数量是1个;故答案为:1;(2)根据题意画树状图如下:共有16种等情况数,其中两次摸出的都是黄色小球的有4种,则两次摸出的都是黄色小球的概率是=.【点评】此题考查的是用列表法或树状图法求概率.列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;解题时要注意此题是放回实验还是不放回实验.用到的知识点为:概率=所求情况数与总情况数之比.21.(8分)我市某校招聘数学教师,本次招聘进行专业技能笔试和课堂教学展示两个项目的考核,这两项考核的满分均为100分,学校将这两个项目的得分按一定的比例计算出总成绩.经统计,参加考核的4名考生的两个项目的得分如下:考生序号1234专业技能笔试90708675课堂教学展示70908086(1)经过计算,1号考生的总成绩为78分,求专业技能笔试得分和课堂教学展示得分分别占总成绩的百分比;(2)若学校录取总成绩最高的考生,通过计算说明4名考生中哪一名考生会被录取?【分析】(1)可设专业技能笔试得分占总成绩的百分比是a,根据1号考生的总成绩为78分列出方程求解即可;(2)根据加权平均数公式分别求出4个考生总成绩,再比较大小即可求解.【解答】解:(1)设专业技能笔试得分占总成绩的百分比是a.根据题意,得90a+70(1﹣a)=78.解这个方程,得a=40%.1﹣40%=60%.所以专业技能笔试得分和课堂教学展示得分占总成绩的百分比分别是40%,60%.(2)2号考生总成绩为70×0.4+90×0.6=82(分).3号考生总成绩为86×0.4+80×0.6=82.4(分).4号考生总成绩为75×0.4+86×0.6=81.6(分).因为82.4>82>81.6>78,所以3号考生会被录取.【点评】本题主要考查加权平均数的计算.解题的关键是熟记加权平均数的计算公式.22.(8分)如图,某数学兴趣小组准备测量长江某处的宽度AB,他们在AB延长线上选择了一座与B距离为200m的大楼,在大楼楼顶的观测点C处分别观测点A和点B,利用测角仪测得俯角(从高处观测低处的目标时,视线与水平线所成的锐角)分别为8°和46°.求该处长江的宽度AB.(参考数据:sin8°≈0.14,cos8°≈0.99,tan8°≈0.16,sin46°≈0.72,cos46°≈0.69,tan46°≈1.04)【分析】如图,连接AC,BC.通过解Rt△CBD和Rt△CAD分别求得BD、AD的长度,然后利用线段间的和差关系解答.【解答】解:如图,连接AC,BC.根据题意,得∠CAD=8°,∠CBD=46°.在Rt△CBD中,∵tan∠CBD=,∴CD=BD•tan∠CBD=200×1.04=208(m).在Rt△CAD中,∵tan∠CAD=,∴AD===1300(m).∴AB=AD﹣BD=1300﹣200=1100(m).答:该处长江的宽度是1100 m.【点评】本题考查解直角三角形的应用﹣仰角俯角问题,要求学生能借助仰角构造直角三角形并解直角三角形.23.(8分)点A(﹣1,0)是函数y=x2﹣2x+m2﹣4m的图象与x轴的一个公共点.(1)求该函数的图象与x轴的另一个公共点的坐标以及m的值;(2)将该函数图象沿y轴向上平移4个单位后,该函数的图象与x轴只有一个公共点.【分析】(1)将点A坐标代入函数表达式即可求解;(2)求出抛物线顶点坐标(1,﹣4),即可求解.【解答】解:(1)在函数y=x2﹣2x+m2﹣4m中,∵a=1,b=﹣2,∴该二次函数图象的对称轴是过点(1,0)且平行于y轴的直线.∵点A(﹣1,0)是函数y=x2﹣2x+m2﹣4m的图象与x轴的一个公共点,根据二次函数图象的对称性,∴该函数与x轴的另一个公共点的坐标是(3,0),将x=﹣1,y=0代入函数y=x2﹣2x+m2﹣4m中,得0=3+m2﹣4m.解这个方程,得m1=1,m2=3,故抛物线的表达式为:y=x2﹣2x﹣3;(2)抛物线顶点坐标为:(1,﹣4),故函数图象沿y轴向上平移4单位后,该函数的图象与x轴只有一个公共点.【点评】本题考查的是二次函数与x轴交点问题,将点A代入函数表达式,求出m值是本题的关键.24.(8分)两个运输小队分别从两个仓库以相同的工作效率调运一批物资,两队同时开始工作.第二小队工作5天后,由于技术问题检修设备5天,为赶上进度,再次开工后他们将工作效率提高到原先的2倍,结果和第一小队同时完成任务.在两队调运物资的过程中,两个仓库物资的剩余量yt与第一小队工作时间x天的函数图象如图所示.(1)①求线段AC所表示的y与x之间的函数表达式;②求点F的坐标,并解释点F的实际意义.(2)如果第二小队没有检修设备,按原来的工作效率正常工作,那么他们完成任务的天数是9天.【分析】(1)①设AC的函数表达式为y=kx+b,将(12,0),(0,360)代入y=kx+b,利用待定系数法即可求出线段AC所表示的y与x之间的函数表达式;②根据工作效率=工作总量÷工作时间,可得第一小队的工作效率为360÷12=30(t/天),进而得出第二小队再次开工后的工作效率为30×2=60(t/天),那么调运物资为60×2=120(t),得出点E的坐标为(10,120),所以点F的纵坐标为120.将y=120代入y=﹣30x+360,求出x,得到点F的坐标,点F的实际意义是:第一小队工作8天后,两个仓库剩余的物资都为120t;(2)先求出第二小队按原来的工作效率正常工作时调运物资120t需要的时间,再加上检修设备前调运物资的工作时间即可.【解答】解:(1)①设AC的函数表达式为y=kx+b,将(12,0),(0,360)代入y=kx+b,得,解得即线段AC所表示的y与x之间的函数表达式为y=﹣30x+360;②第一小队的工作效率为360÷12=30(t/天),第二小队再次开工后的工作效率为30×2=60(t/天),调运物资为60×2=120(t),即点E的坐标为(10,120),所以点F的纵坐标为120.将y=120代入y=﹣30x+360,可得x=8,即点F的坐标为(8,120).点F的实际意义是:第一小队工作8天后,两个仓库剩余的物资都为120t;(2)120÷30=4(天),5+4=9(天).故答案为9.【点评】此题考查了一次函数的应用,涉及到利用待定系数法求一次函数的解析式,工作效率、工作总量与工作时间关系的应用,理解题意从图象中获取有用信息是解题的关键.25.(8分)已知线段AB与点O,利用直尺和圆规按下列要求作△ABC(不写作法,保留作图痕迹).(1)在图①中,点O是△ABC的内心;(2)在图②中,点O是△ABC的重心.【分析】(1)内心是角平分线的交点,根据AO和BO分别是∠CAB和∠CBA的平分线,作图即可;(2)重心是中线的交点,先作AB的垂直平分线,确定AB的中点,根据重心到中点的距离是到顶点距离的,确定中线CO,作图即可.【解答】解:(1)如图①,△ABC即为所求.。
备战2020中考【6套模拟】南京市中考第二次模拟考试数学试题含答案(1)
![备战2020中考【6套模拟】南京市中考第二次模拟考试数学试题含答案(1)](https://img.taocdn.com/s3/m/872c0379fc4ffe473368abab.png)
备战2020中考【6套模拟】南京市中考第二次模拟考试数学试题含答案(1)中学数学二模模拟试卷一、选择题(每小题3分,共30分)下列各小题均有四个答案,其中只有一个是正确的1.(3分)﹣的相反数是()A.﹣B.﹣C.D.2.(3分)春暖花开,走在郑州中原西路上,不禁感慨“郑州的路越来越漂亮了“感慨背后,是对郑州从2012年起建设生态廊道的由衷认可.目前,郑州累计增绿超3亿平方米,相当于140个碧沙岗公园.我们把3亿用科学记数法表示为()A.3×1010 B.3×109 C.3×108 D.3x1073.(3分)如图,若添上一个正方形,使它能折叠成一个正方体,且使相对面上的数字之和相等,则共有几种不同的添法()A.5B.4C.3D.64.(3分)下列计算结果为a6的是()A.a2•a3B.a12÷a2C.(a2)3D.(﹣a2)3 5.(3分)某篮球运动员在连续7场比赛中的得分(单位:分)依次为20,18,23,17,20,20,18,则这组数据的众数与中位数分别是()A.18分,17分B.20分,17分C.20分,19分D.20分,20分6.(3分)不等式组的解集为()A..2<x<3B..2<x≤3C..x<2或x≥3D.无解7.(3分)如图,在△ABC中,按以下步骤作图:①分别以点B,C为圆心,大于BC的长为半径作弧,两弧相交于点M,N;②作直线MN,交AB于点D,连接CD若AC=AD,∠A=80°,则∠ACB的度数为()A.65°B.70°C.75°D.80°8.(3分)在﹣2,﹣1,0,1,2这五个数中任取两数m,n,则二次函数y=(x﹣m)2+n 的顶点在坐标轴上的概率为()A.B.C.D.9.(3分)二次函数y=ax2+bx+c的图象如图所示,以下结论:①abc>0;②4ac<b2;③2a+b >0;④其顶点坐标为(,﹣2);⑤当x<时,y随x的增大而减小;⑥a+b+c>0中正确的有()A.3 个B.4 个C.5 个D.6 个10.(3分)如图1,在矩形ABCD中,动点E从点A出发,沿AB→BC方向运动,当点E 到达点C时停止运动,过点E作FE⊥AE,交CD于点F,设点E的运动路程为x,FC =y,如图2所表示的是y与x的函数关系的大致图象,当点E在BC上运动时,FC的最大长度是,则矩形ABCD的面积是()A.16B.6C.20D.8二、填空题(每小题3分,共15分)11.(3分)﹣(﹣)0=.12.(3分)一元二次方程kx2﹣2x﹣1=0有实数根,则k的取值范围是.13.(3分)如图,点C在反比例函数y=(x>0)的图象上,过点C的直线与x轴,y轴分别交于点A,B,且AB=BC,△AOB的面积为,则k的值为.14.(3分)如图,在△ABC中,AC=AB,∠CAB=30°,AC=2.以AB的中点O为圆心、AB的长为直径,在AB的上方作半圆,再以点A为圆心、AC的长为半径,作扇形DAC,且∠DAC=30°,则图中阴影部分的面积为.15.(3分)如图,在Rt△ABC中,∠ACB=90°,BC=6,AC=8.点D为AB边上的一动点(点D不与点A,点B重合),过点D作DE∥BC,交AC于点E,把△ADE沿直线DE折叠,点A落在点A'处,连接BA′,若△A′DB为直角三角形,则AD的长为三、解答题(本大题共8个小题,满分75分)16.(8分)先化简,再求值(1+)÷,其中x是满足﹣1<x<2的整数.17.(9分)近几年,中学生过生日互送礼物甚至有部分家长为庆贺孩子生日大摆宴席攀比之风已成为社会关注热点.为此某媒体记者就中学生攀比心理的成因对某市城区若干名市民进行了调查,调查结果分为四组:A.社会环境的影响;B.学校正确引导的缺失;C.家长榜样示范的不足;D.其他.并将调查结果绘制成如下条形统计图和扇形统计图(均不完整)请根据图中提供的信息,解答下列问题:(1)扇形统计图中,B组所在扇形的圆心角度数是;(2)将条形统计图补充完整;(3)根据抽样调查结果,请你估计该市城区120000名市民中有多少名市民持C组观点;(4)针对现在部分同学因举行生日宴会而造成极大浪费的现象,请你简单说说中学生大操大办庆祝生日的危害性,并提出合理化的建议.18.(9分)如图,在Rt△ABC中,∠ACB=90°,以AC为直径的⊙O与斜边AB交于点D,点E为边BC的中点,连接DE.(1)求证:DE是⊙O的切线;(2)填空①若∠B=30°,AC=,则DE=;②当∠B=°时,以O,D,E,C为顶点的四边形是正方形.19.(9分)郑州大学(ZhengzhouUniversity),简称“郑大”,是中华人民共和国教育部与河南省人民政府共建的全国重点大学,首批“双一流”世界一流大学、“211工程”.某学校兴趣小组3人来到郑州大学门口进行测量,如图,在大楼AC的正前方有一个舞台,舞台前的斜坡DE=4米,坡角∠DEB=41°,小红在斜坡下的点E处测得楼顶A的仰角为60°,在斜坡上的点D处测得楼顶A的仰角为45°,其中点B,C,E在同一直线上求大楼AC的高度.(结果精确到整数.参考数据:≈1.73,sin41°≈0.6,cos41°≈0.75,tan41°≈0.87)20.(9分)如图,在平面直角坐标系中,点A(﹣,1)在反比例函数y=的图象上,AB⊥x轴于点C,过点O作OB⊥OA,交直线AB于点B.(1)求反比例函数y=的表达式;(2)在x轴上有一点P,使得S△AOP=S△AOB,求点P的坐标21.(10分)党的十九大提出实施乡村振兴战略,将生态宜居作为乡村振兴的总目标之一,《乡村振兴战略规划(2018﹣2022年)中更是把建设生态宜居美丽乡村作为重要内容以具体化.某县富强加工厂响应“产业兴旺、生态宜居、生活富裕”的号召,拟计划投资兴建2条全自动生产线和1条半自动生产线共用资金260万元;而投资兴建1条全自动生产线和3条半自动生产线共用资金280万元.(1)求每条全自动生产线和半自动生产线的成本各为多少万元?(2)据预测,2019年每条全自动生产线的毛利润为260万元,每条半自动生产线的毛利润为160万元这一年,该加工厂共投资兴建10条生产线,若想获得不少于1200万元的纯利润,则2019年该加工厂至少需投资兴建多少条全自动生产线?22.(10分)已知,点C为线段AB外一动点,且AB=4,AC=2.问题发现(1)图1,当点C位于时,线段BC的长取最大值,且最大值为.扩展探究(2)如图2,若以BC为斜边向上构造等腰直角三角形BCD,以点A为圆心,AC为半径,在转过程中,当A,C,D三点共线时,求CD的长度;解决问题(3)在(2)的条件下,以点A为圆心,AC为半径,在旋转过程中,试求AD的最大值和最小值.23.(11分)如图,抛物线y=﹣x2+bx+c经过点A(1,0),点B,交y轴于点C(0,2).连接BC,AC(1)求抛物线的解析式;(2)点D为抛物线第二象限上一点,满足S△BCD=S△ABC,求点D的坐标;(3)将直线BC绕点B顺时针旋转45°,与抛物线交于另一点E,求点E的坐标.参考答案与试题解析一、选择题(每小题3分,共30分)下列各小题均有四个答案,其中只有一个是正确的1.(3分)﹣的相反数是()A.﹣B.﹣C.D.【分析】根据只有符号不同的两个数互为相反数,可得一个数的相反数.【解答】解:﹣的相反数是.故选:C.【点评】本题考查了相反数,关键是在一个数的前面加上负号就是这个数的相反数.2.(3分)春暖花开,走在郑州中原西路上,不禁感慨“郑州的路越来越漂亮了“感慨背后,是对郑州从2012年起建设生态廊道的由衷认可.目前,郑州累计增绿超3亿平方米,相当于140个碧沙岗公园.我们把3亿用科学记数法表示为()A.3×1010 B.3×109 C.3×108 D.3x107【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n 的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:3亿=3×108,故选:C.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.3.(3分)如图,若添上一个正方形,使它能折叠成一个正方体,且使相对面上的数字之和相等,则共有几种不同的添法()A.5B.4C.3D.6【分析】正方体的表面展开图,相对的面之间一定相隔一个正方形确定出相对面,再根据相对面上的数字之和相等解答.【解答】解:正方体的表面展开图,相对的面之间一定相隔一个正方形,“1”与“5”是相对面,“2”与“4”是相对面,所以,要添加的是“3”的相对面,∴要添加一个正方形,使它能折叠成一个正方体,且使相对面上的数字之和相等,则共有4种不同的添法.故选:B.【点评】本题主要考查了正方体相对两个面上的文字,注意正方体的空间图形,从相对面入手,分析及解答问题.4.(3分)下列计算结果为a6的是()A.a2•a3B.a12÷a2C.(a2)3D.(﹣a2)3【分析】分别根据同底数幂相乘、同底数幂相除、幂的乘方的运算法则逐一计算可得.【解答】解:A、a2•a3=a5,此选项不符合题意;B、a12÷a2=a10,此选项不符合题意;C、(a2)3=a6,此选项符合题意;D、(﹣a2)3=﹣a6,此选项不符合题意;故选:C.【点评】本题主要考查幂的运算,解题的关键是掌握同底数幂相乘、同底数幂相除、幂的乘方的运算法则.5.(3分)某篮球运动员在连续7场比赛中的得分(单位:分)依次为20,18,23,17,20,20,18,则这组数据的众数与中位数分别是()A.18分,17分B.20分,17分C.20分,19分D.20分,20分【分析】根据中位数和众数的定义求解:众数是一组数据中出现次数最多的数据,注意众数可以不止一个;找中位数要把数据按从小到大的顺序排列,位于最中间的一个数(或两个数的平均数)为中位数.【解答】解:将数据重新排列为17、18、18、20、20、20、23,所以这组数据的众数为20分、中位数为20分,故选:D.【点评】本题属于基础题,考查了确定一组数据的中位数和众数的能力.一些学生往往对这个概念掌握不清楚,计算方法不明确而误选其它选项,注意找中位数的时候一定要先排好顺序,然后再根据奇数和偶数个来确定中位数,如果数据有奇数个,则正中间的数字即为所求,如果是偶数个则找中间两个数的平均数.6.(3分)不等式组的解集为()A..2<x<3B..2<x≤3C..x<2或x≥3D.无解【分析】一元一次不等式组的解法:解一元一次不等式组时,一般先求出其中各不等式的解集,再求出这些解集的公共部分,利用数轴可以直观地表示不等式组的解集.方法与步骤:①求不等式组中每个不等式的解集;②利用数轴求公共部分.解集的规律:同大取大;同小取小;大小小大中间找;大大小小找不到.【解答】解:由不等式①,得x>2,由不等式②,得x≤3,所以原不等式组的解集为2<x≤3.故选:B.【点评】本题考查了解不等式组,熟练掌握一元一次不等式组的解法是解题的关键,7.(3分)如图,在△ABC中,按以下步骤作图:①分别以点B,C为圆心,大于BC的长为半径作弧,两弧相交于点M,N;②作直线MN,交AB于点D,连接CD若AC=AD,∠A=80°,则∠ACB的度数为()A.65°B.70°C.75°D.80°【分析】利用等腰三角形的性质和三角形内角和计算出∴∠ACD=∠ADC=50°,再利用基本作图得到MN垂直平分BC,所以DB=DC,利用三角形外角性质和等腰三角形的性质计算出∠DCB=25°,然后计算∠ACD+∠DCB即可.【解答】解:∵AC=AD,∴∠ACD=∠ADC=(180°﹣∠A)=(180°﹣80°)=50°,由作法得MN垂直平分BC,∴DB=DC,∴∠B=∠DCB,而∠ADC=∠B+∠DCB,∴∠DCB=∠ADC=25°,∴∠ACB=∠ACD+∠DCB=50°+25°=75°.故选:C.【点评】本题考查了作图﹣基本作图:熟练掌握基本作图(作一条线段等于已知线段;作一个角等于已知角;作已知线段的垂直平分线;作已知角的角平分线;过一点作已知直线的垂线).8.(3分)在﹣2,﹣1,0,1,2这五个数中任取两数m,n,则二次函数y=(x﹣m)2+n 的顶点在坐标轴上的概率为()A.B.C.D.【分析】首先根据题意画出树状图,然后由树状图求得所有等可能的结果以及坐标轴上的点的情况,再利用概率公式即可求得答案.【解答】解:画树状图得:∵﹣2,﹣1,0,1,2这五个数中任取两数m,n,一共有20种可能,其中取到0的有8种可能,∴顶点在坐标轴上的概率为=.故选:A.【点评】此题考查了列表法或树状图法求概率.用到的知识点为:概率=所求情况数与总情况数之比,属于中考常考题型.9.(3分)二次函数y=ax2+bx+c的图象如图所示,以下结论:①abc>0;②4ac<b2;③2a+b >0;④其顶点坐标为(,﹣2);⑤当x<时,y随x的增大而减小;⑥a+b+c>0中正确的有()A.3 个B.4 个C.5 个D.6 个【分析】根据二次函数的性质即可求出答案.【解答】解:①由图象开口可知:a>0,c<0,∵>0,∴b<0,∴abc>0,故①正确;②由图象可知:△>0,∴b2﹣4ac>0,∴b2>4ac,故②正确;③抛物线与x轴交于点A(﹣1,0),B(2,0),∴抛物线的对称轴为:x=,∴<1,∴2a+b>0,故③正确;④由图象可知顶点坐标的纵坐标小于﹣2,故④错误;⑤由③可知抛物线的对称轴为x=,∴由图象可知:x<时,y随着x的增大而减小,故⑤正确;⑥由图象可知:x=1时,y<0,∴a+b+c<0,故⑥错误;故选:B.【点评】本题考查二次函数的性质,解题的关键是熟练运用二次函数的图象与性质,本题属于中等题型.10.(3分)如图1,在矩形ABCD中,动点E从点A出发,沿AB→BC方向运动,当点E 到达点C时停止运动,过点E作FE⊥AE,交CD于点F,设点E的运动路程为x,FC =y,如图2所表示的是y与x的函数关系的大致图象,当点E在BC上运动时,FC的最大长度是,则矩形ABCD的面积是()A.16B.6C.20D.8【分析】易证△CFE∽△BEA,可得,根据二次函数图象对称性可得E在BC中点时,CF有最大值,列出方程式即可解题.【解答】解:若点E在BC上时,如图∵∠EFC+∠AEB=90°,∠FEC+∠EFC=90°,∴∠CFE=∠AEB,∵在△CFE和△BEA中,∠CFE=∠AEB,∠C=∠B=90°,∴△CFE∽△BEA,由二次函数图象对称性可得E在BC中点时,CF有最大值,此时,BE=CE=x﹣5,即,∴y=,当y=时,代入方程式解得:x1=3(不合题意,舍去),x2=7,∴BE=CE=2,∴BC=4,AB=5,∴矩形ABCD的面积为5×4=20.故选:C.【点评】本题考查了二次函数动点问题,考查了相似三角形的判定和性质,考查了矩形面积的计算,本题中由图象得出E为BC中点是解题的关键.二、填空题(每小题3分,共15分)11.(3分)﹣(﹣)0=3.【分析】直接利用二次根式的性质、零指数幂的性质分别化简得出答案.【解答】解:原式=4﹣1=3.故答案为:3.【点评】此题主要考查了实数运算,正确化简各数是解题关键.12.(3分)一元二次方程kx2﹣2x﹣1=0有实数根,则k的取值范围是k≠0且k≥﹣1.【分析】让△=b2﹣4ac≥0,且二次项的系数不为0以保证此方程为一元二次方程.【解答】解:由题意得:4+4k≥0,k≠0,解得:k≠0且k≥﹣1.【点评】一元二次方程有实数根应注意两种情况:△≥0,二次项的系数不为0.13.(3分)如图,点C在反比例函数y=(x>0)的图象上,过点C的直线与x轴,y轴分别交于点A,B,且AB=BC,△AOB的面积为,则k的值为﹣6.【分析】根据题意可以设出点A的坐标,从而以得到点B和点C的坐标,即可求得k的值.【解答】解:设点A的坐标为(a,0),△AOB的面积为,∴B(0,)∵过点C的直线与x轴,y轴分别交于点A,B,且AB=BC∴点C(﹣a,),∵点C在反比例函数y=(x>0)的图象上,∴k=(﹣a)×=﹣6故答案为:﹣6.【点评】本题考查反比例函数系数k的几何意义、一次函数图象上点的坐标特征、反比例函数图象上点的坐标特征,解答本题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答.14.(3分)如图,在△ABC中,AC=AB,∠CAB=30°,AC=2.以AB的中点O为圆心、AB的长为直径,在AB的上方作半圆,再以点A为圆心、AC的长为半径,作扇形DAC,且∠DAC=30°,则图中阴影部分的面积为.【分析】设半圆O交AD于E交AC于F,连接OE,OF,EF,根据圆周角定理得到∠EOF=60°,推出△EOF是等边三角形,得到∠EFO=60°,推出EF∥AB,求得S△AEF =S△EOF,根据扇形的面积公式即可得到结论.【解答】解:设半圆O交AD于E交AC于F,连接OE,OF,EF,∵∠CAD=30°,∴∠EOF=60°,∴△EOF是等边三角形,∴∠EFO=60°,∵∠BAC=30°,∴∠BOF=60°,∴EF∥AB,∴S△AEF=S△EOF,∴图中阴影部分的面积=S扇形CAD﹣S扇形EOF=﹣=π﹣=,故答案为:.【点评】本题考查了扇形的面积的计算,等腰三角形的性质,圆周角定理,正确的作出辅助线是解题的关键.15.(3分)如图,在Rt△ABC中,∠ACB=90°,BC=6,AC=8.点D为AB边上的一动点(点D不与点A,点B重合),过点D作DE∥BC,交AC于点E,把△ADE沿直线DE折叠,点A落在点A'处,连接BA′,若△A′DB为直角三角形,则AD的长为或【分析】分两种情况进行讨论,当∠DA'B为直角时,设AD=A'D=x,通过证△AED∽△ACB,求出A'C,A'B的长度,然后在Rt△A'DB中,利用勾股定理可求出x的值;当∠DBA'为直角时,证△ABC∽△AA'B,求出A'B的值,然后在Rt△A'BD中,利用勾股定理可求出x的值.【解答】解:如图1,当∠DA'B为直角时,在Rt△ABC中,AB===10,由折叠知,△ADE≌△A'DE,∴AD=A'D,AE=A'E,∠AED=∠A'ED=×180°=90°,∴∠AED=∠ACB=90°,又∵∠A=∠A,∴△AED∽△ACB,∴,设AD=A'D=x,∴,∴AE=,∴A'C=AC﹣AA'=8﹣,在Rt△A'CB中,A'B2=A'C2+BC2=(8﹣)2+36,在Rt△A'DB中,BD=AB﹣AD=10﹣x,A'D=x,A'B2+A'D2=BD2,∴x2+(8﹣)2+36=(10﹣x)2,解得,x1=0(舍去),x2=,∴AD=;如图2,当∠DBA'为直角时,∵∠ABA'=∠ACB=90°,∠A=∠A∴△ABC∽△AA'B,∴,∴,∴AA'=,在Rt△AA'B中A'B==,设AD=A'D=x,在Rt△A'BD中,DB2+A'B2=A'D2,∴(10﹣x)2+()2=x2,解得,x=,∴AD=;故答案为:或.【点评】本题考查了勾股定理,轴对称的性质,相似三角形的判定与性质等,解题关键是能够根据题意画出两种情况的草图.三、解答题(本大题共8个小题,满分75分)16.(8分)先化简,再求值(1+)÷,其中x是满足﹣1<x<2的整数.【分析】根据分式的加法和除法可以化简题目中的式子,然后﹣1<x<2中选取一个使得原分式有意义的整数代入化简后的式子即可解答本题.【解答】解:(1+)÷==,当x=0时,原式==0.【点评】本题考查分式的化简求值,解答本题的关键是明确分式化简求值的方法.17.(9分)近几年,中学生过生日互送礼物甚至有部分家长为庆贺孩子生日大摆宴席攀比之风已成为社会关注热点.为此某媒体记者就中学生攀比心理的成因对某市城区若干名市民进行了调查,调查结果分为四组:A.社会环境的影响;B.学校正确引导的缺失;C.家长榜样示范的不足;D.其他.并将调查结果绘制成如下条形统计图和扇形统计图(均不完整)请根据图中提供的信息,解答下列问题:(1)扇形统计图中,B组所在扇形的圆心角度数是90°;(2)将条形统计图补充完整;(3)根据抽样调查结果,请你估计该市城区120000名市民中有多少名市民持C组观点;(4)针对现在部分同学因举行生日宴会而造成极大浪费的现象,请你简单说说中学生大操大办庆祝生日的危害性,并提出合理化的建议.【分析】(1)根据题目中的数据可以求得本次调查的人数,从而可以求得扇形统计图中,B组所在扇形的圆心角度数;(2)根据(1)中的结果和条形统计图中的数据可以求得C组的人数,从而可以将条形统计图补充完整;(3)根据统计图中的数据可以求得该市城区120000名市民中有多少名市民持C组观点;(4)根据题意写出几条为孩子和合理化建议即可,本题答案不唯一,只要合理即可.【解答】解:(1)本次调查的人数为:40÷20%=200,扇形统计图中,B组所在扇形的圆心角度数是:360°×=90°,故答案为:90°;(2)C组人数为:200﹣40﹣50﹣30=80,补充完整的条形统计图如右图所示;(3)120000×=48000(人),答:计该市城区120000名市民中有48000名市民持C组观点;(4)中学生大操大办庆祝生日的危害性:第一,造成孩子们的互相攀比现象;第二,给很多家庭带来负担;第三,不利于孩子们树立正确的价值观;合理化建议:可以一家人给孩子在家里办一个生日宴,这样可以和孩子拉近感情,又让孩子感受到父母对他们的关注.【点评】本题考查条形统计图、扇形统计图、用样本估计总体,解答本题的关键是明确题意,利用数形结合的思想解答.18.(9分)如图,在Rt△ABC中,∠ACB=90°,以AC为直径的⊙O与斜边AB交于点D,点E为边BC的中点,连接DE.(1)求证:DE是⊙O的切线;(2)填空①若∠B=30°,AC=,则DE=;②当∠B=45°时,以O,D,E,C为顶点的四边形是正方形.【分析】(1)AC是直径,则∠ADC=∠CDB=90°,点E为边BC的中点,连接OD,则∠OCD=∠ODC,则∠ODC+∠EDC=∠OCD+∠ECD=∠ACB=90°,即可证明;(2)①CB===3,则DE=BC=,即可求解;②只要DE⊥BC,以O,D,E,C为顶点的四边形就是正方形,即可求解.【解答】解:(1)∵AC是直径,则∠ADC=∠CDB=90°,∵点E为边BC的中点,∴∠ECD=∠EDC,∠B=∠BDE,连接OD,则∠OCD=∠ODC,∴∠ODC+∠EDC=∠OCD+∠ECD=∠ACB=90°,∴DE是⊙O的切线;(2)①CB===3,则DE=BC=,故答案是;②只要DE⊥BC,以O,D,E,C为顶点的四边形就是正方形,则∠B=∠BDE=×90°=45°,故答案为45.【点评】本题为圆的综合题,涉及到直角三角形中线定理、正方形的性质,直角三角形中线定理的应用,是本题解题的关键.19.(9分)郑州大学(ZhengzhouUniversity),简称“郑大”,是中华人民共和国教育部与河南省人民政府共建的全国重点大学,首批“双一流”世界一流大学、“211工程”.某学校兴趣小组3人来到郑州大学门口进行测量,如图,在大楼AC的正前方有一个舞台,舞台前的斜坡DE=4米,坡角∠DEB=41°,小红在斜坡下的点E处测得楼顶A的仰角为60°,在斜坡上的点D处测得楼顶A的仰角为45°,其中点B,C,E在同一直线上求大楼AC的高度.(结果精确到整数.参考数据:≈1.73,sin41°≈0.6,cos41°≈0.75,tan41°≈0.87)【分析】设CE=x,根据正弦的定义求出BD,根据余弦的定义求出BE,根据正切的定义用x表示出AC,根据等腰直角三角形的性质列方程,解方程得到答案.【解答】解:设CE=x,在Rt△DEB中,sin∠DEB=,∴DB=DE•sin∠DEB≈4×0.6=2.4,cos∠DEB=,∴BE=DE•cos∠DEB≈4×0.75=3,在Rt△AEC中,tan∠AEC=,∴AC=CE•tan∠AEC=x,∵∠ADF=45°,∴F A=FD,∴x﹣2.4=x+3,解得,x=,∴AC=x≈13,答:大楼AC的高度约为13米.【点评】本题考查的是解直角三角形的应用﹣仰角俯角问题、坡度坡角问题,掌握仰角俯角的概念、坡度的概念、熟记锐角三角函数的定义是解题的关键.20.(9分)如图,在平面直角坐标系中,点A(﹣,1)在反比例函数y=的图象上,AB⊥x轴于点C,过点O作OB⊥OA,交直线AB于点B.(1)求反比例函数y=的表达式;(2)在x轴上有一点P,使得S△AOP=S△AOB,求点P的坐标【分析】(1)将点A(﹣,1)代入y=,利用待定系数法即可求出反比例函数的表达式;(2)先由射影定理求出BC=3,那么B(﹣,﹣3),计算求出S△AOB=××4=2.则S△AOP=S△AOB=.设点P的坐标为(m,0),列出方程求解即可.【解答】解:(1)∵点A(﹣,1)在反比例函数y=的图象上,∴k=﹣×1=﹣,∴反比例函数的表达式为y=﹣;(2)∵A(﹣,1),AB⊥x轴于点C,∴OC=,AC=1,由射影定理得OC2=AC•BC,可得BC=3,B(﹣,﹣3),S△AOB=××4=2.∴S△AOP=S△AOB=.设点P的坐标为(m,0),∴×|m|×1=,∴|m|=2,∴m=±2,∴点P的坐标为(﹣2,0)或(2,0).【点评】本题考查了待定系数法求反比例函数的解析式,反比例函数图象上点的坐标特征,三角形的面积,正确求出解析式是解题的关键.21.(10分)党的十九大提出实施乡村振兴战略,将生态宜居作为乡村振兴的总目标之一,《乡村振兴战略规划(2018﹣2022年)中更是把建设生态宜居美丽乡村作为重要内容以具体化.某县富强加工厂响应“产业兴旺、生态宜居、生活富裕”的号召,拟计划投资兴建2条全自动生产线和1条半自动生产线共用资金260万元;而投资兴建1条全自动生产线和3条半自动生产线共用资金280万元.(1)求每条全自动生产线和半自动生产线的成本各为多少万元?(2)据预测,2019年每条全自动生产线的毛利润为260万元,每条半自动生产线的毛利润为160万元这一年,该加工厂共投资兴建10条生产线,若想获得不少于1200万元的纯利润,则2019年该加工厂至少需投资兴建多少条全自动生产线?【分析】(1)可设每条全自动生产线的成本为x万元,每条半自动生产线的成本为y万元,根据等量关系:投资兴建2条全自动生产线和1条半自动生产线共需资金260万元;投资兴建1条全自动生产线3条半自动生产线共需资金280万元;列出方程组求解即可;(2)可设2019年该加工厂需兴建全自动生产线a条,根据不等关系:获得不少于1200万元的纯利润,列出不等式求解即可.【解答】解:(1)设每条全自动生产线的成本为x万元,每条半自动生产线的成本为y 万元,根据题意,得,解得.答:每条全自动生产线的成本为100万元,每条半自动生产线的成本为60万元.(2)设2019年该加工厂需兴建全自动生产线a条,根据题意,得(260﹣100)a+(160﹣60)(10﹣a)≥1200,解得a≥3,由于a是正整数,所以a至少取4.即2019年该加工厂至少需投资兴建4条全自动生产线.【点评】本题考查二元一次方程组的应用,一元一次不等式组的应用,将现实生活中的事件与数学思想联系起来,读懂题列出等量关系和不等式关系式是解题的关键.22.(10分)已知,点C为线段AB外一动点,且AB=4,AC=2.问题发现(1)图1,当点C位于线段BA的延长线上时,线段BC的长取最大值,且最大值为6.扩展探究(2)如图2,若以BC为斜边向上构造等腰直角三角形BCD,以点A为圆心,AC为半径,在转过程中,当A,C,D三点共线时,求CD的长度;解决问题(3)在(2)的条件下,以点A为圆心,AC为半径,在旋转过程中,试求AD的最大值和最小值.【分析】(1)当点C位于线段BA的延长线上时,线段BC的长度最大,最大值为6;(2)以点A为圆心,AC为半径,在转过程中,当A,C,D三点共线,且点A在线段CD上时或点A在线段DC的延长线上时,设CD=x,在Rt△ADB中,利用勾股定理可分别求出两种情况下CD的长度;(3)当AC⊥AB且点C在AB上方时,AD取最大值,将△DCA以点D为圆心逆时针旋转90°得到△DBE,证明△ADE为等腰直角三角形,通过解直角三角形可求出AD的最大值;当AC⊥AB且点C在AB下方时,AD取最小值,将△DCA以点D为圆心逆时针旋转90°得到△DFB,且A,F,B三点在同一直线上,证明△ADF为等腰直角三角形,可通过解直角三角形可求出AD的最小值.【解答】解:(1)如图1,当点C位于线段BA的延长线上时,线段BC的长度最大,BC=AB+AC=4+2=6,故答案为:线段BA的延长线上,6;(2)①如图2﹣1,以点A为圆心,AC为半径,在转过程中,当A,C,D三点共线,且点A在线段CD上时,设CD=x,则DB=x,AD=CD﹣AC=x﹣2,在Rt△ADB中,AD2+DB2=AB2,即(x﹣2)2+x2=42,解得,x1=1﹣(负值舍去),x2=1+,∴CD=1+;②如图2﹣2,以点A为圆心,AC为半径,在转过程中,当A,C,D三点共线,且点A 在线段DC的延长线上时,设CD=x,则DB=x,AD=CD+AC=x+2,在Rt△ADB中,AD2+DB2=AB2,即(x+2)2+x2=42,解得,x1=﹣1﹣(负值舍去),x2=﹣1,∴CD=﹣1;∴CD的长度为1+或﹣1;(3)①如图3﹣1,当AC⊥AB且点C在AB上方时,AD取最大值,将△DCA以点D为圆心逆时针旋转90°得到△DBE,则∠ADE=90°,△DCA≌△DBE,∴DA=DE,BE=AC=2,∴△ADE为等腰直角三角形,∴AE=AB+BE=4+2=6,∴在等腰直角△ADE中,AD=AE=3,∴AD的最大值是3;。
备战2020中考【6套模拟】南京市中考第二次模拟考试数学试卷
![备战2020中考【6套模拟】南京市中考第二次模拟考试数学试卷](https://img.taocdn.com/s3/m/fd8d6872be1e650e52ea99c7.png)
备战2020中考【6套模拟】南京市中考第二次模拟考试数学试卷中学数学二模模拟试卷一、选择题(每小题4分,共40分)1.﹣2019的相反数是()A.2019 B.﹣2019 C.D.﹣2.如图所示的几何体的左视图是()A.B.C.D.3.鞋店要进一批新鞋,你是店长,应关注下列哪个统计量()A.平均数B.方差C.众数D.中位数4.下列四幅图案中,既是轴对称图形又是中心对称图形的是()A.B.C.D.5.下列运算正确的是()A.x3+x2=x5B.(x﹣3)2=x2﹣9C.(x2)3=x5D.5x2•x3=5x56.一个圆锥的高是4cm,底面半径是3cm,那么这个圆锥的侧面积为()A.15cm2B.12cm2C.15πcm2D.12πcm27.某公司承担了制作300个道路交通指引标志的任务,原计划x天完成,实际平均每天多制作了5个,因此提前10天完成任务.根据题意,下列方程正确的是()A.B.C.D.8.已知m是方程x2﹣2019x+1=0的一个根,则代数式m2﹣2018m++2的值是()A.2018 B.2019 C.2020 D.20219.如图,将矩形ABCD的四边BA,CB,DC,AD分别延长至点EF,G,H,使得AE=BF=CG =DH.已知AB=1,BC=2,∠BEF=30°,则tan∠AEH的值为()A.2 B.C.﹣1 D. +1 10.如图,一次函数分别与x轴,y轴交于AB两点,与反比例函数交于C、D两点,若CD=5AB,则k的值是()A.B.6C.8D.﹣4二、填空题(每小题5分,共30分)11.因式分解:a2+2ab=.12.不等式的解集是.13.如图,AB∥CD,EF平分∠AEC,EG⊥EF.若∠C=110°,则∠BEG的度数为度.14.如图,已知直线y=+b交y轴正半轴于点B,在x轴负半轴上取点A,使2BO=3AO,AC⊥x轴交直线y=+b于点C,若△OAC的面积为,则b的值为.15.如图,在直角坐标系中,⊙A的圆心坐标为(,a)半径为,函数y=2x﹣2的图象被⊙A截得的弦长为2,则a的值为.16.如图,在正方形ABCD中,AB=3,点E是对角线BD上的一点,连结AE,过点E作EF 垂直AE交BC于点F,连结AF,交对角线BD于G.若三角形AED与四边形DEFC的面积之比为3:8,则cos∠GEF=.三、解答题17.(10分)(1)计算:2﹣1++(2019+π)0﹣7sin30°(2)先化简,再求值:(x+4)2﹣x(x﹣3),其中x=18.(8分)两块完全相同的直角三角形纸板ABC和DEF,按如图所示的方式叠放,其中∠ABC =∠DEF=90°,点O为边BC和EF的交点.(1)求证:△BOF≌△COE.(2)若∠F=30°,AE=1,求OC的长.19.(8分)在一个不透明的布袋里装有4个球,其中3个白球,1个红球,它们除颜色外其余都相同.(1)若从中任意摸出一个球,求摸出白球的概率;(2)若摸出1个球,记下颜色后不放回,再摸出1个球,求两次摸出的球恰好颜色相同的概率(要求画树状图或列表)20.(8分)已知网格的小正方形的边长均为1,格点三角形ABC如图所示,请仅使用无刻度的直尺,且不能用直尺中的直角,画出满足条件的图形(保留作图痕迹)(1)在图甲AB边上取点D,使得△BCD的面积是△ABC的;(2)在图乙中,画出△ABC所在外接圆的圆心位置.21.(10分)如图,在△ABC中,AB=BC,以AB为直径的⊙O交BC于点D,交AC于点F,过点C作CE∥AB,与过点A的切线相交于点E,连接AD.(1)求证:AD=AE.(2)若AB=10,sin∠DAC=,求AD的长.22.(10分)如图,过抛物线y=ax2+bx上一点A(4,﹣2)作x轴的平行线,交抛物线于另一点B,点C在直线AB上,抛物线交x轴正半轴于点D(2,0),点B与点E关于直线CD对称.(1)求抛物线的表达式;(2)①若点E落在抛物线的对称轴上,且在x轴下方时,求点C的坐标.②AE最小值为.23.(12分)某水产经销商从批发市场以30元每千克的价格收购了1000千克的虾,了解到市场价在一个月内会以每天0.5元每千克的价格上涨,经销商打算先在塘里放养几天后再出售(但不超过一个月).假设放养期间虾的个体质量保持不变,但每天有10千克的虾死去.死去的虾会在当天以20元每千克的价格售出.(1)若放养10天后出售,则活虾的市场价为每千克元.(2)若放养x天后将活虾一次性售出,这1000千克的虾总共获得的销售额为36000元,求x的值.(3)若放养期间,每天会有各种其他的各种费用支出为a元,经销商在放养x天后全部售出,当20≤x≤30时,经销商日获利的最大值为1800元,则a的值为(日获利=日销售总额﹣收购成本﹣其他费用)24.(14分)如图,在ABC中,已知AB=BC=10,AC=4,AD为边BC上的高线,P为边AD上一点,连结BP,E为线段BP上一点,过D、P、E三点的圆交边BC于F,连结EF.(1)求AD的长;(2)求证:△BEF∽△BDP;(3)连结DE,若DP=3,当△DEP为等腰三角形时,求BF的长;(4)把△DEP沿着直线DP翻折得到△DGP,若G落在边AC上,且DG∥BP,记△APG、△PDG、△GDC的面积分别为S1、S2、S3,则S1:S2:S3的值为.参考答案一、选择题1.解:因为a的相反数是﹣a,所以﹣2019的相反数是2019.故选:A.2.解:从左边看第一层是两个小正方形,第二层是一个小正方形,故选:B.3.解:由于众数是数据中出现次数最多的数,故应最关心这组数据中的众数.故选:C.4.解:A、不是轴对称图形,也不是中心对称图形,不符合题意;B、是轴对称图形,不是中心对称图形,不符合题意;C、不是中心对称图形,是轴对称图形,不符合题意;D、是轴对称图形,也是中心对称图形,符合题意.故选:D.5.解:A、x3和x2不能合并同类项,故本选项不符合题意;B、结果是x2﹣6x+9,故本选项不符合题意;C、结果是x6,故本选项不符合题意;D、结果是5x5,故本选项,符合题意;故选:D.6.解:圆锥的母线长==5,所以这个圆锥的侧面积=×5×2π×3=15π(cm2).故选:C.7.解:设原计划x天完成,根据题意得:﹣=5.故选:B.8.解:∵m是方程x2﹣2019x+1=0的一个根,∴m2﹣2019m+1=0,∴m2=2019m﹣1,∴m2﹣2018m++2=2019m﹣2018m﹣1++2=m++1=+1=+1=2019+1=2020.故选:C.9.解:设AE=BF=CG=DH=x,∵四边形ABCD是矩形,∴∠ABC=∠BAD=90°,∴∠EAD=∠EBF=90°,∵AB=1,∠BEF=30°,∴BE=BF,∴x+1=x,解得:x=,∴AE=BF=CG=DH=,∴AH=AD+DH=2+=,∴tan∠AEH===2﹣1,故选:C.10.解:作CE⊥y轴于E,DF⊥x轴于F,连接EF,DE、CF,设D(x,),则F(x,0),由图象可知x>0,k>0,∴△DE F的面积是וx=k,同理可知:△CEF的面积是k,∴△CEF的面积等于△DEF的面积,∴边EF上的高相等,∴CD∥EF,∵BD∥EF,DF∥BE,∴四边形BDFE是平行四边形,∴BD=EF,同理EF=AC,∴AC=BD,∵CD=5AB,∴AD=3AB,由一次函数分别与x轴,y轴交于AB两点,∴A(﹣1,0),B(0,),∴OA=1,OB=,∵OB∥DF,∴===,∴DF=3,AF=3,∴OF=3﹣1=2,∴D(2,3),∵点D在反比例函数图象上,∴k=2×=6,故选:B.二、填空题11.解:原式=a(a+2b),故答案为:a(a+2b)12.解:,由①得:x≤,由②得:x>0,∴不等式组的解集为:0<x≤.故答案为:0<x≤.13.解:∵AB∥CD,∴∠C+∠AEC=180°,∵∠C=110°,∴∠AEC=70°,∵EF平分∠AEC,∴∠AEF=35°,∵EF⊥EG,∴∠FEG=90°,∴∠BEG=90°﹣35°=55°,故答案为:5514.解:∵y=+b交y轴正半轴于点B,∴B(0,b),∵在x轴负半轴上取点A,使2BO=3AO,∴B(0,b),当x=﹣时,y=2b,∴C(﹣,2b),∴△OAC的面积=×2b=,∴b=,故答案为.15.解:作AC⊥x轴于C,交CB于D,作AE⊥CB于E,连结AB,如图,∵⊙A的圆心坐标为(,a),∴OC=,AC=a,把x=代入y=2x﹣2得y=2﹣2,∴D点坐标为(,2﹣2),∴CD=2﹣2,∵AE⊥CB,∴CE=BE=BC=1,在Rt△ACE中,AC=,∴AE===2,∵y=2x﹣2,当x=0时,y=﹣2;当y=0时,x=1,∴G(0,﹣2),F(1,0),∴OG=2,OF=1,∵AC∥y轴,∴∠ADE=∠CDF=∠OGF,∴tan∠ADE==tan∠OGF==,∴DE=2AE=4,∴AD===2,∴a=AC=AD+CD=2+2﹣2=4﹣2,故答案为:4﹣2.16.解:连接CE,作EH⊥CD于H,EM⊥BC于M,如图所示:则四边形EMCH是矩形,∴EM=CH,CM=EH,∵四边形ABCD是正方形,∴BC=CD=3,∠ABC=90°,AB=CB,∠ABE=∠CBE=∠BDC=45°,在△ABE和△CBE中,,∴△ABE≌△CBE(SAS),∴EA=EF,∠BAE=∠BCE,同理:△ADE≌△CDE,∴△ADE的面积=△CDE的面积,∵△AED与四边形DEFC的面积之比为3:8,∴△CDE:△CEF的面积=3:5,∵EF⊥AE,∴∠AEF=90°,∴∠ABC+∠AEF=180°,∴A、B、F、E四点共圆,∴∠GEF=∠BAF,∠EFC=∠BAE=∠BCE,∴EF=EC,∵EM⊥BC,∴FM=CM=EH=DH,设FM=CM=EH=DH=x,则FC=2x,EM=HC=3﹣x,∵△CDE:△CEF的面积=3:5,∴,解得:x=,∴FC=1,BF=BC﹣FC=2,∴AF==,∴cos∠GEF=cos∠BAF===;故答案为:.三、解答题17.解:(1)原式=+2+1﹣﹣=2﹣2;(2)原式=x2+8x+16﹣x2+3x=11x+16,当x=时,原式=11×+16=25.18.(1)证明:∵△ABC≌△DEF,∴AB=DE,AC=DF,∠F=∠C,∴BF=CE,在△BOF与△EOC中,,∴△BOF≌△COE(AAS);(2)解:∵∠ABC=∠DEF=90°,∠F=30°,AE=1,∴∠C=∠F=30°,∴AC=2AE=2,∴CE=1,∵∠CEO=∠DEO=90°,∴OC==.19.解:(1)若从中任意摸出一个球,则摸出白球的概率为;(2)树状图如下所示:∴两次摸出的球恰好颜色相同的概率为=.20.解:(1)如图点D即为所求.(2)如图点O即为所求.21.(1)证明:∵AE与⊙O相切,AB是⊙O的直径∴∠BAE=90°,∠ADB=90°,∴∠ADC=90°,∵CE∥AB,∴∠BAE+∠E=180°,∴∠E=90°,∴∠E=∠ADB,∵在△ABC中,AB=BC,∴∠BAC=∠BCA,∵∠BAC+∠EAC=90°,∠ACE+∠EAC=90°,∴∠BAC=∠ACE,∴∠BCA=∠ACE,在△ADC和△AEC中,,∴△ADC≌△AEC(AAS),∴AD=AE;(2)解:连接BF,如图所示:∵∠CBF=∠DAC,∠AFB=90°,∴∠CFB=90°,sin∠CBF==sin∠DAC=,∵AB=BC=10,∴CF=2,∵BF⊥AC,∴AC=2CF=4,在Rt△ACD中,sin∠DAC==,∴CD=×4=4,∴AD===8.22.解:(1)将点A(4,﹣2)、D(2,0)代入,得:,解得:,∴抛物线的表达式为y=﹣x2+x;(2)①如图1,连接BD、DE,作EP⊥AB,并延长交OD于Q,∵抛物线的对称轴为直线x=﹣=1,∴点A(4,﹣2)关于对称轴对称的点B坐标为(﹣2,﹣2),∴BD==2,设C(m,﹣2),则BC=CE=m+2,DE=BD=2,∵QD=1,PQ=2,∴PE=QE﹣PQ=﹣1=﹣1,∵PC=1﹣m,∴由PC2+PE2=CE2可得(1﹣m)2+(﹣1)2=(m+2)2,解得m=,∴点C的坐标为(,﹣2);②如图2,∵DB=DE=2,∴点E在以D为圆心、2长为半径的⊙D上,连接DA,并延长交⊙D于点E′,此时AE′取得最小值,∵DA==2,则AE的最小值为DE﹣DA=2﹣2,故答案为:2﹣2.23.解:(1)30+0.5×10=35元,答:放养10天后出售,则活虾的市场价为每千克35元,故答案为:35;(2)由题意得,(30+0.5x)(1000﹣10x)+200x=36000,解得:x1=20,x2=60(不合题意舍去),答:x的值为20;(3)设经销商销售总额为y元,根据题意得,y=(30+0.5x)(1000﹣10x)+200x﹣30000﹣ax,且20≤x≤30,整理得y=﹣5x2+(400﹣a)x,对称轴x=,当0≤a≤100时,当x=30时,y有最大值,则﹣4500+30(400﹣a)=1800,解得a=190(舍去);当a≥200时,当x=20时,y有最大值,则﹣2000+20(400﹣a)=1800,解得a=210;当100<a<200时,当x=时,y取得最大值,y=(a2﹣800a+16000),最大值由题意得(a2﹣800a+16000)=1800,解得a=400(均不符合题意,舍去);综上,a的值为210.故答案为:210.24.解:(1)设CD=x,则BD=10﹣x,在Rt△ABD和Rt△ACD中,AD2=AB2﹣BD2=AC2﹣CD2,依题意得:,解得x=6,∴AD==8.(2)∵四边形BFEP是圆内接四边形,∴∠EFB=∠DPB,又∵∠FBE=∠PDB,∴△BEF∽△BDP.(3)由(1)得BD=6,∵PD=3,∴BP==,∴cos∠PBD=,当△DEP为等腰三角形时,有三种情况:Ⅰ.当PE=DP=3 时,BE=BP﹣EP=,∴BF===.Ⅱ.当DE=PE时,E是BP中点,BE=,∴BF===,Ⅲ.当DP=DE=3时,PE=2×PD cos∠BPD==,∴BE=3,∴BF===,若DP=3,当△DEP为等腰三角形时,BF的长为、、.(4)连接EG交P D于M点,∵DG∥BP∴∠EPD=∠EDF=∠PDG,∴PG=DG,∵EP=PG,ED=DG,∴四边形PEDG是菱形,∴EM=MG,PM=DM,EG⊥AD,又∵BD⊥AD,∴EG∥BC,∴EM=,∴,∴AM=6,∴DM=PM=2,∴PD=4,AP=4,∴S△APG==×4×3=6,S△PDG==×4×3=6,S△GDC===4.∴S1:S2:S3=6:6:2=3:3:2.中学数学二模模拟试卷一、选择题(每小题4分,共40分)1.﹣2019的相反数是()A.2019 B.﹣2019 C.D.﹣2.如图所示的几何体的左视图是()A.B.C.D.3.鞋店要进一批新鞋,你是店长,应关注下列哪个统计量()A.平均数B.方差C.众数D.中位数4.下列四幅图案中,既是轴对称图形又是中心对称图形的是()A.B.C.D.5.下列运算正确的是()A.x3+x2=x5B.(x﹣3)2=x2﹣9C.(x2)3=x5D.5x2•x3=5x56.一个圆锥的高是4cm,底面半径是3cm,那么这个圆锥的侧面积为()A.15cm2B.12cm2C.15πcm2D.12πcm27.某公司承担了制作300个道路交通指引标志的任务,原计划x天完成,实际平均每天多制作了5个,因此提前10天完成任务.根据题意,下列方程正确的是()A.B.C.D.8.已知m是方程x2﹣2019x+1=0的一个根,则代数式m2﹣2018m++2的值是()A.2018 B.2019 C.2020 D.20219.如图,将矩形ABCD的四边BA,CB,DC,AD分别延长至点EF,G,H,使得AE=BF=CG =DH.已知AB=1,BC=2,∠BEF=30°,则tan∠AEH的值为()A.2 B.C.﹣1 D. +1 10.如图,一次函数分别与x轴,y轴交于AB两点,与反比例函数交于C、D两点,若CD=5AB,则k的值是()A.B.6C.8D.﹣4二、填空题(每小题5分,共30分)11.因式分解:a2+2ab=.12.不等式的解集是.13.如图,AB∥CD,EF平分∠AEC,EG⊥EF.若∠C=110°,则∠BEG的度数为度.14.如图,已知直线y=+b交y轴正半轴于点B,在x轴负半轴上取点A,使2BO=3AO,AC⊥x轴交直线y=+b于点C,若△OAC的面积为,则b的值为.15.如图,在直角坐标系中,⊙A的圆心坐标为(,a)半径为,函数y=2x﹣2的图象被⊙A截得的弦长为2,则a的值为.16.如图,在正方形ABCD中,AB=3,点E是对角线BD上的一点,连结AE,过点E作EF 垂直AE交BC于点F,连结AF,交对角线BD于G.若三角形AED与四边形DEFC的面积之比为3:8,则cos∠GEF=.三、解答题17.(10分)(1)计算:2﹣1++(2019+π)0﹣7sin30°(2)先化简,再求值:(x+4)2﹣x(x﹣3),其中x=18.(8分)两块完全相同的直角三角形纸板ABC和DEF,按如图所示的方式叠放,其中∠ABC =∠DEF=90°,点O为边BC和EF的交点.(1)求证:△BOF≌△COE.(2)若∠F=30°,AE=1,求OC的长.19.(8分)在一个不透明的布袋里装有4个球,其中3个白球,1个红球,它们除颜色外其余都相同.(1)若从中任意摸出一个球,求摸出白球的概率;(2)若摸出1个球,记下颜色后不放回,再摸出1个球,求两次摸出的球恰好颜色相同的概率(要求画树状图或列表)20.(8分)已知网格的小正方形的边长均为1,格点三角形ABC如图所示,请仅使用无刻度的直尺,且不能用直尺中的直角,画出满足条件的图形(保留作图痕迹)(1)在图甲AB边上取点D,使得△BCD的面积是△ABC的;(2)在图乙中,画出△ABC所在外接圆的圆心位置.21.(10分)如图,在△ABC中,AB=BC,以AB为直径的⊙O交BC于点D,交AC于点F,过点C作CE∥AB,与过点A的切线相交于点E,连接AD.(1)求证:AD=AE.(2)若AB=10,sin∠DAC=,求AD的长.22.(10分)如图,过抛物线y=ax2+bx上一点A(4,﹣2)作x轴的平行线,交抛物线于另一点B,点C在直线AB上,抛物线交x轴正半轴于点D(2,0),点B与点E关于直线CD对称.(1)求抛物线的表达式;(2)①若点E落在抛物线的对称轴上,且在x轴下方时,求点C的坐标.②AE最小值为.23.(12分)某水产经销商从批发市场以30元每千克的价格收购了1000千克的虾,了解到市场价在一个月内会以每天0.5元每千克的价格上涨,经销商打算先在塘里放养几天后再出售(但不超过一个月).假设放养期间虾的个体质量保持不变,但每天有10千克的虾死去.死去的虾会在当天以20元每千克的价格售出.(1)若放养10天后出售,则活虾的市场价为每千克元.(2)若放养x天后将活虾一次性售出,这1000千克的虾总共获得的销售额为36000元,求x的值.(3)若放养期间,每天会有各种其他的各种费用支出为a元,经销商在放养x天后全部售出,当20≤x≤30时,经销商日获利的最大值为1800元,则a的值为(日获利=日销售总额﹣收购成本﹣其他费用)24.(14分)如图,在ABC中,已知AB=BC=10,AC=4,AD为边BC上的高线,P为边AD上一点,连结BP,E为线段BP上一点,过D、P、E三点的圆交边BC于F,连结EF.(1)求AD的长;(2)求证:△BEF∽△BDP;(3)连结DE,若DP=3,当△DEP为等腰三角形时,求BF的长;(4)把△DEP沿着直线DP翻折得到△DGP,若G落在边AC上,且DG∥BP,记△APG、△PDG、△GDC的面积分别为S1、S2、S3,则S1:S2:S3的值为.参考答案一、选择题1.解:因为a的相反数是﹣a,所以﹣2019的相反数是2019.故选:A.2.解:从左边看第一层是两个小正方形,第二层是一个小正方形,故选:B.3.解:由于众数是数据中出现次数最多的数,故应最关心这组数据中的众数.故选:C.4.解:A、不是轴对称图形,也不是中心对称图形,不符合题意;B、是轴对称图形,不是中心对称图形,不符合题意;C、不是中心对称图形,是轴对称图形,不符合题意;D、是轴对称图形,也是中心对称图形,符合题意.故选:D.5.解:A、x3和x2不能合并同类项,故本选项不符合题意;B、结果是x2﹣6x+9,故本选项不符合题意;C、结果是x6,故本选项不符合题意;D、结果是5x5,故本选项,符合题意;故选:D.6.解:圆锥的母线长==5,所以这个圆锥的侧面积=×5×2π×3=15π(cm2).故选:C.7.解:设原计划x天完成,根据题意得:﹣=5.故选:B.8.解:∵m是方程x2﹣2019x+1=0的一个根,∴m2﹣2019m+1=0,∴m2=2019m﹣1,∴m2﹣2018m++2=2019m﹣2018m﹣1++2=m++1=+1=+1=2019+1=2020.故选:C.9.解:设AE=BF=CG=DH=x,∵四边形ABCD是矩形,∴∠ABC=∠BAD=90°,∴∠EAD=∠EBF=90°,∵AB=1,∠BEF=30°,∴BE=BF,∴x+1=x,解得:x=,∴AE=BF=CG=DH=,∴AH=AD+DH=2+=,∴tan∠AEH===2﹣1,故选:C.10.解:作CE⊥y轴于E,DF⊥x轴于F,连接EF,DE、CF,设D(x,),则F(x,0),由图象可知x>0,k>0,∴△DE F的面积是וx=k,同理可知:△CEF的面积是k,∴△CEF的面积等于△DEF的面积,∴边EF上的高相等,∴CD∥EF,∵BD∥EF,DF∥BE,∴四边形BDFE是平行四边形,∴BD=EF,同理EF=AC,∴AC=BD,∵CD=5AB,∴AD=3AB,由一次函数分别与x轴,y轴交于AB两点,∴A(﹣1,0),B(0,),∴OA=1,OB=,∵OB∥DF,∴===,∴DF=3,AF=3,∴OF=3﹣1=2,∴D(2,3),∵点D在反比例函数图象上,∴k=2×=6,故选:B.二、填空题11.解:原式=a(a+2b),故答案为:a(a+2b)12.解:,由①得:x≤,由②得:x>0,∴不等式组的解集为:0<x≤.故答案为:0<x≤.13.解:∵AB∥CD,∴∠C+∠AEC=180°,∵∠C=110°,∴∠AEC=70°,∵EF平分∠AEC,∴∠AEF=35°,∵EF⊥EG,∴∠FEG=90°,∴∠BEG=90°﹣35°=55°,故答案为:5514.解:∵y=+b交y轴正半轴于点B,∴B(0,b),∵在x轴负半轴上取点A,使2BO=3AO,∴B(0,b),当x=﹣时,y=2b,∴C(﹣,2b),∴△OAC的面积=×2b=,∴b=,故答案为.15.解:作AC⊥x轴于C,交CB于D,作AE⊥CB于E,连结AB,如图,∵⊙A的圆心坐标为(,a),∴OC=,AC=a,把x=代入y=2x﹣2得y=2﹣2,∴D点坐标为(,2﹣2),∴CD=2﹣2,∵AE⊥CB,∴CE=BE=BC=1,在Rt△ACE中,AC=,∴AE===2,∵y=2x﹣2,当x=0时,y=﹣2;当y=0时,x=1,∴G(0,﹣2),F(1,0),∴OG=2,OF=1,∵AC∥y轴,∴∠ADE=∠CDF=∠OGF,∴tan∠ADE==tan∠OGF==,∴DE=2AE=4,∴AD===2,∴a=AC=AD+CD=2+2﹣2=4﹣2,故答案为:4﹣2.16.解:连接CE,作EH⊥CD于H,EM⊥BC于M,如图所示:则四边形EMCH是矩形,∴EM=CH,CM=EH,∵四边形ABCD是正方形,∴BC=CD=3,∠ABC=90°,AB=CB,∠ABE=∠CBE=∠BDC=45°,在△ABE和△CBE中,,∴△ABE≌△CBE(SAS),∴EA=EF,∠BAE=∠BCE,同理:△ADE≌△CDE,∴△ADE的面积=△CDE的面积,∵△AED与四边形DEFC的面积之比为3:8,∴△CDE:△CEF的面积=3:5,∵EF⊥AE,∴∠AEF=90°,∴∠ABC+∠AEF=180°,∴A、B、F、E四点共圆,∴∠GEF=∠BAF,∠EFC=∠BAE=∠BCE,∴EF=EC,∵EM⊥BC,∴FM=CM=EH=DH,设FM=CM=EH=DH=x,则FC=2x,EM=HC=3﹣x,∵△CDE:△CEF的面积=3:5,∴,解得:x=,∴FC=1,BF=BC﹣FC=2,∴AF==,∴cos∠GEF=cos∠BAF===;故答案为:.三、解答题17.解:(1)原式=+2+1﹣﹣=2﹣2;(2)原式=x2+8x+16﹣x2+3x=11x+16,当x=时,原式=11×+16=25.18.(1)证明:∵△ABC≌△DEF,∴AB=DE,AC=DF,∠F=∠C,∴BF=CE,在△BOF与△EOC中,,∴△BOF≌△COE(AAS);(2)解:∵∠ABC=∠DEF=90°,∠F=30°,AE=1,∴∠C=∠F=30°,∴AC=2AE=2,∴CE=1,∵∠CEO=∠DEO=90°,∴OC==.19.解:(1)若从中任意摸出一个球,则摸出白球的概率为;(2)树状图如下所示:∴两次摸出的球恰好颜色相同的概率为=.20.解:(1)如图点D即为所求.(2)如图点O即为所求.21.(1)证明:∵AE与⊙O相切,AB是⊙O的直径∴∠BAE=90°,∠ADB=90°,∴∠ADC=90°,∵CE∥AB,∴∠BAE+∠E=180°,∴∠E=90°,∴∠E=∠ADB,∵在△ABC中,AB=BC,∴∠BAC=∠BCA,∵∠BAC+∠EAC=90°,∠ACE+∠EAC=90°,∴∠BAC=∠ACE,∴∠BCA=∠ACE,在△ADC和△AEC中,,∴△ADC≌△AEC(AAS),∴AD=AE;(2)解:连接BF,如图所示:∵∠CBF=∠DAC,∠AFB=90°,∴∠CFB=90°,sin∠CBF==sin∠DAC=,∵AB=BC=10,∴CF=2,∵BF⊥AC,∴AC=2CF=4,在Rt△ACD中,sin∠DAC==,∴CD=×4=4,∴AD===8.22.解:(1)将点A(4,﹣2)、D(2,0)代入,得:,解得:,∴抛物线的表达式为y=﹣x2+x;(2)①如图1,连接BD、DE,作EP⊥AB,并延长交OD于Q,∵抛物线的对称轴为直线x=﹣=1,∴点A(4,﹣2)关于对称轴对称的点B坐标为(﹣2,﹣2),∴BD==2,设C(m,﹣2),则BC=CE=m+2,DE=BD=2,∵QD=1,PQ=2,∴PE=QE﹣PQ=﹣1=﹣1,∵PC=1﹣m,∴由PC2+PE2=CE2可得(1﹣m)2+(﹣1)2=(m+2)2,解得m=,∴点C的坐标为(,﹣2);②如图2,∵DB=DE=2,∴点E在以D为圆心、2长为半径的⊙D上,连接DA,并延长交⊙D于点E′,此时AE′取得最小值,∵DA==2,则AE的最小值为DE﹣DA=2﹣2,故答案为:2﹣2.23.解:(1)30+0.5×10=35元,答:放养10天后出售,则活虾的市场价为每千克35元,故答案为:35;(2)由题意得,(30+0.5x)(1000﹣10x)+200x=36000,解得:x1=20,x2=60(不合题意舍去),答:x的值为20;(3)设经销商销售总额为y元,根据题意得,y=(30+0.5x)(1000﹣10x)+200x﹣30000﹣ax,且20≤x≤30,整理得y=﹣5x2+(400﹣a)x,对称轴x=,当0≤a≤100时,当x=30时,y有最大值,则﹣4500+30(400﹣a)=1800,解得a=190(舍去);当a≥200时,当x=20时,y有最大值,则﹣2000+20(400﹣a)=1800,解得a=210;当100<a<200时,当x=时,y取得最大值,y=(a2﹣800a+16000),最大值由题意得(a2﹣800a+16000)=1800,解得a=400(均不符合题意,舍去);综上,a的值为210.故答案为:210.24.解:(1)设CD=x,则BD=10﹣x,在Rt△ABD和Rt△ACD中,AD2=AB2﹣BD2=AC2﹣CD2,依题意得:,解得x=6,∴AD==8.(2)∵四边形BFEP是圆内接四边形,∴∠EFB=∠DPB,又∵∠FBE=∠PDB,∴△BEF∽△BDP.(3)由(1)得BD=6,∵PD=3,∴BP==,∴cos∠PBD=,当△DEP为等腰三角形时,有三种情况:Ⅰ.当PE=DP=3 时,BE=BP﹣EP=,∴BF===.Ⅱ.当DE=PE时,E是BP中点,BE=,∴BF===,Ⅲ.当DP=DE=3时,PE=2×PD cos∠BPD==,∴BE=3,∴BF===,若DP=3,当△DEP为等腰三角形时,BF的长为、、.(4)连接EG交P D于M点,∵DG∥BP∴∠EPD=∠EDF=∠PDG,∴PG=DG,∵EP=PG,ED=DG,∴四边形PEDG是菱形,∴EM=MG,PM=DM,EG⊥AD,又∵BD⊥AD,∴EG∥BC,∴EM=,∴,∴AM=6,∴DM=PM=2,∴PD=4,AP=4,∴S△APG==×4×3=6,S△PDG==×4×3=6,S△GDC===4.∴S1:S2:S3=6:6:2=3:3:2.中学数学二模模拟试卷一、选择题(本大题10个小题,每小题3分,共30分)下列各小题均有四个答案,其中只有一个是正确的,将正确答案的代号字母用2B铅笔涂在对应的答题卡上1.(3分)的相反数是()A.B.C.D.2.(3分)电影《流浪地球》中有一个名词“洛希极限”,它是指两大星体之间可以保持平稳运行的最小距离,其中地球与木星之间的洛希极限约为10.9万公里,数据“10.9万”用科学记数法表示正确的是()A.10.9×104B.1.09×104C.10.9×105D.1.09×1053.(3分)如图,在△ABC中,点D、E分别在AB、AC边上,DE∥BC,点F在BC的延长线上,若∠ACF=140°,∠ADE=105°,则∠A的大小为()A.30°B.35°C.50°D.75°4.(3分)下列计算正确的是()A.(xy)3=xy3B.x5÷x5=xC.3x2•5x3=15x5D.5x2y3+2x2y3=10x4y95.(3分)2019年1月3日上午10时26分,嫦娥四号探测器成功着陆在月球背面,开启了月球探测的新篇章,中国人迈开了走向星辰大海的第一步.如图是某正方体的展开图,在原正方体上“星”字所在面相对的面上的汉字是()A.走B.向C.大D.海6.(3分)在一次数学竞赛中,五位同学答对题目的个数分别为7,5,3,5,10,则这组数据的众数、中位数、方差分别是()A.5、3、4.6 B.5、5、5.6 C.5、3、5.6 D.5、5、6.6 7.(3分)方程的解为()A.2 B.2或4 C.4 D.无解(3分)如图,在△ABC中,∠ACB=90°,D为AB中点,连接DC并延长到点E,使CE CD,过点8.B作BF∥DE,与AE的延长线交于点F.若AB=12,则BF的长为()A.7 B.8 C.10 D.169.(3分)在平面直角坐标系中,若直线y=x+n与直线y=mx+6(m、n为常数,m<0)相交于点P(3,5),则关于x的不等式x+n+1<mx+7的解集是()A.x<3 B.x<4 C.x>4 D.x>610.(3分)如图,正方形ABCD的边长为4,点P、Q分别是CD、AD的中点,动点E从点A 向点B运动,到点B时停止运动;同时,动点F从点P出发,沿P→D→Q运动,点E、F 的运动速度相同.设点E的运动路程为x,△AEF的面积为y,能大致刻画y与x的函数关系的图象是()A.B.C.D.二、填空题(本大题5个小题,每小题3分,共15分)11.(3分)比较大小:3.(填“>”或“<”号)12.(3分)实数a、b在数轴上对应点的位置如图所示,则|a+b|+|b|=.(3分)将4个数a,b,c,d排成2行、2列,两边各加一条竖直线记成,定义ad 13.﹣bc,请你将化为代数式,再化简为.14.(3分)如图,长方形纸片ABCD的长AB=3,宽BC=2,以点A为圆心,以AB的长为半径作弧;以点C为圆心,以BC的长为半径作弧.则图中阴影部分的面积是.15.(3分)在菱形ABCD中,AB=2,∠BAD=120°,点E,F分别是边AB,BC边上的动点,沿EF折叠△BEF,使点B的对应点B’始终落在边CD上,则A、E两点之间的最大距离为.三、解答题(本大题8个小题,共75分)16.(8分)先化简,再求值:(1),其中x满足x2﹣2x﹣5=0.17.(9分)某校为了解学生对排球、羽毛球、足球、篮球(以下分别用A、B、C、D表示)这四种球类运动的喜好情况.对全体学生进行了抽样调查(每位学生只能选一项最喜欢的运动),并将调查情况绘制成如下两幅不完整的统计图.请根据以上信息回答下面问题:(1)本次参加抽样调查的学生有人.(2)补全两幅统计图.(3)若从本次参加抽样调查的学生中任取1人,则此人喜欢哪类球的概率最大?求其概率.18.(9分)如图,在△ABC中,AC=BC,AB是⊙C的切线,切点为点D,直线AC交⊙C于点E、F,且CF AC(1)求证:△ABF是直角三角形.(2)若AC=6,则直接回答BF的长是多少.19.(9分)如图,一架无人机在距离地面高度为13.3米的点A处,测得地面点M的俯角为53°,这架无人机沿仰角为35°的方向飞行了55米到达点B,恰好在地面点N的正上方,M、N在同一水平线上求出M、N两点之间的距离.(结果精确到1米)(参考数据:sin53°≈0.80,cos53°≈0.60,tan53°≈1.33,sin35°≈0.57,cos35°≈0.82,tan35°≈0.70.)20.(9分)如图,在直角坐标系中,矩形OABC的顶点O与坐标原点重合,A、C分别在坐标轴上,点B的坐标为(4,2),直线y x+3交AB,BC分别于点M,N,反比例函数y的图象经过点M,N.(1)求反比例函数的解析式;(2)若点P在y轴上,且△OPM的面积与四边形BMON的面积相等,求点P的坐标.21.(10分)某小区2号楼对外销售,已知2号楼某单元共33层,一楼为商铺,只租不售,二楼以上价格如下:第16层售价为6000元/米2,从第16层起每上升一层,每平方米的售价提高30元,反之每下降一层,每平方米的售价降低10元,已知该单元每套的面积均为100米2(1)请在下表中,补充完整售价y(元/米2)与楼层x(x取正整数)之间的函数关系式.(2)某客户想购买该单元第26层的一套楼房,若他一次性付清购房款,可以参加如图优惠活动.请你帮助他分析哪种优惠方案更合算.22.(10分)已知△ABC,AB=AC,D为直线BC上一点,E为直线AC上一点,AD=AE,设∠BAD=α,∠CDE=β,(1)如图1,若点D在线段BC上,点E在线段AC上.∠ABC=60°,∠ADE=70°,则α=°;β=°.(2)如图2,若点D在线段BC上,点E在线段AC上,则α,β之间有什么关系式?说明理由.(3)是否存在不同于(2)中的α,β之间的关系式?若存在,请写出这个关系式(写出一种即可),说明理由;若不存在,请说明理由.23.(11分)在平面直角坐标系中,抛物线y bx+c,经过点A(1,3)、B(0,1),过点A作x轴的平行线交抛物线于另一点C(1)求抛物线的表达式及其顶点坐标;(2)如图1,点G是BC上方抛物线上的一个动点,分别过点G作GH⊥BC于点H、作GE ⊥x轴于点E,交BC于点F,在点G运动的过程中,△GFH的周长是否存在最大值?若存在,求出这个最大值;若不存在,请说明理由;(3)如图2,过A点的直线垂直x轴于点M,点N为直线AM上任意一点,当△BCN为直角三角形时,请直接写出点N的坐标.参考答案与试题解析一、选择题(本大题10个小题,每小题3分,共30分)下列各小题均有四个答案,其中只有一个是正确的,将正确答案的代号字母用2B铅笔涂在对应的答题卡上1.【解答】解:的相反数是.故选:B.2.【解答】解:将10.9万用科学记数法表示为:1.09×105.故选:D.3.【解答】解:∵DE∥BC,∴∠DEC=∠ACF=140°,∴∠AED=180°﹣140°=40°,∵∠ADE=105°,∴∠A=180°﹣105°﹣40°=35°,故选:B.4.【解答】解:A、原式=x3y3,错误;B、原式=1,错误;C、原式=15x5,正确;D、原式=7x2y3,错误,故选:C.5.【解答】解:这是一个正方体的平面展开图,共有六个面,其中面“星”与面“海”相对,故选:D.6.【解答】解:数据中5出现2次,次数最多,所以众数为5;数据按从小到大的顺序排列为3、5、5、7、10,则中位数为5;∵平均数为(7+5+3+5+10)÷5=6,∴方差为[(7﹣6)2+(5﹣6)2×2+(3﹣6)2+(10﹣6)2]=5.6;故选:B.7.【解答】解:去分母得:2x=(x﹣2)2+4,分解因式得:(x﹣2)[2﹣(x﹣2)]=0,解得:x=2或x=4,经检验x=2是增根,分式方程的解为x=4,故选:C.8.【解答】解:如图,∵∠ACB=90°,D为AB的中点,AB=6,∴CD AB=6.又CE CD,∴CE=2,∴ED=CE+CD=8.又∵BF∥DE,点D是AB的中点,∴ED是△AFB的中位线,∴BF=2ED=16.故选:D.9.【解答】解:∵直线y=x+n从左向右逐渐上升,直线y=mx+6(m、n为常数,m<0)从左向右逐渐下降,且两直线相交于点P(3,5)∴当x<3时,x+n<mx+6,∴x+n+1<mx+7.故选:A.10.【解答】解:当F在PD上运动时,△AEF的面积为y AE•AD=2x(0≤x≤2),当F在AD上运动时,△AEF的面积为y AE•AF x(6﹣x)x2+3x(2<x≤4),图象为:故选:A.二、填空题(本大题5个小题,每小题3分,共15分)11.【解答】解:∵3>>2,∴2>1>1,∴1<3.故答案为:<.12.【解答】解:∵a<0<b,a+b<0,∴|a+b|+|b|=﹣(a+b)+b=﹣a﹣b+b=﹣a.故答案为:﹣a.13.【解答】解:∵ad﹣bc,∴=(x+3)(x+3)﹣(x﹣1)(x+1)=x2+6x+9﹣x2+1=6x+10,故答案为:6x+10.14.【解答】解:由图可得,图中阴影部分的面积是:6,故答案为:6.15.【解答】解:如图,作AH⊥CD于H.∵四边形ABCD是菱形,∠BAD=120°,∴AB∥CD,∴∠D+∠BAD=180°,∴∠D=60°,∵AD=AB=2,∴AH=AD•sin60°,∵B,B′关于EF对称,∴BE=EB′,当BE的值最小时,AE的值最大,根据垂线段最短可知,当EB′时,BE的值最小,∴AE的最大值=2,故答案为2.三、解答题(本大题8个小题,共75分)16.【解答】解:原式••x(x﹣2)=x2﹣2x,由x2﹣2x﹣5=0,得到x2﹣2x=5,则原式=5.17.【解答】解(1)总人数=60÷10%=600(人)故答案为600.(2)如下图:(3)240÷600=0.4此人喜欢蓝球的概率最大,其概率是0.4.18.【解答】(1)证明:如图,连接CD,则CF=CD,∵AB是⊙C的切线.∴CD⊥AB,∠ADC=∠BDC=90°,在Rt△ACD中,∵CF,∴CD=CF,∴∠A=30°∵AC=BC∴∠ABC=∠A=30°,∴∠ACB=120°,∠BCD=∠BCF=60°,又∵BC=BC,∴△BCD≌△BCF(SAS),∴∠BFC=∠BDC=90°,∴△ABF是直角三角形.(2)解:∵AC=BC,CD⊥AB,∴AD=BD=BF,在Rt△ACD中,∵∠A=30°,AC=6,∴CD AC=3,∴AD CD=3.∴BF=3.19.【解答】解:过点A作AC⊥BN于C.过点M作MD⊥AC于D,如图所示.在Rt△AMD中,DM=13.3,∠DAM=53°,∴AD10;在Rt△ABC中,AB=55,∠BAC=35°,∴AC=AB•cos53°=55×0.82=45.1.∵AC⊥BN,MD⊥AC,MN⊥BN,∴四边形MDCN是矩形,∴MN=DC=AC﹣AD≈35.答:MN两点的距离约是35米.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
南京市2019-2020学年中考数学二模试题(I)卷
姓名:________ 班级:________ 成绩:________
一、单选题
1 . 若,则的值为()
A.2B.-1C.1D.-2
2 . 某种病毒近似于球体,它的半径约为0.000000005米,用科学记数法表示为()A.5×108B.5×109C.5×10﹣8D.5×10﹣9
3 . 如图,已知AB∥CD,则∠1、∠2和∠3之间的关系为()
A.∠2+∠1﹣∠3=180°B.∠3+∠1=∠2
C.∠3+∠2+∠1=360°D.∠3+∠2﹣2∠1=180°
4 . 在下列四个数中,是无理数的是()
D.-2 A.B.0
C.
5 . 一组数据:5,7,10,5,7,5,6.这组数据的中位数和众数()
A.7和10B.7和5C.7和6D.6和5
6 . 关于x的一元二次方程kx2+2x-1=0有两个不相等的实数根,则k的取值范围是()A.B.C.D.且
7 . 下列说法正确的是()
A.“打开电视机,正在播世界杯足球赛”是必然事件
B.“掷一枚硬币正面朝上的概率是”表示每抛掷硬币2次就有1次正面朝上
C.一组数据2,3,4,5,5,6的众数和中位数都是5
D.甲组数据的方差S甲2=0.09,乙组数据的方差S乙2=0.56,则甲组数据比乙组数据稳定
8 . 如图,正五边形ABCDE内接于⊙O,过点A的切线与CB的延长线相交于点F,则∠F=()
A.18°B.36°C.54°D.72°
9 . 课本上运用尺规作图:作一个角等于已知角,其作图的依据是()
A.B.C.D.
10 . 将直线向右平移2个单位,再向上平移3个单位后,所得的直线的表达式为()A.B.C.D.
11 . 下列各式正确的是()
A.;
B.;
C.;
D..
12 . 若实数x,y满足条件,则x2+y2+2x的最大值是()
A.14B.15C.16D.不能确定
二、填空题
13 . 一圆锥的侧面积为,底面半径为3,则该圆锥的母线长为________.
14 . 已知如图,矩形OCBD如图所示,OD=2,OC=3,反比例函数的图象经过点B,点A为第一象限双曲线上的动点(点A的横坐标大于2),过点A作AF⊥BD于点F,AE⊥x轴于点E,连接OB,AD,若△OBD∽△DAE,则点A
的坐标是_____.
15 . 将一张长方形纸片折叠成如图所示的图形,若,,则______.
16 . 有理数a,b,c在数轴上的位置如图测所示,则│a-b│-│a-c│=_____.
17 . 因式分解:______.
18 . 如图,▱ABCD的对角线AC,BD相交于点O,且AC=4,BD=7,CD=3,则△ABO周长是__.
三、解答题
19 . 计算:
20 . 如图,用长为6m的铝合金条制成“日”字形窗框,若窗框的宽为xm,窗户的透光面积为ym2(铝合金条的宽度不计).
(1)求出y与x的函数关系式;
(2)如何安排窗框的长和宽,才能使得窗户的透光面积最大?并求出此时的最大面积.
21 . 如图直线y=2x+m与y=(n≠0)交于A,B两点,且点A的坐标为(1,4).
(1)求此直线和双曲线的表达式;
(2)过x轴上一点M作平行于y轴的直线1,分别与直线y=2x+m和双曲线y=(n≠0)交于点P,Q,如果PQ
=2QM,求点M的坐标.
22 . 如图,抛物线y=ax2+bx﹣2a与x轴交于点A和点B(1,0),与y轴将于点C(0,﹣).
(1)求抛物线的解析式;
(2)若点D(2,n)是抛物线上的一点,在y轴左侧的抛物线上存在点T,使△TAD的面积等于△TBD的面积,求出所有满足条件的点T的坐标;
(3)直线y=kx﹣k+2,与抛物线交于两点P、Q,其中在点P在第一象限,点Q在第二象限,PA交y轴于点M,QA交y轴于点N,连接BM、BN,试判断△BMN的形状并证明你的结
论.
23 . 先化简,再求值:,其中x为方程的根.
24 . “地球一小时“是世界自然基金会应对全球气候变化所提出的一项全球性节能活动,提倡于每年三月最后一个星期六的当地时间晚上 20:30(2019 年“地球一小时”时间为 3 月20日晚上 20:30),家庭及商界用户关上不必要的电灯及耗电产品一小时,以此增强群众环境保护的意识,小明也参加了这次活动,为了解居民用电情况,小明调查了部分同学某月的家庭用电量,根据调查数据制作了频数分布直方图和扇形统计图,第21题图1中从左到右各长方形的高度之比为2:8:9:7:3:1.
(1)已知用电量60≤x<80(度/月)的家庭有12个,则此次行动共调查了家庭;
(2)在第21题图2中,用电量20≤x<40(度/月)部分的圆心角为度;
(3)小明把第21题图1中用电量20≤x<30的都看成25,用电量30≤x<40都看成35,以此类推,若小明学校的同学来自1200个家庭,则按小明的方法,可估算用电量x≥50(度/月)的家庭一个月的用电量约为多少度?
25 . 如图,O为∠MBN角平分线上一点,⊙O与BN相切于点C,连结CO并延长交BM于点A,过点A作AD⊥BO 于点D.
(1)求证:AB为⊙O的切线;
(2)若BC=6,tan∠ABC=,求AD的长.
26 . 我市在创建全国文明城市的过程中,某社区在甲楼的A处与E处之间悬挂了一副宣传条幅,在乙楼顶部C 点测得条幅顶端A点的仰角为45°,条幅底端E点的俯角为30°,若甲、乙两楼之间的水平距离BD为12米,求
条幅AE的长度.(结果保留根号)。