数学分析-数列极限

合集下载

数学分析讲义 - CH02(数列极限)

数学分析讲义 - CH02(数列极限)

第二章 数列极限 §1 数列极限概念一、数列极限的定义()函数:,f N n f +→R n 称为数列。

()f n 通常记作12,,,,n a a a或简单地记作,其中称为该数列的通项。

}{n a n a 例如:11{}:1,,,,2n a n ,通项1n a n=。

如何描述一个数列“随着的无限增大,无限地接近某一常数”。

下面给出数列极限的精确定义。

n n a 定义1 设为数列,a 为定数.若对任给的正数}{n a ε,总存在正整数,使得当时,有N n N >n a a ε-<则称数列收敛于,定数称为数列的极限,并记作}{n a a a }{n a a a n n =∞→lim ,或)(∞→→n a a n读作“当n 趋于无穷大时,{}n a 的极限等于或趋于”. a n a a 若数列没有极限,则称不收敛,或称为发散数列. }{n a }{n a }{n a 【注】该定义通常称为数列极限的“N ε-定义”。

例1 设(常数),证明n a c =lim n n a c →∞=.证 对0ε∀>,因为0n a c c c ε-=-=<恒成立,因此,只要取,当n 时,便有1N =N >n a c ε-<这就证得li .m n c c →∞=例2 1lim0n n→∞=(0)α>. 证 对0ε∀>,要110n nε-=< 只要1n ε>只要取11N ε⎡⎤=+⎢⎥⎣⎦,则当时,便有N n >110n nε-=< 这就证得1lim0n n→∞=。

例3 lim 11n nn →∞=+.证 因为11111n n n n-=<++ 对0ε∀>,取11N ε⎡⎤=+⎢⎥⎣⎦,则当时,便有N n >11111n n n nε-=<<++ 这就证得lim 11n nn →∞=+。

关于数列极限的“N ε-定义”,作以下几点说明: 【1】定义中不一定取正整数,可换成某个正实数。

§2.1数列极限

§2.1数列极限

华北科技学院理学院
2017年11月29日星期三
8
《数学分析》(1)
§2.1 数列极限概念
引例②截丈问题
战国时代哲学家庄周著的《庄子· 天下 篇》引用过一句话:
一尺之棰 日取其半 万世不竭. 1 第一天截下后的杖长为 X1 ; 2 1 第二天截下后的杖长为 X2 2 ; 2
1 第n天 截 下 后 的 杖 长 为 Xn n ; 2 1 0 Xn n
2
……
9
华北科技学院理学院
2017年11月29日星期三
《数学分析》(1)
§2.1 数列极限概念
两个引例共同点是出现了无限接近思想,这正是 极限概念的原始面貌. 极限概念是由于求某些问题的 精确答案而产生的, 割圆术和杖棰问题使用的都是极 限的方法. 第一个是把一个固定不变的量看作是一系 列变化着的多边形面积的趋向,从而确定出面积的 大小. 第二个是杖棰剩余问题,看作一系列变化着的 剩余趋向于一个确定量的问题. 无论是内接正多边形的面积 ,还是杖棰的剩余长 度,都可以看作是关于 n 的一个数列{ an },而这个数 列中的项随着 n 增加产生一个什么样的变化过程则是 人们最关心的,极限就是讨论这一类问题的数学模型.
16
《数学分析》(1)
§2.1 数列极限概念
(4) 对 0, 2 , , 2 , M ( M正常数 )等, 虽与 在 形式上有差异 , 但在本质上都与 起着同样的作用 .
lim a n a 0, N N , 当n N时, 有 a n a M .
2017年11月29日星期三
12
《数学分析》(1)
§2.1 数列极限概念
下面给出数列极限严格的数学定义. ( N定义)

第一讲-数列极限(数学分析)

第一讲-数列极限(数学分析)

第一讲 数列极限一、上、下确界 1、定义:1)设S R ⊂,若:,M R x S x M ∃∈∀∈≤,则称M 是数集S 的一个上界,这时称S 上有界;若:,L R x S x L ∃∈∀∈≥,则称L 是数集S 的一个下界,这时称S 下有界;当S 既有上界又有下界时就称S为有界数集。

2)设S R ⊂,若:,M R x S x M ∃∈∀∈≤,且0,:x S x M εε∀>∃∈>-,则称M 是数集S 的上确界,记sup M S =;若:,L R x S x L ∃∈∀∈≥,且0,:x S x L εε∀>∃∈<+,则称L 是数集S 的下确界,记inf L S =。

2、性质: 1)(确界原理)设S R ⊂,S ≠∅,若S 有上界,则S 有上确界;若S 有下界,则S 有下确界。

2)当S 无上界时,记sup S =+∞;当S 无下界时,记inf S =-∞。

3)sup()max{sup ,sup };inf()min{inf ,inf }AB A B A B A B ==。

4)sup inf();inf sup()S S S S =--=--。

5)sup()sup sup ;inf()inf inf A B A B A B A B +=++=+。

6)sup()sup inf A B A B -=-。

(武大93) 7)设(),()f x g x 是D 上的有界函数,则inf ()inf ()inf{()()}sup ()inf ()sup{()()}sup ()sup ()x Dx Df Dg D f x g x f D g D f x g x f D g D ∈∈+≤+≤+≤+≤+3、应用研究1)设{}n x 为一个正无穷大数列,E 为{}n x 的一切项组成的数集,试证必存在自然数p ,使得inf p x E =。

(武大94) 二、数列极限 1、定义:1)lim 0,():,||n n n a a N N n N a a εεε→∞=⇔∀>∃=>-<,称{}n a 为收敛数列;2)lim 0,:,n n n a M N n N a M →∞=+∞⇔∀>∃>>,称{}n a 为+∞数列;3)lim 0,:,n n n a M N n N a M →∞=-∞⇔∀>∃><-,称{}n a 为-∞数列;4)lim 0,:,||n n n a M N n N a M →∞=∞⇔∀>∃>>,称{}n a 为∞数列;5)lim 0n n a →∞=,称{}n a 为无穷小数列;2、性质1)唯一性:若lim ,lim n n n n a a a b a b →∞→∞==⇒=。

数列极限方法

数列极限方法

数列极限方法一、引言数列极限是数学分析中的一个基本概念,它描述了一个数列当项数趋于无穷时的行为。

理解数列极限的概念是深入理解数学分析和其他数学领域的基础。

本文将介绍几种常用的数列极限的求解方法。

二、数列极限的基本概念一个数列 {an} 的极限定义为:对于任意小的正数ε,都存在一个正整数 N,使得当 n > N 时,|an - L| < ε恒成立,其中 L 为常数。

我们记作 lim(n→∞) an = L。

三、求解数列极限的方法1.直接观察法:对于一些简单的数列,我们可以通过观察它们的规律来直接得出极限。

例如,对于数列 {1, 1/2, 1/3, 1/4, ...},显然有 lim(n→∞) 1/n = 0。

2.夹逼法:对于一个数列 {an},如果存在两个常数 M 和 m,使得 m ≤ an ≤M 对于所有的 n 都成立,那么 lim(n→∞) an = M(或 lim(n→∞) an = m)。

这是因为对于任意的ε > 0,存在一个 N,使得当 n > N 时,M - ε≤ an ≤M + ε。

由于 m ≤ an ≤ M,我们可以得到 |an - M| < ε,即 lim(n→∞) an = M。

3.收敛的级数法:如果一个级数Σan 收敛到 S,那么其部分和 Sn 必定趋近于S。

因此,对于任何的 n,我们有 lim(n→∞) Sn = S。

特别地,如果级数的每一项都非负(或都非正),且级数收敛,那么该数列必定有界且单调。

4.洛必达法则:洛必达法则是求解极限的一种有效方法,特别适用于0/0型和∞/∞型的极限问题。

如果 f 和 g 在某点 a 的某邻域内可导,且 g' (a)≠0,那么 lim(x→a) f'(x)/g'(x) = f'(a)/g'(a)。

在数列的情境下,这可以被应用于求和公式的展开。

5.斯特林公式:斯特林公式给出了一个非负整数 n 的正整数次幂的阶乘与 n!的近似比。

数列极限知识点归纳总结

数列极限知识点归纳总结

数列极限知识点归纳总结数列是数学中的一个重要概念,由一系列有序的数字组成。

数列极限是数列在无穷项处的趋势或趋近的值。

在数学分析中,数列极限是一个基本的概念,具有广泛的应用。

本文将对数列极限的相关知识进行归纳总结,并以此为标题。

一、数列的定义和性质1. 数列的定义:数列是按照一定的规律排列的一系列数字。

2. 数列的通项公式:数列中的每一项可以用一个公式来表示,这个公式称为数列的通项公式。

3. 数列的性质:数列可以是有界的或无界的,可以是递增的或递减的,还可以是周期性的或非周期性的。

二、数列的极限1. 数列的极限定义:对于一个数列,如果随着项数的增加,数列中的元素逐渐接近一个确定的值,那么这个确定的值就是数列的极限。

2. 数列极限的表示:数列极限常用符号lim表示,写作lim(an)=a,其中an为数列的第n项,a为数列的极限。

3. 数列极限的存在性:数列的极限可能存在,也可能不存在。

如果数列极限存在,则称数列收敛;如果数列极限不存在,则称数列发散。

三、数列极限的计算方法1. 直接计算法:对于一些简单的数列,可以通过对数列的通项公式进行计算,得到数列的极限。

2. 套路法:对于一些特殊的数列,可以利用一些已知的极限结果和数列运算的性质,通过一些套路求得数列的极限。

3. 夹逼准则:对于一些复杂的数列,可以通过夹逼准则来求得数列的极限。

夹逼准则指的是如果数列a(n)≤b(n)≤c(n),且lim(a(n))=lim(c(n))=a,那么lim(b(n))=a。

四、数列极限的性质1. 唯一性:如果数列极限存在,则极限值唯一。

2. 保号性:如果数列的极限为正数(负数),那么数列的项数足够大时,数列的元素大于(小于)零。

3. 有界性:如果数列的极限存在,则数列有界。

五、数列极限的应用1. 函数极限:函数极限是数列极限的推广,通过将自变量取为数列,将函数值作为数列的项,就可以研究函数的极限。

2. 数列极限在微积分中的应用:数列极限在微积分中有广泛的应用,如计算导数、积分等。

《数学分析》第二章 数列极限

《数学分析》第二章 数列极限

xn的 限 或 称数 xn 收 于 ,记 极 , 者 列 敛 a 为
lim xn = a, 或xn → a (n → ∞).
n→∞
如果数列没有极限,就说数列是发散的 如果数列没有极限 就说数列是发散的. 就说数列是发散的 注意: 注意:.不等式 x n a < ε刻划了 x n与a的无限接近 ; 1
则当n > N时有 a b = ( x n b ) ( x n a )
ε ≤ x n b + x n a < ε + ε = 2ε.
故收敛数列极限唯一. 上式仅当a = b时才能成立 . 故收敛数列极限唯一
例5 证明数列 x n = ( 1) n + 1 是发散的. 1 由定义, 证 设 lim x n = a , 由定义 对于ε = , n→ ∞ 2 1 则N , 使得当 n > N时, 有 x n a < 成立, 2 1 1 即当n > N时, x n ∈ (a , a + ), 区间长度为1. 2 2 而x n 无休止地反复取1, 1两个数 , 不可能同时位于长度为 的 不可能同时位于长度为1的区间内. 长度为
注意: 数列对应着数轴上一个点列.可看作一 注意: 数列对应着数轴上一个点列 可看作一 1.数列对应着数轴上一个点列 动点在数轴上依次取 x1 , x 2 , , x n , .
x3
x1
x2 x4
xn
2.数列是整标函数 x n = f (n). 数列是整标函数
三,数列的极限
( 1)n1 } 当 n → ∞ 时的变化趋势 . 观察数列 {1 + n
2,唯一性 ,
定理2 定理2 每个收敛的数列只有一个极限. 每个收敛的数列只有一个极限.

数列的极限

数列的极限

添加标题
添加标题
添加标题
添加标题
步骤:首先给出数列的定义然后证明数列的极限存在
定义法:通过定义来证明数列极限的方法
例子:例如证明数列{n}的极限为可以通过定义法证明
注意事项:在使用定义法证明数列极限时需要注意数列的定义和极限的定义是否一致以及证明过程中是否使用了正确的数学符号和公式。
柯西收敛准则:如果数列{_n}满足对任意ε>0存在N使得当n>N时|_n-|<ε则称数列{_n}收敛于
极限的夹逼性:如果数列的极限存在那么数列的任何子列的极限也存在且极限值相同。
极限的连续性:如果数列的极限存在那么数列的任何子列的极限也存在且极限值相同。
极限的加法性质:lim(x->) [f(x) + g(x)] = lim(x->) f(x) + lim(x->) g(x)
极限的减法性质:lim(x->) [f(x) - g(x)] = lim(x->) f(x) - lim(x->) g(x)
极限的乘法性质:lim(x->) [f(x) * g(x)] = lim(x->) f(x) * lim(x->) g(x)
极限的除法性质:lim(x->) [f(x) / g(x)] = lim(x->) f(x) / lim(x->) g(x)
添加标题
添加标题
添加标题
添加标题
极限存在准则的应用:可以用来判断数列的极限是否存在以及计算极限的值
极限的表示:极限通常用符号lim表示如lim(x→x0)f(x)=。
极限的性质:极限具有保号性、保序性、保连续性等性质。
极限的应用:极限在微积分、函数分析、概率论等领域有着广泛的应用。

数学分析之数列极限

数学分析之数列极限

§1 数列极ቤተ መጻሕፍቲ ባይዱ的概念
数列极限是整个数学分析最重要的基 础之一,它不仅与函数极限密切相关,而且 为今后学习级数理论提供了极为丰富的准 备知识.
一、数列的定义
二、一个经典的例子 三、收敛数列的定义
四、按定义验证极限
五、再论 “ - N ”说法
六、一些例子
极限思想:
1、割圆求周长
三国时期,数学
家刘徽应用极限
1
n
的“极限”。
定性分析:当n无限增大时,1
(1)n1 n
无限趋近于1,数1即所谓
(1)n1
1
n
的“极限”。
定性分析:当n无限增大时,1
(1)n1 n
无限趋近于1,数1即所谓
与一切科学的思想方法一样,极限思想也 是社会实践的产物。极限的思想可以追溯到 古代,刘徽的割圆术就是建立在直观基础上 的一种原始的极限思想的应用;古希腊人的 穷竭法也蕴含了极限思想,但由于希腊人 “对无限的恐惧”,他们避免明显地“取极 限”,而是借助于间接证法——归谬法来完 成了有关的证明。
无限与有限有本质的不同,但二者又有联 系,无限是有限的发展。无限个数的和不 是一般的代数和,把它定义为“部分和” 的极限,就是借助于极限的思想方法,从 有限来认识无限的。
极限思想方法是数学分析必不可少的一 种重要方法,也是数学分析与初等数学的本 质区别之处。数学分析之所以能解决许多初 等数学无法解决的问题(例如求瞬时速度、 曲线弧长、曲边形面积、曲面体体积等问 题),正是由于它采用了极限的思想方法。
二、一个经典的例子
古代哲学家庄周所著的《庄子 ·天下篇》引用了
一句话: “一尺之棰, 日取其半, 万世不竭”. 它的 意思是: 一根长为一尺的木棒, 每天截下一半, 这

数学分析数列极限定义

数学分析数列极限定义

列的项,xn 称为通项(一般项).数列(1)记为{ xn }.
2,4,8, ,2n , ;
1 , 1 , 1 , 248
,
1 2n
,
;
{2n } 1
{2n }
极限概念的历史
1、割圆术:
“割之弥细,所 失弥少,割之又 割,以至于不可 割,则与圆周合 体而无所失矣”
——刘徽
极限概念的历史
正六边形的面积 A1
n lg ,
lg q
取N [lg ],
lg q
则当n N时,
就有qn 0 , limqn 0. n
数列极限(放缩法)
因为只需要证明存在N,不用找最小的N
lim
n
(n
1 1)2
0
欲使 an
0
1 (n 1)2
n2
1 2n 1
1 2n
只要n
1 ,取
2
N
1
2
即可.
证:
0,N
1
极限的定义
lim
n
an
0
0, N,n (或 )N,| an |
无论给出多小的数,在此变化过程中,
终究会比这个给出的数小。
lim
n
an
M ( 0), N,n N,an M
lim
n
an
M , N ,n N,|an | M
极限的定义
定义 如果对于任意给定的正数 (不论它多
么小),总存在正整数 N ,使得对于 n N 时的 一切 xn ,不等式 xn a 都成立,那末就称常数 a 是数列{ xn }的极限,或者称数列 { xn }收敛 于a ,记为
极限的直观理解
例1:证明调和数列极限为0. 证:因为此数列在其变化过程中,和0的

数列的极限与数学分析

数列的极限与数学分析

数列的极限与数学分析一、引言数列是数学中非常基础且重要的概念,它在数学分析中扮演着至关重要的角色。

通过研究数列的极限,我们可以深入理解数学分析的许多概念和定理。

本文将介绍数列的极限及其在数学分析中的应用。

二、数列的定义在讨论数列的极限之前,首先需要了解数列的定义。

数列可以看作是按照一定规律排列的一组数的序列。

通常用(a_n)表示第n个元素,其中n为正整数。

例如,(a_1, a_2, a_3, …)三、极限的概念1. 数列收敛对于一个数列({a_n}),如果存在实数A,对于任意给定的(> 0),存在正整数N,使得当(n > N)时,有(|a_n - A| < ),那么称该数列收敛于A,记作(_{n } a_n = A)。

### 2. 数列发散如果一个数列不满足上述条件,即不存在实数A使得该数列收敛于A,则称该数列发散。

四、收敛数列的性质收敛数列具有许多重要性质,其中常用的包括: - 收敛数列是有界的 - 收敛数列的极限是唯一的 - 递增(减)有上(下)界的数列必收敛五、收敛定理1. 夹逼定理若对于所有的n都有(b_n a_n c_n),且({n } b_n = {n } c_n= L),则有(_{n } a_n = L)。

### 2. 单调有界定理单调增加且有上界的数列必收敛;单调递减且有下界的数列必收敛。

六、常见极限计算在求解极限过程中,经常会遇到一些常见形式,例如: - ( {n } = 0, p > 0 ) - ( {n } (1 + )^n = e ) - ( _{n } = 1 )七、泰勒展开与极限泰勒展开是一种将一个函数表示为无穷级数之和的方法,在研究函数在某点附近的性质时具有重要作用。

通过泰勒展开可以帮助我们求解一些复杂函数在某点处的极限值。

八、总结与展望通过本文对于数列的极限及其在数学分析中的应用进行了简要介绍。

数列作为数学分析中重要的基础概念,对于进一步学习微积分等高阶数学领域具有关键意义。

数学分析讲解数列极限

数学分析讲解数列极限

例7 设数列{xn}对常数A和0 < q <1满足条件
| xn1 A | q | xn A | (n N)
证明
lim
n
xn
A.
例8

x1
1,
xn1
1 1 xn
,
(n
N).求
lim
n
xn
三、收敛数列的性质
定理1 (唯一性)若数列{xn}存在极限,则其极限值必唯一. 即
若lim n
xn
A, 又 lim n
推论1 若
lim
n
an
a , 则有
lim a1 a2 L
n
n
an a
推论2
若an
>
0,

lim
n
an
a
,
则有
lim n
n
a1 a2 L
an
a
推论3
若an
>
0,
且lim n
an an1
a , 则有
lim n
n
an
a
例14
求极限
12 lim
22
n
2 32 3 3L n2 n n n3
lim (
n
xn
yn )
A
B
lim
n
xn
lim
n
yn ;
lim (
n
xn
yn )
A
B
lim
n
xn
lim n
yn ;
(lim n
xnm
Am ,
m N)
(lnim(cxn
)
cA
c
lim

数学分析数列极限分析解析

数学分析数列极限分析解析

第二章 数列极限§1 数列极限概念教学目的与要求:使同学们理解数列极限存在的定义,数列发散的定义,某一实数不是数列极限的定义;掌握用数列极限定义证明数列收敛发散的方法。

教学重点,难点:数列极限存在和数列发散定义的理解;切实掌握数列收敛发散的定义,利用数列收敛或发散的定义证明数列的收敛或发散性。

教学内容: 一、课题引入1°预备知识:数列的定义、记法、通项、项数等有关概念。

2°实例:战国时代哲学家庄周著《庄子·天下篇》引用一句话“一尺之棰,日取其半,万古不竭。

”将其“数学化”即得,每天截后剩余部分长度为(单位尺) 21,221,321,……,n 21,…… 或简记作数列:⎭⎬⎫⎩⎨⎧n 21分析:1°、⎭⎬⎫⎩⎨⎧n 21随n 增大而减小,且无限接近于常数0;2二、数列极限定义1°将上述实例一般化可得:对数列{}na ,若存在某常数a ,当n 无限增大时,n 能无限接近常数a 该数为收敛数列,a 为它的极限。

例如:⎭⎬⎫⎩⎨⎧n 1, a=0;⎭⎬⎫⎩⎨⎧-+n n )1(3, a=3; {}2n , a 不存在,数列不收敛;{}n)1(-, a 不存在,数列不收敛;2°将“n 无限增大时”,数学“符号化”为:“存在N ,当n >N 时” 将“a n 无限接近a ”例如对⎭⎬⎫⎩⎨⎧-+n n )1(()3以3为极限,对ε=1013)1(3--+=-na a nn =1011n只需取N=10,即可3°“抽象化”得“数列极限”的定义定义:设{}na 是一个数列,a 是一个确定的常数,若对任给的正数ε,总存在某一自然数N ,使得当n >N 时,都有aa n -<ε则称数列{}na 收敛于a ,a 为它的极限。

记作a a n n =∞→lim {(或a n →a,(n →∞)) 说明(1)若数列{}na 没有极限,则称该数列为发散数列。

数学分析课件2.1数列的极限和无穷大量2.51MB

数学分析课件2.1数列的极限和无穷大量2.51MB

已知n b 1,由( )得证。 x 1 lim
n
c.
lim (3)当a 1时, 对n, n a 1, 故 n n a 1(a 1 . )
一般地,xn c有
【数学分析课件】 15
例 4.
lim
n
n
n 1.
证明: 令n n 1 hn , 则n n 1 hn , 即
1 1 由不等式有 ,故只须 n 即可。 n
即对 0, 自然数 [ ] ,当 n [ ]时,便有
( 1) n 1 1 1 . n
1
1
定义:
若对 0, 总N [ ], 当n N时, 有
1
( 1) n 1 1 1 . n
1 ( 1) n 1 1 . 1 , 只须 n 1000000 对 , 要 使1 n 1000000 1000000
……
【数学分析课件】 5
以上还不能说明 竟它们都还是确定的数。

( 1) n 1 1 1 n
任意小,并保持任意小,毕
( 1) n 1 1 才 行. 0, 要 使 1 n
2
一、数列极限的定义
1.数列: 是按次序排列的一列无穷多个数
x 1 , x 2 ,L , x n ,L
数列是定义在自然数集N上的函数。即以N为定义域由小 到大取值所对应的一列函数值。 对
n N
,设
f (n) xn
,则
自变量: 1,2, L,2006 L, n, L ,
x 函数值: 1 ,
x2 , L, x2006 , L, xn , L
1 n
or
a 1 ,
1 n

数列极限的定义与性质

数列极限的定义与性质

数列极限的定义与性质数列是数学中一个非常重要的概念,而数列的极限更是数学分析中的基础知识之一。

数列极限的定义与性质对于理解数学分析、微积分等学科具有重要意义。

本文将从数列极限的定义入手,逐步介绍数列极限的性质,帮助读者更好地理解这一概念。

1. 数列极限的定义数列极限的定义是数学分析中的基础概念之一。

对于数列${a_n}$,当$n$趋于无穷大时,如果数列的项$a_n$可以无限接近某个常数$A$,那么称常数$A$为数列${a_n}$的极限,记作$\lim\limits_{n \to\infty} a_n = A$。

换句话说,对于任意给定的正实数$\varepsilon$,总存在正整数$N$,使得当$n>N$时,数列的项$a_n$与极限$A$之间的差的绝对值$|a_n - A|$小于$\varepsilon$。

数学上也可以用$\lim\limits_{n \to \infty} a_n = A$来表示数列${a_n}$的极限。

这个定义是数列极限的基础,也是理解数列极限性质的前提。

2. 数列极限的性质数列极限具有一些重要的性质,下面将逐一介绍这些性质:(1)数列极限的唯一性:如果数列${a_n}$的极限存在,那么这个极限是唯一的。

也就是说,如果$\lim\limits_{n \to \infty} a_n = A$且$\lim\limits_{n \to \infty} a_n = B$,那么$A=B$。

(2)数列极限的有界性:如果数列${a_n}$的极限存在,那么这个数列是有界的。

即存在一个实数$M$,使得对于数列的每一项$a_n$,都有$|a_n| \leq M$。

(3)数列极限的保号性:如果数列${a_n}$的极限存在且大于(小于)零,那么从某项开始,数列的每一项都大于(小于)零。

(4)数列极限的四则运算性质:设$\lim\limits_{n \to \infty} a_n = A$,$\lim\limits_{n \to \infty} b_n = B$,则有:- $\lim\limits_{n \to \infty} (a_n \pm b_n) = A \pm B$- $\lim\limits_{n \to \infty} (a_n \cdot b_n) = A \cdot B$- 若$B \neq 0$,$\lim\limits_{n \to \infty} \frac{a_n}{b_n} = \frac{A}{B}$(5)夹逼准则:如果数列${a_n}$、${b_n}$、${c_n}$满足$a_n\leq b_n \leq c_n$,且$\lim\limits_{n \to \infty} a_n =\lim\limits_{n \to \infty} c_n = A$,那么$\lim\limits_{n \to\infty} b_n = A$。

数列极限及其应用

数列极限及其应用

数列极限及其应用数列是数学中重要的概念之一,数列极限是数学分析中的重要内容。

在本文中,我们将探讨数列极限的定义、性质以及其在数学和现实生活中的应用。

一、数列极限的定义和性质数列是由一系列按照一定规律排列的数字组成的序列。

数列通常表示为{a₁,a₂, a₃, ......, aₙ},其中a₁、a₂、a₃等是数列中的项。

数列的极限是指当n趋向于无穷大时,数列中的项趋近于确定的常数L。

这一定义可以表示为:lim{n→∞} aₙ = L数列极限的性质包括:1. 唯一性:数列的极限只有唯一的值。

2. 有界性:若数列存在极限,则数列必定有界,即存在上界和下界。

3. 保号性:若数列存在极限且其极限为正(或负)数,则数列从某项起,总是正(或负)号。

4. 夹挤性:若数列的每项均位于两个收敛数列的中间,则该数列也是收敛的,并有相同的极限。

二、数列极限的应用1. 数学分析中的应用:数列极限在微积分中有着重要的应用。

利用数列极限的概念,我们可以定义导数和积分,并研究函数的连续性和各种变化规律。

数列极限的概念是微积分的基础之一,它为我们理解和深入研究函数的性质提供了便利。

2. 数列极限在无穷级数求和中的应用:无穷级数是由无穷个项按照一定规律排列而成的数列。

利用数列极限的概念,我们可以判断无穷级数是否收敛,以及求出其和。

例如,经典的几何级数可以通过数列极限的方法求和,从而得到其和为有理数的结论。

3. 数列极限在金融投资中的应用:在金融投资中,数列极限可以用于计算投资回报率。

通过考察投资金额随时间增长的趋势,我们可以得到不同投资方案的回报率,并作出合理的投资决策。

4. 数列极限在物理学中的应用:在物理学中,数列极限可以用于描述物体运动的速度和加速度。

例如,通过分析质点在无穷小时间间隔内的位移变化,我们可以定义速度和加速度,并利用数列极限的概念来研究物体的运动轨迹和变化规律。

5. 数列极限在市场预测中的应用:数列极限可以用于分析市场行情和预测未来的趋势。

数列极限方法总结

数列极限方法总结

数列极限方法总结数列极限是数学分析中的一个重要概念,它描述了数列随着项数的增加趋向于一个确定的数值或趋向于无穷大的特性。

数列是一系列按照一定规律排列的数的集合,数列极限的研究是为了求得这些数列的趋势和性质。

在数学和物理等学科中,数列极限的求解是基础和关键的一步。

数列极限的求解方法有很多,这里我将总结一些常用的数列极限方法。

一、代入法:代入法是数列极限求解的一个简单而直接的方法。

用代入法求解数列极限时,只需要将数列的项数逐一代入数列规律中,找出当项数趋于无穷大时数列的极限。

例如,对于数列an=3n-1,当n≥1时,对于任意的正整数n,有:当n=1时,a1=3*1-1=2;当n=2时,a2=3*2-1=5;当n=3时,a3=3*3-1=8;...当n趋于无穷大时,数列中的每一项都趋于无穷大,所以该数列的极限为正无穷大。

二、数列递推关系:对于一些含有递推关系的数列,可以通过观察数列之间的关系,找到数列极限的方法。

以Fibonacci数列为例,该数列的递推关系是每一项等于前两项的和,即:Fn=Fn-1+Fn-2。

根据这个递推关系,可以得到该数列的前几项:F1=1,F2=1,F3=2,F4=3,F5=5,F6=8,...通过观察可以发现,当n趋于无穷大时,Fn/Fn+1的值趋于黄金分割比例(1+√5)/2,即Fibonacci数列的极限是黄金分割比例。

三、夹逼法:夹逼法是一种常用的求解数列极限的方法。

当数列难以直接求得极限时,可以通过迫近的方式利用夹逼法求得数列的极限。

夹逼法的思想是通过构造两个不等式,将数列逐渐夹逼到一个确定的极限值。

夹逼法的步骤如下:1)找到两个数列,一个上界数列bn,一个下界数列cn,并确定它们的极限值分别为L,M;2)构造两个不等式,即:cn≤an≤bn;3)证明bn和cn的极限都为L,M;4)由bn≥an和cn≤an可以得到bn=M≤an≤L=cn;5)根据夹逼定理,当n趋于无穷大时,数列an的极限也是L。

数学分析课件之第二章数列极限

数学分析课件之第二章数列极限

02
数列极限的运算性质
数列极限的四则运算性质
01
02
03
04
加法性质
若$lim x_n = a$且$lim y_n = b$,则$lim (x_n + y_n) =
a + b$。
减法性质
若$lim x_n = a$且$lim y_n = b$,则$lim (x_n - y_n) =
a - b$。
数列极限的性质
总结词
数列极限具有一些重要的性质,如唯一性、收敛性、保序性等。
详细描述
数列极限具有一些重要的性质。首先,极限具有唯一性,即一个数列只有一个极限值。其次,极限具有收敛性, 即当项数趋于无穷时,数列的项逐渐接近极限值。此外,极限还具有保序性,即如果一个数列的项小于另一个数 列的项,那么它们的极限也满足这个关系。
指数性质
若$lim x_n = a$且$0 < |a| < 1$ ,则$lim a^{x_n} = 1$。
幂运算性质
若$lim x_n = a$,则$lim x_n^k = a^k$(其中$k$为正整数)。
数列极限的运算性质在数学中的应用
解决极限问题
利用数列极限的运算性质,可以 推导和证明一系列数学定理和公 式,如泰勒级数、洛必达法则等
无穷小量是指在某个变化过程中,其 值无限趋近于0的变量。
性质
无穷小量具有可加性、可减性、可乘 性和可除性,但不可约性。
无穷大量的定义与性质
定义
无穷大量是指在某个变化过程中,其值无限增大的变量。
性质
无穷大量具有可加性、可减性、可乘性和可除性,但不可约性。
无穷小量与无穷大量的关系
1 2
无穷量是无穷大量的极限状态

数分第三章:数列极限

数分第三章:数列极限

0,
2 an 2 an1
数学分析
所以 {an }递增 . 下面再来证明此数列有上界.
显然 , a1 2 2 , 设 an 2 , 则
an1 2 an 2 2 2.
由此得到 {an }有上界 2 ,
故极限
lim
n
an

A
存在
.
于是由
lim
n
第三单元 数列极限 3.1.1 数列收敛的定义
数学分析
数列极限的概念
数列极限是函数极限的特殊情况,也是 整个数学分析最重要的基础之一, 而且 为今后学习级数理论提供了极为丰富的 准备知识.
数学分析
一、数列的定义
若函数 f 的定义域为全体正整数的集合 N+ , 则称 f : N+ R 或 f (n), n N+
n
3n2
n2 n7

1. 3
数学分析
例4 用定义验证 lim n a 1, 其中 a 0. n
证 这里只验证 a 1的情形(0 a 1 时自证).

n

1
an
1
.
因为
a
1 n n
1 nn ,
所以
0

n

n
a
1
a1 n
.
故对于任意正数 , 取 N a 1 , 当 n N 时 ,
以说明, 希望大家对 “ - N ”说法能有正确的认识.
例1
用定义验证:
lim
n
1 n

0.
分析
对于任意正数 , 要使
1 n
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第二章数列极限§1 数列极限概念教学目的与要求:使同学们理解数列极限存在的定义,数列发散的定义,某一实数不是数列极限的定义;掌握用数列极限定义证明数列收敛发散的方法。

教学重点,难点:数列极限存在和数列发散定义的理解;切实掌握数列收敛发散的定义,利用数列收敛或发散的定义证明数列的收敛或发散性。

教学内容: 一、课题引入1°预备知识:数列的定义、记法、通项、项数等有关概念。

2°实例:战国时代哲学家庄周著《庄子·天下篇》引用一句话“一尺之棰,日取其半,万古不竭。

”将其“数学化”即得,每天截后剩余部分长度为(单位尺)21,221,321,……,n 21,…… 或简记作数列:⎭⎬⎫⎩⎨⎧n 21分析:1°、⎭⎬⎫⎩⎨⎧n 21随n 增大而减小,且无限接近于常数0;2二、数列极限定义1°将上述实例一般化可得:对数列{}na ,若存在某常数a ,当n 无限增大时,a n 能无限接近常数a ,则称该数为收敛数列,a 为它的极限。

例如:⎭⎬⎫⎩⎨⎧n 1, a=0;⎭⎬⎫⎩⎨⎧-+n n )1(3, a=3; {}2n , a 不存在,数列不收敛;{}n)1(-, a 不存在,数列不收敛;2°将“n 无限增大时”,数学“符号化”为:“存在N ,当n >N 时” 将“a n 无限接近a ”例如对⎭⎬⎫⎩⎨⎧-+n n)1(()3以3为极限,对ε=1013)1(3--+=-na a nn =1011πn只需取N=10,即可3°“抽象化”得“数列极限”的定义定义:设{}na 是一个数列,a 是一个确定的常数,若对任给的正数ε,总存在某一自然数N ,使得当n >N 时,都有aa n -<ε则称数列{}na 收敛于a ,a 为它的极限。

记作a a n n =∞→lim {(或a n →a,(n →∞)) 说明(1)若数列{}na 没有极限,则称该数列为发散数列。

(2)数列极限定义的“符号化”记法:a a n n =∞→lim ⇔ε∀>0,∃N ,当n (3)上述定义中ε的双重性:ε>0是任意..的,由“任意性”可知,不等式aan-<ε,可用aan-<2ε,aan-<ε2……来代替 “<”号也可用“≤”号来代替(为什么)(4)上述定义中N 的双重性:N 是仅依赖..于ε的自然数,有时记作N=N (ε)(这并非说明N 是ε的函数,是即:N 是对应确定....的!但N 又不是唯一....的,只要存在一个N ,就会存在无穷多个N(5)如何用肯定的语气叙述a a n n ≠∞→lim : 0ε∃>0,∀N ,∃n 。

尽管n 。

>N ,但aaon-(6)如何用肯定的语气叙述,数列{}na 发散:Ra ∈∀ ,)(a O Oεε=∃>0,∀N ,∃n o,尽管n o >N ,但aaon -≥εo 。

(7)a n n ∞→lim即a 的任给ε邻城,都存在一个足够大的确定的自然数N ,使数列{}n a 中,所有下标大于N 的a n ,都落在a 的ε邻城内。

.的例题 例1.证明01lim =∞→kn n (K 为正实数)证:由于kk n n 101=- 所以∀ε>0,取N=⎥⎥⎦⎤⎢⎢⎣⎡k 11ε,当n >N 时,便有ε〈-01k n注:或写作:∀ε>0,取N=⎥⎥⎦⎤⎢⎢⎣⎡k11ε,当n >N 时,有ε〈=-K K nn 101,∴01lim =∞→kn n例2. 证明343lim22=-∞→n n n 分析,要使ε〈≤-=--n n n n 12412343222(为简化,限定n 3≥只要n ε12〉证.⎭⎬⎫⎩⎨⎧⎥⎦⎤⎢⎣⎡=〉∀3,12max ,0εεN 取,当n N 〉,有ε〈≤-=--nn n n 12412343222由定义343lim 22=-∞→n n n 适当予先限定n >n 。

是允许的!但最后取N 时要保证n >n 。

例3.证明nn q ∞→lim =0,这里q <1证.若q=0,结果显然成立 若0<q <1,令q =h h(11+>0) 由于由贝努利不等式n nn h q q )1(1+==≤nh +11<nh1所以,ε∀>0,取N=n h 当,1⎥⎦⎤⎢⎣⎡ε>N ,有0-n q <ε注:1°特别地写当q=21时,此即为上述实例中的0)21(lim =∞→nn2°贝努利不等式(1+h )n ≥1+nh.3°由例2、例3看出,在由a a n -<ε中求N 时,适当的 “放大”不等式,可以简化运算。

而“放大”的技巧应引起同学们注意体验、总结。

如:用已知不等式,用限定“n >n 。

”等方法。

例4.证明1lim=∞→nn a ,其中a >1证.令a n1-1=α,则α>0由贝努利不等式 α=(1+α)n ≥1+n α=1+n (11-na)或11-n a ≤na 1-ε∀ >0,取N=⎥⎦⎤⎢⎣⎡-ε1a ,当n >N 有11-n a <ε四、等价定义与无穷小数列定义1' 任给ε>0,若在U (a;ε)之外数列{}n a 中的项至多只有有限个,则称数列{}n a 收敛于极限a 。

由定义1' 可知,若存在某ε0>0,使得数列{}n a 中有无穷多个项落在U(a ;ε0)之外,则{}n a 一定不以a 为极限。

例5 证明{}2n 和{}n )1(-都是发散数列。

分析 利用定义1' 证例6 设a y x n n n n ==∞→∞→lim lim ,作数列﹛z n ﹜如下:﹛z n ﹜:x 1,y 1,x 2,y 2,…,x n ,y n ,…。

证明 a z n n =∞→lim 。

分析 利用定义1' 证例7 设{}n a 为给定的数列,{}n b 为对{}n a 增加、减少或改变有限项之后得到的数列。

证明:数列{}n b 与{}n a 同时为收敛或发散,且在收敛时两者的极限相等。

分析 利用定义1'证 设{}n a 为收敛数列,且n n a ∞→lim =a 。

按定义1',……。

现设{}n a 发散,倘若{}n b 收敛,则因{}n a 可看成是对{}n b 增加、减少或改变有限项之后得到的数列,故由刚才所证,{}n a 收敛,矛盾。

所以当{}n a 发散时{}n b也发散。

在所有收敛数列中,有一类重要的数列,称为无穷小数列,其定义如下: 定义2 若0lim =∞→n n a ,则称{}n a 为无穷小数列。

前面例1、2、4中的数列都是无穷小数列。

由无穷小数列的定义,读者不难证明如下命题:定理2. 1 数列{}n a 收敛于α的充要条件是:{}α-n a 为无穷小数列。

五、小结:(可以师生共同总结,或教师引导学生小结,然后教师再条理一下)本节课重点在于“数列极限的概念”,而“用极限定义证明极限”的例题学习也是为了巩固极限概念。

为此,同学们要注意:°极限概念的“ε-N ”叙述要熟练掌握,并注意理科ε,N 的双重性。

°用极限定义证明极限时,关键是由任给的ε>0通过反解不等式|a n -a |<ε求N ,其中的若干技巧在于化简不等式。

特别注意不等式的“放大”要适度;即要尽可能化简,又不要过度,N 的表达式一定仅依赖于ε,当然N 是否是自然数,倒是无关紧要的。

3°同学们在学习这部分知识的同时要反复体验其中渗透看的重要数学思维方法,如:抽象化法,数形结合法,符合化法等,这对于大家体验数学的本着特点及培养数学思维能力是十分有益的。

关于这一点希望同学们在课下复习时反复体会一下,并结合以前学过的知识中的类似方法对照思考。

复习思考题、作业题:数列收敛发散的定义是什么收敛发散的概念是不是相反的 1(1),2,3,4,6§§2 收敛数列的性质教学目的与要求:掌握收敛数列的性质如唯一性,有界性,四则运算等及应用。

教学重点,难点:收敛数列的性质应用,数列子列的定义及数列子列收敛与数列收敛之间的关系。

教学内容:收敛数列主要有唯一性、有界性、保号性、保序性、迫敛性、四则运算性、子列性等重要性质,通过这些性质的学习,可使学生掌握数列极限的定义与应用定义证明有关命题。

1、唯一性定理若数列{}n a收敛,则它只有一个极限。

分析使用几何定义——定义1'证注1:本性质证明使用几何定义。

为让学生学会取特殊的ε,可讲解反证法ε”定义。

证明。

这样更可体现极限的“N-注2:一个收敛数列一般含有无穷多个数,而它的极限只是一个数。

体现了无限与有限之间的转化关系,这样由这一个数就能精确地估计出几乎全体项的大小,以下收敛数列的一些性质,大都基于这一事实。

2、有界性定理若数列{}n a收敛,则{}n a为有界数列,即存在正数M,使得对一切正整数n有≤。

Man分析证注1:ε的取法注2:有界性只是数列收敛的必要条件,而非充分条件,例如数列{}n)1(-有界,但它并不收敛(见§1例6)。

3、保号性定理若0lim a >a n n =∞→或<0,则对任何∈'a (0,a )(或)0,('a a ∈),存在正数N ,使得当n >N 时有a n >'a (或a n <'a )。

分析 证注1:ε的取法注2: 在应用保号性时,经常取2'aa =。

4、保序性定理 设{}n a 与{}n b 均为收敛数列,若存在正数N 0,使得当n >N 0时有a n ≤b n ,则n n n n b a ∞→∞→≤lim lim 。

分析 定义与第一章§1例2 证注1:N 的取法思考:如果把定理中的条件a n ≤b n ,换成严格不等式a n <b n ,那么能否把结论换成n n n n b <a ∞→∞→lim lim例1 设an ≥0(n=1,2,…)。

证明:若a a n n =∞→lim ,则a a n n =∞→lim 。

分析 定理、定义与分类讨论 证4、迫敛性定理 设收敛数列{}n a ,{}n b 都以a 为极限,数列{}n c 满足:存在正数N 0,当n >N 0时有n n n b c a ≤≤ (4) 则数列{}n c 收敛,且a c n n =∞→lim 。

例2 求数列{}nn 的极限。

分析 解5、四则运算法则定理 若{}n a 与{}n b 为收敛数列,则{}n n b a +,{}n n b a -,{}n n b a ⋅也都是收敛数列,且有,lim lim )(lim n n n n n n n b a b a ∞→∞→∞→±=±n n n n n n n b a b a ∞→∞→∞→⋅=⋅lim lim )(lim 。

特别当b n ,为常数c 时有n n n n n n n n a c ca c a c a ∞→∞→∞→∞→=+=+lim lim ,lim )(lim 。

相关文档
最新文档