有理数、整式培优练习题

合集下载

有理数和整式-同步练习题

有理数和整式-同步练习题

有理数及其整式同步练习题一.选择题1.小文买了一支温度计,回家后发现里面有一个小气泡(即不准确了),先拿它在冰箱里试一下,在标准温度是零下7℃时,显示为—11℃,在36℃的温水中,显示为32℃,那么用这个温度计量得的室外气温是23℃,则室外的实际气温应是()A.27℃B.19℃C.23℃D.不能确定2.如果a表示有理数,那么下列说法中正确的是()A.+a和-a一定不相等B.-a一定是负数C.—(+a)和+(—a)一定相等D.|a|一定是正数3.下图数轴上A、B、C、D、E、S、T七点的坐标分别为-2、-1、0、1、2、s、t.若数轴上有一点R,其坐标为|s-t+1|,则R会落在下列哪一线段上?A.AB B.BC C.CD D.DE4.若实数a满足a-|a|=2a,则()A.a>0 B.a<0 C.a≥0D.a≤05.若有理数x,y满足2(x-1)2+|x—2y+1|=0,则(xy)xy=()A.1 B.4 C.9 D.166.为了解决迫在眉睫的环境问题,中国2013年预算案显示,中央和地方政府2013年将向节能和环境保护相关领域投入约32860000万元,将大力改善发电站的电力供应结构.近似数32860000用科学记数法可表示为()A.3.286×105 B.3.286×106 C.3.286×107 D.3。

286×1087.观察下面的一列单项式:-x、2x2、—4x3、8x4、—16x5、…根据其中的规律,得出的第10个单项式是()A.—29x10 B.29x10 C.-29x9 D.29x98.单项式35xy-的系数和次数分别是()A.3,25-B.-3,2 C.35,3 D.35-,39.多项式5a3-6a3b+3a2b—3a3+6a3b—5—2a3—3ba2的值()A.只与a有关B.只与b有关C.与字母a,b都有关D.与字母a,b都无关10.当k取何值时,多项式x2—3kxy—3y2+13xy-8中,不含xy项()A .0B .13C . 19D .19-11.通信市场竞争日益激烈,某通信公司的手机本地话费标准按原标准每分钟降低a 元后,再次下调了20%,现在收费标准是每分钟b 元,则原收费标准每分钟是( )A .(a+ 54b)元B .(a — 54b )元 C .(a+5b )元 D .(a —5b )元 12.a 表示一个一位数,b 表示一个两位数,把a 放到b 的左边组成一个三位数,则这个三位数可以表示为( )A .AbB .10a+bC .100a+bD .a+b13.已知单项式-3x 2m-n y 4与 x 3y m+2n 是同类项,则m n 的值为( )A . 12B .3C .1D .2 14.—[x-(2y —3z )]去括号应得( )A .—x+2y-3zB .-x-2y+3zC .—x —2y-3zD .—x+2y+3z二.填空题15.若n 为自然数,那么(-1)2n +(-1)2n+1=16.已知数轴上A 、B 表示的数互为相反数,并且两点间的距离是6,点A 在点B 的左边,则点A 、B 表示的数分别是17.如图,在长方形草地内修建了宽为2米的道路,则草地面积为18.0.1252007×(—8)2008=19.把多项式2xy 2-x 2y-x 3y 3—7按x 作升幂排列是20.化简:(x 2+y 2)-3(x 2-2y 2)=21.张师傅下岗再就业,做起了小商品生意,第一次进货时,他以每件a 元的价格购进了20件甲种小商品,每件b 元的价格购进了30件乙种小商品(a >b );回来后,根据市场行情,他将这两种小商品都以每件2a b + 元的价格出售,在这次买卖中,张师傅赚 元钱25.已知3x a—2y2z3和—4x3y b—1z3是同类项,求3a2b-[2ab2—2(a2b+2ab2)]的值.26.已知A=2a2—a,B=-5a+1.(1)化简:3A—2B+2;(2)当a=−12时,求3A-2B+2的值.27.已知:|x-2|+|y+1|=0,求5xy2—2x2y+[3xy2—(4xy2-2x2y)]的值.28.若a,b,c为整数,且|a—b|19+|c—a|99=1,试计算|c-a|+|a—b|+|b—c|的值.29.小明在研究数学问题时发现一个有趣的现象:请你用不同的三位数再做做,发现什么有趣的现象?用您所学过的知识解释.。

七年级数学有理数与整式专项训练(人教版)(含答案)

七年级数学有理数与整式专项训练(人教版)(含答案)

学生做题前请先回答以下问题问题1:字母和数字的书写格式有哪些注意事项?问题2:你是如何判断一个式子是不是代数式的?问题3:什么是单项式?什么是单项式的系数和次数?问题4:什么是多项式?什么是多项式的项和次数?问题5:什么是同类项?有理数与整式专项训练(人教版)一、单选题(共12道,每道8分)1.下列代数式书写规范的是( )A. B.C. D.答案:D解题思路:字母和数字的书写格式:①字母与字母相乘,乘号省略或写成“·”;②数字与字母相乘,数字写在字母前面;③除法写成分数的形式;④带分数写成假分数的形式.只有D选项符合.故选D.试题难度:三颗星知识点:整式2.下列式子:,,,,,-5,.其中是代数式的有( )A.4个B.5个C.6个D.7个答案:B解题思路:试题难度:三颗星知识点:代数式的定义3.下列各式:,-3,,,,,其中是单项式的有( )A.2个B.3个C.4个D.5个答案:B解题思路:试题难度:三颗星知识点:单项式的概念4.下列说法正确的是( )A.单项式y的次数是1,系数是0B.多项式中的系数是C.多项式t-5的项是t和5D.是二次单项式答案:B解题思路:试题难度:三颗星知识点:多项式的项数5.多项式的次数及最高次项的系数分别是( )A.3,-2B.3,2C.4,1D.2,-2答案:A解题思路:试题难度:三颗星知识点:多项式的系数与次数6.下列各式中,不是同类项的是( )A. B.C. D.答案:D解题思路:所含字母相同,并且相同字母的指数也相同的项,叫做同类项.D中相同字母的指数不同.故选D.试题难度:三颗星知识点:同类项7.若规定:,则( )A. B.4C. D.答案:A解题思路:根据题意得,故选A.试题难度:三颗星知识点:定义新运算8.若规定:,则( )A.30B.-30C.11D.-11答案:C解题思路:根据题意得,故选C.试题难度:三颗星知识点:定义新运算9.定义一种运算“※”:,则( )A.-34B.34C.16D.-16答案:D解题思路:根据题意得,故选D.试题难度:三颗星知识点:定义新运算10.定义新运算“※”:,则(-2)※3=( )A.1B.-5C.-7D.-11答案:D解题思路:由题意得,故选D.试题难度:三颗星知识点:定义新运算11.表示两个数,规定新运算“※”及“”如下:,.则的值为( )A.380B.155C.960D.930答案:D解题思路:由题意得,故选D.试题难度:三颗星知识点:定义新运算12.定义某种新运算:的运算原理流程图如图所示,则( )A.9B.8C.10D.4答案:A解题思路:试题难度:三颗星知识点:定义新运算。

七年级数学上册《有理数》综合提高培优难题

七年级数学上册《有理数》综合提高培优难题

七年级《有理数》培优训练一、选择题1、 -2,0,2,-3这四个数中最大的是( )A.-1B.0C.1D.2 2、下列计算正确的是( )(A )088=--)( (B )1221=⨯)()(-- (C )011--=() (D )22-|-|= 3、小明家冰箱冷冻室的温度为-5℃,调高4℃后的温度为( )(A )4℃ (B )9℃ (C )-1℃ (D )-9℃ 4、下列各组数中,互为相反数的是( )A .2和-2B .-2和12 C .-2和12- D .12和2 5、计算(-3)3+52-(-2)2之值为何?( )(A) 2 (B) 5 (C)-3 (D)-6 6、下列等式成立是( )A. 22=-B. 1)1(-=--C.1÷31)3(=- D.632=⨯-7、数2-的相反数为( )A 、2B 、21C 、2-D 、21-8国家投资建设的泰州长江大桥已经开工,据泰州日报报道,大桥预算总造价是9 370 000 000元人民币,用科学记数法表示为( )A .93.7×109元B . 9.37×109元C . 9.37×1010元D .0.937×1010元 9、下列各组数中,互为相反数的是( )A .2和21B .-2和-21C . -2和|-2|D .2和2110、汶川发生特大地震后,国内外纷纷向灾区捐物捐款,截至5月26日12时,捐款达308.76亿元.把它用科学记数法表示为( ) A .930.87610⨯元B .103.087610⨯元C .110.3087610⨯元D .113.087610⨯元11、若实数a 、b 互为相反数,则下列等式中恒成立的是( ) A 0a b -= B 0a b += C 1ab = D 1ab =-12、实数a 、b 在数轴上的位置如图1所示,则a 与b 的大小关系是( ) CA.a > b B . a = b C . a < b D . 不能判断 13、若23(2)0m n -++=,则2m n +的值为( )A .4-B .1-C .0D .414、如图,数轴上一动点A 向左移动2个单位长度到达点B ,再向右移动5个单位长度到达点C .若点C 表示的数为1,则点A 表示的数为( )A.7 B.3 C.3-D.2-15、用四舍五入法得到a 的近似数是3.80,精确地说,这个数的范围是( )A 、3.795 3.805a ≤〈B 、3.75 3.85a ≤〈C 、3.75 3.85a 〈〈D 、3.795 3.805a 〈≤ 16、a 是有理数,代数式112++a 的最小值是( A ) (A) 1 (B) 2 (C) 3 (D) 4 17、a 是有理数,则112000a +的值不能是( ).(A)1 (B)-1 (C)0 (D)-2000 18、若a =19991998,b =20001999,c =20012000则下列不等关系中正确的是( )A. a <b <cB. a <c <bC. b <c <aD. c <b <a19、如果某文化商场同时卖出两台电子琴,每台均卖960元,以成本计算,其中一台盈利20%,另一台亏本20%,则本次出售中商场( )A . 不赔不赚B . 赚160元 C. 赚80元 D. 赔80元20、有理数的大小关系如图2所示,则下列式子中一定成立 的是( ) (A )>0 (B )< (C )(D )>21、计算:221 4.5(12)3151.3223∙----⨯-=( ) (A)-720; (B)-12245; (C)-17720; (D)-29245.22、如果1=++cc bb aa ,则abcabc 的值为( )(A )1- (B )1 (C )1± (D )不确定二、填空题23、 9的相反数是______比–3小9的数是________;最小的正整数是____________24、 已知某地一天中的最高温度为10℃,最低温度为5-℃,则这天最高温度与最低温度的温差为___________________.25、如果数轴上点A 到原点的距离为3,点B 到原点的距离为5,那么A 、B 两点的距离为26、 计算:______21=⎪⎭⎫ ⎝⎛--;______21=-;______210=⎪⎭⎫ ⎝⎛-;______211=⎪⎭⎫⎝⎛--。

七年级数学上册《有理数》培优测试题(含答案)

七年级数学上册《有理数》培优测试题(含答案)

B. (3) (2)
C. (3)2 (2)2
D.
(3)2 (2)
10.几个同学在日历纵列上圈出了三个数,算出它们的和,其中错误的一个是(

A.28
B.33
C.45
D.57
二、填空题(每小题 3 分,共 24 分)
11.绝对值小于 n ( n 是正整数)的整数共有___________个。
12.当 a b 0 时, 1 _______ 1 (填“>”“=”或“<”)。
D.不能确定正负
3.当 a 、 b 互为相反数时,下列各式一定成立的是( )
A. b 1 a
B. b 1 a
C. a b 0
D. ab 0
4. 3.14 的计算结果是( )
A.0
B. 3.14
C. 3.14
5. a 为有理数,则下列各式成立的是(

D. 3.14
A. a 2 0
七年级数学上册《有理数》培优测试题
一、选择题(每小题 3 分,共 30 分)
1.下列说法正确的是(

A.任何负数都小于它的相反数
B.零除以任何数都等于零
C.若 a b ,则 a 2 b2
D.两个负数比较大小,大的反而小
2.如果一个数的绝对值等于它的相反数,那么这个数(

A.必为正数
B.必为负数
C.一定不是正数
(2) 第 n 行与第 n 列的交叉点上的数应为____________。(用含正整数 n 的式子表
示) (3) 计算左上角 2×2 的正方形里所有数字之和,即:
1
-2
-2
3
在数表中任取几个 2×2 的正方形,计算其中所有数字之和,归纳你得出的结论。

完整版)有理数培优训练

完整版)有理数培优训练

完整版)有理数培优训练有理数培优训练一、选择题:1.已知数轴上的三点A、B、C分别表示有理数a,1,-1,那么|a+1|表示()A。

A、B两点的距离 B。

A、C两点的距离C。

A、B两点到原点的距离之和 D。

A、C两点到原点的距离之和2.定义运算符号“*”的意义为:a*b = (a+b)/(ab) (其中a、b均不为0)。

下面有两个结论(1)ab运算“*”满足交换律;(2)运算“*”满足结合律。

其中()A。

只有(1)正确 B。

只有(2)正确C。

(1)和(2)都正确 D。

(1)和(2)都不正确3.如果a,b,c为非零有理数,则 |a|+|b|+|c|的值有()A。

1个 B。

2个 C。

3个 D。

4个4.设a+b+c=0,abc>0,则b+c/(a+c)+a+b的值是()A。

-3 B。

1 C。

3或-1 D。

-3或15.若|m|=m+1,则(4m+1)^2010=A。

-1 B。

1 C。

-1/2 D。

1/26.若19a+98b=0,则ab是()A。

正数 B。

非正数 C。

负数 D。

非负数7.有理数a、b、c在数轴上的表示如图,则在中间区域的数是()A。

负数 B。

非正数 C。

非负数 D。

正数8.一杯盐水重21千克,浓度是7%,当再加入0.7千克的纯盐后,这杯盐水的浓度是()A。

7.7% B。

10% C。

10.7% D。

11%9.a、b都是有理数,现有4个判断:①如果a+ba;④如果a>b,则|a|>|b|。

其中正确的判断是()A。

①② B。

②③ C。

①④ D。

①③10.若a,b,c是不全为0的有理数,且a+b+c=0,则|a-b|+|b-c|+|c-a|的最小值是()A。

21 B。

2 C。

12 D。

12611.数a、b、c如图所示,有以下4个判断其中正确的判断是()①a>b;②ab^2>c;③a-b>-c;④5a>2b。

A。

①② B。

①③ C。

②④ D。

③④二、填空题:12.初一“数学晚会”上,有10个同学藏在10个大盾牌后面。

七年级上册数学有理数培优50题含详细答案

七年级上册数学有理数培优50题含详细答案

(七年级上册数学有理数培优50题一.填空题(共5小题)1.=2.若|a|+|b|=2,则满足条件的整数a、b的值有组.3.已知a,b,c,d分别是一个四位数的千位,百位,十位,个位上的数字,且低位上的数字不小于高位上的数字,当|a﹣b|+|b﹣c|+|c﹣d|+|d﹣a|取得最大值时,这个四位数的最小值是.4.如图,若数轴上a的绝对值是b的绝对值的3倍,则数轴的原点在点或点.(填“A”、“B”“C”或“D”)5.|x+1|+|x﹣2|+|x﹣3|的值为.二.解答题(共45小题)6.在一个3×3的方格中填写了9个数字,使得每行、每列、每条对角线上的三个数之和相等,得到的3×3的方格称为一个三阶幻方.(1)在图1中空格处填上合适的数字,使它构成一个三阶幻方;(2)如图2的方格中填写了一些数和字母,当x+y的值为多少时,它能构成一个三阶幻方.7.阅读下面解题过程:计算:解:原式=(第一步)=(﹣15)÷(﹣25)(第二步)=(第三步)回答:1)上面解题过程中有两个错误,第一处是第步,错误的原因是,第二处是第步,错误的原因是;( (2)正确的结果是.8.如图,已知数轴上的点A 表示的数为 6,点 B 表示的数为﹣4,点 C 是 AB 的中点,动点P 从点 B 出发,以每秒 2 个单位长度的速度沿数轴向右匀速运动,设运动时间为 x 秒(x>0).(1)当 x =秒时,点 P 到达点 A .(2)运动过程中点 P 表示的数是(用含 x 的代数式表示);(3)当 P ,C 之间的距离为 2 个单位长度时,求 x 的值.9.观察下列两个等式:3+2=3×2﹣1,4+﹣1,给出定义如下:我们称使等式 a +b =ab ﹣1 成立的一对有理数 a ,b 为“椒江有理数对”,记为(a ,b ),如:数对(3,2),(4, )都是“椒江有理数对”.(1)数对(﹣2,1),(5,)中是“椒江有理数对”的是 ;(2)若(a ,3)是“椒江有理数对”,求 a 的值;(3)若(m ,n )是“椒江有理数对”,则(﹣n ,﹣m )“椒江有理数对” 填“是”、“不是”或“不确定”).(4)请再写出一对符合条件的“椒江有理数对”(注意:不能与题目中已有的“椒江有理数对”重复)10.计算:(﹣+1 ﹣ )÷(﹣ )×|﹣110﹣(﹣3)2|11.已知 a 、b 互为相反数,c 、d 互为倒数,并且 x 的绝对值等于 2.试求:x 2﹣(a +b +cd )+2(a +b )的值.12.如图,A 、B 分别为数轴上的两点,A 点对应的数为﹣20,B 点对应的数为 100.(1)请写出与 A 、B 两点距离相等的点 M 所对应的数;(2)现有一只电子蚂蚁 P 从 B 点出发,以 6 个单位/秒的速度向左运动,同时另一只电子蚂蚁 Q 恰好从 A 点出发,以 4 个单位/秒的速度向右运动,设两只电子蚂蚁在数轴上的C 点相遇,你知道 C 点对应的数是多少吗?(3)若当电子蚂蚁 P 从 B 点出发时,以 6 个单位/秒的速度向左运动,同时另一只电子蚂蚁 Q 恰好从 A 点出发,以 4 个单位/秒的速度也向左运动,请问:当它们运动多少时间时,两只蚂蚁间的距离为20个单位长度?13.如图,点A、B都在数轴上,O为原点.(1)点B表示的数是;(2)若点B以每秒2个单位长度的速度沿数轴向右运动,则2秒后点B表示的数是;(3)若点A、B分别以每秒1个单位长度、3个单位长度的速度沿数轴向右运动,而点O不动,t秒后,A、B、O三个点中有一个点是另外两个点为端点的线段的中点,求t的值.14.若“三角”表示运算:a﹣b+c,若“方框”,表示运算:x﹣y+z+w,求的值,列出算式并计算结果.15.对于有理数a、b,定义一种新运算“⊙”,规定:a⊙b=|a+b|+|a﹣b|.(1)计算2⊙(﹣4)的值;(2)若a,b在数轴上的位置如图所示,化简a⊙b.16.乐乐的爸爸投资股票,有一次乐乐发现爸爸持有股票的情况如表格所示:请你帮助分析:乐乐爸爸究竟是赚了还是赔了,赚或赔了多少元?股票名称每股净赚(元)股数天河北斗白马海湖﹣22+1.5﹣4﹣(﹣2)5001000100050017.阅读下列内容,并完成相关问题:小明说:“我定义了一种新的运算,叫❈(加乘)运算.”然后他写出了一些按照❈(加乘)运算的运算法则进行运算的算式:(+4)❈(+2)=+6;(﹣4)❈(﹣3)=+7;(﹣5)❈(+3)=﹣8;(+6)❈(﹣7)=﹣13;(+8)❈0=8;0❈(﹣9)=9.小亮看了这些算式后说:“我知道你定义的❈(加乘)运算的运算法则了.”聪明的你也明白了吗?(1)归纳❈(加乘)运算的运算法则:两数进行❈(加乘)运算时,.特别地,0和任何数进行❈(加乘)运算,或任何数和0进行❈(加乘)运算,.(2)计算:[(﹣2)❈(+3)]❈[(﹣12)❈0](括号的作用与它在有理数运算中的作用一致)(3)我们知道加法有交换律和结合律,这两种运算律在有理数的❈(加乘)运算中还适用吗?请你任选一个运算律,判断它在❈(加乘)运算中是否适用,并举例验证.举一个例子即可)”18.已知在纸面上有一数轴(如图),折叠纸面.例如:若数轴上数2表示的点与数﹣2表示的点重合,则数轴上数﹣4表示的点与数4表示的点重合,根据你对例题的理解,解答下列问题:若数轴上数﹣3表示的点与数1表示的点重合.(根据此情境解决下列问题)①则数轴上数3表示的点与数表示的点重合.②若点A到原点的距离是5个单位长度,并且A、B两点经折叠后重合,则B点表示的数是.③若数轴上M、N两点之间的距离为2018,并且M、N两点经折叠后重合,如果M点表示的数比N点表示的数大,则M点表示的数是.则N点表示的数是.19.现定义新运算“※”,对任意有理数a、b,规定a※b=ab+a﹣b,例如:1※2=1×2+1﹣2=1,(1)求3※(﹣5)的值;(2)若(﹣3)※b与b互为相反数,求b的值.20.已知a是最小的正整数,b是最大的负整数,c是绝对值最小的有理数,表示有理数dB , 的点到原点的距离为 4,求 a ﹣b ﹣c +d 的值.21.阅读下列材料:点 A 、B 在数轴上分别表示两个数 a 、b ,A 、B 两点间的距离记为|AB|,O 表示原点.当A 、B 两点中有一点在原点时,不妨设点 A 为原点,如图 1,则|AB|=|OB|=|b |=|a ﹣b |;当 A 、B 两点都不在原点时,①如图 2,若点 A 、B 都在原点的右边时,|AB|=|OB|﹣|OA|=|b |﹣|a|=b ﹣a =|a ﹣b |;②如图 3,若点 A 、B 都在原点的左边时,|AB|=|OB|﹣|OA|=|b |﹣|a|=﹣b ﹣(﹣a )=|a﹣b |;③如图 4,若点 A 、B 在原点的两边时,|AB|=|OB|+|OA|=|b |+|a|=﹣b +a =|a ﹣b |.回答下列问题:(1)综上所述,数轴上 A 、B 两点间的距离为|AB|=.(2)若数轴上的点 A 表示的数为 3,点 B 表示的数为﹣4,则 A 、 两点间的距离为 ;(3)若数轴上的点 A 表示的数为 x ,点 B 表示的数为﹣2,则|AB|= ,若|AB|=3,则 x 的值为.22.已知数轴上 A ,B 两点对应数分别为﹣2 和 5,P 为数轴上一点,对应数为 x .(1)若 P 为线段 AB 的三等分点(把一条线段平均分成相等的三部分的两个点) 求 P点对应的数.(2)数轴上是否存在点 P ,使 P 点到 A 点,B 点距离和为 10?若存在,求出 x 值;若不存在,请说明理由.(3)若点 A ,点 B 和点 P (P 点在原点)同时向左运动,它们的速度分别为 1,6,3 个长度单位/分,则第几分钟时,A ,B ,P 三点中,其中一点是另外两点连成的线段的中点?23.已知|x|=5,|y|=3.(1)若 x ﹣y >0,求 x +y 的值;(2)若 xy <0,求|x ﹣y|的值;(3)求 x ﹣y 的值.24.解答下列问题::(1)计算:6÷(﹣ + )方方同学的计算过程如下:原式=6÷(﹣ )+6÷ =﹣12+18=6.请你判断方方同学的计算过程是否正确,若不正确,请你写出正确的计算过程.(2)请你参考黑板中老师的讲解,用运算律简便计算(请写出具体的解题过程)①999×(﹣15);②999×118 +333×(﹣ )﹣999×18 .25.阅读材料,解答下列问题:例:当 a =5,则|a|=|5|=5,故此时 a 的绝对值是它本身;当 a =0 时,|a|=0,故此时 a的绝对值是 0;当 a <0 时,如 a =﹣5,则|a|=|5|=﹣(5)=5,故此时 a 的绝对值是它的相反数.综上所述,一个数的绝对值要分三种情况,即|a|=这种分析方法涌透了数学中的分类讨论思想.请仿照图例中的分类讨论,解决下面的问题:(1)|﹣4+5|=;|﹣ ﹣3|= ;(2)如果|x+1|=2,求 x 的值;(3)若数轴上表示数 a 的点位于﹣3 与 5 之间,求|a +3|+|a ﹣5|的值;(4)当 a =时,|a ﹣1|+|a +5|+|a ﹣4|的值最小,最小值是 .26.为体现社会对教师的尊重,教师节这一天上午,出租车司机小王在东西向的公路上免费接送老师.如果规定向东为正,向西为负,出租车的行程如下(单位:千米),﹣3,﹣4,+7,﹣5,+8,+3,﹣8.(1)最后一名老师送到目的地时,小王距出车地点的距离是多少?(2)若汽车耗油量为 0.3 升/千米,这天下午汽车共耗油多少升?27.定义一种新运算:a ⊕b =a ﹣b +ab .(1)求(﹣2)⊕(﹣3)的值;(2)求 5⊕[1⊕(﹣2)]的值.28.在学习绝对值后,我们知道,a|表示数a在数轴上的对应点与原点的距离.如:|5|表示|5在数轴上的对应点到原点的距离.而|5|=|5﹣0|,即|5﹣0|表示5、0在数轴上对应的两点之间的距离.类似的,有:|5﹣3|表示5、3在数轴上对应的两点之间的距离;|5+3|=|5﹣(﹣3)|,所以|5+3|表示5、﹣3在数轴上对应的两点之间的距离.一般地,点A、B 在数轴上分别表示有理数a、b,那么A、B之间的距离可表示为|a﹣b|.请根据绝对值的意义并结合数轴解答下列问题:(1)数轴上表示2和3的两点之间的距离是;数轴上P、Q两点的距离为3,点P表示的数是2,则点Q表示的数是.(2)点A、B、C在数轴上分别表示有理数x、﹣3、1,那么A到B的距离与A到C的距离之和可表示为(用含绝对值的式子表示);满足|x﹣3|+|x+2|=7的x的值为.(3)试求|x﹣1|+|x﹣2|+|x﹣3|+…+|x﹣100|的最小值.29.夫子庙派出所巡警骑摩托车在东西大道上巡逻,某天他从岗亭出发,晚上停留在A处,规定向东方向为正,当天行驶记录如下(单位:千米)+11,﹣9,7,﹣14,+8,﹣13,+4.①该巡警巡逻时离岗亭最远是千米.②在岗亭东面6千米处有个加油站,该巡警巡逻时经过加油站次.③A在岗亭何方?距岗亭多远?④若摩托车每行1千米耗油0.06升,那么该摩托车这天巡逻共耗油多少升?30.邮递员骑车从邮局出发,先向南骑行3km到达A村,继续向南骑行2km到达B村,然后向北骑行8km到达C村,最后回到邮局,以邮局为原点,以向南方向为正方向,用1cm 表示1km,画出数轴如图.(1)在该数轴上表示出A、B、C三个村庄的位置;(2)C村离A村有km;(3)邮递员一共骑行了km;(4)如果邮递员骑行的速度为10千米/小时,在每个村庄停留10分钟,那么邮递员从出发到回到邮局一共用了多少小时?31.已知数轴上有A、B、C三点,分别表示有理数﹣26,﹣10,10,动点P从A出发,沿(AC 方向,以每秒 1 个单位的速度向终点 C 运动,设点 P 运动时间为 t 秒.(1)用含 t 的代数式表示点 P 到点 A 、C 的距离,PA =;PC = .(2)当点 P 运动到点 B 时,点 Q 从 C 点出发,沿 CA 方向,以每秒 3 个单位的速度向 A点运动,当其中一点到达目的地时,另一点也停止运动.①当 t =,点 P 、Q 相遇,此时点 Q 运动了 秒.②请用含 t 的代数式表示出在 P 、Q 同时运动的过程中 PQ 的长.32.如图 A 在数轴上所对应的数为﹣2.(1)点 B 在点 A 右边距 A 点 4 个单位长度,求点 B 所对应的数;(2)在(1)的条件下,点 A 以每秒 2 个单位长度沿数轴向左运动,点 B 以每秒 2 个单位长度沿数轴向右运动,当点 A 运动到﹣6 所在的点处时,求 A ,B 两点间距离.(3)在(2)的条件下,现 A 点静止不动,B 点沿数轴向左运动时,经过多长时间 A ,B两点相距 4 个单位长度.33.随着手机的普及,微信(一种聊天软件)的兴起,许多人抓住这种机会,做起了“微商”,很多农产品也改变了原来的销售模式,实行了网上销售,这不刚大学毕业的小明把自家的冬枣产品也放到了网上,他原计划每天卖 100 斤冬枣,但由于种种原因,实际每天的销售量与计划量相比有出入,下表是某周的销售情况(超额记为正,不足记为负.单位:斤);星期与计划量一+4二﹣3 三﹣5 四+14五﹣8 六+21鈤﹣6的差值(1)根据记录的数据可知前三天共卖出斤;(2)根据记录的数据可知销售量最多的一天比销售量最少的一天多销售 斤;(3)本周实际销售总量达到了计划数量没有?(4)若冬季每斤按 8 元出售,每斤冬枣的运费平均 3 元,那么小明本周一共收入多少元?34.如图,半径为 1 个单位的圆片上有一点 A 与数轴上的原点重合,AB 是圆片的直径. 注:结果保留 π )(1)把圆片沿数轴向右滚动半周,点 B 到达数轴上点 C 的位置,点 C 表示的数是数(填“无理”或“有理”),这个数是;(2)把圆片沿数轴滚动2周,点A到达数轴上点D的位置,点D表示的数是;(3)圆片在数轴上向右滚动的周数记为正数,圆片在数轴上向左滚动的周数记为负数,依次运动情况记录如下:+2,﹣1,+3,﹣4,﹣3.①第次滚动后,A点距离原点最近,第次滚动后,A点距离原点最远.②当圆片结束运动时,A点运动的路程共有,此时点A所表示的数是.35.如图,一只甲虫在5×5的方格(每小格边长为1)上沿着网格线运动.它从A处出发去看望B、C、D处的其它甲虫,规定:向上向右走均为正,向下向左走均为负.如果从A到B记为:A→B(+1,+4),从B到A记为:B→A(﹣1,﹣4),其中第一个数表示左右方向,第二个数表示上下方向.(1)图中A→C(,),B→C(,),C→(+1,﹣2);(2)若这只甲虫从A处去甲虫P处的行走路线依次为(+2,+2),(+2,﹣1),(﹣2,+3),(﹣1,﹣2),请在图中标出P的位置;(3)若这只甲虫的行走路线为A→B→C→D,请计算该甲虫走过的路程.(4)若图中另有两个格点M、N,且M→A(3﹣a,b﹣4),M→N(5﹣a,b﹣2),则N →A应记为什么?36.某公路检修组乘汽车沿公路检修,约定前进为正,后退为负,某天自A地出发到收工时所走的路程(单位:千米)为+10,﹣3,+4,﹣2,﹣8,+13,﹣2,﹣11,+7,+5.(1)问收工时相对A地是前进了还是后退了?距A地多远?(2)若检修组最后回到了A地且每千米耗油0.2升,问共耗油多少升?37.我们定义一种新运算:△a b=a﹣b+ab.3 2)(1)求 △2 (﹣)的值;(2)求(﹣△5) △[1 (﹣ ]的值.38.学校图书馆平均每天借出图书 50 册,如果某天借出 53 册,就记作+3;如果某天借出40 册,就记作﹣10.上星期图书馆借出图书记录如表:星期一0 星期二+8 星期三+6星期四﹣2 星期五﹣7(1)上期五借出图书多少册?(2)上星期二比上星期五多借出图书多少册?(3)上星期平均每天借出图书多少册?39.已知,如图 A 、B 分别为数轴上的两点,A 点对应的数为﹣10,B 点对应的数为 70(1)请写出 AB 的中点 M 对应的数(2)现在有一只电子蚂蚁 P 从 A 点出发,以 3 个单位/秒的速度向右运动,同时另一只电子蚂蚁 Q 恰好从 B 点出发,以 2 个单位/秒的速度向左运动,设两只电子蚂蚁在数轴上的 C 点相遇,请你求出 C 点对应的数(3)若当电子蚂蚁 P 从 A 点出发,以 3 个单位/秒的速度向右运动,同时另一只电子蚂蚁 Q 恰好从 B 点出发,以 2 单位/秒的速度向左运动,经过多长时间两只电子蚂蚁在数轴上相距 35 个单位长度,并写出此时 P 点对应的数.40.一辆交通巡逻车在南北公路上巡视,某天早上从 A 地出发,中午到达 B 地,行驶记录如下(规定向北为正方向,单位:千米):+15,﹣8,+6,+12,﹣8,+5,﹣10.回答下列问题:(1)B 地在 A 地的什么方向?与 A 地相距多远?(2)巡逻车在巡逻中,离开 A 地最远多少千米?(3)巡逻车行驶每千米耗油 a 升,这半天共耗油多少升?41.【概念学习】规定:求若干个相同的有理数(均不等于 0)的除法运算叫做除方,如 2÷2÷2,(﹣3)÷(﹣3)÷(﹣3)÷(﹣3)等.类比有理数的乘方,我们把 2÷2÷2 记作 2③,读作“2 的圈 3 次方”,(﹣3)÷(﹣3)÷(﹣3)÷(﹣3)记作(﹣3)④,读作“﹣3 的圈 4 次方”,一般地,把 (a ≠0)记作 a ,读作“a 的圈 n 次方”.+,【初步探究】(1)直接写出计算结果:2③=,(﹣ )⑤= ;(2)关于除方,下列说法错误的是A .任何非零数的圈 2 次方都等于 1;B .对于任何正整数 n ,1 =1;C .3④=4③;D .负数的圈奇数次方结果是负数,负数的圈偶数次方结果是正数.【深入思考】我们知道,有理数的减法运算可以转化为加法运算,除法运算可以转化为乘法运算,有理数的除方运算如何转化为乘方运算呢?(1)试一试:仿照上面的算式,将下列运算结果直接写成幂的形式.(﹣3)④=;5⑥= ;(﹣ )⑩= .(2)想一想:将一个非零有理数 a 的圈 n 次方写成幂的形式等于;(3)算一算:122÷(﹣ )④×(﹣2)⑤﹣(﹣ )⑥÷33.42.若|a|=5,|b |=2,且 a <b ,求 a ﹣b 的值.43.观察下列等式: =1﹣ , = ﹣ , = ﹣ ,把以上三个等式两边分别相加得: + + =1﹣ + ﹣ + ﹣(1)猜想并写出:=.(2)规律应用:计算: + +++ +(3)拓展提高:计算:+ +…+.44.操作探究:已知在纸面上有一数轴(如图所示)操作一:(1)折叠纸面,使表示的1 点与﹣1 表示的点重合,则﹣3 表示的点与表示的点重合;操作二:(2)折叠纸面,使﹣1 表示的点与 3 表示的点重合,回答以下问题:①5 表示的点与数表示的点重合;b :② 若数轴上 A 、B 两点之间距离为 11,(A 在 B 的左侧),且 A 、B 两点经折叠后重合,求 A 、B 两点表示的数是多少.45.阅读下面材料:点 A 、B 在数轴上分别表示实数 a 、 ,A 、B 两点之间的距离表示为|AB|.当 A 、B 两点中有一点在原点时,不妨设点 A 在原点,如图 1,|AB|=|OB|=|b |=|a ﹣b |;当 A 、B 两点都不在原点时,如图 2,点 A 、B 都在原点的右边|AB|=|OB|﹣|OA|=|b |﹣|a|=b ﹣a =|a ﹣b |;如图 3,点 A 、B 都在原点的左边,|AB|=|OB|﹣|OA|=|b |﹣|a|=﹣b ﹣(﹣a )=|a ﹣b |;如图 4,点 A 、B 在原点的两边,|AB|=|OB|+|OA|=|a|+|b |=a +(﹣b )=|a ﹣b |;回答下列问题:(1)数轴上表示 2 和 5 的两点之间的距离是,数轴上表示﹣2 和﹣5 的两点之间的距离是,数轴上表示 1 和﹣3 的两点之间的距离是.(2)数轴上表示 x 和﹣1 的两点 A 和 B 之间的距离是 ,如果|AB|=2,那么 x为;(3)当代数式|x +1|+|x ﹣2|取最小值时,相应的 x 的取值范围是.46.某淘宝商家计划平均每天销售某品牌儿童滑板车 100 辆,但由于种种原因,实际每天的销售量与计划量相比有出入.下表是某周的销售情况(超额记为正、不足记为负)星期与计划量的差值一+4二﹣3 三﹣5 四+14五﹣8 六+21 日﹣6(1)根据记录的数据可知该店前三天共销售该品牌儿童滑板车辆;(2)根据记录的数据可知销售量最多的一天比销售量最少的一天多销售辆;( (3)本周实际销售总量达到了计划数量没有?(4)该店实行每日计件工资制,每销售一辆车可得 40 元,若超额完成任务,则超过部分每辆另奖 15 元;少销售一辆扣 20 元,那么该店铺的销售人员这一周的工资总额是多少元?47.求若干个相同的不为零的有理数的除法运算叫做除方,如 2÷2÷2,(﹣3)÷(﹣3)÷(﹣3)÷(﹣3)等.类比有理数的乘方,我们把 2÷2÷2 记作 2③,读作“2 的圈 3次方”, ﹣3)÷(﹣3)÷(﹣3)÷(﹣3)记作(﹣3)④,读作“﹣3 的圈 4 次方”.一般地,把(a ≠0)记作 ,读作“a 的圈 n 次方”.(1)直接写出计算结果:2③=,(﹣3)④=,(﹣ )⑤=;(2)我们知道,有理数的减法运算可以转化为加法运算,除法运算可以转化为乘法运算,请尝试把有理数的除方运算转化为乘方运算,归纳如下:一个非零有理数的圈 n 次方等于;(3)计算 24÷23+(﹣8)×2③.48.已知 a ,b 互为相反数,c ,d 互为倒数,且 a ≠0,那么 3a +3b + ﹣cd 的值是多少?49.已知(|x +1|+|x ﹣2|)(|y ﹣2)|+|y+1|)(|z ﹣3|+|z+1|)=36,求 2016x+2017y+2018z 的最大值和最小值50.已知 a 2=9,|b |=5,且 a <b ,求 a ﹣b 的值.(七年级上册数学有理数培优 50 题参考答案与试题解析一.填空题(共 5 小题)1.【解答】解:====,故答案为:=.2.若|a|+|b |=2,则满足条件的整数 a 、b 的值有8 组.【解答】解:∵|a|+|b |=2,∴|a|=0,|b |=2 或|a|=1|b |=1,或|a|=2,|b |=0,∴a =0,b =2;a =0,b =﹣2;a =1,b =1;a =1,b =﹣1;a =﹣1,b =1;a =﹣1,b=﹣1;a =﹣2,b =0;a =2,b =0,故答案为:8.3.已知 a ,b ,c ,d 分别是一个四位数的千位,百位,十位,个位上的数字,且低位上的数字不小于高位上的数字,当|a ﹣b |+|b ﹣c|+|c ﹣d |+|d ﹣a|取得最大值时,这个四位数的最小值是 1119 .【解答】解:若使|a ﹣b |+|b ﹣c|+|c ﹣d |+|d ﹣a|的值最大,则最低位数字最大 d =9,最高位数字最小 a =1 即可,同时为使|c ﹣d |最大,则 c 应最小,且使低位上的数字不小于高位上的数字,故 c 为 1,此时 b 只能为 1.所以此数为 1119.故答案为 1119.4.如图,若数轴上 a 的绝对值是 b 的绝对值的 3 倍,则数轴的原点在点C 或点D .填“A ”、“B ”“C ”或“D ”)|【解答】解:由图示知,b ﹣a =4,①当 a >0,b >0 时,由题意可得|a|=3|b |,即 a =3b ,解得 a =﹣6,b =﹣2,舍去;②当 a <0,b <0 时,由题意可得|a|=3|b |,即 a =3b ,解得 a =﹣6,b =﹣2,故数轴的原点在 D 点;③当 a <0,b >0 时,由题意可得 a |=3|b |,即﹣a =3b ,解得 a =﹣3,b =1,故数轴的原点在 C 点;综上可得,数轴的原点在 C 点或 D 点.故填 C 、D .5.|x +1|+|x ﹣2|+|x ﹣3|的值为.【解答】解:当 x ≤﹣1 时,|x +1|+|x ﹣2|+|x ﹣3|=﹣x ﹣1﹣x +2﹣x +3=﹣3x +4;当﹣1<x ≤2 时,|x +1|+|x ﹣2|+|x ﹣3|=x +1﹣x +2﹣x +3=﹣x +6;当 2<x ≤3 时,|x +1|+|x ﹣2|+|x ﹣3|=x +1+x ﹣2﹣x +3=x +2;当 x >3 时,|x +1|+|x ﹣2|+|x ﹣3|=x +1+x ﹣2+x ﹣3=3x ﹣4.综上所述,|x +1|+|x ﹣2|+|x ﹣3|的值为.故答案为: .二.解答题(共 45 小题)6.在一个 3×3 的方格中填写了 9 个数字,使得每行、每列、每条对角线上的三个数之和相等,得到的 3×3 的方格称为一个三阶幻方.(1)在图 1 中空格处填上合适的数字,使它构成一个三阶幻方;(2)如图 2 的方格中填写了一些数和字母,当 x +y 的值为多少时,它能构成一个三阶幻方.【解答】解:(1)2+3+4=9,9﹣6﹣4=﹣1,9﹣6﹣2=1,9﹣2﹣7=0,9﹣4﹣0=5,如图所示:(2)﹣3+1﹣4=﹣6,﹣6+1﹣(﹣3)=﹣2,﹣2+1+4=3,如图所示:x=3﹣4﹣(﹣6)=5,y=3﹣1﹣(﹣6)=8,x+y=5+8=13.7.阅读下面解题过程:计算:解:原式=(第一步)=(﹣15)÷(﹣25)(第二步)=(第三步)回答:(1)上面解题过程中有两个错误,第一处是第一步,错误的原因是在同级运算中,没有按从左到右的顺序进行,第二处是第三步,错误的原因是同号两数相除,结果为正(事实上结果应为正数);(2)正确的结果是.【解答】解:正确做法:原式=(第一步)=15××6(第二步)=(第三步).故答案为:(1)一,在同级运算中,没有按从左到右的顺序进行,二,同号两数相除,结果为正(事实上结果应为正数);(2).8.如图,已知数轴上的点A表示的数为6,点B表示的数为﹣4,点C是AB的中点,动点P从点B出发,以每秒2个单位长度的速度沿数轴向右匀速运动,设运动时间为x秒(x >0).(1)当x=5秒时,点P到达点A.(2)运动过程中点P表示的数是2x﹣4(用含x的代数式表示);(3)当P,C之间的距离为2个单位长度时,求x的值.【解答】解:(1)∵数轴上的点A表示的数为6,点B表示的数为﹣4,∴AB=10,∵动点P从点B出发,以每秒2个单位长度的速度沿数轴向右匀速运动,∴运动时间为10÷2=5(秒),故答案为:5;(2)∵动点P从点B出发,以每秒2个单位长度的速度沿数轴向右匀速运动,∴运动过程中点P表示的数是:2x﹣4;故答案为:2x﹣4;(3)点C表示的数为:[6+(﹣4)]÷2=1,当点P运动到点C左侧2个单位长度时,2x﹣4=1﹣2解得:x=1.5,当点P运动到点C右侧2个单位长度时,2x﹣4=1+2解得:x=3.5综上所述,x=1.5或3.5.9.观察下列两个等式:3+2=3×2﹣1,4+﹣1,给出定义如下:我们称使等式a+b=ab﹣1成立的一对有理数a,b为“椒江有理数对”,记为(a,b),如:数对(3,2),(4,)都是“椒江有理数对”.(1)数对(﹣2,1),(5,)中是“椒江有理数对”的是(5,);(2)若(a,3)是“椒江有理数对”,求a的值;(3)若(m,n)是“椒江有理数对”,则(﹣n,﹣m)不是“椒江有理数对”(填“是”、“不是”或“不确定”).(4)请再写出一对符合条件的“椒江有理数对”(6,1.4)(注意:不能与题目中已有的“椒江有理数对”重复)【解答】解:(1)﹣2+1=﹣1,﹣2×1﹣1=﹣3,∴﹣2+1≠﹣2×1﹣1,∴(﹣2,1)不是“共生有理数对”,∵5+=,5×﹣1=,∴5+=5×﹣1,∴(5,)中是“椒江有理数对”;(2)由题意得:a+3=3a﹣1,解得a=2.(3)不是.理由:﹣n+(﹣m)=﹣n﹣m,﹣n•(﹣m)﹣1=mn﹣1∵(m,n)是“椒江有理数对”∴m+n=mn﹣1∴﹣n﹣m=﹣(mn﹣1)=﹣(﹣n)×(﹣m)+1=﹣[(﹣n)×(﹣m)﹣1],∴(﹣n,﹣m)不是“椒江有理数对”,(4)(6,1.4)等.故答案为:(5,);不是;(6,1.4).10.计算:(﹣+1﹣)÷(﹣)×|﹣110﹣(﹣3)2|【解答】解:原式=(﹣+﹣)×(﹣42)+×|﹣1﹣9|=27﹣54+10+×10=﹣17+15=﹣2.11.已知a、b互为相反数,c、d互为倒数,并且x的绝对值等于2.试求:x2﹣(a+b+cd)+2(a+b)的值.【解答】解:∵a、b互为相反数,c、d互为倒数,x的绝对值等于2,∴a+b=0,cd=1,x=±2,∴原式=4﹣(0+1)+2×0=4﹣1+0=3.12.如图,A、B分别为数轴上的两点,A点对应的数为﹣20,B点对应的数为100.(1)请写出与A、B两点距离相等的点M所对应的数;(2)现有一只电子蚂蚁P从B点出发,以6个单位/秒的速度向左运动,同时另一只电子蚂蚁Q恰好从A点出发,以4个单位/秒的速度向右运动,设两只电子蚂蚁在数轴上的C点相遇,你知道C点对应的数是多少吗?(3)若当电子蚂蚁P从B点出发时,以6个单位/秒的速度向左运动,同时另一只电子蚂蚁Q恰好从A点出发,以4个单位/秒的速度也向左运动,请问:当它们运动多少时间时,两只蚂蚁间的距离为20个单位长度?【解答】解:(1)M点对应的数是(﹣20+100)÷2=40;(2)它们的相遇时间是120÷(6+4)=12(秒),即相同时间Q点运动路程为:12×4=48(个单位),即从数﹣20向右运动48个单位到数28;(3)相遇前:(100+20﹣20)÷(6﹣4)=50(秒),相遇后:(100+20+20)÷(6﹣4)=70(秒).故当它们运动50秒或70秒时间时,两只蚂蚁间的距离为20个单位长度.13.如图,点A、B都在数轴上,O为原点.(1)点B表示的数是﹣4;(2)若点B以每秒2个单位长度的速度沿数轴向右运动,则2秒后点B表示的数是0;(3)若点A、B分别以每秒1个单位长度、3个单位长度的速度沿数轴向右运动,而点O不动,t秒后,A、B、O三个点中有一个点是另外两个点为端点的线段的中点,求t的值.【解答】解:(1)点B表示的数是﹣4;(2)2秒后点B表示的数是﹣4+2×2=0;(3)①当点O是线段AB的中点时,OB=OA,4﹣3t=2+t,解得t=0.5;②当点B是线段OA的中点时,OA=2OB,2+t=2(3t﹣4),解得t=2;③当点A是线段OB的中点时,OB=2OA,3t﹣4=2(2+t),解得t=8.综上所述,符合条件的t的值是0.5,2或8.故答案为:﹣4;0.14.若“三角”表示运算:a﹣b+c,若“方框”,表示运算:x﹣y+z+w,求的值,列出算式并计算结果.【解答】解:根据题意得:原式=(﹣+)×(﹣2﹣1.5+1.5﹣6)=(﹣(﹣8)=.15.对于有理数a、b,定义一种新运算“⊙”,规定:a⊙b=|a+b|+|a﹣b|.(1)计算2⊙(﹣4)的值;(2)若a,b在数轴上的位置如图所示,化简a⊙b.)×【解答】解:(1)2⊙(﹣4)=|2﹣4|+|2+4|=2+6=8;(2)由数轴知a<0<b,且|a|>|b|,则a+b<0、a﹣b<0,所以原式=﹣(a+b)﹣(a﹣b)=﹣a﹣b﹣a+b=﹣2a.16.乐乐的爸爸投资股票,有一次乐乐发现爸爸持有股票的情况如表格所示:请你帮助分析:乐乐爸爸究竟是赚了还是赔了,赚或赔了多少元?股票名称每股净赚(元)股数天河北斗白马海湖﹣22+1.5﹣4﹣(﹣2)50010001000500【解答】解:﹣22×500+1.5×1000﹣4×1000﹣(﹣2)×500=﹣2000+1500﹣4000+1000=﹣3500,答:乐乐的爸爸赔了,赔了3500元.17.阅读下列内容,并完成相关问题:小明说:“我定义了一种新的运算,叫❈(加乘)运算.”然后他写出了一些按照❈(加乘)运算的运算法则进行运算的算式:(+4)❈(+2)=+6;(﹣4)❈(﹣3)=+7;(﹣5)❈(+3)=﹣8;(+6)❈(﹣7)=﹣13;(+8)❈0=8;0❈(﹣9)=9.小亮看了这些算式后说:“我知道你定义的❈(加乘)运算的运算法则了.”聪明的你也明白了吗?(1)归纳❈(加乘)运算的运算法则:两数进行❈(加乘)运算时,同号得正、异号得负,并把绝对值相加.特别地,0和任何数进行❈(加乘)运算,或任何数和0进行❈(加乘)运算,都得这个数的绝对值.(2)计算:[(﹣2)❈(+3)]❈[(﹣12)❈0](括号的作用与它在有理数运算中的作用一致)(3)我们知道加法有交换律和结合律,这两种运算律在有理数的❈(加乘)运算中还适用吗?请你任选一个运算律,判断它在❈(加乘)运算中是否适用,并举例验证.举一个例子即可)”【解答】解:(1)归纳❈(加乘)运算的运算法则:两数进行❈(加乘)运算时,同号得正、异号得负,并把绝对值相加.特别地,0和任何数进行❈(加乘)运算,或任何数和0进行❈(加乘)运算,都得这个数的绝对值,故答案为:同号得正、异号得负,并把绝对值相加;都得这个数的绝对值.(2)原式=(﹣5)❈12=﹣17;(3)加法的交换律仍然适用,例如:(﹣3)❈(﹣5)=8,(﹣5)❈(﹣3)=8,所以(﹣3)❈(﹣5)=(﹣5)❈(﹣3),。

第四章整式培优训练试题人教版2024—2025学年七年级数学上册

第四章整式培优训练试题人教版2024—2025学年七年级数学上册

第四章整式培优训练试题人教版2024—2025学年七年级数学上册(一)整式的加减例1.已知一个多项式与3x2+9x的和等于5x2+4x﹣1,则这个多项式是()A.8x2+13x﹣1B.﹣2x2+5x+1C.8x2﹣5x+1D.2x2﹣5x﹣1笔记:变式1.一个多项式加上2x2﹣4x﹣3得x2﹣3x,则这个多项式为.变式2.一个多项式与单项式﹣4x的差等于3x2﹣2x﹣1,那么这个多项式为.例2.若长方形的周长为6m,一边长为m+n,则另一边长为()A.3m+n B.2m+2n C.m+3n D.2m﹣n笔记:变式1.一个长方形的周长为6a+8b,其中一边长为2a﹣b,则另一边长为()A.4a+5b B.a+b C.a+5b D.a+7b例3.某同学做了一道数学题:“已知两个多项式为A,B,B=3x﹣2y,求A﹣B的值.”他误将“A﹣B”看成了“A+B”,结果求出的答案是x﹣y,那么原来的A﹣B的值应该是()A.4x﹣3y B.﹣5x+3y C.﹣2x+y D.2x﹣y笔记:变式1.某同学做一道数学题,“已知两个多项式A、B,B=2x2+3x﹣4,试求A﹣2B”.这位同学把“A﹣2B”误看成“A+2B”,结果求出的答案为5x2+8x﹣10.请你替这位同学求出“A﹣2B”的正确答案.变式2.小明在一次测验中计算一个多项式M加上5ab﹣3bc+2ac时,不小心看成减去:5ab ﹣3bc+2ac,结果计算出错误答案为2ab+6bc﹣4ac.(1)求多项式M;(2)试求出原题目的正确答案.变式3.小刚在计算一个多项式A减去多项式2b2﹣3b﹣5时,因一时疏忽忘了对两个多项式用括号括起来,因此减式后面两项没有变号,结果得到的差是b2+3b﹣1.(1)求这个多项式A;(2)求出这两个多项式运算的正确结果;(3)当b=﹣1时,求(2)中结果的值.(二)整体代入例1.已知2x﹣3y=6,则7﹣6x+9y的值为()A.25B.﹣25C.11D.﹣11笔记:变式1.已知2a+3b=4,则整式﹣4a﹣6b+1的值是()A.5B.3C.﹣7D.﹣10变式2.若a+2b=3,则代数式2a+4b的值为()A.3B.4C.5D.6变式3.已知a﹣b=2,则代数式2a﹣2b﹣3的值是()A.1B.2C.5D.7例2.若代数式x﹣2y=3,则代数式2(x﹣2y)2+4y﹣2x+1的值为()A.7B.13C.19D.25笔记:变式1.已知x+y=3,xy=1,则代数式(5x+3)﹣(2xy﹣5y)的值为.变式2.若x+y=3,xy=2,则(x+2)+(y﹣2xy)=.变式3.已知y=3xy+x,求代数式=.变式4.已知a+b=4,ab=﹣2,求代数式(2a﹣5b﹣2ab)﹣(a﹣6b﹣ab)的值.例3.若a﹣b=2,b﹣c=﹣5,则a﹣c=.笔记:变式1.如果m和n互为相反数,则化简(3m﹣2n)﹣(2m﹣3n)的结果是()A.﹣2B.0C.2D.3变式2.若a与b互为相反数,m和n互为倒数,则=.练习1.已知a2+2a﹣3=0,则代数式2a2+4a﹣3的值是()A.﹣3B.0C.3D.6练习2.已知1﹣a2+2a=0,则的值为()A.B.C.1D.5练习3.若x2+4x﹣4=0,则7﹣8x﹣2x2的值等于.练习4.若x=2y+3,则代数式3x﹣6y+1的值是.练习5.如果2x2﹣3x的值为﹣1,则6x﹣4x2+3的值为.练习6.已知代数式a﹣2b+7=13,那么代数式2a﹣4b的值为.练习7.若2m+n=3,则代数式6﹣2m﹣n的值为.练习8.已知a2+3a=2,则3a2+9a+1的值为.练习9.若x2﹣2x﹣2=0,则3x2﹣6x的值是.练习10.若a﹣5b=3,则17﹣3a+15b=.练习11.若a﹣2b=3,则9﹣2a+4b的值为.练习12.如果代数式﹣2a2+3b+8的值为1,那么代数式4a2﹣6b+2的值等于.练习13.已知x2+2x﹣1=0,则3x2+6x﹣2=.练习14.我们知道,2x+3x﹣x=(2+3﹣1)x=4x,类似地,我们也可以将(a+b)看成一个整体,则2(a+b)+3(a+b)﹣(a+b)=(2+3﹣1)(a+b)=4(a+b).整体思想是中学数学解题中的一种重要的思想方法,它在多项式的化简与求值中应用极为广泛.请根据上面的提示和范例,解决下面的题目:(1)把(x﹣y)2看成一个整体,求将2(x﹣y)2﹣5(x﹣y)2+(x﹣y)2合并的结果;(2)已知2m﹣n=4,求8m﹣6n+5的值;(3)已知a﹣2b=﹣5,b﹣c=﹣2,3c+d=6,求(a+3c)﹣(2b+c)+(b+d)的值.(三)绝对值化简例1.有理数a、b、c在数轴上的位置如图,(1)判断正负,用“>”或“<”填空:c﹣b0,a+b0,a﹣c0.(2)化简:|c﹣b|+|a+b|﹣|a﹣c|.笔记:变式1.当1≤m<3时,化简|m﹣1|﹣|m﹣3|=.变式2.如果a<2,那么|﹣1.5|+|a﹣2|等于.变式3.已知有理数a、b、c在数轴上对应点的位置如图所示.解答下列各题:(1)判断下列各式的符号(填“>”或“<”)a﹣b0,b﹣c0,c﹣a0,b+c0(2)化简:|a﹣b|+|b﹣c|﹣|c﹣a|+|b+c|.变式4.如图,已知a、b、c在数轴上的位置,求|b+c|﹣|a﹣b|﹣|c﹣b|的值.。

人教版七年级数学第1章 有理数 单元培优测试卷两套附答案解析

人教版七年级数学第1章 有理数 单元培优测试卷两套附答案解析

人教版七年级数学 第1章 有理数 培优测试卷一附答案解析(全卷总分150分)一、选择题(每小题3分,共30分)1. 如图,数轴上的两个点A 、B 所表示的数分别是a 、b ,那么a ,b ,—a ,—b 的大小关系是( )A. b<—a<—b<aB. b<—b<—a<aC. b<—a<a<—bD. —a<—b<b<a 2. 如果b a ,互为相反数,那么下面结论中不一定正确的是( )A. 0=+b aB. 1-=b aC. 2a ab -=D. b a =3. 若│a│=│b│,则a 、b 的关系是( )A. a=bB. a=-bC. a+b=0或a -b=0D. a=0且b=04. 已知数轴上两点A 、B 到原点的距离是2和7,则A ,B 两点间的距离是 A. 5 B. 9 C. 5或9 D. 75. 若a<0,则下列各式不正确的是( )A. 22)(a a -=B. 22a a =C. 33)(a a -=D.)(33a a --=6. -52表示( )A. 2个-5的积B. -5与2的积C. 2个-5的和D. 52的相反数7. -42+ (-4) 2的值是( )A. –16B. 0C. –32D. 32 8. 已知a 为有理数时,1122++a a =( )A. 1B. -1C. 1±D. 不能确定9. 设n 是自然数, 则n n 1(1)(1)2+-+-的值为( )A. 0B. 1C. -1D. 1或-110. 已知|x|=5,|y|=3,且x>y ,则x +y 的值为( )A . 8B . 2C . -8或-2D . 8或211. 我国西部地区面积约为640万平方公里,640万用科学记数法表示为( )0 AGF E D C BA A. 464010⨯ B. 56410⨯ C. 66410⨯.D. 6410⨯7. 12. 京九铁路的全长用四舍五入法得到近似数为2.5×106m ,则它精确到( )A. 万位B. 十万位C. 百万位D. 千位二、填空题(每小题3分,共48分)1. 已知a 是绝对值最小的负整数,b 是最小正整数,c 是绝对值最小的有理数,则c+a+b= .2. 数轴上点A 表示的数为-2,若点B 到点A 的距离为3个单位,则点B 表示的数为 .3. 如图所示,数轴上标出了7个点,相邻两点之间的距离都相等,已知点A 表示-4,点G 表示8.(1)点B 表示的有理数是 ;表示原点的是点 .(2)图中的数轴上另有点M 到点A ,点G 距离之和为13,则这样的点M 表示的有理数是 .4.-⎪⎪⎪⎪⎪⎪-23的相反数是 .5. 如果x 2=9,那么x 3= .6. 如果2-=-x ,则x = .7. 化简:|π-4|+|3-π|= .8. 绝对值小于2.5的所有非负整数的和为 ,积为 . 9.使25++-x x 值最小的所有符合条件的整数x有 .10. 若 a 、b 互为相反数,c 、d 互为倒数,则 (a +b )10 -(cd ) 10 = . 11. 若a 、b 互为相反数,c 、d 互为倒数,3=x ,则式子2(a +b )-(-cd )2016+x 的值为 .12. 已知()0422=-++y x ,求x y 的值为 .13. 近似数2.40×104精确到 位,它的有效数字是 . 14. 观察下列算式发现规律:71=7,72=49,73=343,74=2401,75=16807,76=117649,……,用你所发现的规律写出:72017的个位数字是 . 15. 观察等式:1+3=4=22,1+3+5=9=32 ,1+3+5+7=16=42 ,1+3+5+7+9=25=52 ,……猜想:(1)1+3+5+7…+99 = ;(2) 1+3+5+7+…+(2n -1)= .(结果用含n 的式子表示,其中n =1,2,3,……).16. 一跳蚤在一直线上从O 点开始,第1次向右跳1个单位,紧接着第2次向左跳2个单位,第3次向右跳3个单位,第4次向左跳4个单位,…,依此规律跳下去,当它跳第100次落下时,落点处离O 点的距离是 个单位. 三、解答题(共82分)1. (12分)计算:(1))49()2115()375()25.4(37153)371012(+---+--++-(2)10.12512(16)(2)2-⨯⨯-⨯-(3)51)716(5)31112(5)31137(51)7111(⨯++÷++÷-+⨯-(4)+-+-+-31412131121 (999)110001-2. (5分)计算1-3+5-7+9-11+…+97-99.3. (5分)已知数轴上有A 和B 两点,它们之间的距离为1,点A 和原点的距离为2,那么所有满足条件的点B 对应的数有哪些?4. (6分)“*”代表一种新运算,已知a ba b ab+*=,求x y *的值.其中x 和y 满足21()|13|02x y ++-=.5. (6分)已知()0212=-++b a ,求(a +b)2016+a 2017.6. (6分)已知a ,b 互为相反数,c 、d 互为倒数,x 的绝对值为5.试求下式的值:20162)2017+x-a++-.b++cd)()((cdab7. (6分)已知│a│=4,│b│=3,且a>b,求a、b的值.8. (6分)已知│a│=2,│b│=5,且ab<0,求a+b的值.9. (6分)探索规律:将连续的偶2,4,6,8,…,排成如下表:2 4 6 8 1012 14 16 18 2022 24 26 28 3032 34 36 38 40… …(1)十字框中的五个数的和与中间的数16有什么关系?(2)设中间的数为x,用代数式表示十字框中的五个数的和;(3)若将十字框上下左右移动,可框住另外的五位数,其它五个数的和能等于2010吗?如能,写出这五位数,如不能,说明理由。

七年级《有理数》培优练习题(有答案)

七年级《有理数》培优练习题(有答案)

1.计算:1﹣(+2)+3﹣(+4)+5﹣(+6)…+2015﹣(+2016)= .2.已知a、b、c的位置如图:则化简|﹣a|﹣|c﹣b|﹣|a﹣c|= .3.有理数a、b在数轴上的位置如图所示化简:|a+2|﹣|a|+|b﹣1|+|a+b|可得到.4.在数轴上,点P表示的数是a,点P′表示的数是,我们称点P′是点P的“相关点”,已知数轴上A1的相关点为A2,点A2的相关点为A3,点A3的相关点为A4…,这样依次得到点A1、A2、A3、A4,…,A n.若点A1在数轴表示的数是,则点A2016在数轴上表示的数是.5.如果x、y都是不为0的有理数,则代数式的最大值是.6.|x+2|+|x﹣2|+|x﹣1|的最小值是.7.当式子|x+1|+|x﹣2|取最小值时,相应的x的取值范围是,最小值是.8.如图,方格表中的格子填上了数,每一行每一列及两条对角线中所填数的和均相等,则x的值.16 x11 15129.先观察:1﹣=×,1﹣=×,1﹣=×,…(1)探究规律填空:1﹣= ×;(2)计算:(1﹣)•(1﹣)•(1﹣)…(1﹣)10.阅读下列各式:(a•b)2=a2b2,(a•b)3=a3b3,(a•b)4=a4b4…回答下列三个问题:(1)验证:(2×)100= ,2100×()100= ;(2)通过上述验证,归纳得出:(a•b)n= ;(abc)n= .(3)请应用上述性质计算:(﹣0.125)2017×22016×42015.11.数轴上的点M对应的数是2,一只蚂蚁从点M出发沿着数轴以每秒2个单位的速度向左或向右爬行,当它到达数轴上的点N后,立即返回到原点,共用6秒.(1)蚂蚁爬行的路程是多少?(2)点N对应的数是多少?(3)点M和点N之间的距离是多少?12.我们已经学习过“乘方”和“开方”运算,下面给同学们介绍一种新的运算,即对数运算.定义:如果a b=N(a>0,a≠1,N>0),则b叫做以a为底N的对数,记作log a N=b.例如:因为53=125,所以log5125=3;因为112=121,所以log11121=2.(1)填空:log66= ,log381= .(2)如果log2(m﹣2)=3,求m的值.13.在抗洪抢险中,解放军战士的冲锋舟加满油沿东西方向的河流抢救灾民,早晨从A地出发,晚上到达B 地,约定向东为正方向,当天的航行路程记录如下(单位:千米):14,﹣9,+8,﹣7,13,﹣6,+12,﹣5.(1)请你帮忙确定B地位于A地的什么方向,距离A地多少千米?(2)若冲锋舟每千米耗油0.5升,油箱容量为28升,求冲锋舟当天救灾过程中至少还需补充多少升油?(3)救灾过程中,冲锋舟离出发点A最远处有多远?14.已知:数轴上点A表示的数是8,点B表示的数是﹣4.动点P从点A出发,以每秒6个单位长度的速度沿数轴向左运动,动点Q从点B出发,以每秒4个单位长度的速度沿数轴向左运动.P,Q两点同时出发.(1)经过多长时间,点P位于点Q左侧2个单位长度?(2)在点P运动的过程中,若点M是AP的中点,点N是BP的中点,求线段MN的长度.15.已知数轴上的点A和点B之间的距离为32个单位长度,点A在原点的左边,距离原点5个单位长度,点B在原点的右边.(1)点A所对应的数是,点B对应的数是;(2)若已知在数轴上的点E从点A出发向左运动,速度为每秒2个单位长度,同时点F 从点B出发向左运动,速度为每秒4个单位长度,在点C处点F追上了点E,求点C对应的数.16.如图,点A、B都在数轴上,且AB=6(1)点B表示的数是;(2)若点B以每秒2个单位的速度沿数轴向右运动,则2秒后点B表示的数是;(3)若点A、B都以每秒2个单位沿数轴向右运动,而点O不动,t秒后有一个点是一条线段的中点,求t.17.已知如图,在数轴上有A,B两点,所表示的数分别为﹣10,﹣4,点A以每秒5个单位长度的速度向右运动,同时点B以每秒3个单位长度的速度也向右运动,如果设运动时间为t秒,解答下列问题:(1)运动前线段AB的长为;运动1秒后线段AB的长为;(2)运动t秒后,点A,点B运动的距离分别为和;(3)求t为何值时,点A与点B恰好重合;(4)在上述运动的过程中,是否存在某一时刻t,使得线段AB的长为5,若存在,求t 的值;若不存在,请说明理由.18.如图,在数轴上,点A表示﹣10,点B表示11,点C表示18.动点P从点A出发,沿数轴正方向以每秒2个单位的速度匀速运动;同时,动点Q从点C出发,沿数轴负方向以每秒1个单位的速度匀速运动.设运动时间为t秒.(1)当t为何值时,P、Q两点相遇?相遇点M所对应的数是多少?(2)在点Q出发后到达点B之前,求t为何值时,点P到点O的距离与点Q到点B的距离相等;(3)在点P向右运动的过程中,N是AP的中点,在点P到达点C之前,求2CN﹣PC的值.19.已知点A在数轴上对应的有理数为a,将点A向左移动6个单位长度,再向右移动2个单位长度与点B重合,点B对应的有理数为﹣24.(1)求a;(2)如果数轴上的点C在数轴上移动3个单位长度后,距B点8个单位长度,那么移动前的点C距离原点有几个单位长度?20.已知数轴上A、B两点对应的数分别为﹣1和3,数轴上的一个动点P,其对应的数为x.(1)若点P到A、B两点的距离相等,求点P对应的数x的值;(2)数轴上是否存在点P,使点P到A、B两点的距离之和为5:若存在,请求出求x的值;若不存在,请说明理由.21.如图,已知数轴上点A表示的数为6,B是数轴上在A左侧的一点,且A,B两点间的距离为10.动点P从点A出发,以每秒6个单位长度的速度沿数轴向左匀速运动,设运动时间为t(t>0)秒.(1)数轴上点B表示的数是,点P表示的数是(用含t的代数式表示);(2)动点Q从点B出发,以每秒4个单位长度的速度沿数轴向左匀速运动,若点P、Q同时出发.求:①当点P运动多少秒时,点P与点Q相遇?②当点P运动多少秒时,点P与点Q间的距离为8个单位长度?22.如图,点A、B在数轴上表示的数分别为﹣12和8,两只蚂蚁M、N分别从A、B两点同时出发,相向而行.M的速度为2个单位长度/秒,N的速度为3个单位长度/秒.(1)运动秒钟时,两只蚂蚁相遇在点P;点P在数轴上表示的数是;(2)若运动t秒钟时,两只蚂蚁的距离为10,求出t的值(写出解题过程).23.看数轴,化简:|a|﹣|b|+|a﹣2|.24.在一条不完整的数轴上从左到右有点A,B,C,其中点A到点B的距离为3,点C到点B的距离为7,如图所示:设点A,B,C所对应的数的和是m.(1)若以B为原点,则点C所对应的数是;若以C为原点,则m的值是.(2)若原点O在图中数轴上,且点C到原点O的距离为4,求m的值.(3)动点P从A点出发,以每秒2个单位长度的速度向终点C移动,动点Q同时从B点出发,以每秒1个单位的速度向终点C移动,当几秒后,P、Q两点间的距离为2?请直接写出答案.参考答案与试题解析一.填空题(共8小题)1.﹣1008 . 2.b﹣2c . 3.﹣2b﹣a﹣1 . 4.﹣1 .【解答】解:∵点A1在数轴表示的数是,∴A2==2,A3==﹣1,A4==,A5==2,A6=﹣1,…,2016÷3=672,所有点A2016在数轴上表示的数是﹣1,故答案为:﹣1.5.如果x、y都是不为0的有理数,则代数式的最大值是 1 .【解答】解:①当x,y中有二正,=1+1﹣1=1;②当x,y中有一负一正,=1﹣1+1=1;③当x,y中有二负,=﹣1﹣1﹣1=﹣3.故代数式的最大值是1.6.|x+2|+|x﹣2|+|x﹣1|的最小值是 4 .【解答】解:|x+2|+|x ﹣2|+|x ﹣1|表示:数轴上一点到﹣2,2和1距离的和, 当x 在﹣2和2之间的1时距离的和最小,是4. 7.﹣1≤x ≤2 ,最小值是 3 . 【解答】解:由数形结合得,若|x+1|+|x ﹣2|取最小值,那么表示x 的点在﹣1和2之间的线段上, 所以﹣1≤x ≤2,最小值是3.8.如图,方格表中的格子填上了数,每一行每一列及两条对角线中所填数的和均相等,则x 的值 9 .【解答】解:16+11+12=39, 39﹣11﹣15=13, 39﹣12﹣13=14,x=39﹣16﹣14=9. 故答案为:9.二.解答题(共16小题) 9.先观察:1﹣=×,1﹣=×,1﹣=×,… (1)探究规律填空:1﹣=× ; (2)计算:(1﹣)•(1﹣)•(1﹣) (1))【解答】解:(1)原式=×;(2)原式=(1﹣)(1+)(1﹣)(1+)…(1﹣)(1+)=××××…××=,故答案为:(1);10.阅读下列各式:(a•b)2=a 2b 2,(a•b)3=a 3b 3,(a•b)4=a 4b 4…16 x111512回答下列三个问题:(1)验证:(2×)100= 1 ,2100×()100= 1 ;(2)通过上述验证,归纳得出:(a•b)n= a n b n;(abc)n= a n b n c n.(3)请应用上述性质计算:(﹣0.125)2017×22016×42015.【解答】解:(1)(2×)100=1,2100×()100=1;②(a•b)n=a n b n,(abc)n=a n b n c n,③原式=(﹣0.125)2015×22015×42015×[(﹣0.125)×(﹣0.125)×2]=(﹣0.125×2×4)2015×=(﹣1)2015×=﹣1×=﹣.11.【解答】解:(1)2×6=12(个单位长度).故蚂蚁爬行的路程是12个单位长度;(2)①当点M在点N左侧时:a﹣2+a=12,a=7;②当点M在点N右侧时:﹣a+2﹣a=12,a=﹣5;(3)若向左爬MN=2﹣(﹣5)=7若向右爬MN=7﹣2=5.12.(1)填空:log66= 1 ,log381= 4 .(2)如果log2(m﹣2)=3,求m的值.解:(1)∵61=6,34=81,∴log66=1,log381=4,故答案为:1、4;(2)∵log2(m﹣2)=3,∴m﹣2=23,解得:m=10;13.解:(1)∵14﹣9+8﹣7+13﹣6+12﹣5=20,答:B地在A地的东边20千米;(2)这一天走的总路程为:14+|﹣9|+8+|﹣7|+13+|﹣6|+12|+|﹣5|=74千米,应耗油74×0.5=37(升),故还需补充的油量为:37﹣28=9(升),答:冲锋舟当天救灾过程中至少还需补充9升油;(3)∵路程记录中各点离出发点的距离分别为:14千米;14﹣9=5(千米);14﹣9+8=13(千米);14﹣9+8﹣7=6(千米);14﹣9+8﹣7+13=19(千米);14﹣9+8﹣7+13﹣6=13(千米);14﹣9+8﹣7+13﹣6+12=25(千米);14﹣9+8﹣7+13﹣6+12﹣5=20(千米),25>20>19>14>13>>6>5,∴最远处离出发点25千米;(每小题2分)14.解:(1)设经过t秒,点P位于点Q左侧2个单位长度,6t﹣[4t+8﹣(﹣4)]=2,解得,t=7答:经过7秒,点P位于点Q左侧2个单位长度;(2)由题意可得,经过时间t,点P表示的数为:8﹣6t,∵点M是AP的中点,点N是BP的中点,∴点M表示的数是:,点N表示的数是:,∴MN=|(8﹣3t)﹣(2﹣3t)|=|8﹣3t﹣2+3t|=6,即线段MN的长度是6.15.(1)点A所对应的数是﹣5 ,点B对应的数是27 ;解:(1)根据题意得:A点所对应的数是﹣5;B对应的数是27;(2)设经过x秒F追上点E,根据题意得:2x+32=4x,解得:x=16,则点C对应的数为﹣5﹣2×16=﹣37.故答案为:﹣5;27.16.如图,点A、B都在数轴上,且AB=6(1)点B表示的数是﹣4 ;(2)若点B以每秒2个单位的速度沿数轴向右运动,则2秒后点B表示的数是0 ;解:(1)点B表示的数是﹣4;(2)﹣4+2×2=﹣4+4=0.故2秒后点B表示的数是0,(3)由题意可知:①O为BA的中点,(﹣4+2t)+(2+2t)=0,解得t=;②B为OA的中点,2+2t=2(﹣4+2t),解得t=5.故答案为:﹣4;0.17.(1)运动前线段AB的长为 6 ;运动1秒后线段AB的长为 4 ;(2)运动t秒后,点A,点B运动的距离分别为5t 和3t ;(3)求t为何值时,点A与点B恰好重合;(4)在上述运动的过程中,是否存在某一时刻t,使得线段AB的长为5,若存在,求t 的值;若不存在,请说明理由.解:(1)AB=﹣4﹣(﹣10)=6,运动1秒后,A表示﹣5,B表示﹣1,∴AB=﹣1+5=4.故答案为6,4.(2)运动t秒后,点A,点B运动的距离分别为5t,3t,故答案为5t,3t.(3)由题意:(5﹣3)t=6,∴t=3.(4)由题意:6+3t﹣5t=5或5t﹣(6+3t)=5,解得t=或,∴t的值为或秒时,线段AB的长为5.18.解:(1)根据题意得2t+t=28,解得t=,∴AM=>10,∴M在O的右侧,且OM=﹣10=,∴当t=时,P、Q两点相遇,相遇点M所对应的数是;(2)由题意得,t的值大于0且小于7.若点P在点O的左边,则10﹣2t=7﹣t,解得t=3.若点P在点O的右边,则2t﹣10=7﹣t,解得t=.综上所述,t的值为3或时,点P到点O的距离与点Q到点B的距离相等;(3)∵N是AP的中点,∴AN=PN=AP=t,∴CN=AC﹣AN=28﹣t,PC=28﹣AP=28﹣2t,2CN﹣PC=2(28﹣t)﹣(28﹣2t)=28.19.解:(1)依题意有a﹣6+2=﹣24,解得a=﹣20.(2)点C在数轴上向左移动3个单位长度是﹣24﹣8+3=﹣29或﹣24+8+3=﹣13;点C在数轴上向右移动3个单位长度是﹣24﹣8﹣3=﹣35或﹣24+8﹣3=﹣19.故移动前的点C距离原点有29或13或35或19个单位长度.20.解:(1)由题意,得PA=PB,∴x﹣(﹣1)=3﹣x,解得x=1.(2)∵3﹣(﹣1)=4<5,∴点P不在线段AB上.当点P落在点B右侧时,有PB+PA=5,∴(x﹣3)+(x+1)=5,解得x=3.5.当点P落在点A左侧时,有BP+AP=5,∴(﹣1﹣x)+(3﹣x)=5,解得x=﹣1.5.∴x的值是3.5或﹣1.5.21.解:(1)∵数轴上点A表示的数为6,∴OA=6,则OB=AB﹣OA=4,点B在原点左边,∴数轴上点B所表示的数为﹣4;点P运动t秒的长度为6t,∵动点P从点A出发,以每秒6个单位长度的速度沿数轴向左匀速运动,∴P所表示的数为:6﹣6t;(2)①点P运动t秒时追上点R,根据题意得6t=10+4t,解得t=5,答:当点P运动5秒时,点P与点Q相遇;②设当点P运动a秒时,点P与点Q间的距离为8个单位长度,当P不超过Q,则10+4a﹣6a=8,解得a=1;当P超过Q,则10+4a+8=6a,解得a=9;答:当点P运动1或9秒时,点P与点Q间的距离为8个单位长度.22.解:(1)设运动x秒时,两只蚂蚁相遇在点P,根据题意可得:2x+3x=8﹣(﹣12),解得:x=4,﹣12+2×4=﹣4.答:运动4秒钟时,两只蚂蚁相遇在点P;点P在数轴上表示的数为:﹣4;(2)运动t秒钟,蚂蚁M向右移动了2t,蚂蚁N向左移动了3t,若在相遇之前距离为10,则有2t+3t+10=20,解得:t=2.若在相遇之后距离为10,则有2t+3t﹣10=20,解得:t=6.综上所述:t的值为2或6.故答案为:4;﹣4.24.(1)若以B为原点,则点C所对应的数是7 ;若以C为原点,则m的值是﹣17 .解:(1)当B为原点时,点C对应的数是7;当以C为原点时,A、B对应的数分别为﹣7,﹣10,m=﹣10+(﹣7)+0=﹣17,故答案为:7,﹣17;(2)当O在C的左边时,A、B、C三点在数轴上所对应的数分别为﹣6、﹣3、4,则 m=﹣6﹣3+4=﹣5,当O在C的右边时,A、B、C三点在数轴上所对应的数分别为﹣14、﹣11、﹣4,则m=﹣14﹣11﹣4=﹣29,综上所述:m=﹣5或﹣29;(3)假如以C为原点,则A、B、C对应的数为﹣10,﹣7,0,Q对应的数是﹣(7﹣t),P 对应的数是﹣(10﹣2t),当P在Q的左边时,[﹣(7﹣t)]﹣[﹣(10﹣2t)]=2,解得:t=1当P在Q的左边时,[﹣(10﹣2t)]﹣[﹣(7﹣t)]=2,解得:t=5,即当1秒或5秒后,P、Q两点间的距离为2.。

七年级上期数学有理数及整式培优训练

七年级上期数学有理数及整式培优训练

有理数及整式提升训练一.选择题(共10小题)1.下列说法:①若a、b互为相反数,则a+b=0;②若a+b=0,则a、b互为相反数;③若a、b互为相反数,则;④若,则a、b互为相反数.10.下列各式:,,﹣25,中单项式的个数有()11.已知+=0,则的值为_________.12.在数轴上,点A(表示整数a)在原点的左侧,点B(表示整数b)在原点的右侧.若|a﹣b|=2013,且AO=2BO,则a+b的值为_________.13.2013年青洽会已梳理15类302个项目总投资达363000000000元.将363000000000元用科学记数法表示为_________元.14.某药品说明书上标明药品保存的温度是(20±2)℃,该药品在_________℃范围内保存才合适.15.如图,数轴上的点P表示的数是﹣1,将点P向右移动3个单位长度得到点P′,则点P′表示的数是_________.16.数轴上点A、B的位置如图所示,若点B关于点A的对称点为C,则点C表示的数为_________.17.如图,点A,B在数轴上对应的实数分别为m,n,则A,B间的距离是_________.(用含m,n的式子表示)18.如图,给正五边形的顶点依次编号为1,2,3,4,5.若从某一顶点开始,沿正五边形的边顺时针方向行走,顶点编号的数字是几,就走几个边长,则称这种走法为一次“移位”.如:小宇在编号为3的顶点上时,那么他应走3个边长,即从3→4→5→1为第一次“移位”,这时他到达编号为1的顶点;然后从1→2为第二次“移位”.若小宇从编号为2的顶点开始,第10次“移位”后,则他所处顶点的编号是_________.19.瑞士的一位中学教师巴尔末从光谱数据,…中,成功地发现了其规律,从而得到了巴尔末公式,继而打开了光谱奥妙的大门.请你根据这个规律写出第9个数_________.20.已知a,b,c,x,y,z,w为有理数.规定:符号表示运算,符号表示运算|xw﹣y2|.则+=_________(直接写出答案)21.已知当x=1时,代数式ax2+x+c的值是10,则当x=﹣1时,此代数式的值为_________.22.对于任意非零实数a,b,定义运算“☆”如下:a☆b=,则2☆1+3☆2+4☆3+…+2010☆2009的值为_________.23.已知﹣25a2m b和7b3﹣n a4是同类项,则m+n的值是_________.三.解答题(共5小题)24.请把下列每对数在数轴上所对应的两点的距离写在横线上:(1)①3与2_________;3与﹣2_________;③﹣4与﹣4_________;④﹣3与2_________;你能发现求出距离与这两个数的差有什么关系吗?如果有一对数为a,b,则a,b两数所对应的两点之间的距离可表示为_________.(2)如图所示,点A、B所代表的数分别为1,﹣2,在数轴上画出与A、B两点的距离之和为5的点(并表上相应的字母)(3)由以上探索解答下列问题:①当|x+1|+|x﹣2|=7时,x=_________;②|x﹣3|+|x﹣4|+|x﹣5|的和的最小值=_________③求|x﹣1|+|x﹣2|+|x﹣3|…|x﹣21|的最小值.25.若a,b,c为整数,且|a﹣b|19+|c﹣a|99=1,试计算|c﹣a|+|a﹣b|+|b﹣c|的值.26.已知:,求:3x2y﹣2x2y+[9x2y﹣(6x2y+4x2)]﹣(3x2y﹣8x2)的值.27.计算:|﹣3|+(﹣1)2011×(π﹣3)0.28.计算:(1)1.78+3.64﹣5.25﹣0.2+0.3﹣0.33.(2)1﹣++﹣﹣3(3)(﹣+)÷(﹣)×+(﹣1)100(4)﹣102﹣[(1﹣)×][2﹣(﹣3)2](5)﹣2﹣{8+(﹣1)2﹣[(﹣4)×2÷(﹣2)+×(﹣6)]}(6)+|﹣(﹣)2﹣|÷﹣|﹣2﹣3|﹣有理数及整式提升训练参考答案与试题解析一.选择题(共10小题)1.下列说法:①若a、b互为相反数,则a+b=0;②若a+b=0,则a、b互为相反数;③若a、b互为相反数,则;④若,则a、b互为相反数.互为相反数,则,则10.下列各式:,,﹣25,中单项式的个数有(),二.填空题(共13小题)11.(2013•永州)已知+=0,则的值为﹣1.+=0=12.(2013•咸宁)在数轴上,点A(表示整数a)在原点的左侧,点B(表示整数b)在原点的右侧.若|a ﹣b|=2013,且AO=2BO,则a+b的值为﹣671.13.(2013•西宁)2013年青洽会已梳理15类302个项目总投资达363000000000元.将363000000000元用科学记数法表示为 3.63×1011元.14.(2012•连云港)某药品说明书上标明药品保存的温度是(20±2)℃,该药品在18~22℃范围内保存才合适.15.(2012•泰州)如图,数轴上的点P表示的数是﹣1,将点P向右移动3个单位长度得到点P′,则点P′表示的数是2.16.(2011•乐山)数轴上点A、B的位置如图所示,若点B关于点A的对称点为C,则点C表示的数为﹣5.17.(2007•长沙)如图,点A,B在数轴上对应的实数分别为m,n,则A,B间的距离是n﹣m.(用含m,n的式子表示)18.(2011•河北)如图,给正五边形的顶点依次编号为1,2,3,4,5.若从某一顶点开始,沿正五边形的边顺时针方向行走,顶点编号的数字是几,就走几个边长,则称这种走法为一次“移位”.如:小宇在编号为3的顶点上时,那么他应走3个边长,即从3→4→5→1为第一次“移位”,这时他到达编号为1的顶点;然后从1→2为第二次“移位”.若小宇从编号为2的顶点开始,第10次“移位”后,则他所处顶点的编号是3.19.(2007•防城港)瑞士的一位中学教师巴尔末从光谱数据,…中,成功地发现了其规律,从而得到了巴尔末公式,继而打开了光谱奥妙的大门.请你根据这个规律写出第9个数.因而第九个数是:故答案为:.20.已知a,b,c,x,y,z,w为有理数.规定:符号表示运算,符号表示运算|xw﹣y2|.则+=﹣5(直接写出答案)解:根据题意得:,+=021.已知当x=1时,代数式ax2+x+c的值是10,则当x=﹣1时,此代数式的值为8.22.对于任意非零实数a,b,定义运算“☆”如下:a☆b=,则2☆1+3☆2+4☆3+…+2010☆2009的值为.b==﹣=﹣.故答案是23.已知﹣25a2m b和7b3﹣n a4是同类项,则m+n的值是4.三.解答题(共5小题)24.请把下列每对数在数轴上所对应的两点的距离写在横线上:(1)①3与21;3与﹣25;③﹣4与﹣4;④﹣3与25;你能发现求出距离与这两个数的差有什么关系吗?如果有一对数为a,b,则a,b两数所对应的两点之间的距离可表示为a﹣b.(2)如图所示,点A、B所代表的数分别为1,﹣2,在数轴上画出与A、B两点的距离之和为5的点(并表上相应的字母)(3)由以上探索解答下列问题:①当|x+1|+|x﹣2|=7时,x=4或﹣4;②|x﹣3|+|x﹣4|+|x﹣5|的和的最小值=2③求|x﹣1|+|x﹣2|+|x﹣3|…|x﹣21|的最小值.;④25.若a,b,c为整数,且|a﹣b|19+|c﹣a|99=1,试计算|c﹣a|+|a﹣b|+|b﹣c|的值.26.已知:,求:3x2y﹣2x2y+[9x2y﹣(6x2y+4x2)]﹣(3x2y﹣8x2)的值.,=0,=0,).27.(2012•开县模拟)计算:|﹣3|+(﹣1)2011×(π﹣3)0.28.计算:(1)1.78+3.64﹣5.25﹣0.2+0.3﹣0.33.(2)1﹣++﹣﹣3(3)(﹣+)÷(﹣)×+(﹣1)100(4)﹣102﹣[(1﹣)×][2﹣(﹣3)2](5)﹣2﹣{8+(﹣1)2﹣[(﹣4)×2÷(﹣2)+×(﹣6)]}(6)+|﹣(﹣)2﹣|÷﹣|﹣2﹣3|﹣++1+﹣,﹣+﹣﹣,,﹣,,;(﹣(﹣)×+××+1[﹣﹣100+;+|÷+×﹣,.。

《1.2.1有理数》培优专项练习人教版七年级数学上册

《1.2.1有理数》培优专项练习人教版七年级数学上册

2021年人教版七年级数学上册第1章《1.2.1有理数》培优专项练习一.选择题(共12小题)1.下列各数,﹣6,25,0,3.14,20%中,分数的个数是()A.1B.2C.3D.42.在0、﹣1.5、﹣2、3这四个数中,属于负分数的是()A.0B.3C.﹣1.5D.﹣23.在下列数π,+1,6.7,﹣15,0,,﹣1,25%中,属于整数的有()A.2个B.3个C.4个D.5个4.下面说法正确的是()A.有理数包括整数和分数B.有理数是整数C.整数一定是正数D.有理数是正数和负数的统称5.在一组数﹣2,0.4,0,π,﹣,1.,3.2121121112…(相邻的两个2之间依次多一个1)中,有理数的个数是()A.3B.4C.5D.66.在﹣0.121221222,﹣,0,﹣,﹣43%,0.,﹣2,﹣0.313113111…(每两个3之间依次多一个1)中,有理数有()A.4个B.5个C.6个D.7个7.设三个互不相等的有理数,既可表示为1、a+b、a的形式,又可表示为0、、b的形式,则a2021+b2021的值为()A.0B.﹣1C.1D.28.在﹣,,0,﹣1,0.4,π,2,﹣3,﹣6这些数中,有理数有m个,自然数有n个,分数有k个,则m﹣n﹣k的值为()A.3B.2C.1D.49.设三个互不相等的有理数,既可表示为1、a+b、a的形式,又可表示为0、、b的形式,则a2017+b2017的值为()A.0B.﹣1C.1D.210.下列说法:①有理数中,0的意义仅表示没有;②整数包括正整数和负整数;③正数和负数统称有理数;④0是最小的整数;⑤负分数是有理数.其中正确的个数()A.1个B.2个C.3个D.5个11.a是一个整数,3a2+4a+5是一个偶数,则()A.a是奇数B.a是偶数C.a是3的倍数D.a可以是任意整数12.下列说法中正确的是()A.没有最大的正数,但有最大的负数B.没有最小的负数,但有最小的正数C.没有最小的有理数,也没有最大的有理数D.有最小的自然数,也有最小的整数二.填空题(共8小题)13.下列实数:12,,|﹣1|,,0.1010010001…,,()0中,有理数有个.14.一个三位数,百位上是最小的合数,十位上是正整数中最小的偶数,个位上的数既不是素数也不是合数,这个数是.15.大于﹣3而小于2之间有个整数,16.把125%化成分数是.17.从0、1、2、3四个数字中任选三个数字组成三位数,则能组成个三位数.18.一个两位数的素数,如果它的两个数位上的数字之和是5,那么这个两位数是.19.学习了有理数的相关内容后,张老师提出了这样一个问题:“在8,﹣0.5,+,0,﹣3.7这五个有理数中,非负数有哪几个?”同学们经过思考后,小明举手回答说:“其中的非负数只有8和+这两个.”你认为小明的回答是否正确:(填“正确”或“不正确”),理由是.20.在有理数中最大的负整数是,最小的非负数.三.解答题(共4小题)21.有理数a既不是正数,也不是负数,b是最小的正整数,c表示下列一组数:﹣2,1.5,0,130%,﹣,860,﹣3.4中非正数的个数,则a+b+c等于多少?22.把下列各数填在相应的大括号内15,﹣,0.81,﹣3,,﹣3.1,﹣4,171,0,3.14,π正数集合{…}负数集合{…}非负整数集合{…}有理数集合{…}.23.阅读理解把几个数用大括号围起来,中间用逗号断开,如:{3,4},{﹣3,6,8,18},我们称之为集合,其中大括号内的数称其为集合的元素.如果一个集合满足:只要其中有一个元素a,使得﹣2a+4也是这个集合的元素,这样的集合我们称为条件集合,例如:集合{3,﹣2},因为﹣2×3+4=﹣2,﹣2恰好是这个集合的元素,所以{3,﹣2}是条件集合;例如:集合{﹣2,9,8},因为﹣2×(﹣2)+4=8,8恰好是这个集合的元素,所以{﹣2,9,8}是条件集合.(1)集合{﹣4,12}条件集合;集合{,﹣,}条件集合(填“是”或“不是”)(2)若集合{8,10,n}和集合{﹣m}都是条件集合,求m,n的和.24.观察下列两个等式:2﹣=2×+1,5﹣=5×+1,给出定义如下:我们称使等式a﹣b=ab+1的成立的一对有理数a,b为“共生有理数对”,记为(a,b),如:数对(2,),(5,),都是“共生有理数对”.(1)数对(﹣2,1),(3,)中是“共生有理数对”的是;(2)若(m,n)是“共生有理数对”,则(﹣n,﹣m)“共生有理数对”(填“是”或“不是”);(3)请再写出一对符合条件的“共生有理数对”为;(注意:不能与题目中已有的“共生有理数对”重复)(4)若(a,3)是“共生有理数对”,求a的值.2021年人教版七年级数学上册第1章《1.2.1有理数》培优专项练习参考答案与试题解析一.选择题(共12小题)1.下列各数,﹣6,25,0,3.14,20%中,分数的个数是()A.1B.2C.3D.4【分析】根据分数的定义解答即可.【解答】解:由题意可知,分数有:,3.14,20%,共3个.故选:C.【点评】本题考查了有理数的分类,分清分数和整数是解题的关键.2.在0、﹣1.5、﹣2、3这四个数中,属于负分数的是()A.0B.3C.﹣1.5D.﹣2【分析】根据有理数的分类可得:0不是正数也不是负数;﹣1.5是负分数;﹣2是负整数;3是正整数.【解答】解:﹣1.5是负分数,故选:C.【点评】本题考查了有理数.熟练掌握有理数的分类是解题的关键.3.在下列数π,+1,6.7,﹣15,0,,﹣1,25%中,属于整数的有()A.2个B.3个C.4个D.5个【分析】根据整数的定义,可得答案.【解答】解:在数π,+1,6.7,﹣15,0,,﹣1,25%中,属于整数的有+1,﹣15,0,﹣1,一共4个.故选:C.【点评】本题考查了有理数的分类.解题的关键是掌握有理数的分类,能够利用整数的定义判断整数,形如﹣3,﹣5,0,1,4,7…的数是整数.4.下面说法正确的是()A.有理数包括整数和分数B.有理数是整数C.整数一定是正数D.有理数是正数和负数的统称【分析】根据有理数的分类,利用排除法求解即可.【解答】解:整数和分数统称为有理数,故选项A正确;整数和分数统称有理数,故选项B错误;整数中也含有负整数和零,故选项C错误;有理数是整数、分数的统称,故选项D错误.故选:A.【点评】本题主要是对有理数概念的考查,熟练掌握概念是学好数学必不可少的.5.在一组数﹣2,0.4,0,π,﹣,1.,3.2121121112…(相邻的两个2之间依次多一个1)中,有理数的个数是()A.3B.4C.5D.6【分析】根据有理数的意义进行判断即可.【解答】解:在﹣2,0.4,0,π,﹣,1.,3.2121121112…(相邻的两个2之间依次多一个1)中,有理数有﹣2,0.4,0,﹣,1.,共5个,故选:C.【点评】本题考查有理数的意义,掌握有理数的意义是正确判断的前提.6.在﹣0.121221222,﹣,0,﹣,﹣43%,0.,﹣2,﹣0.313113111…(每两个3之间依次多一个1)中,有理数有()A.4个B.5个C.6个D.7个【分析】整数和分数统称有理数.据此判断即可.【解答】解:在﹣0.121221222,﹣,0,﹣,﹣43%,0.,﹣2,﹣0.313113111…(每两个3之间依次多一个1)中,有理数有﹣0.121221222,﹣,0,﹣43%,0.,﹣2,共6个,故选:C.【点评】本题考查了有理数,解题的关键是掌握有理数的概念.7.设三个互不相等的有理数,既可表示为1、a+b、a的形式,又可表示为0、、b的形式,则a2021+b2021的值为()A.0B.﹣1C.1D.2【分析】根据三个互不相等的有理数,既表示为1,a+b,a的形式,又可以表示为0,b,的形式,也就是说这两个数组的数分别对应相等,即a+b与a中有一个是0,与b 中有一个是1,再根据分式有意义的条件判断出a、b的值,代入计算即可.【解答】解:∵三个互不相等的有理数,既表示为1,a+b,a的形式,又可以表示为0,,b的形式,∴这两个数组的数分别对应相等.∴a+b与a中有一个是0,与b中有一个是1,但若a=0,会使无意义,∴a≠0,只能a+b=0,即a=﹣b,于是=﹣1.只能是b=1,于是a=﹣1;则a2021+b2021=(﹣1)2021+12021=﹣1+1=0,故选:A.【点评】本题考查的是有理数的概念,能根据题意得出“a+b与a中有一个是0,与b 中有一个是1”是解答此题的关键.8.在﹣,,0,﹣1,0.4,π,2,﹣3,﹣6这些数中,有理数有m个,自然数有n个,分数有k个,则m﹣n﹣k的值为()A.3B.2C.1D.4【分析】除π外都是有理数,所以m=8;自然数有0和2,所以n=2;分数有﹣,,0.4,所以k=3;代入计算就可以了.【解答】解:根据题意m=8,n=2,k=3,所以m﹣n﹣k=8﹣2﹣3=8﹣5=3.故选:A.【点评】本题考查有理数、自然数和分数的概念,掌握数学概念并熟练应用它们是学好数学的关键,也是解本题的关键.9.设三个互不相等的有理数,既可表示为1、a+b、a的形式,又可表示为0、、b的形式,则a2017+b2017的值为()A.0B.﹣1C.1D.2【分析】由题意三个互不相等的有理数,既可表示为1、a+b、a的形式,又可表示为0、、b的形式,可知这两个三数组分别对应相等.从而判断出a、b的值.代入计算出结果.【解答】解:∵三个互不相等的有理数,既可表示为1、a+b、a的形式,又可表示为0、、b的形式,∴这两个三数组分别对应相等.∴a+b、a中有一个是0,由于有意义,所以a≠0,则a+b=0,所以a、b互为相反数.∴=﹣1,b=1,a=﹣1.∴a2017+b2017=(﹣1)2017+12017=0.故选:A.【点评】本题考查了有理数的相关知识.题目难度较大,理解题意是关键.10.下列说法:①有理数中,0的意义仅表示没有;②整数包括正整数和负整数;③正数和负数统称有理数;④0是最小的整数;⑤负分数是有理数.其中正确的个数()A.1个B.2个C.3个D.5个【分析】根据在有理数中,0的意义不仅表示没有,在进行运算时,0还表示正数与负数的分界等,0既不是正数,也不是负数,0是偶数,但不是最小的整数,判断所给命题是否正确.【解答】解:①在有理数中,0的意义不仅表示没有,在进行运算时,0还表示正数与负数的分界等,故①错误;②整数包括正整数、负整数和0,故②错误;③整数和分数统称为有理数,故③错误;④整数包括正整数和负整数、0,因此0不是最小的整数,故错误;⑤所有的分数都是有理数,因此正确;综上,⑤正确,故选:A.【点评】本题主要考查了有理数的分类等相关知识,特别注意:在有理数中,0的意义不仅表示没有,在进行运算时,0还表示正整数与负整数的分界等,0既不是整数,也不是负数,是偶数.11.a是一个整数,3a2+4a+5是一个偶数,则()A.a是奇数B.a是偶数C.a是3的倍数D.a可以是任意整数【分析】利用排除法解决问题即可.【解答】解:当a=6时,3a2+4a+5=3×36+4×6+5=137是奇数,由此可以判断B,C,D错误.故选:A.【点评】本题考查有理数、奇数、偶数等知识,解题的关键是学会用排除法解决问题,属于中考常考题型.12.下列说法中正确的是()A.没有最大的正数,但有最大的负数B.没有最小的负数,但有最小的正数C.没有最小的有理数,也没有最大的有理数D.有最小的自然数,也有最小的整数【分析】根据有理数的概念″整数和分数统称有理数″就可以判断.【解答】解:A、应说成“没有最大的正数,也没有最大的负数”,错误;B、应说:没有最小的负数,也没有最小的正数,错误;C、有理数可以非常小,也可以非常大,正确;D、应说:有最小的自然数为0,没有最小的整数,错误;故选:C.【点评】本题主要考查正数,负数,有理数,自然数,整数的概念,熟练掌握概念是学好数学的关键.二.填空题(共8小题)13.下列实数:12,,|﹣1|,,0.1010010001…,,()0中,有理数有4个.【分析】先对于算式进行计算,然后根据实数的分类确定答案即可.【解答】解:12是整数,属于有理数;是无限不循环小数,属于无理数;|﹣1|=1是整数,属于有理数;=3是整数,属于有理数;0.1010010001…是无限不循环小数,属于无理数;是无限不循环小数,属于无理数;()0=1是整数,属于有理数;综上所述,有理数有4个.故答案为:4.【点评】本题考查了实数的分类,特别指出,无理数是包括:无限不循环小数、含π的代数式、开方开不尽的数.14.一个三位数,百位上是最小的合数,十位上是正整数中最小的偶数,个位上的数既不是素数也不是合数,这个数是421.【分析】正整数中最小的合数是4,最小的偶数是2,既不是素数又不是合数的数是1,进而根据整数写法写出这个三位数即可.【解答】解:有一个三位数,百位上是最小的合数,即是4,十位上是正整数中最小的偶数,即是2,个位上的数既不是素数也不是合数,即是1,这个三位数是421.故答案为:421.【点评】本题考查了有理数的有关概念.解决此题要明确最小的合数、既不是合数又不是素数的数、最小的合数分别是多少,进而根据整数的写法写出此数.15.大于﹣3而小于2之间有4个整数,【分析】根据正数大于0,0大于负数,即可解答.【解答】解:大于﹣3而小于2的整数是﹣2、﹣1、0、1,共有4个,故答案为:4.【点评】此题考查了整数的大小比较,正数大于0,0大于负数.16.把125%化成分数是.【分析】先把125%写成分数的形式,再根据分数的基本性质“分数的分子和分母同乘或除以一个不为0的数,分数的大小不变”,进一步化简成最简分数即可.【解答】解:125%=;故答案为:.【点评】本题主要是灵活运用百分数化分数的方法与分数基本性质来解决问题,注意最后的结果要化成最简分数,即分子和分母是互质数的分数.17.从0、1、2、3四个数字中任选三个数字组成三位数,则能组成18个三位数.【分析】分析百位、十位、个位各自能够放几个数字(即有几种情况),再将每个数位的情况数量相乘即可;【解答】解:先排百位,因为要组成三位数,所以0不能放在百位;即有3种排法;再排十位,十位可以放0,因此也有3种排法;最后排个位,前面两位已经占用两个数字,因此还剩2种排法;所以共有3×3×2=18种排法;故答案为:18.【点评】本题重点考查推理分析能力,明确构成三位数的前提是0不能放在百位是解题的突破点.18.一个两位数的素数,如果它的两个数位上的数字之和是5,那么这个两位数是23或41.【分析】明确素数的含义,列举两个正整数相加等于5的所有情况,再根据要求构成这个两位数即可.【解答】解:5=1+4,因此这个两位数为14或者41,其中14为合数,故舍去;5=2+3,因此这个两位数为23或者32,其中32为合数,故舍去;综上所述,这个两位数应该是41或23;故答案为:23或41.【点评】本题重点考查数据的分析能力和分类讨论情况,明确素数的含义是解题的关键点.19.学习了有理数的相关内容后,张老师提出了这样一个问题:“在8,﹣0.5,+,0,﹣3.7这五个有理数中,非负数有哪几个?”同学们经过思考后,小明举手回答说:“其中的非负数只有8和+这两个.”你认为小明的回答是否正确:不正确(填“正确”或“不正确”),理由是非负数包括0和正数.【分析】根据“非负数”的意义,结合题目中数据,进行判断即可.【解答】解:“非负数”就是“不是负数”,也就是0和正数,因此小明的回答是不正确的,因为非负数包括0和正数.故答案为:不正确;非负数包括0和正数.【点评】考查“非负数”的意义,“非负数”包括正数和0.20.在有理数中最大的负整数是﹣1,最小的非负数0.【分析】根据小于零的整数是负整数,大于或等于零的数是非负数,可得答案.【解答】解:在有理数中最大的负整数是﹣1,最小的非负数0,故答案为:﹣1,0.【点评】本题考查了有理数,小于零的整数是负整数,大于或等于零的数是非负数是解题关键.三.解答题(共4小题)21.有理数a既不是正数,也不是负数,b是最小的正整数,c表示下列一组数:﹣2,1.5,0,130%,﹣,860,﹣3.4中非正数的个数,则a+b+c等于多少?【分析】先根据a既不是正数,也不是负数,得出a=0,再根据b是最小的正整数,得出b=1,再根据非正数的定义得出c=4,再把a,b,c的值代入即可得出答案.【解答】解:∵a既不是正数,也不是负数,∴a=0,∵b是最小的正整数,∴b=1,∵在﹣2,1.5,0,130%,﹣,860,﹣3.4中非正数是﹣2,0,﹣,﹣3.4,共有4个,∴c=4,∴a+b+c=0+1+4=5.答:a+b+c等于5.【点评】此题考查了有理数,认真掌握有理数的分类是本题的关键;注意整数、0、正数之间的区别,0既不是正数也不是负数,但是整数.22.把下列各数填在相应的大括号内15,﹣,0.81,﹣3,,﹣3.1,﹣4,171,0,3.14,π正数集合{15,0.81,,171,3.14,π…}负数集合{﹣,﹣3,﹣3.1,﹣4…}非负整数集合{15,171,0…}有理数集合{15,﹣,0.81,﹣3,,﹣3.1,﹣4,171,0,3.14…}.【分析】根据正数,负数,非负整数,有理数的定义可得出答案.【解答】解:正数集合{15,0.81,,171,3.14,π…}负数集合{﹣,﹣3,﹣3.1,﹣4…}非负整数集合{15,171,0 …}有理数集合{15,﹣,0.81,﹣3,,﹣3.1,﹣4,171,0,3.14…}.故答案为:{15,0.81,,171,3.14,π…};{﹣,﹣3,﹣3.1,﹣4…};{15,171,0 …};{15,﹣,0.81,﹣3,,﹣3.1,﹣4,171,0,3.14…}.【点评】本题考查了有理数,认真掌握正数、负数、整数、分数、正有理数、负有理数、非负数的定义与特点,注意整数和正数的区别,注意0是整数,但不是正数.23.阅读理解把几个数用大括号围起来,中间用逗号断开,如:{3,4},{﹣3,6,8,18},我们称之为集合,其中大括号内的数称其为集合的元素.如果一个集合满足:只要其中有一个元素a,使得﹣2a+4也是这个集合的元素,这样的集合我们称为条件集合,例如:集合{3,﹣2},因为﹣2×3+4=﹣2,﹣2恰好是这个集合的元素,所以{3,﹣2}是条件集合;例如:集合{﹣2,9,8},因为﹣2×(﹣2)+4=8,8恰好是这个集合的元素,所以{﹣2,9,8}是条件集合.(1)集合{﹣4,12}是条件集合;集合{,﹣,}是条件集合(填“是”或“不是”)(2)若集合{8,10,n}和集合{﹣m}都是条件集合,求m,n的和.【分析】(1)依据一个集合满足:只要其中有一个元素a,使得﹣2a+4也是这个集合的元素,这样的集合我们称为条件集合,即可得到结论;(2)分情况讨论:若n=﹣2×8+4,则n=﹣12;若n=﹣2×10+4,则n=﹣16;若﹣2n+4=8,则n=﹣2;若﹣2n+4=10,则n=﹣3;若﹣2n+4=n,则n=;若﹣m×(﹣2)+4=﹣m,则m=﹣;据此可得m,n的和.【解答】解:(1)∵﹣4×(﹣2)+4=12,∴集合{﹣4,12}是条件集合;∵﹣×(﹣2)+4=,∴集合{,﹣,}是条件集合;故答案为:是,是;(2)∵集合{8,10,n}和集合{﹣m}都是条件集合,∴若n=﹣2×8+4,则n=﹣12;若n=﹣2×10+4,则n=﹣16;若﹣2n+4=8,则n=﹣2;若﹣2n+4=10,则n=﹣3;若﹣2n+4=n,则n=;若﹣m×(﹣2)+4=﹣m,则m=﹣;∴m,n的和为:﹣13,﹣17,﹣3,﹣4,0.【点评】本题主要考查了有理数的运算,解决问题的关键是依据条件集合的定义进行计算.如果一个集合满足:只要其中有一个元素a,使得﹣2a+4也是这个集合的元素,这样的集合我们称为条件集合.24.观察下列两个等式:2﹣=2×+1,5﹣=5×+1,给出定义如下:我们称使等式a﹣b=ab+1的成立的一对有理数a,b为“共生有理数对”,记为(a,b),如:数对(2,),(5,),都是“共生有理数对”.(1)数对(﹣2,1),(3,)中是“共生有理数对”的是(3,);(2)若(m,n)是“共生有理数对”,则(﹣n,﹣m)是“共生有理数对”(填“是”或“不是”);(3)请再写出一对符合条件的“共生有理数对”为(4,)或(6,);(注意:不能与题目中已有的“共生有理数对”重复)(4)若(a,3)是“共生有理数对”,求a的值.【分析】(1)根据“共生有理数对”的定义即可判断;(2)根据“共生有理数对”的定义即可解决问题;(3)根据“共生有理数对”的定义即可判断;(4)根据“共生有理数对”的定义,构建方程即可解决问题.【解答】解:(1)﹣2﹣1=﹣3,﹣2×1+1=﹣1,∴﹣2﹣1≠﹣2×1+1,∴(﹣2,1)不是“共生有理数对”,∵3﹣=,3×+1=,∴3﹣=3×+1,∴(3,)是“共生有理数对”;(2)是.理由:﹣n﹣(﹣m)=﹣n+m,﹣n•(﹣m)+1=mn+1,∵(m,n)是“共生有理数对”,∴m﹣n=mn+1,∴﹣n+m=mn+1,∴(﹣n,﹣m)是“共生有理数对”;(3)(4,)或(6,)等;(4)由题意得:a﹣3=3a+1,解得a=﹣2.故答案为:(3,);是;(4,)或(6,).【点评】本题考查有理数的混合运算、“共生有理数对”的定义,解题的关键是理解题意,灵活运用所学知识解决问题,属于中考常考题型.。

(完整版)有理数培优练习题

(完整版)有理数培优练习题

有理数培优题一、填空题1、如图b a ,为数轴上的两点表示的有理数,在a b b a a b b a ---+,,2,中,负数的个数有 个2、如果数轴上点A 到原点的距离为3,点B 到原点的距离为5,那么A 、B 两点的距离为 。

3、已知数轴上有A 、B 两点,A 、B 之间的距离为1,点A 与原点O 的距离为3,那么所有满足条件的点B 与原点O 的距离之和等于 。

4、已知0,0<>b a 且0<+b a ,那么有理数b a b a ,,,-的大小关系是 。

5、有理数c b a ,,在数轴上的位置如图所示,式子c b b a b a -++++化简结果为 .6、有理数c b a ,,在数轴上的位置如图所示,则化简c c a b b a ------+11的结果为 。

7、已知b b a b a 2=-++,在数轴上给出关于b a ,的四种情况如图所示,则成立的是 .① ② ③ ④8、已知是有理数,且()()012122=++-y x ,那么y x +的值是。

9、如图,数轴上标出若干个点,每相邻两点相距1个单位,点A 、B 、C 、D 对应的数分别是整数d c b a ,,,且102=-a d ,那么数轴的原点应是( )A .A 点B .B 点C .C 点D .D 点 10、数d cb a ,,,所对应的点A ,B,C ,D 在数轴上的位置如图所示,那么c a +与d b +的大小关系是( )A .d b c a +<+B .d b c a +=+C .d b c a +>+D .不确定的11、不相等的有理数c b a ,,在数轴上对应点分别为A,B ,C,若c a c b b a -=-+-,那么点B ( )A .在A 、C 点右边B .在A 、C 点左边 C .在A 、C 点之间D .以上均有可能12、设11++-=x x y ,则下面四个结论中正确的是( )(全国初中数学联赛题)A .y 没有最小值B .只一个x 使y 取最小值C .有限个x (不止一个)使y 取最小值D .有无穷多个x 使y 取最小值13、在数轴上,点A ,B 分别表示31-和51,则线段AB 的中点所表示的数是 .14、x 是有理数,则22195221100++-x x 的最小值是 。

有理数培优测试题

有理数培优测试题

有理数培优训练 一、填空题 1、若|x+1|=3,则x= ;a 2=4则a 3= 。

2、x 2=91,则x= ;—x 3= —641,则x= 。

3、当a 时,(a —4)2+5有最 值为 ;当a 时,5—(a —4)2有最 值为 。

4、1-=a a,则a 0;a a 〉,则a 0;a a -=-33,则a ;33a a -=,则a 0。

5、若(2a —1)2+03=+b ,则a= ;b= .若25-a 与1+b 互为相反数求b 1996—5a 2= .6、计算:(—)2006×82006=(—2)2003+(—2)2002=(—1)2n + (—1)2n+1= ,(n 为正整数)7、若A=a 1+a 2+a 3+…+a 111,当a=0时,A= ;当A=1时A= ;当a=-1时,A= 。

8、若2a-b=4,则2(b-2a )2-3(b-2a)+1=9、按下图程序,若开始输入的值为x=3,则最后输出 。

10、给出依次排列的一列数:-1,2,-4,8,-16,32,……按此规律,第7个是 ,第n 个是 。

11、-|-76|=_______, -(-76)=_______, -|+31|=_______,-(+31)=_______, +|-(21)|=_______, +(-21)=_______. 12、若|x|=|-4|,则x=_______. 若|m -1|=1-m ,则m 的取值范围是___________.13、已知数轴上有A、B两点,A、B之间的距离为1,点A与原点的距离为3,那么所有满足条件的点B与原点的距离之和等于_______。

14、已知a<0, b>0,|a |>b, 试用“>”将a, b, -a, -b 连接起来:_________________________.15若,,,,,a b c d e f 是六个有理数,且11111,,,,23456a b c d e b c d e f =-==-==-,则_______.f a= 输入x 计算(1)2x x +的值 >100 输出 是 否二、选择题1、x 、y 表示有理数,那么下列各数中,值一定为正数的是( )A 、|x+5|B 、(x+y)2C 、y 2+21 D 、|x 2+y 2| 2、计算(—1)2002+(—1)2002÷2001)2(1-+-的值等于( )A 、0B 、1C 、-1D 、23、下列各组数中相等的共有( )①—52和(—5)2 ②—33和(—3)3 ③0100和03 ④34和43⑤a 2003·a 3和a 2006 ⑥652和(65)2 ⑦—(—2)2和22 A 、1对 B 、2对 C 、3对 D 、4对4、数轴上表示A 、B 两点到原点的距离分别是2、5,则A 、B 两点的距离为( )。

初一有理数+整式练习(含答案)

初一有理数+整式练习(含答案)

9. 分 ) ( 据 资3料 显 示 , 地 球 的 海 洋 面 积 约 为 360000平0方00十 米 , 请 用 科 学 记 数 法 表 示 地 球 海 洋 面 积 面 积 约
为 ( “ 平 方于 米
A. 36x 107
B. 3.6x 108
C. 0.3x610°
D. 3.x610°
10.(3 分 )2017 年 能 源 汽 车 销 量 达 77.7 万 辆 , 市 场 占 比 2.7%,77.7
鲍坻4分)如果吾凰伽俨钊与_:妻z6燮2n′皇同蒙宴工亘i, 那 么 mn 的 值 为 51.(4 分 ) 苞 多 项 式 z8 + (2m 十 2) 22 — 3z - 1 不 含 二 汀 项 , 则 m = 52〉斛分〉如果]个单项式一萼的系数和次数分别为m、 几 , 那么 2mn =
53.(4分 ) 已 知 z — 4y 二 2, 那 么 一 5 十 2z — 8y 的 值 为
35.分()5当 5m — 3n = --4时 ,求代 数 式 2 (m — n) 十 4(2m — n) 十 2 的 值
36分.) 已(知5a = 2, 求 出 下 列 代 数 式 的 值 a 一 2a 一 5 十 3 (2a2 —a) .
37.分 )(先5化 简 , 后 求 值 :
(DM 二 (-2m2 十 z 一 切 一 〈一2z2 - 暑## 十 1〉 , 其 中 z 万 2;
人 , 一 21
B. 35
7.G 分 )a 十 1 的 相 反 数 是 C
A 一Q 十 工
B. —(a+1)
8.G 分 ) 下 列 说 法 正 确 的 是 ( )
A 非 负 数 包括 零 和 整 数 C. 零 是 最 小 的 整 数

第1章 有理数培优训练试题(含解析)

第1章 有理数培优训练试题(含解析)

浙教版七上数学第一章:有理数培优训练答案一.选择题:1.答案:B解析:∵053=-++b a ,∴,3,03-=∴=+a a 5,05=∴=-b b ,故选择B2.答案:D解析:∵ab <0, ∴a 、b 异号, ∵a+b <0,∴负数的绝对值大于正数的绝对值. 故选:D .3.答案:B解析:∵01≥-x ,即当1=x 时,|x ﹣1|+2的最小值为2,故选择B4.答案:B解析:∵21=2,22=4,23=8,24=16,25=32,26=64,27=128,28=256, 我们发现四次一循环,因为2......50442018=÷,故未位数为4,故选择B5.答案:A解析:∵0是有理数中的其中一个数,它可以表示很多种不同的意义,故①错误; ∵整数包括正整数、负整数和零,故②错误; ∵正数和负数中有不是有理数的数,故③错误; ∵没有最小的整数,故④错误;∵负分数是有理数,故⑤正确。

故选择A 6.答案:A解析:01<<-a ,01,01,0>+>-<∴a a a ,()()011<+-∴a a a ,故选择A7.答案:D解析:如果m 是一个有理数,当0>m 时,0<-m ;当0=m 时,0=-m ; 当0<m 时,0>-m ,故选择D8.答案:D解析:试题分析:0<a <1,取21=a ,所以21-=-a ,21=a ,21-=-a ,所以a a a a 11->->>,故本题选D.9.答案:B解析:∵0,0><b a 且b a >, ∴a b b a -<<-<,故选择B10.答案:A解析:因为102601710=, 98604930=, 92602315=, 99603320=, 95601912= 又10299989592<<<<,故中间一个数应是4930,故选择A二.填空题:11.答案:2解析:P 表示的数为1-,向右平移3个单位后P '表示的数为212.答案:5解析:∵212-的相反数为212,这两个数中间的整数为2,1,0,1,2--共5个。

有理数经典培优训练含答案

有理数经典培优训练含答案

专训一:有理数的比较大小的方法名师点金:有理数大小的比较需要根据有理数的特征灵活地选择适当的方法,除了常规的比较大小的方法外,还有几种特殊的方法:作差法、作商法、找中间量法、倒数法、变形法、数轴法、特殊值法、分类讨论法等.)利用作差法比较大小1.比较1731和5293的大小.利用作商法比较大小2.比较-172 016和-344 071的大小.利用找中间量法比较大小3.比较1 0072 016与1 0092 017的大小. 利用倒数法比较大小4.比较1111 111和1 11111 111的大小.利用变形法比较大小5.比较-2 0142 015,-1415,-2 0152 016,-1516的大小.6.比较-623,-417,-311,-1247的大小.利用数轴法比较大小7.已知a>0,b<0,且|b|<a,试比较a,-a,b,-b的大小.利用特殊值法比较大小8.已知a,b是有理数,且a,b异号,则|a+b|,|a-b|,|a|+|b|的大小关系为_______________________________________________.利用分类讨论法比较大小9.比较a 与a 3的大小.专训二:有理数中6种易错类型对有理数有关概念理解不清造成错误1.下列说法正确的是( )A .最小的正整数是0B .-a 是负数C .符号不同的两个数互为相反数D .-a 的相反数是a2.已知|a|=7,则a = W.误认为|a|=a ,忽略对字母a 分情况讨论3.如果一个数的绝对值等于它本身,那么这个数一定是() A .负数 B .负数或零C .正数或零D .正数4.已知a =8,|a|=|b|,则b 的值等于( )A .8B .-8C .0D .±8对括号使用不当导致错误5.计算:-7-5.6.计算:2-⎝ ⎛⎭⎪⎫-15+14-12.忽略或不清楚运算顺序7.计算:-81÷94×49÷(-16).8.计算:(-5)-(-5)×110÷110×(-5).乘法运算中确定符号与加法运算中的符号规律相混淆9.计算:⎝ ⎛⎭⎪⎫-214×⎝ ⎛⎭⎪⎫-345.10.计算:-36×⎝ ⎛⎭⎪⎫712-56-1.除法没有分配律11.计算:24÷⎝ ⎛⎭⎪⎫13-18-16.专训三:有理数中几种热门考点 名师点金:本章主要学习了有理数的定义及其相关概念,有理数的运算,科学记数法与近似数等.本章内容是中考的基本考查内容之一,命题形式多以选择题和简单的计算题为主,注重对基础知识和基本技能的考查.有理数的定义、分类1.在下列各数中:+6,-8.25,-0.49,-23,-18,负有理数有( )A .1个B .2个C .3个D .4个相反数、倒数、绝对值2.(1)化简下列各式:⎪⎪⎪⎪⎪⎪-12= ;|+(-3)|= ;-⎪⎪⎪⎪⎪⎪-⎝ ⎛⎭⎪⎫-35= W.(2)-5的相反数是 ;-13的绝对值是 ;54的倒数是 W.3.式子|m -3|+5的值随m 的变化而变化,当m = 时,|m -3|+5有最小值,最小值是 .4.已知a ,b 分别是两个不同的点A ,B 所表示的有理数,且|a|=5,|b|=2,它们在数轴上的位置如图所示.(1)试确定数a,b;(2)表示a,b两数的点相距多远?(3)若C点在数轴上,C点到B点的距离是C点到A点距离的13,求C点表示的数.(第4题)有理数的大小比较5.(中考·莱芜)在-12,-13,-2,-1这四个数中,最大的数是()A.-12B.-13C.-2D.-16.如图,数轴上A,B两点分别表示有理数a,b,则下列结论正确的是()(第6题)A.a<bB.a+b<0C.a-b>0D.ab>0有理数的运算7.下列各式成立的是()A.|-2|=2B.-(-1)=-1C.1÷(-3)=13D.-2×3=68.若四个有理数之和的14是3,其中三个数分别是-10,+8,-6,则第四个数是()A.+8B.-8C.+20D.+119.计算下列各题:(1)17-23÷(-2)×3;(2)2×(-5)+23-3÷12;(3)10+8÷(-2)2-(-4)×(-3);(4)(-24)÷⎝ ⎛⎭⎪⎫2232+512×⎝ ⎛⎭⎪⎫-16-0.52.非负数性质的应用10.已知a 为有理数,下列说法中正确的是( )A .⎝ ⎛⎭⎪⎫a +12 0162为正数 B .-⎝ ⎛⎭⎪⎫a -12 0162为负数 C .a +⎝ ⎛⎭⎪⎫12 0162为正数 D .a 2+12 016为正数11.若|a +1|+(b -2)2=0,求(a +b )9+a 6的值.科学记数法、近似数的应用12.(2015·成都)今年5月,在成都举行的世界机场城市大会上,成都新机场规划蓝图首次亮相.新机场建成后,成都将成为继北京、上海之后,国内第三个拥有双机场的城市,按照规划,新机场将建的4个航站楼的总面积约为126万平方米.用科学记数法表示126万为( )A .126×104B .1.26×105C .1.26×106D .1.26×10713.若一个数等于5.8×1021,则这个数的整数位数是( )A .20B .21C .22D .2314.把390 000用科学记数法表示为 ,用科学记数法表示的数5.16×104的原数是 ,近似数2.236×108精确到的数位是 W.15.(2015·资阳)太阳的半径约为696 000千米,用科学记数法表示为 千米.数学思想方法的应用a.数形结合思想16.如图,数轴上的A ,B ,C 三点所表示的数分别为a ,b ,c.根据图中各点位置,下列式子正确的是( )(第16题)A .(a -1)(b -1)>0B .(b -1)(c -1)>0C .(a +1)(b +1)<0D .(b +1)(c +1)<0b.转化思想17.下列各式可以写成a -b +c 的是( )A .a -(+b )-(+c )B .a -(+b )-(-c )C .a +(-b )+(-c )D .a +(-b )-(+c )18.计算:⎣⎢⎡⎦⎥⎤113-⎝ ⎛⎭⎪⎫-234÷⎝ ⎛⎭⎪⎫-712.c.分类讨论思想19.比较2a 与-2a 的大小.有理数中的探究与创新20.(2015·德州)一组数1,1,2,x ,5,y ,…,满足“从第三个数起,每个数都等于它前面的两个数之和”,那么这组数中y 表示的数为( )A .8B .9C .13D .1521.(2015·荆州)把所有正奇数从小到大排列,并按如下规律分组:(1),(3,5,7),(9,11,13,15,17),(19,21,23,25,27,29,31),…,现有等式A m =(i ,j )表示正奇数m 是第i 组第j 个数(从左往右数),如A 7=(2,3),则A 2 015=( )A .(31,50)B .(32,47)C .(33,46)D .(34,42)22.(2015·广东)观察下列一组数:13,25,37,49,511,…,根据该组数的排列规律,可推出第10个数是 W.23.(2015·绥化)填在下面各正方形(如图)中的四个数之间都有一定的规律,据此规律得出a +b +c = W.(第23题)24.如图是某种细胞分裂示意图,这种细胞每过30分钟便由1个分裂成2个.(第24题)根据此规律求:(1)这样的一个细胞经过第四个30分钟后可分裂成多少个细胞?(2)这样的一个细胞经过3小时后可分裂成多少个细胞?(3)这样的一个细胞经过n(n为正整数)小时后可分裂成多少个细胞?答案专训一1.解:因为5293-1731=5293-5193=193>0,所以5293>1731.点拨:当比较的两个数的大小非常接近,无法直接比较大小时,作差比较是常采用的方法.2.解:因为172 016÷344 071=172 016×4 07134=1 3571 344>1,所以172 016>344 071.所以-172 016<-344 071.点拨:作商比较法是比较两个数大小的常用方法,当比较的两个正分数作商易约分时,作商比较往往能起到事半功倍的效果;当这两个数是负数时,可先分别求出它们的绝对值,再作商比较它们绝对值的大小,最后根据绝对值大的反而小下结论.3.解:因为1 0072 016<12,1 0092 017>12,所以1 0072 016<1 0092 017.点拨:对于类似的两数的大小比较,我们可以引入一个中间量,分别比较它们与中间量的大小,从而得出问题的答案.4.解:1111 111的倒数是101111,1 11111 111的倒数是1011 111.因为101111>1011 111,所以1111 111<1 11111 111.点拨:利用倒数法比较两个正数的大小时,需先求出其倒数,再根据倒数大的反而小,从而确定这两个数的大小.5.解:每个分数都加1,分别得12 015,115,12 016,116.因为12 016<12 015<116<115,所以-2 0152 016<-2 0142 015<-1516<-1415.点拨:本题直接比较很困难,但通过把这些数适当变形,再进行比较就简单多了.6.解:因为-623=-1246,-417=-1251,-311=-1244,-1244<-1246<-1247<-1251,所以-311<-623<-1247<-417.点拨:此题如果通分,计算量太大,可以把分子变为相同的,再进行比较.7.解:把a ,-a ,b ,-b 在数轴上表示出来,如图所示,根据数轴可得-a <b <-b <a.(第7题)点拨:本题运用了数轴法比较有理数的大小,在数轴上找出这几个数对应的点的大致位置,即可作出判断.8.|a +b|<|a -b|=|a|+|b|点拨:已知a ,b 异号,不妨取a =2,b =-1或a =-1,b =2.当a =2,b =-1时,|a +b|=|2+(-1)|=1,|a -b|=|2-(-1)|=3,|a|+|b|=|2|+|-1|=3;当a =-1,b =2时,|a +b|=|(-1)+2|=1,|a -b|=|-1-2|=3,|a|+|b|=|-1|+|2|=3.所以|a +b|<|a -b|=|a|+|b|.方法总结:本题运用特殊值法解题,取特殊值时要注意所取的值既要符合题目条件,又要考虑可能出现的多种情况.以本题为例,可以分为a 正、b 负和a 负、b 正两种情况.9.解:分三种情况讨论:①当a >0时,a >a 3;②当a =0时,a =a 3;③当a <0时,|a|>⎪⎪⎪⎪⎪⎪a 3,则a <a 3.专训二1.D 2.±7 3.C4.D 点拨:因为|a|=|b|=8,所以b =±8.5.解:原式=-7+(-5)=-12.6.解:原式=2+15-14+12=2920.7.解:原式=-81×49×49×(-116)=1.点拨:本题易出现“原式=-81÷1÷(-16)=8116”的错误.8.解:原式=(-5)-(-5)×110×10×(-5) =(-5)-25=-30.9.解:原式=⎝ ⎛⎭⎪⎫-94×⎝ ⎛⎭⎪⎫-195 =17120.点拨:解本题时常常会出现乘法运算中积的符号的确定与加法运算中和的符号的确定相混淆的错误.如:(-214)×(-345)=-(94×195)=-17120.10.解:原式=-36×712-(-36)×56-(-36)×1=-21+30+36=45.11.解:原式=24÷⎝ ⎛⎭⎪⎫824-324-424 =24÷124=576.点拨:解本题时往往会出现将乘法分配律运用到除法运算中,从而出现“原式=24÷13-24÷18-24÷16=72-192-144=-264”这样的错误.专训三1.D 2.(1)12;3;-35(2)5;13;453.3;54.解:(1)因为|a|=5,|b|=2,所以a=±5,b=±2.由数轴可知a<b<0,所以a=-5,b=-2.(2)相距3.(3)C点表示的数为-0.5或-2.75.5.B 6.C7.A8.C9.解:(1)原式=17-8÷(-2)×3=17-(-12)=29.(2)原式=-10+8-6=-8.(3)原式=10+8÷4-12=0.(4)原式=(-16)×964+112×(-16)-14=⎝⎛⎭⎪⎫-94+(-1112)-14=-4112.10.D11.解:由题意得a+1=0,b-2=0,所以a=-1,b=2. 所以(a+b)9+a6=[(-1)+2]9+(-1)6=2.12.C13.C14.3.9×105;51 600;十万位15.6.96×10516.D17.B18.解:原式=113÷⎝⎛⎭⎪⎫-712-⎝⎛⎭⎪⎫-234÷⎝⎛⎭⎪⎫-712=-167-337=-7.19.解:当a<0时,2a<-2a;当a=0时,2a=-2a;当a>0时,2a>-2a.20.A点拨:根据从第三个数起,每个数都等于它前面的两个数之和,可得x=1+2=3,y=x+5=3+5=8,故选A.21.B点拨:第1个正奇数是1,第2个正奇数是3,第3个正奇数是5,…,第n个正奇数是2n-1,由2 015=2n-1,得n=1 008,即2 015是从1开始的第1 008个正奇数.由题意知,第1组有1个正奇数,第2组有3个正奇数,第3组有5个正奇数,…,第i组有(2i-1)个正奇数,第31组有31×2-1=61(个)正奇数.因为前31组正奇数的总个数为1+3+5+7+…+57+59+61=961,前32组正奇数的总个数为961+63=1 024,所以第1 008个正奇数应在第32组内.又因为1 008-961=47,所以2 015是第32组的第47个正奇数,故选B.22.1021 点拨:从这组数可以看出,这组数的分子是从1开始,逐次增加1的自然数,分母是分子的2倍加1,即第n 个数是n 2n +1,所以第10个数是102×10+1=1021.23.110 点拨:根据前三个正方形中数的规律可知:c 所处的位置上的数是连续的奇数,所以c =9;a 所处的位置上的数是连续的偶数,所以a =10;而b =ac +1=10×9+1=91,所以a +b +c =10+91+9=110.24.解:(1)一个细胞经过第四个30分钟后可分裂成16个细胞.(2)一个细胞经过3小时后可分裂成64个细胞.(3)一个细胞经过n(n 为正整数)小时后可分裂成22n 个细胞.。

(word版)七年级有理数培优题(有答案)

(word版)七年级有理数培优题(有答案)

有理数培优题根底训练题一、填空:1、在数上表示-2的点到原点的距离等于〔〕。

2、假设∣a∣=-a,a〔〕0.3、任何有理数的都是〔〕。

4、如果a+b=0,那么a、b一定是〔〕。

5、将毫米的厚度的折20次,列式表示厚度是〔〕。

6、|a|3,|b|2,|a b|a b,a b〔〕7、|x2||x3|的最小是〔〕。

8、在数上,点A、B分表示11〕。

4,,段AB的中点所表示的数是〔2a b20219、假设a,b互相反数,m,n互倒数,P的mnp2〔〕。

3,p10、假设abc≠0,|a||b||c|的是〔〕.a b c11、以下有律排列的一列数:1、3、2、5、3、⋯,其中从左到右第100个数是〔〕。

4385二、解答:1、x+3=0,|y+5|+4的是4,z的点到-2的点的距离是7,求x、y、z三个数两两之的和。

3、假设2x|45x||13x|4的恒常数,求x足的条件及此常数的。

4、假设a,b,c整数,且|a b|2021|c a|20211,求|ca||a b||bc|的。

5、算:-1+5-7+9-11+13-15+17261220304256726、用拓展:将七只杯子放在桌上,使三只口朝上,四只口朝下。

要求每次翻其中任意四只,使它杯口朝向相反,能否有限次翻后,所有杯子杯口朝下?能力培训题知识点一:数轴例1:有理数a在数轴上原点的右方,有理数b在原点的左方,那么〔〕A.abbB.abbC.ab0D.ab0拓广训练:1、如图a,b为数轴上的两点表示的有理数,在a b,b2a,a b,ba中,负数的个数有〔〕〔“祖冲之杯〞邀请赛试题〕a O bA.1B.2C.3D.413、把满足2a5中的整数a表示在数轴上,并用不等号连接。

2、利用数轴能直观地解释相反数;例2:如果数轴上点A到原点的距离为3,点B到原点的距离为5,那么A、B两点的距离为。

拓广训练:1、在数轴上表示数a的点到原点的距离为3,那么a3_________.2、数轴上有A、B两点,A、B之间的距离为1,点A与原点O的距离为3,那么所有满足条件的点B与原点O的距离之和等于。

七年级有理数培优题(有答案)

七年级有理数培优题(有答案)

七年级有理数培优题(有答案) 有理数培优题基础训练题一、填空:1、在数轴上表示-2的点到原点的距离等于2.2、若|a|=-a,则a<0.3、任何有理数的绝对值都是非负数。

4、如果a+b=0,那么a、b一定是互为相反数。

5、将0.1毫米的厚度的纸对折20次,列式表示厚度是0.1*2^20毫米。

6、已知|a|=3,|b|=2,|a-b|=a-b,则a+b=5.7、|x-2|+|x+3|的最小值是1.8、在数轴上,点A、B分别表示-4/11、4/2,则线段AB 的中点所表示的数是0.9、若a,b互为相反数,则ab<0.10、若abc≠0,且P的绝对值为3,则(a+b+c)/(abc)+mn-p^2=3253.11、下列有规律排列的一列数:1、3、6、10、15、…,其中从左到右第100个数是5050.二、解答问题:1、已知x+3=0,|y+5|+4的值是4,z对应的点到-2对应的点的距离是7,求x、y、z这三个数两两之积的和。

解:由x+3=0得x=-3,|y+5|+4=4,解得|y+5|=0,y=-5,z到-2的距离为7,即|z-(-2)|=7,解得z=-9或5.两两之积的和为:x*y+x*z+y*z=(-3)*(-5)+(-3)*(-9)+(-5)*(-9)=72.3、若2x+|4-5x|+|1-3x|+4的值恒为常数,求x满足的条件及此时常数的值。

解:当4-5x>=0,1-3x>=0时,2x+|4-5x|+|1-3x|+4=2x+(4-5x)+(1-3x)+4=-4x+9;当4-5x=0时,2x+|4-5x|+|1-3x|+4=2x-(4-5x)+(1-3x)+4=-x+9;当4-5x>=0,1-3x=1/3时,2x+|4-5x|+|1-3x|+4的值为9;当1/34/5时,2x+|4-5x|+|1-3x|+4的值为-2x+7.4、若a,b,c为整数,且|a-b|^(2010)+|c-a|^(2010)=1,试求|c-a|+|a-b|+|b-c|的值。

有理数、整式培优练习题精编版

有理数、整式培优练习题精编版

有理数及整式培优练习题一、选择题1.在数轴上,点x 表示到原点距离小于5的那些点,则│x+5│+│x-5│等于(• )A.10B.-2xC.-10D.2x2.若x=-2π,化简│x+1│-│x+2│+│x+3│-│x+4│+…-│x+10│得( ) A.2x+7 B.2x-7 C.-2x-7 D.-2x+73.绝对值小于3π的所有整数的乘积为( )A.9π2B.3πC.πD.04.如图b a ,为数轴上的两点表示的有理数,在a b b a a b b a ---+,,2,中,负数的个数有( )A .1B .2C .3D .4 5.有理数c b a ,,在数轴上的位置如图所示,c b b a b a -++++化简结果为( )A .c b a -+32B .c b -3C .c b +D .b c -6.已知是有理数,且()()012122=++-y x ,那以y x +的值是( ) A .21 B .23 C .21或23- D .1-或23 7.如图,数轴上标出若干个点,每相邻两点相距1个单位,点A 、B 、C 、D 对应的数分别是整数d c b a ,,,且102=-a d ,那么数轴的原点应是( )A .A 点B .B 点C .C 点D .D 点 8.数d c b a ,,,所对应的点A ,B ,C ,D 在数轴上的位置如图所示,那么c a +与d b +的大小关系是( )A .d b c a +<+B .d b c a +=+C .d b c a +>+D .不确定的9.)]([c b a ---去括号应得 ( )A.c b a -+-;B.c b a +--;C.c b a ---;D.c b a ++-.10.不改变ab a b b a ++--2223的值,把二次项放在前面有“+”号的括号里,一次项放在前面有“-”号的括号里,下列各式正确的是 ( )A.)()23(22a b ab b a +-+++.B.(B ))()23(22a b ab b a -----+.C.)()23(22a b ab b a --+-+.D.)()23(22a b ab b a --+++.11.两个5次多项式相加,结果一定是 ( )A.5次多项式.B.10次多项式.C.不超过5次的多项式.D.无法确定.二、填空题1.已知0,0<>b a 且0<+b a ,那么有理数b a b a ,,,-的大小关系是 。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

有理数及整式培优练习题
一、选择题 1.在数轴上,点x 表示到原点距离小于5的那些点,则│x+5│+│x-5│等于(• ) A.10 B.-2x C.-10 D.2x
2.若x=-2
π
,化简│x+1│-│x+2│+│x+3│-│x+4│+…-│x+10│得( )
A.2x+7
B.2x-7
C.-2x-7
D.-2x+7 3.绝对值小于3π的所有整数的乘积为( ) A.9π2 B.3π C.π D.0
4.如图b a ,为数轴上的两点表示的有理数,在a b b a a b b a ---+,,2,中,负数的个数有( )
A .1
B .2
C .3
D .4
5.有理数c b a ,,在数轴上的位置如图所示,c b b a b a -++++化简结果为( ) A .c b a -+32 B .c b -3 C .c b + D .b c -
6.已知是有理数,且()()01212
2
=++-y x ,那以y x +的值是( )
A .
21 B .23 C .21或2
3
- D .1-或23 7.如图,数轴上标出若干个点,每相邻两点相距1个单位,点A 、B 、C 、D 对应
的数分别是整数d c b a ,,,且102=-a d ,那么数轴的原点应是( ) A .A 点 B .B 点 C .C 点 D .D 点
8.数d c b a ,,,所对应的点A ,B ,C ,D 在数轴上的位置如图所示,那么c a +与d b +的大小关系是( )
A .d b c a +<+
B .d b c a +=+
C .d b c a +>+
D .不确定的9.)]([c b a ---去括号应得()
A.c b a -+-;
B.c b a +--;
C.c b a ---;
D.c b a ++-.
10.不改变ab a b b a ++--2223的值,把二次项放在前面有“+”号的括号里,一次项放在前面有“-”号的括号里,下列各式正确的是() A.)()23(22a b ab b a +-+++.B.(B ))()23(22a b ab b a -----+. C.)()23(22a b ab b a --+-+.D.)()23(22a b ab b a --+++. 11.两个5次多项式相加,结果一定是() A.5次多项式.B.10次多项式.
C.不超过5次的多项式.
D.无法确定.
二、填空题
1.已知0,0<>b a 且0<+b a ,那么有理数b a b a ,,,-的大小关系是。

(用“<”号连接)
2.有理数c b a ,,在数轴上的位置如图所示,则化简c c a b b a ------+11的结果为。

3.在数轴上,点A ,B 分别表示31-
和5
1
,则线段AB 的中点所表示的数是。

4.若0,0<>b a ,则使b a b x a x -=-+-成立的x 的取值范围是。

5.x 是有理数,则221
95
221100+
+-
x x 的最小值是。

6.已知3,5==b a 且a b b a -=-那么=+b a 。

7.已知,3,2,1===c b a 且c b a >>,那么()=-+2c b a 。

8.若52<<x ,则代数式
x
x x
x x x +-----2255的值为。

9.若0>ab ,则
ab
ab b
b a
a -+的值等于。

10.如果关于x 的代数式15222--++-x nx mx x 的值与x 的取值无关,则m=,n=。

11.一个三位数,十位数字为x ,个位数字比十位数字少3,百位数字是个位数字
的3倍,则这个三位数可表示为.
12.去括号:-{-[-(1-a)-(1-b)]}=______________。

13.观察下列一串单项式的特点:xy ,y x 22- ,y x 34 ,y x 48- ,y x 516 ,… 按此规律写出第9个单项式是. ______________。

14.(1)观察一列数2,4,8,16,32,…发现从第二项开始,每一项与前一项之比是一个常数,这个常数是=,根据此规律,如果n a (n 为正整数)表示这个数列的第n 项,那么18a =,n a =。

(2)如果欲求203233331+++++ 的值,可令203233331+++++= S ①,将①式两边同乘以3,得,② 由②减去①式,得S=;
(3)由上可知,若数列1a ,2a ,3a ,…n a ,n a ,从第二项开始每一项与前
c
a b
一项之比的常数为q,则
n
a=,(用含
1
a,q,n的代数式表示),如果这个常数q
≠1,那么
1
a+2a+3a+…+n a=(用含
1
a,q,n的代数式表示)。

15.用棋子摆成如图所示的“T”字图案.
(1)摆成第一个“T”字需要个棋子,第二个图案需要个棋子;
(2)按这样的规律摆下去,摆成第10个“T”字需要个棋子,第n个需要个棋子.
16.如图是用围棋棋子按照某种规律摆成的一行“广”字,按照这种规律,第5个“广”字中棋子个数是=,第n个“广”字中棋子个数是=。

17.下列图案是晋商大院窗格的一部分,其中“○”代表窗纸上所贴的剪纸,则第n个图中所贴剪纸“●”的个数为.
三、解答题
1.有理数a、b在数轴上位置如图所示,试化简b
b
b3
2
2
2
3
1-
+
+
-
-.
2.有理数a、b、c在数轴上的对应点如图,化简代数式:
c
b
a
c
b
a
b
a-
+
-
-
+
+
-2
(1)(2)(3)
……
……
3.一位同学做一道题:“已知两个多项式A ,B ,计算2A+B ”。

他误将“2A+B ”看成“A+2B ”,求得的结果为7292+-x x 。

已知B=232-+x x ,求原题的正确答案。

4. 如图表示数a 、b 、c 、d 的点在数轴上的位置,化简│b-c │-│a-2c │-│d+b │+│d │.
5.已知||||||
a b ab a b ab ++的最大值为p ,最小值为q ,求代数式669p-q 2的值.。

相关文档
最新文档