2014年4月自考概率论与数理统计二02197试题含答案

合集下载

全国自学考试概率论与数理统计二历年真题及答案

全国自学考试概率论与数理统计二历年真题及答案

全国2010年7月高等教育自学考试 概率论与数理统计(二)试题课程代码:02197一、单项选择题(本大题共10小题,每小题2分,共20分)在每小题列出的四个备选项中只有一个是符合题目要求的,请将其代码填写在题后的括号内。

错选、多选或未选均无分。

1.设A 、B 为两事件,已知P (B )=21,P (A ⋃B )=32,若事件A ,B 相互独立,则P (A )=( ) A .91B .61C .31D .21 2.对于事件A ,B ,下列命题正确的是( ) A .如果A ,B 互不相容,则A ,B 也互不相容 B .如果A ⊂B ,则B A ⊂ C .如果A ⊃B ,则B A ⊃D .如果A ,B 对立,则A ,B 也对立3.每次试验成功率为p (0<p <1),则在3次重复试验中至少失败一次的概率为( ) A .(1-p )3 B .1-p 3C .3(1-p )D .(1-p )3+p (1-p )2+p 2(1-p )4.已知离散型随机变量X则下列概率计算结果正确的是( ) A .P (X =3)=0 B .P (X =0)=0 C .P (X >-1)=1D .P (X <4)=1 5.已知连续型随机变量X 服从区间[a ,b ]上的均匀分布,则概率P =⎭⎬⎫⎩⎨⎧+<32b a X ( )A .0B .31C .32 D .1A .(51,151)B .(151,51)C .(101,152) D .(152,101) 7.设(X ,Y )的联合概率密度为f (x ,y )=⎩⎨⎧≤≤≤≤+,,0,10,20),(其他y x y x k 则k =( )A .31B .21 C .1D .38.已知随机变量X ~N (0,1),则随机变量Y =2X +10的方差为( ) A .1 B .2 C .4D .149.设随机变量X 服从参数为0.5的指数分布,用切比雪夫不等式估计P (|X -2|≥3)≤( )A .91B .92C .31D .94 10.由来自正态总体X ~N (μ,22)、容量为400的简单随机样本,样本均值为45,则未知参数μ的置信度为0.95的置信区间是(u 0.025=1.96,u 0.05=1.645)( ) A .(44,46)B .(44.804,45.196)C .(44.8355,45.1645)D .(44.9,45.1)二、填空题(本大题共15小题,每小题2分,共30分)请在每小题的空格中填上正确答案。

全国概率论与数理统计(二)2012年4月高等教育自学考试试题与答案

全国概率论与数理统计(二)2012年4月高等教育自学考试试题与答案

1 / 6 全国2012年4月高等教育自学考试概率论及数理统计(二)试题课程代码:02197一、单项选择题(本大题共10小题,每小题2分,共20分)在每小题列出的四个备选项中只有一个是符合题目要求的,请将其代码填写在题后的括号内。

错选、多选或未选均无分。

1. 设A ,B 为随机事件,且A ⊂B ,则AB 等于( ) A. A B B. B C. A D. A2. 设A ,B 为随机事件,则P (A-B )=( )A. P (A )-P (B )B. P (A )-P (AB )C. P (A )-P (B )+ P (AB )D. P (A )+P (B )- P (AB )3. 设随机变量X 的概率密度为f (x )= 则P {3<X ≤4}=( )A. P {1<X ≤2}B. P {4<X ≤5}C. P {3<X ≤5}D. P {2<X ≤7}4. 已知随机变量X 服从参数为λ的指数分布, 则X 的分布函数为 ( )A. F (x )=B. F (x )=C. F (x )=D. F (x )=5. 已知随机变量X~N (2,2σ), P {X ≤4}=0.84, 则P {X ≤0}= ( )A. 0.16B. 0.32C. 0.68D. 0.846. 设随机变量X 及Y 相互独立,且都服从标准正态分布,则2X -Y +1~ ( )A. N (0,1)B. N (1,1)C. N (0,5)D. N (1,5)7. 设随机变量X 及Y 相互独立,它们的概率密度分别为f X (x ), f Y (y ), 则(X ,Y ) 的概率密度为 () A. 21[ f X (x )+f Y (y )] B. f X (x )+f Y (y ) C. 21f X (x ) f Y (y ) D. f X (x ) f Y (y )2 / 68.设随机变量X ~B (n ,p ), 且E (X )=2.4, D (X )=1.44, 则参数n ,p 的值分别为( )A. 4和0.6B. 6和0.4C. 8和0.3D.3和0.89. 设随机变量X 的方差D (X )存在,且D (X )>0,令Y =-X ,则ρXY =( )A. -1B.0C. 1D.210. 设总体X ~N (2,32),x 1,x 2,…,x n 为来自总体X 的样本,x 为样本均值,则下列统计 量中服从标准正态分布的是( ) A.32-x B. 92-x C. D. 二、填空题(本大题共15小题,每小题2分,共30分)请在每小题的空格上填上正确答案。

全国自考概率论与数理统计(二)试题和答案

全国自考概率论与数理统计(二)试题和答案

B)14.设随机变量X 的分布律为,F (x )是X 的分布函数,则F (1)=______.正确答案:(2分) 2/315.设随机变量X 的概率密度为f (x )=2010,x x ≤≤⎧⎨⎩,,其他,则12P X ⎧⎫>⎨⎬⎩⎭=______.正确答案:(2分)3/416.已知随机变量X ~N (4,9),P {X >c }=P {X ≤c },则常数c =______. 正确答案:(2分) 417.设二维随机变量(X ,Y )的分布律为则常数a =______. 正确答案:(2分) 0.218.设随机变量X 与Y 相互独立,且X ~N (0,l),Y ~N (-1,1),记Z =X -Y ,则Z ~______. 正确答案:(2分) N(1,2)19.设随机变量X 服从参数为2的泊松分布,则E (X 2)=______. 正确答案:(2分) 620.设X ,Y 为随机变量,且E (X )=E (Y )=1,D (X )=D (Y )=5,ρXY =0.8,则E (XY )=______. 正确答案:(2分) 521.设随机变量X 服从区间[-1,3]上的均匀分布,随机变量Y =0111X X <⎧⎨≥⎩,,,,则E (Y )=______. 正确答案:(2分) 1/222.设随机变量X ~B (100,0.2),()x Φ为标准正态分布函数,()2.5Φ=0.9938,应用中心极限定理,可得P {20≤x ≤30)≈______. 正确答案:(2分) 0.493823.设总体X ~N (0,l),x 1,x 2,x 3,x 4为来自总体X 的样本,则统计量22221234x x x x +++~______.正确答案:(2分)x2(4)24.设总体X~N(μ,1),μ未知,x1,x2,…,x n为来自该总体的样本,x为样本均值,则μ的置信度为1-α的置信区间是______.正确答案:(2分)]1,1[22nuxnuxaa+-25.某假设检验的拒绝域为W,当原假设H0成立时,样本值(x1,x2,…,x n)落入W的概率为0.1,则犯第一类错误的概率为______.正确答案:(2分)0.1三、计算题(本大题共2小题,每小题8分,共16分)26.设二维随机变量(X,Y)的概率密度为26,01,01,()0,x y x yf x⎧≤≤≤≤⎪=⎨⎪⎩ 其他.求:(1)(X,Y)关于X的边缘概率密度f X(x);(2)P{X>Y}.正确答案:27.设总体X的概率密度为1,0,()0,0,xe xf xxθθ-⎧>⎪=⎨⎪≤⎩其中未知参数θ>0,x1,x2,…,x n是来自该总体的样本,求θ的极大似然估计.四、综合题(本大题共2小题,每小题12分,共24分)正确答案:28.有甲、乙两盒,甲盒装有4个白球1个黑球,乙盒装有3个白球2个黑球,从甲盒中任取1个球,放入乙盒中,再从乙盒中任取2个球.(1)求从乙盒中取出的是2个黑球的概率;(2)已知从乙盒中取出的是2个黑球,问从甲盒中取出的是白球的概率.正确答案:29.设随机变量X~N(0,l),记Y=2X.求:(1)P{X<-1>;(2)P{|X|<1};(3)Y的概率密度.(附:Φ(1)=0.8413)正确答案:五、应用题(10分)30.某产品的次品率为0.l,检验员每天抽检10次,每次随机取3件产品进行检验,且不存在误检现象,设产品是否为次品相互独立,若在一次检验中检出次品多于1件,则调整设备,以X表示一天调整设备的次数,求E(X).正确答案:。

自考概率论与数理统计(二)(02197)及答案

自考概率论与数理统计(二)(02197)及答案

概率论与数理统计(二)(课程代码:02197)本试卷共五页,满分100分;考试时间150分钟。

一、单项选择题(每小题4分,共40分)1)、设事件A 、B 满足2.0)(=-A B P ,6.0)(=B P ,则)(AB P =( ) A )、0.12 B )、0.4 C )、0.6 D )、0.8 2)、设二维随机变量),(Y X 的分布律为 则}{Y X P ==( )A)、0.3 B )、0.5 C )、0.7 D )0.8 3)、设随机变量X 服从参数为2的泊松分布,则下列结论中正确的是( ) A )、5.0)(,5.0)(==X D X EB )、25.0)(,5.0)(==X D X EC )、4)(,2)(==XD X ED )、2)(,2)(==X D XE 4)、设随机变量X 服从正态分布(0,4)N ,()x Φ为标准正态分布函数,则{36}( ).P X ≤≤=. (6)(3) . (3)(1.5) 3. (1.5)(1) . (3)()4A B C D Φ-ΦΦ-ΦΦ-ΦΦ-Φ5)、设随机变量)2,1( ~2-N X ,则X 的概率密度=)(x f ( ) A )、4)1(241+-x eπB )、8)1(241+-x eπC )、8)1(2221+-x eπD )、8)1(2221--x eπ6)、设随机变量)1,0(~,)1,0(~N Y N X ,且X 与Y 相互独立,则~22Y X +( )A )、)2,0(NB )、)2(2χC )、)2(tD )、)1,1(F7)、设)2,1( ~2N X ,n X X ,,1 为X 的样本,记∑==n i i X n X 11则有( ) A )、)1,0(~/21N n X - B )、)1,0(~41N X - C )、)1,0(~21N X - D )、)1,0(~21N X - 8)、设总体),( ~2σμN X ,其中μ未知,4321,,,x x x x 为来自总体X的一个样本,则以下关于μ的四个估计:3211513151ˆx x x ++=μ,)(41ˆ43212x x x x +++=μ,1371ˆx =μ,2147261ˆx x +=μ中,哪一个是无偏估计?( )A )、1ˆμB )、2ˆμC )、3ˆμD )4ˆμ 9)、对随机变量X 来说,如果 EX DX ≠,则可断定X 不服从( )分布。

最新全国历年自学考试概率论与数理统计(二)02197试题与答案

最新全国历年自学考试概率论与数理统计(二)02197试题与答案

全国2011年4月自学考试概率论与数理统计(二)课程代码:02197选择题和填空题详解试题来自百度文库 答案由王馨磊导师提供一、单项选择题(本大题共10小题,每小题2分,共20分)在每小题列出的四个备选项中只有一个是符合题目要求的,请将其代码填写在题后的括号内。

错选、多选或未选均无分。

1.设A , B , C , 为随机事件, 则事件“A , B , C 都不发生”可表示为( ) A .C B A B .C B A C .C B A D .C B A.A BC A A ABC CB AC B A C B A C B A ABC C B A A A A 故本题选;不发生,记作④仅;不全发生,记作,,不多于两个发生,即,,③;都不发生,记作,,②;都发生,记作,,①;的对立事件,记作不发生”为事件解:事件“2.设随机事件A 与B 相互独立, 且P (A )=51, P (B )=53, 则P (A ∪B )= ( )A .253B .2517C .54D .2523故本题选B.3.设随机变量X ~B (3, 0.4), 则P {X ≥1}= ( ) A .0.352 B .0.432 C .0.784 D .0.936解:P{X ≥1}=1- P{X=0}=1-(1-0.4)³=0.784,故选C. 4.已知随机变量X 的分布律为 , 则P {-2<X ≤4}= ( ) A .0.2 B .0.35 C .0.55 D .0.8解:P {-2<X ≤4}= P {X =-1}+ P {X =2}=0.2+0.35=0.55,故选C. 5.设随机变量X 的概率密度为4)3(2e2π21)(+-=x x f , 则E (X ), D (X )分别为( ) A .2,3-B .-3, 2.251753515351)()()()()()()()(=⨯-+=-+=-+=B P A P B P A P AB P B P A P B A P B A 相互独立,与事件解:事件C .2,3D .3, 2()(),,度为解:正态分布的概率密+∞<<∞=--x ex f x -21222σμσπ与已知比较可知:E(X)=-3,D(X)=2,故选B. 6.设二维随机变量 (X , Y )的概率密度为⎩⎨⎧≤≤≤≤=,,0,20,20,),(其他y x c y x f 则常数c =( )A .41B .21C .2D .4解:设D 为平面上的有界区域,其面积为S 且S>0,如果二维随机变量 (X ,Y )的概率密度为则称 (X ,Y )服从区域D 上的均匀分布,由0≤x ≤2,0≤y ≤2,知S=4,所以c=1/4,故选A.7.设二维随机变量 (X , Y )~N (-1, -2;22, 32;0), 则X -Y ~ ( ) A .N (-3, -5) B .N (-3,13) C .N (1, 13) D .N (1,13)解:由题设知,X~N(-1,2²),Y~N(-2,3²),且X 与Y 相互独立, 所以E(X-Y)=E(X)-E(Y)=-1-(-2)=1,D(X-Y)=D(X)+D(Y)=13,故选D. 8.设X , Y 为随机变量, D (X )=4, D (Y )=16, Cov (X ,Y )=2, 则XY ρ=( )A .321 B .161C .81D .41..41422)()()(D Y D X D Y X Cov xy 故选,解:直接代入公式=⨯==ρ 9.设随机变量X ~2χ(2), Y ~2χ(3), 且X 与Y 相互独立, 则3/2/Y X ~ ( ) A .2χ (5) B .t (5) C .F (2,3)D .F (3,2).)(~)(~)(~21212221C n m F F F n m nX mX F X X n x X m x X ,据此定义易知选,记为分布,的与的分布是自由度为独立,则称与,,解:设=10.在假设检验中, H 0为原假设, 则显著性水平α的意义是 ( ) A .P {拒绝H 0|H 0为真} B .P {接受H 0|H 0为真} C .P {接受H 0|H 0不真} D .P {拒绝H 0|H 0不真}解:在0H 成立的情况下,样本值落入了拒绝域W 因而0H 被拒绝,称这种错误为第一类错误;()⎪⎩⎪⎨⎧∈=其他,,),,(0,1D y x S x f.}|{..,""}|{0002002A H H P H W u u u H H u u P ,故本题选为真拒绝即即为显著水平,而概率即为误的由此可见,犯第一类错,从而拒绝了即样本值落入了拒绝域满足本值算得的成立的条件下,根据样,在成立因为αααααα=>=>二、填空题 (本大题共15小题, 每小题2分, 共30分)请在每小题的空格中填上正确答案。

2013~2014年全国自考概率论与数理统计试题及答案要点

2013~2014年全国自考概率论与数理统计试题及答案要点

全国2013年1月高等教育自学考试概率论与数理统计(经管类)试题一、单项选择题(本大题共10小题,每小题2分,共20分)二、填空题(本大题共15小题,每小题2分,共30分)三、计算题(本大题共2小题,每小题8分,共16分)四、综合题(本大题共2小题,每小题12分,共24分)五、应用题(10分)全国2013年1月高等教育自学考试 概率论与数理统计(经管类)答案1、本题考查的是和事件的概率公式,答案为C.2、解:()()(|)1()()P B AB P AB P B AB P AB P AB ⋂===()()()0.50.15(|)0.5()()1()0.7P BA P B P AB P B A P B P A P A --=====- ()()0.15(|)0.3()()()0.5P B AB P AB P AB B P A P B P B ⋂=====()()(|)1()()P A AB P AB P A AB P AB P AB ⋂=== ,故选B.3、解:本题考查的是分布函数的性质。

由()1F +∞=可知,A 、B 不能作为分布函数。

再由分布函数的单调不减性,可知D 不是分布函数。

所以答案为C 。

4、解:选A 。

{||2}{2}{2}1{2}{2}1(2)(2)1(2)1(2)22(2)P X P X P X P X P X >=>+<-=-≤+<-=-Φ+Φ-=-Φ+-Φ=-Φ 5、解:因为(2)0.20.16P Y c ===+,所以0.04c =又(2)10.80.20.02P X c d ==-==++,所以10.020.040.14d =--= ,故选D 。

6、解:若~()X P λ,则()()E X D X λ==,故 D 。

7、解:由方差的性质和二项分布的期望和方差:1512(1)()()3695276633D X Y D X D Y -+=+=⨯⨯+⨯⨯=+= ,选A8、解:由切比雪夫不等式2(){|()|}1D X P X E X εε-<>-,可得21600{78008200}{|8000|200}10.96200P X P X <<=-<>-= ,选C 。

概率论与数理统计(二)(02197)

概率论与数理统计(二)(02197)

概率论与数理统计(二)(02197)1[计算题]设随机变量X的概率密度为2[计算题]设随机变量X服从[0,0.2]上的均匀分布,随机变量Y的概率密度为且X与Y相互独立,求(X,Y)的概率密度。

综合题]设(X,Y)的分布律为:且X与Y相互独立,求常数和的值。

[综合题]设随机变量X与Y相互独立,且X,Y的分布律分别为求二维随机变量(X,Y)的分布律。

[应用题]五家商店联营,它们每两周售出的某种农产品的数量(以千克计)分别记为随机变量.已知,,,,,且它们相互独立,求这五家商店两周的总销量的均值和方差?解:设随机变量X指五家商店两周的总销量,则由已知可得(1)这五家商店两周的总销量的均值(2)这五家商店两周的总销量的方差[应用题]设电压(以计),将电压施加于一检波器,其输出电压为,求输出电压Y的均值?[计算题][计算题][综合题]设随机变量X的分布律为记综合题]设离散型随机变量X的分布律为[应用题]已知甲进行一次射击的命中率为,求:“甲进行三次独立的射击,至少一次命中”的概率?应用题]随机地取8只活塞环,测得它们的直径为(以mm计)74.001 74.005 74.003 74.001 74.000 73.998 74.006 74.002试求总体均值的矩估计值?[计算题][计算题]12把钥匙中有4把能打开门,今任取两把,求能打开门的概率。

综合题]设袋中有依次标着-1,0,1,2,3,4数字的6个球,现从中任取一球,记随机变量X为取得的球标有的数字,求:(1)X的分布律;(2)的概率分布。

[综合题]设二维随机变量(X,Y)的分布律为(1)求(X,Y)分别关于X,Y的边缘分布律;(2)试问X与Y是否相互独立,为什么?[应用题]已知男人中有5%是色盲患者,女人中有0.25%是色盲患者,今从男女人数相等的人群中随机地挑选一个人,恰好是色盲患者,问此人是男性的概率是多少?解:设A表示“男人”,B表示“女人”,C表示“这人有色盲”,则由贝叶斯公式可得:应用题]某同学的钥匙掉了,掉在宿舍里、掉在教室里、掉在路上的概率分别是0.7,0.2,0.1,而掉在上述三处地方被找到的概率分别是0.8,0.2,0.2,试求他找到钥匙的概率?解:设:A1 =“钥匙掉在宿舍里”,A2=“钥匙掉在教室里”,A3=“钥匙掉在路上”,B=“钥匙被找到”,已知。

最新 年月全国自考概率论与数理统计(二)试题及答案

最新 年月全国自考概率论与数理统计(二)试题及答案

1 / 10全国2018年7月自学考试概率论与数理统计(二)课程代码:02197试卷来自百度文库 答案由绥化市馨蕾園的王馨磊导数提供一、单项选择题(本大题共10小题,每小题2分,共20分)在每小题列出的四个备选项中只有一个是符合题目要求的,请将其代码填写在题后的括号内。

错选、多选或未选均无分。

1.设A ={2,4,6,8},B ={1,2,3,4},则A -B =( ) A .{2,4} B .{6,8} C .{1,3}D .{1,2,3,4}.B AB A B A B A B A 中的元素,故本题选中去掉集合合说的简单一些就是在集的差事件,记作与事件不发生”为事件发生而解:称事件“-2.已知10件产品中有2件次品,从这10件产品中任取4件,没有取出次品的概率为( )A .15B .14C .13D .12.31789105678;844104104848410C C C P C C ,故选本题的概率件正品中取,共有从件中没有次品,则只能若种取法;件,共有件产品中任取解:从=⨯⨯⨯⨯⨯⨯== 3.设事件A ,B 相互独立,()0.4,()0.7,P A P A B =⋃=,则()P B =( ) A .0.2 B .0.3 C .0.4D .0.52 / 10()()()()()()()()()()()()()().5.04.04.07.0D B P B P B P B P A P B P A P AB P B P A P B A P B P A P AB P B A ,故选,解得代入数值,得,所以,相互独立,,解:=-+=-+=-+=⋃= 4.设某实验成功的概率为p ,独立地做5次该实验,成功3次的概率为( )A .35CB .3325(1)C p p -C .335C pD .32(1)p p -()()()()()().1335.,...2,1,0110~23355B p p C P k n n k p p C k P k A p p A n p n B X kn kk n n ,故选,所以,本题,次的概率恰好发生则事件,的概率为次检验中事件重贝努力实验中,设每定理:在,解:-====-=<<-5.设随机变量X 服从[0,1]上的均匀分布,Y =2X -1,则Y 的概率密度为( )A .1,11,()20,,Y y f y ⎧-≤≤⎪=⎨⎪⎩其他 B .1,11,()0,,Y y f y -≤≤⎧=⎨⎩其他C .1,01,()20,,Y y f y ⎧≤≤⎪=⎨⎪⎩其他D .1,01,()0,,Y y f y ≤≤⎧=⎨⎩其他()()[]()()()()()()[]()[][][]..01,121.01,1211.01,1212121.01,12121211,1212112010101110~A y y y y f y f y y h y h f y f y h y y h y y x x y x x f U X X Y X Y X 故选其他,,其他,,其他,,,得其他,,由公式,,即,其中,解得由其他,,,,,,解:⎪⎩⎪⎨⎧-∈=⎪⎩⎪⎨⎧-∈⨯=⎪⎩⎪⎨⎧-∈⎪⎭⎫ ⎝⎛+=⎩⎨⎧-∈'=='+=-∈+=-=⎪⎩⎪⎨⎧≤≤=-=3 / 106.设二维随机变量(X ,Y )的联合概率分布为( )则c =A .112B .16C .14 D .13()().611411211214161.1,...2,1,0B c c P j i P Y X jij iij ,故选,解得由性质②,得②,①:的分布律具有下列性质,解:==+++++==≥∑∑7.已知随机变量X 的数学期望E (X )存在,则下列等式中不恒成立....的是( ) A .E [E (X )]=E (X ) B .E [X +E (X )]=2E (X ) C .E [X -E (X )]=0D .E (X 2)=[E (X )]2()()()().D C B A XE X E E X E X 均恒成立,故本题选、、由此易知,即,期望的期望值不变,的期望是解:=8.设X 为随机变量2()10,()109E X E X ==,则利用切比雪夫不等式估计概率P{|X-10|≥6}≤( )A .14 B .518 C .34D .109364 / 10()()()()(){}(){}.416961091001092222A X P X D X E X P X E X E X D ,故选所以;切比雪夫不等式:,解:=≤≥-≤≥-=-=-=εε 9.设0,1,0,1,1来自X ~0-1分布总体的样本观测值,且有P {X =1}=p ,P {X =0}=q ,其中0<p <1,q =1-p ,则p 的矩估计值为( ) A .1/5 B .2/5 C .3/5D .4/5()()().53ˆ5301ˆC px p q p X E x X EX E x ,故选,所以,本题,,即估计总体均值用样本均值矩估计的替换原理是:解:===⨯+⨯== 10.假设检验中,显著水平α表示( ) A .H 0不真,接受H 0的概率 B .H 0不真,拒绝H 0的概率 C .H 0为真,拒绝H 0的概率D .H 0为真,接受H 0的概率{}.00C H H P ,故选为真拒绝即拒真,表示第一类错误,又称解:显著水平αα=二、填空题(本大题共15小题,每小题2分,共30分)请在每小题的空格中填上正确答案。

4月自学考试《概率论与数理统计二》真题试题及答案

4月自学考试《概率论与数理统计二》真题试题及答案

4月自学考试《概率论与数理统计二》真题试题及答案
2014年4月自学考试《概率论与数理统计(二)》真题试题及答案
全国2014年4月高等教育自学考试
概率论与数理统计(二)试题
课程代码:02197
请考生按规定用笔将所有试题的答案涂、写在答题纸上。

选择题部分
注意事项:
1.答题前,考生务必将自己的考试课程名称、姓名、准考证号用黑色字迹的'签字笔或钢笔填写在答题纸规定的位置上。

2.每小题选出答案后,用2B铅笔把答题纸上对应题目的答案标号涂黑。

如需改动,用橡皮擦干净后,再选涂其他答案标号。

不能答在试题卷上。

一、单项选择题(本大题共10小题,每小题2分,共20分)
在每小题列出的四个备选项中只有一个是符合题目要求的,请将其选出并将“答题纸”的相应代码涂黑。

错涂、多涂或未涂均无分。

非选择题部分
注意事项:
用黑色字迹的签字笔或钢笔将答案写在答题纸上,不能答在试题卷上。

二、填空题(本大题共15小题,每小题2分,共30分)。

概率论与数理统计(二) 自考试题及答案

概率论与数理统计(二) 自考试题及答案

概率论与数理统计(二) 自考试题及答案一、填空题(共14题,共28分)1.一枚硬币连丢3次,观察正面H﹑反面T出现的情形.样本空间是:S=2.丢一颗骰子.A:出现奇数点,则A=();B:数点大于2,则B=()3.一枚硬币连丢2次,A:第一次出现正面,则A=();B:两次出现同一面,则=();C:至少有一次出现正面,则C=()4.一枚硬币连丢3次,观察出现正面的次数.样本空间是:S=5.设A、B、C为三事件,用A、B、C的运算关系表示下列事件,A 、B、C都不发生表示为:6.设A、B、C为三事件,用A、B、C的运算关系表示下列事件,A与B都发生,而C不发生表示为:7.设A、B、C为三事件,用A、B、C的运算关系表示下列事件,A与B都不发生,而C发生表示为:8.设A、B、C为三事件,用A、B、C的运算关系表示下列事件,A、B、C中最多二个发生表示为:9.设A、B、C为三事件,用A、B、C的运算关系表示下列事件,A、B、C中至少二个发生表示为:10.设A、B、C为三事件,用A、B、C的运算关系表示下列事件,A、B、C中不多于一个发生表示为:11.设S{x:0x5},A{x:1x3},B{x:24}:则12.设S{x:0x5},A{x:1x3},B{x:24}:则AB=13.丢甲、乙两颗均匀的骰子,已知点数之和为7,则其中一颗为1的概率是14.已知P(A)1/4,P(B|A)1/3,P(A|B)1/2,则二、问答题(共9题,共54分)15.有10个签,其中2个“中”,第一人随机地抽一个签,不放回,第二人再随机地抽一个签,说明两人抽“中‘的概率相同。

16.第一盒中有4个红球6个白球,第二盒中有5个红球5个白球,随机地取一盒,从中随机地取一个球,求取到红球的概率。

17.某班有30个同学,其中8个女同学,随机地选10个,求正好有2个女同学的概率18.某班有30个同学,其中8个女同学,随机地选10个,求最多有2个女同学的概率19.某班有30个同学,其中8个女同学,随机地选10个,求至少有2个女同学的概率20.某厂产品有70%不需要调试即可出厂,另30%需经过调试,调试后有80%能出厂,求(1)该厂产品能出厂的概率,(2)任取一出厂产品,求未经调试的概率。

概率论与数量统计(二)-自考(课程代码02197)

概率论与数量统计(二)-自考(课程代码02197)
品.现从其中任取一件为合格品,求它是一等品的概
率.
【例3】盒中有黄白两种颜色的乒乓球,黄色球7个,
其中3个是新球;白色球5个,其中4个是新球. 现从
中任取一球是新球,求它是白球的概率. 【例4】盒中有5个黑球3个白球,连续不放回地从中
取两次球,每次取一个,若已知第一次取出的是白
球,求第二次取出的是黑球的概率.
【例1】掷一颗质地均匀的骰子,求出现奇数点的概 率. 【例2】掷一枚硬币3次,设事件A为“恰有一次出现 正面”,B表示“三次均出现发面”,C表示“至少 一次出现正面”,试求P(A),P(B),P(C). 【例3】从0,1,2,…,9十个数字中任意选出三个不同的 数字,试求三个数字中不含0和5的概率.
1. 课本大体内容:全书分为两部分,
①概率论部分:第一章—第五章
②应用题:第六章—第八章
2. 大题分布
计算题:第一章、第二章
综合题:第三章、第四章
应用题:第七章或第八章
第一章
随机事件与概率
一、考核知识点
1、随机事件的关系和运算 2、概率的定义与性质 3、古典概型 4、条件概率和乘法公式、全概率公式和贝叶斯公式 5、事件的独立性、贝努利概型
§3 条件概率
☆概率的乘法公式 ①若P(A)>0,则 P(AB)=P(A)P(B|A); 若P(B)>0,则 P(AB)=P(B)P(A|B); ②推广到3个事件的情形 若P(AB)>0,则P(ABC)=P(A)P(B|A)P(C|AB) ③推广到n个事件的情形 若P( A1 A2 An1 ) 0 ,则
Ai 表示“第i次射 【例5】某射手向一目标射击三次,
击命中目标”,i=1,2,3, Bj 表示“三次射击中恰命中 的运算表示 B j ( j 0,1, 2,3)

02197概率论与数理统计(二)201604历年真题及答案

02197概率论与数理统计(二)201604历年真题及答案

02197概率论与数理统计(⼆)201604历年真题及答案2016年4⽉⾼等教育⾃学考试全国统⼀命题考试概率论与数理统计(⼆) 试卷(课程代码02197)本试卷共4页。

满分l00分,考试时间l50分钟。

考⽣答题注意事项:1.本卷所有试题必须在答题卡上作答。

答在试卷上⽆效,试卷空⽩处和背⾯均可作草稿纸.2.第⼀部分为选择题。

必须对应试卷上的题号使⽤2B 铅笔将“答题卡”的相应代码涂⿊.3.第⼆部分为⾮选择题必须注明⼤、⼩题号,使⽤0.5毫⽶⿊⾊字迹签字笔作答。

4.合理安排答题空间。

超出答题区域⽆效。

第⼀部分选择题⼀、单项选择题(本⼤题共l0⼩题,每⼩题2分,共20分)在每⼩题列出的四个备选项中只有⼀个是符合题⽬要求的。

请将其选出并将“答题卡” 的相应代码涂⿊。

未涂、错涂或多涂均⽆分。

1.设A,B 为随机事件,,则= A.A B. B C. AB D. AB2.设随机事件A,B 相互独⽴,且P(A)=0.2,P(B)=0.6,则P ()=A.0.12B.0.32C.0.68D.0.883.设随机变量X 服从参数为3的指数分布,则当x>0时,X 的概率密度f(x)=A. 313x e --B. 31x e --C. 33x e -D. 3x e -4.随机变量为标准正态分布函数,则P{}= A. (3)φ B. 1-(3)φ C. 2(3)-1φ D. 1-2(3)φ5.设随机变量X 的分布律为,F(x)为X 的分布函数,则F (0.5)=A.0B.0.2C.0.25D.0.36.设⼆维随机变量(X ,Y)的分布函数为F(x ,y),则(X ,Y)关于X 的边缘分布函数Fx(x)=A. F(x,+∞)B. F(+∞, y)C. F(x,-∞)D. F(-∞, y)7.设⼆维随机变量(X,Y )的分布律为则P{x+y=3}=A. 0.1B. 0.2C. 0.3D. 0.48.设X,Y 为随机变量,E(X)=E(Y)=1,Cov(X,Y)=2,则E(2XY)=A. -6B. -2C.2D.69.设随机变量X~N(0,1),Y~x 2(5),且X 与Y 相互独⽴,则/5X Y = A. t(5) B.t(4) C.F(1,5) D.F(5,1)10.设总体X~B(1,p),x 1,x 2,…….,x n 为来⾄X 的样本,n>1, x 为样本均值,则未知参数p 的⽆偏估计p = A .x n B. -1x n C. x D. nx第⼆部分⾮选择题⼆、填空题(本⼤题共l5⼩题。

概率论与数理统计(二)02197

概率论与数理统计(二)02197

《概率论与数理统计(二)》课程习题集 西南科技大学成人、网络教育学院 版权所有习题【说明】:本课程《概率论与数理统计(二)》(编号为02197)共有单选题,计算题,综合业务题, 填空题等多种试题类型,其中,本习题集中有[单选题,计算题,综合业务题, 填空题]等试题类型未进入。

一、单选题 1.设A ,B为随机事件,P(A)>0,P (B|A )=1,则必有( A )A.P(A ∪B)=P(B)B.A ⊂BC.P(A)=P(B)D.P(AB)=P(A)2. 设随机事件A 与B 互不相容,P(A)=0.2,P(B)=0.3,则P(A|B)=( A )A. 0 B 0.2 C 0.4 D 0.53. 设事件{X=K}表示在n 次独立重复试验中恰好成功K 次,则称随机变量X 服从 ( B ) A.两点分布 B.二项分布 C.泊松分布D.均匀分布4. 某人连续向一目标射击,每次命中目标的概率为34,他连续射击直到命中为止,则射击次数为3的概率是( C ) A.()343 B.()34142⨯C.()14342⨯D.C 4221434()5. 袋中有2个白球,3个黑球,从中依次取出3个,则取出的三个都是黑球的概率为( A ) A.101B.41C. 52 D.536. 将两封信随机地投入四个邮筒中,则向后面两个邮筒投信的概率为 ( A )A .2242 B .2412C C C .24A 2! D .4!2!7. 设A ,B 为两个随机事件,且P (A )>0,则P (A ∪B |A )= ( D ) A.P (AB )B.P (A )C.P (B )D.18. 某人连续向一目标射击,每次命中目标的概率为23,他连续射击直到命中为止,则射击次数为4的概率是 ( C ) A.42()3B.321()33⨯ C.312()33⨯D.33412()33C 9. 10粒围棋子中有2粒黑子,8粒白子,将这10粒棋子随机地分成两堆,每堆5粒,则两堆中各有1粒黑子的概率为 ( A ) A.95 B.85 C.94 D. 51 10. 设A 、B 是两个随机事件,则()A B A =( B ) A .ABB .AC .BD .AB11. 设事件A 与B 互不相容,且P(A)>0,P(B)>0,则有 ( A ) A.P(A ⋃B)=P(A)+P(B) B.P(AB)=P(A)P(B) C.A=BD.P(A|B)=P(A)12. 设A ,B 为随机事件,且A ⊂B ,则B A 等于 ( B ) A.A B.B C.ABD.B A13. 已知P(A)=0.3,P(B)=0.5,P(A ∪B)=0.6,则P(AB)= ( A ) A. 0.15 B. 0.2 C. 0.8 D. 114. 设随机事件A 与B 互不相容,P(A)=0.4,P(B)=0.2,则P(A|B)= ( A ) A. 0 B 0.2 C 0.4 D 0.515. 从0,1,…,9十个数字中随机地有放回地连续抽取四个数字,则“8”至少出现一次的概率为 ( B ) A. 0.1 B 0.3439 C 0.4 D 0.656116. 某种动物活到25岁以上的概率为0.8,活到30岁的概率为0.4,则现年25岁的这种动物活到30岁以上的概率是 ( D ) A .0.76 B .0.4 C .0.32 D .0.517. 对于任意两个事件A 与B,必有P(A-B)=( C )A .()()-P A P BB .()()()P A P B P AB -+C .()()P A P AB -D .()()P A P B +18. 同时抛掷3枚质地均匀的硬币,则恰好3次都为正面的概率是 ( A ) A .0.125 B .0.25 C .0.375 D .0.5 19. 设A 和B 是任意两个概率不为零的互不相容事件,则下列结论中肯定正确的是( B )。

02197--概率论与数理统计(二)

02197--概率论与数理统计(二)

[单项选择题]1.设分别为随机变量的分布函数,为使是某一随机变量的分布函数,在下列给定的各组值中应取(A、)。

2.设是随机变量,其分布函数分别为,为使是某一随机变量的分布函数,在下列给定的各组数值中应取(C、)3.设随机变量的概率分布为且满足,则的相关系数为(A、0)4.设A、B、C为三个事件,P(AB)>0且P(C|AB)=1,则有(C、P(C)≥P (A)+P(B)-1)5.设x₁,x₂,··· ···,xⁿ为正态总体N(μ,4)的一个样本,表示样本均值,则μ的置信度为1-α的置信区间为(D、)6.设总体X服从正态分布N(μ,σ²),X₁,X₂,··· ···,X n是来自X 的样本,则σ²的最大似然估计为( A、 )7.设是未知参数的一个估计量,若,则是的( D.有偏估计 )8.在对单个正态总体均值的假设检验中,当总体方差已知时,选用( B、u检验法)9.若X~t(n)那么χ²~(A、F(1,n))10.对于事件A,B,下列命题正确的是(D、)11.设X~N(μ,σ²),那么当σ增大时,P{|X-μ|<σ}=(C、不变)12.已知随机变量X的密度函数f(x)=(λ>0,A为常数),则概率P{λ<X<λ+a}(a>0)的值(C、与λ无关,随a的增大而增大)13.设随机事件A与B互不相容,且P(A)>0,P(B)>0,则 (D、)。

14.设 X1, X2为来自总体N(μ, 1) 的一个简单随机样本, 则下列估计量中μ的无偏估计量中最有效的是 ( A、设随机变量X的概率密度为f(x),则f(x)一定满足【C、】16.设随机变量X与Y的方差分别是25和16,协方差为8,则相关系数ρXY=【C、】17.已知随机变量与相互独立,且它们在区间[-1,3]和[2,4]上服从均匀分布,则【A、3】18.若X,Y相互独立,则下列正确的是【C、】设X~N(0,1), Y~N(μ,σ²), 则Y与X之间的关系是【A、】设A, B为随机事件, A错误!未找到引用源.B,(B、)A,B,C是任意事件,在下列各式中,不成立的是(B、(A∪B)-A=B)设随机变量且相互独立,根据切比雪夫不等式有(D、≥5/12)设A,B,C为三个事件,且A,B相互独立,则以下结论中不正确的是(D、)设离散型随机变量X和Y的联合概率分布为,若X,Y独立,则α,β的值为(A、)设总体X的数学期望为μ,X₁,X₂,··· ···,X n为来自X的样本,则下列结论中正确的是(A、X₁是μ的无偏估计量)已知是来自总体的样本,则下列是统计量的是(B、)设X,Y是相互独立的两个随机变量,它们的分布函数分别为F x(x),F y(y),则Z = max {X,Y} 的分布函数是(C、)对于任意两个随机变量X和Y,若E(XY)=E(X)-E(Y),则(B、D(X+Y)=D(X)+D(Y) ) 设A,B为任二事件,则(D、)设Φ(x)是标准正态分布函数,则Φ(0)= 【B、】设随机变量X与Y相互独立,且P{X≤1}=1/4,P{Y≤1}=1/3,则P{X≤1,Y≤1}=【C、】设随机事件A与B互不相容,且, ,则【D、】设A和B相互独立,,,则【B、】袋中有5个白球和3个黑球,从中任取两个,则取到的两个球是白球的概率是【A、】下列关于“统计量”的描述中,不正确的是【C、统计量表达式中不含有参数】设A,B为随机事件,则下列说法正确的是【B、】设随机变量X的取值范围是[-1,1],以下函数可以作为X的概率密度的是【C、】已知随机变量X的分布函数为C、7/12设随机变量X服从参数为的指数分布,则下列各项中正确的是(D、)设二维随机变量(X, Y)的概率密度为,则常数c=(A、)将一枚硬币重复郑n次,以X和Y分别表示正面向上和反面向上的次数,则X 与Y的相关系数等于(A、-1)是来自总体X~N(0,1)的一部分样本,设:,则Z/Y~(D、F(8,8))X₁,X₂独立,且分布率为(i=1,2),那么下列结论正确的是(C、P{X₁=X₂}=1/2)下列二无函数中,( B、) 可以作为连续型随机变量的联合概率密度。

全国自学考试概率论与数理统计(二)历年真题及答案

全国自学考试概率论与数理统计(二)历年真题及答案

全国2010年7月高等教育自学考试 概率论与数理统计(二)试题课程代码:02197一、单项选择题(本大题共10小题,每小题2分,共20分)在每小题列出的四个备选项中只有一个是符合题目要求的,请将其代码填写在题后的括号内。

错选、多选或未选均无分.1.设A 、B 为两事件,已知P (B )=21,P (A ⋃B )=32,若事件A ,B 相互独立,则P (A )=( ) A .91B .61C .31D .21 2.对于事件A ,B ,下列命题正确的是( ) A .如果A ,B 互不相容,则A ,B 也互不相容 B .如果A ⊂B ,则B A ⊂ C .如果A ⊃B ,则B A ⊃D .如果A ,B 对立,则A ,B 也对立3.每次试验成功率为p (0〈p <1),则在3次重复试验中至少失败一次的概率为( ) A .(1-p )3 B .1—p 3C .3(1—p )D .(1-p )3+p (1-p )2+p 2(1—p )4.已知离散型随机变量X则下列概率计算结果正确的是( ) A .P (X =3)=0 B .P (X =0)=0 C .P (X >—1)=1D .P (X 〈4)=1 5.已知连续型随机变量X 服从区间[a ,b ]上的均匀分布,则概率P =⎭⎬⎫⎩⎨⎧+<32b a X ( )A .0B .31C .32 D .1A .(51,151) B .(151,51) C .(101,152) D .(152,101) 7.设(X ,Y )的联合概率密度为f (x ,y )=⎩⎨⎧≤≤≤≤+,,0,10,20),(其他y x y x k 则k =( )A .31B .21 C .1D .38.已知随机变量X ~N (0,1),则随机变量Y =2X +10的方差为( ) A .1 B .2 C .4D .149.设随机变量X 服从参数为0.5的指数分布,用切比雪夫不等式估计P (|X -2|≥3)≤( )A .91B .92C .31D .94 10.由来自正态总体X ~N (μ,22)、容量为400的简单随机样本,样本均值为45,则未知参数μ的置信度为0。

2004年4月-2009年4月全国高等教育自学考试概率论与数理统计二

2004年4月-2009年4月全国高等教育自学考试概率论与数理统计二

全国2004年4月高等教育自学考试概率论与数理统计(二)试题课程代码:02197一、单项选择题(本大题共10小题,每小题2分,共20分)在每小题列出的四个备选项中只有一个是符合题目要求的,请将其代码填写在题后的括号内。

错选、多选或未选均无分。

1.设A ,B 为随机事件,且A ⊂B ,则B A 等于( ) A.A B.B C.ABD.B A2.同时掷3枚均匀硬币,则至多有1枚硬币正面向上的概率为( ) A.81 B.61C.41D.21 3.设随机变量X 的概率密度为f(x),则f(x)一定满足( ) A.0≤f(x)≤1B.⎰∞-=>Xdt )t (f }x X {PC.⎰+∞∞-=1dx )x (fD.f(+∞)=1),则P ({-2<X ≤4}-{X>2})=A.0B.0.2C.0.35D.0.555.设二维随机向量(X,Y )的概率密度为f(x,y),则P{X>1}=( ) A.⎰⎰+∞∞-∞-dy )y ,x (f dx1B.⎰⎰+∞∞-+∞dy )y ,x (f dx1C.⎰∞-1dx )y ,x (fD.dx )y ,x (f 1⎰+∞6.设二维随机向量(X,Y )~N(μ1,μ2,ρσσ,,2221),则下列结论中错误..的是( ) A.X~N (21,1σμ),Y~N (222,σμ)B.X 与Y 相互独立的充分必要条件是ρ=0C.E (X+Y )=21μ+μD.D (X+Y )=2221σ+σ7.设随机变量X ,Y 都服从区间[0,1]上的均匀分布,则E (X+Y )=( )A.61 B.21 C.1D.2 8.设X 为随机变量,其方差存在,c 为任意非零常数,则下列等式中正确的是( ) A.D(X+c)=D(X) B.D(X+c)=D(X)+c C.D(X-c)=D(X)-c D.D(cX)=cD(X)9.设E (X )=E (Y )=2,Cov(X,Y)=,61-则E (XY )=( ) A.61-B.623C.4D.625 10.设总体X~N (μ,σ2),σ2未知,且X 1,X 2,…,X n 为其样本,X 为样本均值,S 为样本标准差,则对于假设检验问题H 0:μ=μ0↔H 1:μ≠μ0,应选用的统计量是( ) A.n /S X 0μ- B.1n /X 0-σμ-C.1n /S X 0-μ- D.n/X 0σμ-二、填空题(本大题共15小题,每小题2分,共30分)请在每小题的空格中填上正确答案。

概率论与数理统计(二) 自考试题及答案

概率论与数理统计(二) 自考试题及答案

概率论与数理统计(二) 自考试题及答案一、填空题(共14题,共28分)1.一枚硬币连丢3次,观察正面H﹑反面T出现的情形.样本空间是:S=2.丢一颗骰子.A:出现奇数点,则A=();B:数点大于2,则B=()3.一枚硬币连丢2次,A:第一次出现正面,则A=();B:两次出现同一面,则=();C:至少有一次出现正面,则C=()4.一枚硬币连丢3次,观察出现正面的次数.样本空间是:S=5.设A、B、C为三事件,用A、B、C的运算关系表示下列事件,A 、B、C都不发生表示为:6.设A、B、C为三事件,用A、B、C的运算关系表示下列事件,A与B都发生,而C不发生表示为:7.设A、B、C为三事件,用A、B、C的运算关系表示下列事件,A与B都不发生,而C发生表示为:8.设A、B、C为三事件,用A、B、C的运算关系表示下列事件,A、B、C中最多二个发生表示为:9.设A、B、C为三事件,用A、B、C的运算关系表示下列事件,A、B、C中至少二个发生表示为:10.设A、B、C为三事件,用A、B、C的运算关系表示下列事件,A、B、C中不多于一个发生表示为:11.设S{x:0x5},A{x:1x3},B{x:24}:则12.设S{x:0x5},A{x:1x3},B{x:24}:则AB=13.丢甲、乙两颗均匀的骰子,已知点数之和为7,则其中一颗为1的概率是14.已知P(A)1/4,P(B|A)1/3,P(A|B)1/2,则二、问答题(共9题,共54分)15.有10个签,其中2个“中”,第一人随机地抽一个签,不放回,第二人再随机地抽一个签,说明两人抽“中‘的概率相同。

16.第一盒中有4个红球6个白球,第二盒中有5个红球5个白球,随机地取一盒,从中随机地取一个球,求取到红球的概率。

17.某班有30个同学,其中8个女同学,随机地选10个,求正好有2个女同学的概率18.某班有30个同学,其中8个女同学,随机地选10个,求最多有2个女同学的概率19.某班有30个同学,其中8个女同学,随机地选10个,求至少有2个女同学的概率20.某厂产品有70%不需要调试即可出厂,另30%需经过调试,调试后有80%能出厂,求(1)该厂产品能出厂的概率,(2)任取一出厂产品,求未经调试的概率。

自考02197概率论与数理统计(二)历年真题分章训练

自考02197概率论与数理统计(二)历年真题分章训练

第一章一六类事件及其运算律1.设A, B, C, 为随机事件, 则事件“A, B, C都不发生”可表示为()A.CBA B.CBA C.CBA D.CBA2. 设A,B为随机事件,且A⊂B,则AB等于()A. A BB. BC. AD. A3.设A={2,4,6,8},B={1,2,3,4},则A-B=()A.{2,4} B.{6,8} C.{1,3} D.{1,2,3,4}4. 设A,B为随机事件,则P(A-B)=()A. P(A)-P(B)B. P(A)-P(AB)C. P(A)-P(B)+ P(AB)D. P(A)+P(B)- P(AB)二概率的性质5.设随机事件A与B相互独立, 且P (A)=15, P (B)=35, 则P (A∪B)= ( )6.设A, B为随机事件, P (A)=0.6, P (B|A)=0.3, 则P (AB)=__________.7.设A, B互为对立事件, 且P (A)=0.4, 则P (A B)=__________.8.设事件A,B相互独立,()0.4,()0.7,P A P A B=⋃=,则()P B=()9. 设随机事件A与B相互独立,且P(A)=0.5,P(A B)=0.3,则P(B)=______.10. 设A,B为随机事件,P(A)=0.5,P(B)=0.4,P(A│B)=0.8,则P(B│A)=______. 三古典概型11.盒中共有3个黑球2个白球,从中任取2个,则取到的2个球同色的概率为________. 12.有5条线段,其长度分别为1,3,5,7,9,从这5条线段中任取3条,所取的3条线段能拼成三角形的概率为________.13.袋中有50个乒乓球,其中20个黄球,30个白球,甲、乙两人依次各取一球,取后不放回,甲先取,则乙取得黄球的概率为________.14.已知10件产品中有2件次品,从这10件产品中任取4件,没有取出次品的概率为________.15. 在一次读书活动中,某同学从2本科技书和4本文艺书中任选2本,则选中的书都是科技书的概率为______.16. 设袋中有2个黑球、3个白球,有放回地连续取2次球,每次取一个,则至少取到一个黑球的概率是______.四全概率和贝叶斯公式17.设某地区地区男性居民中肥胖者占25%,中等者占60%,瘦者占15%,又知肥胖者患高血压病的概率为20%,中等者患高血压病的概率为8%,瘦者患高血压病的概率为2%,试求:(1)该地区成年男性居民患高血压病的概率;(2)若知某成年男性居民患高血压病,则他属于肥胖者的概率有多大?18. 某生产线上的产品按质量情况分为A ,B ,C 三类.检验员定时从该生产线上任取2件产品进行抽检,若发现其中含有C 类产品或2件都是B 类产品,就需要调试设备,否 则不需要调试设备.已知该生产线上生产的每件产品为A 类品、B 类品和C 类品的概率 分别为0.9,0.05和0.05,且各件产品的质量情况互不影响.求:(1)抽到的两件产品 都为B 类品的概率p 1;(2)抽检后设备不需要调试的概率p 2. 19.盒中有3个新球、1个旧球, 第一次使用时从中随机取一个, 用后放回, 第二次使用时从中随机取两个, 事件A 表示“第二次取到的全是新球”, 求P (A ).20.有甲、乙两个盒子,甲盒中放有3个白球,2个红球;乙盒中放有4个白球,4个红球,现从甲盒中随机地取一个球放到乙盒中,再从乙盒中取出一球,试求:(1)从乙盒中取出的球是白球的概率;(2)若已知从乙盒中取出的球是白球,则从甲盒中取出的球是白球的概率。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2014年4月高等教育自学考试全国统一命题考试
概率论与数理统计(二)试题和答案评分
课程代码:02197
本试卷满分100分,考试时间l50分钟。

考生答题注意事项:
1.本卷所有试题必须在答题卡上作答。

答在试卷上无效,试卷空白处和背面均可作草稿纸。

2.第一部分为选择题。

必须对应试卷上的题号使用28铅笔将“答题卡”的相应代码涂黑。

3.第二部分为非选择题。

必须注明大题号,使用0.5毫米黑色字迹签字笔作答 选择题部分 一、单项选择题(本大题共10小题,每小题2分,共20分)
在每小题列出的四个备选项中只有一个是符合题目要求的,请将其选出并将“答题纸”的相应代码涂黑。

错涂、多涂或未涂均无分。

1.掷一颗骰子,观察出现的点数.A 表示“出现2点”,B 表示“出现奇数点”,则正确答案:B A.A B ⊂ B.A B ⊂ C.B A ⊂
D.A B ⊂
2.设随机变量X 的分布函数为F (x ),则事件{a <X <b )的概率为正确答案:C A.()()F b F a - B.()()F a F b - C.(0)()F b F a --
D.()(0)F b F a --
3.设二维随机变量(X ,Y )的概率密度为f (x ,y )=11,02c x y -≤≤≤≤⎧⎨⎩,
,0,其他,
正确答案:A
则常数c = A.14 B.12 C.2
D.4
4.设随机变量X 与Y 相互独立,且P {X =-l}=P {y =-1}=P {X =1}=P {Y =l}=1
2,则P {X =Y }=正确答案:C
A.0
B.1
4 C.12 D.1
5.设随机变量X 与Y 相互独立,其分布函数分别为F X (x ),F Y (y ),则二维随机变量(X ,Y )的分布函数,F (x ,y )= 正确答案:D A.()()12X Y F x F y ⎡⎤⎣⎦+ B.()()X Y F x F y + C.()()1
2X Y F x F y
D.
()()
X Y F x F y
6.设随机变量X ~B (10,0.2),则D (3X -1)=
A.3.8
B.4.8
C.13.4
D.14.4 正确答案:D (2分)
7.设(X ,Y )为二维随机变量,则与Cov(X ,Y )=0不等价...的是 A.X 与Y 相互独立 B.D (X +Y )=D (X )+D (Y ) C.D (X -Y )=D (X )+D (Y ) D.E (XY )=E (X )E (Y )
正确答案:A (2分)
8.设x 1,x 2,…,x n 为来自某总体的样本,x 为样本均值,则1
()
n
i
i x
x =-∑=
A.
()l n x -
B.0
C.x
D.nx
正确答案:B (2分)
9.设总体X 的方差为σ2
,x 1,x 2,…,x n 为来自该总体的样本,x 为样本均值,则参数σ2
的无偏估计为
A.2
111n i i x n =-∑ B.2
11n i i x n =∑ C.211()1n
i i x x n =--∑
D.211()n
i i x x n =-∑
正确答案:C (2分)
10.设x 1,x 2,…,x n 为来自正态总体N (μ,σ2
)的样本,其中σ2
未知.x 为样本均值,s 2
为样本方差.若
检验假设H 0﹕μ=μ0,H 1﹕μ≠μ0,则采用的检验统计量应为
A.
x
x
x
正确答案:A (2分)
非选择题部分
二、填空题(本大题共15小题,每小题2分,共30分)
11.设A ,B 为随机事件,P (A )=12,P (B|A )=1
3,则P (AB )______.
正确答案:(2分) 1/6
12.设随机事件A 与B 相互独立,P (A )=0.3,P (B )=0.4,则P (A-B )=______. 正确答案:(2分) 0.18
13.设A ,B 为对立事件,则P A B ()=______.
正确答案:(2分)
1
14.设随机变量X的分布律为,F(x)是X的分布函数,则F(1)=______.正确答案:(2分)
2/3
15.设随机变量X的概率密度为f(x)=
201
0,
x x
≤≤



,,
其他,

1
2
P X
⎧⎫
>
⎨⎬
⎩⎭=______.
正确答案:(2分)
3/4
16.已知随机变量X~N(4,9),P{X>c}=P{X≤c},则常数c=______.
正确答案:(2分)
4
17.设二维随机变量(X,Y)的分布律为
则常数a=______.
正确答案:(2分)
0.2
18.设随机变量X与Y相互独立,且X~N(0,l),Y~N(-1,1),记Z=X-Y,则Z~______.正确答案:(2分)
N(1,2)
19.设随机变量X服从参数为2的泊松分布,则E(X2)=______.
正确答案:(2分)
6
20.设X,Y为随机变量,且E(X)=E(Y)=1,D(X)=D(Y)=5,ρXY=0.8,则E(XY)=______.
正确答案:(2分)
5
21.设随机变量X服从区间[-1,3]上的均匀分布,随机变量Y=
01 11
X
X
<




,,,,
则E(Y)=______.正确答案:(2分)1/2
22.设随机变量X~B(100,0.2),
()x
Φ
为标准正态分布函数,
()
2.5
Φ
=0.9938,应用中心极限定理,可得
P{20≤x≤30)≈______.正确答案:(2分)
0.4938
23.设总体X~N(0,l),x1,x2,x3,x4为来自总体X的样本,则统计量
2222
1234
x x x x
+++~______.
正确答案:(2分)x2(4)
24.设总体X~N(μ,1),μ未知,x 1,x 2,…,x n 为来自该总体的样本,x 为样本均值,则μ的置信度为1-α的置信区间是______. 正确答案:(2分)
]
1
,1[2
2
n u x n
u x a
a
+-
25.某假设检验的拒绝域为W ,当原假设H 0成立时,样本值(x 1,x 2,…,x n )落入W 的概率为0.1,则犯第一类错误的概率为______. 正确答案:(2分) 0.1
三、计算题(本大题共2小题,每小题8分,共16分) 26.设二维随机变量(X ,Y )的概率密度为
26,01,01,()0,x y x y f x ⎧≤≤≤≤⎪=⎨
⎪⎩ 其他.
求:(1)(X ,Y )关于X 的边缘概率密度f X (x );(2)P {X >Y }.
正确答案:
27.设总体X 的概率密度为
1,0,()0,0,x
e x
f x x θ
θ
-⎧>⎪=⎨⎪≤⎩
其中未知参数θ>0,x 1,x 2,…,x n 是来自该总体的样本,求θ的极大似然估计. 四、综合题(本大题共2小题,每小题12分,共24分) 正确答案:
28.有甲、乙两盒,甲盒装有4个白球1个黑球,乙盒装有3个白球2个黑球,从甲盒中任取1个球,放入乙盒中,再从乙盒中任取2个球.(1)求从乙盒中取出的是2个黑球的概率;(2)已知从乙盒中取出的是2个黑球,问从甲盒中取出的是白球的概率.
正确答案:
29.设随机变量X~N(0,l),记Y=2X.
求:
(1)P{X<-1>;
(2)P{|X|<1};
(3)Y的概率密度.(附:Φ(1)=0.8413)
正确答案:
五、应用题(10分)
30.某产品的次品率为0.l,检验员每天抽检10次,每次随机取3件产品进行检验,且不存在误检现象,设产品是否为次品相互独立,若在一次检验中检出次品多于1件,则调整设备,以X表示一天调整设备的次数,求E(X).
正确答案:。

相关文档
最新文档