数学八年级上册 三角形填空选择专题练习(解析版)

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

数学八年级上册 三角形填空选择专题练习(解析版)

一、八年级数学三角形填空题(难)

1.如图,ABC ∆的ABC ∠的平分线与ACB ∠的外角平分线相交于点D ,点,E F 分别在线段BD 、CD 上,点G 在EF 的延长线上,EFD ∆与EFH ∆关于直线EF 对称,若60,84,A BEH HFG n ︒︒︒∠=∠=∠=,则n =__________.

【答案】78.

【解析】

【分析】

利用ABC ∆的ABC ∠的平分线与ACB ∠的外角平分线相交于点D 得到

∠DBC=

12∠ABC ,∠ACD=12(∠A+∠ABC),根据三角形的内角和得到∠D=12

∠A=30︒,利用外角定理得到∠DEH=96︒,由EFD ∆与EFH ∆关于直线EF 对称得到∠DEG=∠HEG=48︒,根据外角定理即可得到∠DFG=∠D+∠DEG=78︒.

【详解】

∵ABC ∆的ABC ∠的平分线与ACB ∠的外角平分线相交于点D

∴∠DBC=12∠ABC ,∠ACD=12

(∠A+∠ABC), ∵∠DBC+∠BCD+∠D=180︒,∠A+∠ABC+∠ACB=180︒,

∴∠D=12

∠A=30︒, ∵84BEH ︒∠=,

∴∠DEH=96︒,

∵EFD ∆与EFH ∆关于直线EF 对称,

∴∠DEG=∠HEG=48︒,∠DFG=∠HFG n ︒=,

∵∠DFG=∠D+∠DEG=78︒,

∴n=78.

故答案为:78.

【点睛】

此题考查三角形的内角和定理、外角定理,角平分线性质,轴对称图形的性质,此题中求出∠D=12

∠A=30︒是解题的关键.

2.如图,ABC 中,点D 在AC 的延长线上,E 、F 分别在边AC 和AB 上,BFE ∠与BCD ∠的平分线相交于点P ,若ABC ∠=70°FEC ∠=80°,则P ∠=______.

【答案】85°

【解析】

【分析】

根据四边形内角和等于360°,在四边形FECB 中∠B +∠BFE +∠FEC +∠BCE =360°,结合角平分线的定义计算即可得∠1-∠2=15°;再在四边形EFPC 中求出∠1-∠2+∠P =110°即可解答.

【详解】

解:

∵∠BFE =2∠1,∠BCD =2∠2,

又∵∠BFE +∠ABC +∠FEC +∠BCE =360°,ABC ∠=70°,FEC ∠=80°,

∴2∠1+(180°-2∠2)+70°+80°=360°,

∴∠1-∠2=15°;

∵在四边形EFPC 中,∠PFE +∠FEC +∠P +∠PCE =360°,

∴∠1+80°+(180°-∠2)+∠P =360°,

∴∠1-∠2+∠P =100°,

∴∠P =85°,

故答案为:85°.

【点睛】

本题考查的是三角形内角和定理和四边形内角和定理的应用,掌握三角形内角和等于180°和四边形内角和等于360°是解题的关键.

3.直角三角形中,两锐角的角平分线所夹的锐角是_____度.

【答案】45

【解析】

【分析】

根据题意画出符合条件的图形,然后根据直角三角形的两锐角互余和角平分线的性质,以及三角形的外角的性质求解即可.

【详解】

如图所示

△ACB 为Rt△,AD ,BE ,分别是∠CAB 和∠ABC 的角平分线,AD ,BE 相交于一点F . ∵∠ACB=90°, ∴∠CAB+∠ABC=90°

∵AD,BE ,分别是∠CAB 和∠ABC 的角平分线,

∴∠FAB+∠FBA=

12∠CAB+12

∠ABC=45°. 故答案为45.

【点睛】

此题主要考查了直角三角形的两锐角互余和三角形的外角的性质,关键是根据题意画出相应的图形,利用三角形的相关性质求解.

4.如图,1BA 和1CA 分别是ABC ∆的内角平分线和外角平分线,2BA 是1A BD ∠的角平分线, 2CA 是1A CD ∠的角平分线,3BA 是2A BD ∠的角平分线,3CA 是2A CD ∠的角平分线,若1A α∠=,则2018A ∠=_____________

【答案】

20172α

【解析】

【分析】 根据角平分线的定义可得∠A 1BC=12∠ABC ,∠A 1CD=12

∠ACD ,再根据三角形的一个外角等于与它不相邻的两个内角的和可得∠ACD=∠A+∠ABC ,∠A 1CD=∠A 1BC+∠A 1,整理即可得解,同理求出∠A 2,可以发现后一个角等于前一个角的

12,根据此规律即可得解. 【详解】

∵A 1B 是∠ABC 的平分线,A 1C 是∠ACD 的平分线,

∴∠A 1BC=12∠ABC ,∠A 1CD=12

∠ACD , 又∵∠ACD=∠A+∠ABC,∠A 1CD=∠A 1BC+∠A 1,

∴12(∠A+∠ABC )=12

∠ABC+∠A 1, ∴∠A 1=12

∠A , ∵∠A 1=α.

同理理可得∠A 2=12∠A 1=12α,∠A 3=12∠A 2=212

α, ……, ∴∠A 2018=

20172α, 故答案为

20172α.

【点睛】

本题主要考查的是三角形内角和定理,熟知三角形的一个外角等于与它不相邻的两个内角的和的性质,角平分线的定义是解题的关键.

5.一个正多边形的每个外角为60°,那么这个正多边形的内角和是_____.

【答案】720°.

【解析】

【分析】先利用多边形的外角和为360°计算出这个正多边形的边数,然后再根据内角和公式进行求解即可.

【详解】这个正多边形的边数为36060︒︒

=6, 所以这个正多边形的内角和=(6﹣2)×180°=720°,

故答案为720°.

【点睛】本题考查了多边形内角与外角:内角和定理:(n ﹣2)•180 (n≥3)且n 为整数);多边形的外角和等于360度.

6.如图,将一张三角形纸片 ABC 的一角折叠,使点 A 落在△ABC 外的 A'处,折痕为 DE .如果∠A =α,∠CEA′=β,∠BDA'=γ,那么 α,β,γ 三个角的数量关系是

__________ .

相关文档
最新文档