2020年高考试题分类汇编(解析几何)
2020年高考数学真题分类汇编:平面解析几何

2020年高考数学真题分类汇编:平面解析几何一、单选题(共15题;共30分)1.(2分)(2020·新课标Ⅲ·文)点(0,﹣1)到直线 y =k(x +1) 距离的最大值为( )A .1B .√2C .√3D .2【答案】B【解析】【解答】由 y =k(x +1) 可知直线过定点 P(−1,0) ,设 A(0,−1) ,当直线 y =k(x +1) 与 AP 垂直时,点 A 到直线 y =k(x +1) 距离最大, 即为 |AP|=√2 . 故答案为:B.【分析】首先根据直线方程判断出直线过定点 P(−1,0) ,设 A(0,−1) ,当直线 y =k(x +1) 与 AP 垂直时,点A 到直线 y =k(x +1) 距离最大,即可求得结果.2.(2分)(2020·新课标Ⅲ·文)在平面内,A ,B 是两个定点,C 是动点,若 AC ⃗⃗⃗⃗⃗ ⋅BC ⃗⃗⃗⃗⃗ =1 ,则点C 的轨迹为( ) A .圆B .椭圆C .抛物线D .直线【答案】A【解析】【解答】设 AB =2a(a >0) ,以AB 中点为坐标原点建立如图所示的平面直角坐标系,则: A(−a,0),B(a,0) ,设 C(x,y) ,可得: AC →=(x +a,y),BC →=(x −a,y) , 从而: AC →⋅BC →=(x +a)(x −a)+y 2 , 结合题意可得: (x +a)(x −a)+y 2=1 , 整理可得: x 2+y 2=a 2+1 ,即点C 的轨迹是以AB 中点为圆心, √a 2+1 为半径的圆. 故答案为:A.【分析】首先建立平面直角坐标系,然后结合数量积的定义求解其轨迹方程即可.3.(2分)(2020·新课标Ⅲ·理)设双曲线C:x2a2−y2b2=1(a>0,b>0)的左、右焦点分别为F1,F2,离心率为√5.P是C上一点,且F1P⊥F2P.若⊥PF1F2的面积为4,则a=()A.1B.2C.4D.8【答案】A【解析】【解答】∵ca=√5,∴c=√5a,根据双曲线的定义可得||PF1|−|PF2||=2a,S△PF1F2=12|PF1|⋅|PF2|=4,即|PF1|⋅|PF2|=8,∵F1P⊥F2P,∴|PF1|2+|PF2|2=(2c)2,∴(|PF1|−|PF2|)2+2|PF1|⋅|PF2|=4c2,即a2−5a2+4=0,解得a=1,故答案为:A.【分析】根据双曲线的定义,三角形面积公式,勾股定理,结合离心率公式,即可得出答案. 4.(2分)(2020·新课标Ⅲ·理)若直线l与曲线y= √x和x2+y2= 15都相切,则l的方程为()A.y=2x+1B.y=2x+ 12C.y= 12x+1D.y= 12x+ 12【答案】D【解析】【解答】设直线l在曲线y=√x上的切点为(x0,√x0),则x0>0,函数y=√x的导数为y′=2√x ,则直线l的斜率k=2√x,设直线l的方程为y−√x0=12√x−x0),即x−2√x0y+x0=0,由于直线l与圆x2+y2=15相切,则√1+4x0=1√5,两边平方并整理得5x02−4x0−1=0,解得x0=1,x0=−15(舍),则直线l的方程为x−2y+1=0,即y=12x+12.故答案为:D.【分析】根据导数的几何意义设出直线l的方程,再由直线与圆相切的性质,即可得出答案. 5.(2分)(2020·新课标Ⅲ·理)设O为坐标原点,直线x=2与抛物线C:y2=2px(p>0)交于D,E两点,若OD⊥OE,则C的焦点坐标为()A.(14,0)B.(12,0)C.(1,0)D.(2,0)【答案】B【解析】【解答】因为直线x=2与抛物线y2=2px(p>0)交于C,D两点,且OD⊥OE,根据抛物线的对称性可以确定 ∠DOx =∠COx =π4 ,所以 C(2,2) , 代入抛物线方程 4=4p ,求得 p =1 ,所以其焦点坐标为 (12,0) ,故答案为:B.【分析】根据题中所给的条件 OD ⊥OE ,结合抛物线的对称性,可知 ∠COx =∠COx =π4 ,从而可以确定出点D 的坐标,代入方程求得P 的值,进而求得其焦点坐标,得到结果.6.(2分)(2020·新课标Ⅲ·文)设 F 1,F 2 是双曲线 C:x 2−y 23=1 的两个焦点,O 为坐标原点,点P在C 上且 |OP|=2 ,则 △PF 1F 2 的面积为( ) A .72B .3C .52D .2【答案】B【解析】【解答】由已知,不妨设 F 1(−2,0),F 2(2,0) , 则 a =1,c =2 ,因为 |OP|=2=12|F 1F 2| ,所以点 P 在以 F 1F 2 为直径的圆上, 即 △F 1F 2P 是以P 为直角顶点的直角三角形, 故 |PF 1|2+|PF 2|2=|F 1F 2|2 ,即 |PF 1|2+|PF 2|2=16 ,又 ||PF 1|−|PF 2||=2a =2 ,所以 4=||PF 1|−|PF 2||2=|PF 1|2+|PF 2|2−2|PF 1||PF 2|=16−2|PF 1||PF 2| ,解得 |PF 1||PF 2|=6 ,所以 S △F 1F 2P =12|PF 1||PF 2|=3故答案为:B【分析】由 △F 1F 2P 是以P 为直角直角三角形得到 |PF 1|2+|PF 2|2=16 ,再利用双曲线的定义得到 ||PF 1|−|PF 2||=2 ,联立即可得到 |PF 1||PF 2| ,代入 S △F 1F 2P =12|PF 1||PF 2| 中计算即可.7.(2分)(2020·新课标Ⅲ·文)已知圆 x 2+y 2−6x =0 ,过点(1,2)的直线被该圆所截得的弦的长度的最小值为( ) A .1B .2C .3D .4【答案】B【解析】【解答】圆 x 2+y 2−6x =0 化为 (x −3)2+y 2=9 ,所以圆心 C 坐标为 C(3,0) ,半径为 3 ,设 P(1,2) ,当过点 P 的直线和直线 CP 垂直时,圆心到过点 P 的直线的距离最大,所求的弦长最短,根据弦长公式最小值为2√9−|CP|2=2√9−8=2 .故答案为:B.【分析】根据直线和圆心与点(1,2)连线垂直时,所求的弦长最短,即可得出结论.8.(2分)(2020·新课标Ⅲ·理)设O为坐标原点,直线x=a与双曲线C:x2a2−y2b2=1(a>0,b>0)的两条渐近线分别交于D,E两点,若△ODE的面积为8,则C的焦距的最小值为()A.4B.8C.16D.32【答案】B【解析】【解答】∵C:x2a2−y2b2=1(a>0,b>0)∴双曲线的渐近线方程是y=±ba x∵直线x=a与双曲线C:x 2a2−y2b2=1(a>0,b>0)的两条渐近线分别交于D,E两点不妨设D为在第一象限,E在第四象限联立{x=ay=b a x,解得{x=ay=b故D(a,b)联立{x=ay=−b a x,解得{x=ay=−b故E(a,−b)∴|ED|=2b ∴△ODE面积为:S△ODE=12a×2b=ab=8∵双曲线C:x 2a2−y2b2=1(a>0,b>0)∴其焦距为2c=2√a2+b2≥2√2ab=2√16=8当且仅当a=b=2√2取等号∴C的焦距的最小值:8故答案为:B.【分析】因为C:x2a2−y2b2=1(a>0,b>0),可得双曲线的渐近线方程是y=±ba x,与直线x=a联立方程求得D,E两点坐标,即可求得|ED|,根据△ODE的面积为8,可得ab值,根据2c=2√a2+b2,结合均值不等式,即可求得答案.9.(2分)(2020·新课标Ⅲ·理)若过点(2,1)的圆与两坐标轴都相切,则圆心到直线2x−y−3=0的距离为()A.√55B.2√55C.3√55D.4√55【答案】B【解析】【解答】由于圆上的点(2,1)在第一象限,若圆心不在第一象限,则圆与至少与一条坐标轴相交,不合乎题意,所以圆心必在第一象限,设圆心的坐标为(a,a),则圆的半径为a,圆的标准方程为(x−a)2+(y−a)2=a2.由题意可得(2−a)2+(1−a)2=a2,可得a2−6a+5=0,解得a=1或a=5,所以圆心的坐标为(1,1)或(5,5),圆心到直线2x−y−3=0的距离均为d=√5=2√55;所以,圆心到直线2x−y−3=0的距离为2√55.故答案为:B.【分析】由题意可知圆心在第一象限,设圆心的坐标为(a,a),a>0,可得圆的半径为a,写出圆的标准方程,利用点(2,1)在圆上,求得实数a的值,利用点到直线的距离公式可求出圆心到直线2x−y−3=0的距离.10.(2分)(2020·新课标Ⅲ·理)已知⊥M:x2+y2−2x−2y−2=0,直线l:2x+y+2= 0,P为l上的动点,过点P作⊥M的切线PA,PB,切点为A,B,当|PM|⋅|AB|最小时,直线AB的方程为()A.2x−y−1=0B.2x+y−1=0C.2x−y+1=0D.2x+y+1=0【答案】D【解析】【解答】圆的方程可化为(x−1)2+(y−1)2=4,点M到直线l的距离为d=√2+1=√5>2,所以直线l与圆相离.依圆的知识可知,四点A,P,B,M四点共圆,且AB⊥MP,所以|PM|⋅|AB|=2S△PAM=2×12×|PA|×|AM|=4|PA|,而|PA|=√|MP|2−4,当直线MP⊥l时,|MP|min=√5,|PA|min=1,此时|PM|⋅|AB|最小.∴MP:y−1=12(x−1)即y=12x+12,由{y=12x+122x+y+2=0解得,{x=−1y=0.所以以MP为直径的圆的方程为(x−1)(x+1)+y(y−1)=0,即x2+y2−y−1=0,两圆的方程相减可得:2x+y+1=0,即为直线AB的方程.故答案为:D.【分析】由题意可判断直线与圆相离,根据圆的知识可知,四点A,P,B,M共圆,且AB⊥MP,根据|PM|⋅|AB|=2S△PAM=2|PA|可知,当直线MP⊥l时,|PM|⋅|AB|最小,求出以MP为直径的圆的方程,根据圆系的知识即可求出直线AB的方程.11.(2分)(2020·新课标Ⅲ·理)已知A为抛物线C:y2=2px(p>0)上一点,点A到C的焦点的距离为12,到y轴的距离为9,则p=()A.2B.3C.6D.9【答案】C【解析】【解答】设抛物线的焦点为F,由抛物线的定义知|AF|=x A+p2=12,即12=9+p2,解得p=6.故答案为:C.【分析】利用抛物线的定义建立方程即可得到答案.12.(2分)(2020·天津)设双曲线C的方程为x2a2−y2b2=1(a>0,b>0),过抛物线y2=4x的焦点和点(0,b)的直线为l.若C的一条渐近线与l平行,另一条渐近线与l垂直,则双曲线C的方程为()A.x24−y24=1B.x2−y24=1C.x24−y2=1D.x2−y2=1【答案】D【解析】【解答】由题可知,抛物线的焦点为(1,0),所以直线l的方程为x+yb=1,即直线的斜率为−b,又双曲线的渐近线的方程为y=±b a x,所以−b=−b a,−b×b a=−1,因为a>0,b>0,解得a=1,b=1.故答案为:D.【分析】由抛物线的焦点(1,0)可求得直线l的方程为x+yb=1,即得直线的斜率为-b,再根据双曲线的渐近线的方程为y=±b a x,可得−b=−b a,−b×b a=−1即可求出a,b,得到双曲线的方程.13.(2分)(2020·北京)设抛物线的顶点为O,焦点为F,准线为l.P是抛物线上异于O的一点,过P作PQ⊥l于Q,则线段FQ的垂直平分线().A.经过点O B.经过点PC.平行于直线OP D.垂直于直线OP【答案】B【解析】【解答】如图所示:.因为线段FQ的垂直平分线上的点到F,Q的距离相等,又点P在抛物线上,根据定义可知,|PQ|=|PF|,所以线段FQ的垂直平分线经过点P.故答案为:B.【分析】依据题意不妨作出焦点在x轴上的开口向右的抛物线,根据垂直平分线的定义和抛物线的定义可知,线段FQ的垂直平分线经过点P,即求解.14.(2分)(2020·北京)已知半径为1的圆经过点(3,4),则其圆心到原点的距离的最小值为().A.4B.5C.6D.7【答案】A【解析】【解答】设圆心C(x,y),则√(x−3)2+(y−4)2=1,化简得(x−3)2+(y−4)2=1,所以圆心C的轨迹是以M(3,4)为圆心,1为半径的圆,所以|OC|+1≥|OM|=√32+42=5,所以|OC|≥5−1=4,当且仅当C 在线段 OM 上时取得等号, 故答案为:A.【分析】求出圆心C 的轨迹方程后,根据圆心M 到原点O 的距离减去半径1可得答案.15.(2分)(2020·浙江)已知点O (0,0),A (﹣2,0),B (2,0).设点P 满足|PA|﹣|PB|=2,且P 为函数y =3 √4−x 2 图象上的点,则|OP|=( ) A .√222B .4√105C .√7D .√10【答案】D【解析】【解答】解:点O (0,0),A (﹣2,0),B (2,0).设点P 满足|PA|﹣|PB|=2,可知P 的轨迹是双曲线 x 21−y 23=1 的右支上的点,P 为函数y =3 √4−x 2 图象上的点,即 y 236+x 24=1 在第一象限的点,联立两个方程,解得P ( √132 , 3√32),所以|OP|= √134+274 = √10 .故答案为:D .【分析】求出P 满足的轨迹方程,求出P 的坐标,即可求解|OP|.二、多选题(共1题;共3分)16.(3分)(2020·新高考Ⅲ)已知曲线 C:mx 2+ny 2=1 .( )A .若m>n>0,则C 是椭圆,其焦点在y 轴上B .若m=n>0,则C 是圆,其半径为 √nC .若mn<0,则C 是双曲线,其渐近线方程为 y =±√−m n xD .若m=0,n>0,则C 是两条直线【答案】A,C,D【解析】【解答】对于A ,若 m >n >0 ,则 mx 2+ny 2=1 可化为 x 21m+y 21n=1 ,因为 m >n >0 ,所以1m <1n,即曲线 C 表示焦点在 y 轴上的椭圆,A 符合题意;对于B ,若 m =n >0 ,则 mx 2+ny 2=1 可化为 x 2+y 2=1n ,此时曲线 C 表示圆心在原点,半径为 √n n 的圆,B 不正确;对于C ,若 mn <0 ,则 mx 2+ny 2=1 可化为 x 21m+y 21n=1 ,此时曲线 C 表示双曲线, 由 mx 2+ny 2=0 可得 y =±√−mnx ,C 符合题意; 对于D ,若 m =0,n >0 ,则 mx 2+ny 2=1 可化为 y 2=1n,y =±√nn ,此时曲线 C 表示平行于 x 轴的两条直线,D 符合题意;故答案为:ACD.【分析】结合选项进行逐项分析求解, m >n >0 时表示椭圆, m =n >0 时表示圆, mn <0 时表示双曲线, m =0,n >0 时表示两条直线.三、填空题(共10题;共12分)17.(1分)(2020·新课标Ⅲ·文)设双曲线C : x 2a 2−y 2b2=1 (a>0,b>0)的一条渐近线为y= √2 x ,则C 的离心率为 .【答案】√3【解析】【解答】由双曲线方程 x 2a 2−y 2b2=1 可得其焦点在 x 轴上, 因为其一条渐近线为 y =√2x , 所以 b a =√2 , e =c a =√1+b 2a 2=√3 .故答案为: √3【分析】根据已知可得 b a=√2 ,结合双曲线中 a,b,c 的关系,即可求解.18.(1分)(2020·新课标Ⅲ·理)已知F 为双曲线 C:x 2a 2−y 2b2=1(a >0,b >0) 的右焦点,A 为C 的右顶点,B 为C 上的点,且BF 垂直于x 轴.若AB 的斜率为3,则C 的离心率为 .【答案】2【解析】【解答】依题可得, |BF||AF|=3 ,而 |BF|=b 2a , |AF|=c −a ,即 b 2ac−a=3 ,变形得 c 2−a 2=3ac −3a 2 ,化简可得, e 2−3e +2=0 ,解得 e =2 或 e =1 (舍去). 故答案为: 2 .【分析】根据双曲线的几何性质可知, |BF|=b 2a , |AF|=c −a ,即可根据斜率列出等式求解即可.19.(1分)(2020·新高考Ⅲ)斜率为 √3 的直线过抛物线C :y 2=4x 的焦点,且与C 交于A ,B 两点,则 |AB| = .【答案】163【解析】【解答】∵抛物线的方程为 y 2=4x ,∴抛物线的焦点F 坐标为 F(1,0) ,又∵直线AB 过焦点F 且斜率为 √3 ,∴直线AB 的方程为: y =√3(x −1) 代入抛物线方程消去y 并化简得 3x 2−10x +3=0 , 解法一:解得 x 1=13,x 2=3所以 |AB|=√1+k 2|x 1−x 2|=√1+3⋅|3−13|=163解法二: Δ=100−36=64>0设 A(x 1,y 1),B(x 2,y 2) ,则 x 1+x 2=103, 过 A,B 分别作准线 x =−1 的垂线,设垂足分别为 C,D 如图所示.|AB|=|AF|+|BF|=|AC|+|BD|=x 1+1+x 2+1=x 1+x 2+2=163故答案为:163【分析】先根据抛物线的方程求得抛物线焦点坐标,利用点斜式得直线方程,与抛物线方程联立消去y 并整理得到关于x 的二次方程,接下来可以利用弦长公式或者利用抛物线定义将焦点弦长转化求得结果.20.(1分)(2020·新高考Ⅲ)某中学开展劳动实习,学生加工制作零件,零件的截面如图所示.O 为圆孔及轮廓圆弧AB 所在圆的圆心,A 是圆弧AB 与直线AG 的切点,B 是圆弧AB 与直线BC 的切点,四边形DEFG 为矩形,BC⊥DG ,垂足为C ,tan⊥ODC= 35, BH ∥DG ,EF=12 cm ,DE=2cm ,A 到直线DE 和EF 的距离均为7 cm ,圆孔半径为1 cm ,则图中阴影部分的面积为 cm 2.【答案】4+5 2π【解析】【解答】设OB=OA=r,由题意AM=AN=7,EF=12,所以NF=5,因为AP=5,所以∠AGP=45°,因为BH//DG,所以∠AHO=45°,因为AG与圆弧AB相切于A点,所以OA⊥AG,即△OAH为等腰直角三角形;在直角△OQD中,OQ=5−√22r ,DQ=7−√22r,因为tan∠ODC=OQDQ=35,所以21−3√22r=25−5√22r,解得r=2√2;等腰直角△OAH的面积为S1=12×2√2×2√2=4;扇形AOB的面积S2=12×3π4×(2√2)2=3π,所以阴影部分的面积为S1+S2−12π=4+5π2 .故答案为:4+5π2.【分析】利用tan∠ODC=35求出圆弧AB所在圆的半径,结合扇形的面积公式求出扇形AOB的面积,求出直角 △OAH 的面积,阴影部分的面积可通过两者的面积之和减去半个单位圆的面积求得.21.(1分)(2020·天津)已知直线 x −√3y +8=0 和圆 x 2+y 2=r 2(r >0) 相交于 A,B 两点.若 |AB|=6 ,则 r 的值为 .【答案】5【解析】【解答】因为圆心 (0,0) 到直线 x −√3y +8=0 的距离 d =√1+3=4 , 由 |AB|=2√r 2−d 2 可得 6=2√r 2−42 ,解得 r =5 . 故答案为:5.【分析】根据圆的方程得到圆心坐标和半径,由点到直线的距离公式可求出圆心到直线的距离d ,进而利用弦长公式 |AB|=2√r 2−d 2 ,即可求得 r .22.(1分)(2020·江苏)在平面直角坐标系xOy 中,若双曲线 x 2a2 ﹣ y 25 =1(a >0)的一条渐近线方程为y= √52x ,则该双曲线的离心率是 .【答案】32【解析】【解答】双曲线 x 2a2−y 25=1 ,故 b =√5 .由于双曲线的一条渐近线方程为 y =√52x ,即b a =√52⇒a =2 ,所以c =√a 2+b 2=√4+5=3 ,所以双曲线的离心率为 c a =32 . 故答案为: 32【分析】根据渐近线方程求得a ,由此求得c ,进而求得双曲线的离心率.23.(1分)(2020·江苏)在平面直角坐标系xOy 中,已知 P(√32,0) ,A ,B 是圆C : x 2+(y −12)2=36 上的两个动点,满足 PA =PB ,则⊥PAB 面积的最大值是 . 【答案】10√5【解析】【解答】 ∵PA =PB ∴PC ⊥AB设圆心 C 到直线 AB 距离为d ,则 |AB|=2√36−d 2,|PC|=√34+14=1所以 S △PAB ≤12⋅2√36−d 2(d +1)=√(36−d 2)(d +1)2令 y =(36−d 2)(d +1)2(0≤d <6)∴y ′=2(d +1)(−2d 2−d +36)=0∴d =4 (负值舍去) 当 0≤d <4 时, y ′>0 ;当 4≤d <6 时, y ′≤0 ,因此当 d =4 时, y 取最大值,即 S △PAB 取最大值为 10√5 , 故答案为: 10√5【分析】根据条件得PC⊥AB,再用圆心到直线距离表示三角形PAB面积,最后利用导数求最大值.24.(2分)(2020·北京)已知双曲线C:x 26−y23=1,则C的右焦点的坐标为;C的焦点到其渐近线的距离是.【答案】(3,0);√3【解析】【解答】在双曲线C中,a=√6,b=√3,则c=√a2+b2=3,则双曲线C的右焦点坐标为(3,0),双曲线C的渐近线方程为y=±√22x,即x±√2y=0,所以,双曲线C的焦点到其渐近线的距离为3√12+2=√3.故答案为:(3,0);√3.【分析】根据双曲线的标准方程可得出双曲线C的右焦点坐标,并求得双曲线的渐近线方程,利用点到直线的距离公式可求得双曲线的焦点到渐近线的距离.25.(1分)(2020·北京)为满足人民对美好生活的向往,环保部门要求相关企业加强污水治理,排放未达标的企业要限期整改、设企业的污水摔放量W与时间t的关系为W=f(t),用−f(b)−f(a)b−a的大小评价在[a,b]这段时间内企业污水治理能力的强弱,已知整改期内,甲、乙两企业的污水排放量与时间的关系如下图所示.给出下列四个结论:①在[t1,t2]这段时间内,甲企业的污水治理能力比乙企业强;②在t2时刻,甲企业的污水治理能力比乙企业强;③在t3时刻,甲、乙两企业的污水排放都已达标;④甲企业在[0,t1],[t1,t2],[t2,t3]这三段时间中,在[0,t1]的污水治理能力最强.其中所有正确结论的序号是.【答案】①②③【解析】【解答】−f(b)−f(a)b−a表示区间端点连线斜率的负数,在[t1,t2]这段时间内,甲的斜率比乙的小,所以甲的斜率的相反数比乙的大,因此甲企业的污水治理能力比乙企业强;①正确;甲企业在[0,t1],[t1,t2],[t2,t3]这三段时间中,甲企业在[t1,t2]这段时间内,甲的斜率最小,其相反数最大,即在[t1,t2]的污水治理能力最强.④错误;在t2时刻,甲切线的斜率比乙的小,所以甲切线的斜率的相反数比乙的大,甲企业的污水治理能力比乙企业强;②正确;在t3时刻,甲、乙两企业的污水排放量都在污水打标排放量以下,所以都已达标;③正确;故答案为:①②③【分析】根据定义逐一判断,即可得到结果26.(2分)(2020·浙江)设直线l:y=kx+b(k>0),圆C1:x2+y2=1,C2:(x﹣4)2+y2=1,若直线l与C1,C2都相切,则k=;b=.【答案】√33;﹣2√33【解析】【解答】由条件得C1(0,0),r1=1,C2(4,0),r2=1,因为直线l与C1,C2都相切,故有d1=√1+k2=1,d2=√1+k2=1,则有|b|√1+k2=|4k+b|√1+k2,故可得b2=(4k+b)2,整理得k(2k+b)=0,因为k>0,所以2k+b=0,即b=﹣2k,代入d1=|b|√1+k2=1,解得k=√33,则b=﹣2√33,故答案为:√33;﹣2√33.【分析】根据直线l与两圆都相切,分别列出方程d1=|b|√1+k2=1,d2=|4k+b|√1+k2=1,解得即可.。
北京市高考数学联考试题分类大汇编(8)立体几何试题解析.doc

北京市 2020 年高考数学最新联考试题分类大汇编一、选择题:(3) ( 北京市东城区 2020 年 1 月高三考试文科)一个几何体的三视图如图所示,则该几何体的体积为( A)(B)( C)(D)【答案】 C【解析】该几何体为底面是直角边为的等腰直角三角形,高为的直三棱柱,其体积为。
7. ( 北京市西城区2020 年 1 月高三期末考试理科) 某几何体的三视图如图所示,该几何体的体积是()(A)(B)(C)(D)【答案】 D【解析】将三视图还原直观图,可知是一个底面为正方形(其对角线长为2),高为 2 的四棱锥,其体积为A.且,则B.且,则C.且,则D.且,则【答案】 C体的体积为.(9) ( 北京市城区 2020 年 4 月高考一模文科 ) 已知一个四棱的三如所示,四棱的体是 .10. (2020 年 4 月北京市房山区高三一模理科一个几何体的三如所示,个几何体的体 .三、解答:(17) ( 北京市城区2020 年 1 月高三考文科)(本小共14 分)如,在四棱中,底面是正方形,平面,是中点,段上一点.(Ⅰ)求:;(Ⅱ)确定点在段上的位置,使// 平面,并明理由.【命分析】本考垂直和面探索性等合。
考学生的空想象能力。
明垂直的方法:(1)异面直所成的角直角;( 2)面垂直的性定理;( 3)面面垂直的性定理;( 4)三垂定理和逆定理;( 5)勾股定理;( 6)向量垂直 . 要注意面、面面垂直的性定理的成立条件 . 解程中要特体会平行关系性的性,垂直关系的多性 . 本第一利用方法二行明;探求某明(Ⅰ)因平面,所以.又四形是正方形,所以,,所以平面 ,又平面,所以 .⋯⋯⋯⋯⋯⋯7分. ⋯⋯⋯⋯⋯⋯ 14 分(16) ( 2020 年 4 月北京市海淀区高三一模理科)(本小分14 分)在四棱中,//,,,平面,.(Ⅰ)平面平面,求://;(Ⅱ)求:平面;(Ⅲ)点段上一点,且直与平面所成角的正弦,求的.(16)(本小分 14 分)所以,,,所以,.所以, .因,平面,平面,所以平面 .⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯ 9 分由(Ⅱ)知平面的一个法向量 .⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯12 分17. (2020 年 3 月北京市朝阳区高三一模文科⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯ 5 分zPA D⋯⋯ ⋯yCBx⋯⋯ ⋯) (本分13 分)在如所示的几何体中,四形平行四形,,平面,,,,,且是的中点 .(Ⅰ)求:平面;(Ⅱ)在上是否存在一点,使得最大?若存在,求出的正切;若不存在,明理由 .(17)(本小分 13 分)(Ⅱ)解:假在上存在一点,使得最大. 因平面,所以 .又因,所以平面.⋯⋯⋯⋯⋯⋯⋯⋯⋯8 分在中, .17. ( 北京市西城区 2020 年 4 月高三第一次模文 ) (本小分 14 分)如,矩形中,,.,分在段和上,∥,将矩形沿折起.折起后的矩形,且平面平面.(Ⅰ)求:∥平面;(Ⅱ)若,求:;(Ⅲ)求四面体体的最大.17.(本小分 14 分)(Ⅰ)明:因四形,都是矩形,所以∥∥,.所以四形是平行四形,⋯⋯⋯⋯⋯ 2 分所以∥,⋯⋯⋯⋯⋯⋯ 3 分因平面,所以∥平面.⋯⋯⋯⋯⋯⋯ 4 分(Ⅱ)明:接,.因平面平面,且,所以平面,⋯⋯ 5 分所以.⋯⋯⋯⋯ 6 分9 分(Ⅲ)解:,,其中.由(Ⅰ)得平面,所以四面体的体.⋯⋯⋯ 11 分所以.⋯⋯⋯⋯⋯13 分当且当,即,四面体的体最大.(17) ( 北京市城区2020 年 4 月高考一模理科⋯⋯⋯⋯⋯⋯) (本小共14 分13 分)1(17)(共 13 分)(Ⅰ)明:取中点,.因,,所以,而,即△是正三角形又因 ,所以.⋯⋯⋯⋯2分所以在 2 中有, . ⋯⋯⋯⋯ 3 分所以二面角.的平2面角.1又二面角直二面角,所以. ⋯⋯⋯⋯ 5 分又因 ,所以⊥平面 , 即⊥平面 .⋯⋯⋯⋯6分(Ⅱ)解:由(Ⅰ)可知⊥平面,,如,以原点,建立空直角坐系,,,,.在1中,.因,所以∥,且 .所以四形平行四形.所以∥,且 .故点的坐(1,, 0) . 2 所以,, .⋯⋯⋯⋯8分不妨平面的法向量,即令,得 .⋯⋯⋯⋯10分所以 .⋯⋯⋯⋯12分故直与平面所成角的大小.⋯⋯⋯⋯13分(17) ( 北京市城区 2020 年 4 月高考一模文科 ) (本小共 14 分)如,在的正三角形中,,,分,,上的点,且足 . 将△沿折起到△的位置,使平面平面,,. (如)(Ⅰ)若中点,求:∥平面;(Ⅱ)求: .1 2(17)(共 14 分)明:(Ⅰ)取中点, .在△中,分 的中点,所以∥,且.因 ,所以∥ , 且,所以∥,且.所以四 形 平行四 形.所以∥.⋯⋯⋯⋯ 5 分又因 平面,且平面, 所以∥平面.(Ⅱ)取中点, .因 ,,所以,而,即△是正三角形 又因 , 所以 .所以在2 中有 . 因 平面平面,平面平面,.⋯⋯⋯⋯ 9 分⋯⋯⋯⋯ 7 分所以⊥平面 .⋯⋯⋯⋯ 12 分17. (2020又平面, 所以⊥ .年 3 月北京市丰台区高三一模文科) (本小 共⋯⋯⋯⋯ 14 分)14 分如 ,四棱 P-ABCD 中,底面 ABCD 是菱形, PA =PD ,∠ BAD =60o , E 是 AD 的中点,点Q在 棱 PC 上.(Ⅰ)求 : AD ⊥平面 PBE ; (Ⅱ)若 Q 是 PC 的中点,求 : PA // 平面 BDQ ;(Ⅲ)若 V P-BCDE =2 V Q - ABCD , 求的 .17. 明:(Ⅰ)因E 是 AD 的中点, PA =PD ,所以AD⊥PE .⋯⋯⋯⋯⋯⋯⋯⋯ 1 分因 底面 ABCD 是菱形,∠ BAD =60o ,所以 = ,又因 E 是 的中点,AB BD AD所以⊥.⋯⋯⋯⋯⋯⋯⋯⋯ 2 分AD BE因 PE∩BE=E,⋯⋯⋯⋯⋯⋯⋯⋯ 3 分所以 AD⊥平面 PBE.⋯⋯⋯⋯⋯⋯⋯⋯ 4 分(Ⅱ)接 AC交 BD于点 O, OQ.⋯⋯⋯⋯⋯⋯⋯⋯ 5 分因O 是中点,Q 是的中点,AC PC所以 OQ△ PAC中位.所以 OQ //因,所以.⋯⋯⋯⋯⋯⋯⋯⋯14分17. (2020年4月北京市房山区高三一模理科(本小共14 分)在直三棱柱中,=2 ,.点分是,的中点,是棱上的点.(I )求:平面;(II)若 // 平面,确定点的位置,并出明;(III)求二面角的余弦 .17.(本小共 14 分)(I)明:∵在直三棱柱中,,点是的中点,∴⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯ 1 分, ,∴⊥平面⋯⋯⋯⋯⋯⋯⋯⋯⋯ 2 分平面∴,即⋯⋯⋯⋯⋯⋯⋯ 3 分又∴平面⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯ 4 分( II )当是棱的中点, // 平面 . ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯ 5 分明如下 :, 取的中点H,接 ,的中位∴∥,⋯⋯⋯⋯⋯⋯⋯ 6 分∵由已知条件,正方形∴∥,∵ 的中点,(III)∵ 直三棱柱且又平面的法向量,==,⋯⋯⋯⋯⋯⋯⋯⋯13 分二面角的平面角,且角.⋯⋯⋯⋯⋯⋯⋯⋯14 分。
解析几何(解答题)--五年(2020-2024)高考数学真题分类汇编(解析版)

专题解析几何(解答题)考点五年考情(2020-2024)命题趋势考点01椭圆及其性质2024Ⅰ甲卷北京卷天津卷2023北京乙卷天津2022乙卷北京卷浙江卷2021北京卷Ⅱ卷2020ⅠⅡ卷新ⅠⅡ卷椭圆轨迹标准方程问题,有关多边形面积问题,定值定点问题,新结构中的新定义问题是高考的一个高频考点考点02双曲线及其性质2024Ⅱ卷2023Ⅱ新课标Ⅱ2022Ⅰ卷2021Ⅰ双曲线离心率问题,轨迹方程有关面积问题,定值定点问题以及斜率有关的证明问题以及新结构中的新定义问题是高考的高频考点考点03抛物线及其性质2023甲卷2022甲卷2021浙江甲卷乙卷2020浙江抛物线有关三角形面积问题,关于定直线问题,有关P 的证明类问题考点01:椭圆及其性质1(2024·全国·高考Ⅰ卷)已知A (0,3)和P 3,32 为椭圆C :x 2a 2+y 2b 2=1(a >b >0)上两点.(1)求C 的离心率;(2)若过P 的直线l 交C 于另一点B ,且△ABP 的面积为9,求l 的方程.【答案】(1)12(2)直线l 的方程为3x -2y -6=0或x -2y =0.【详解】(1)由题意得b =39a 2+94b2=1,解得b 2=9a 2=12 ,所以e =1-b 2a2=1-912=12.(2)法一:k AP =3-320-3=-12,则直线AP 的方程为y =-12x +3,即x +2y -6=0,AP =0-3 2+3-322=352,由(1)知C :x 212+y 29=1,设点B到直线AP的距离为d,则d=2×9352=1255,则将直线AP沿着与AP垂直的方向平移1255单位即可,此时该平行线与椭圆的交点即为点B,设该平行线的方程为:x+2y+C=0,则C+65=1255,解得C=6或C=-18,当C=6时,联立x212+y29=1x+2y+6=0,解得x=0y=-3或x=-3y=-32,即B0,-3或-3,-3 2,当B0,-3时,此时k l=32,直线l的方程为y=32x-3,即3x-2y-6=0,当B-3,-3 2时,此时k l=12,直线l的方程为y=12x,即x-2y=0,当C=-18时,联立x212+y29=1x+2y-18=0得2y2-27y+117=0,Δ=272-4×2×117=-207<0,此时该直线与椭圆无交点.综上直线l的方程为3x-2y-6=0或x-2y=0.法二:同法一得到直线AP的方程为x+2y-6=0,点B到直线AP的距离d=125 5,设B x0,y0,则x0+2y0-65=1255x2012+y209=1,解得x0=-3y0=-32或x0=0y0=-3,即B0,-3或-3,-3 2,以下同法一.法三:同法一得到直线AP的方程为x+2y-6=0,点B到直线AP的距离d=125 5,设B23cosθ,3sinθ,其中θ∈0,2π,则有23cosθ+6sinθ-65=1255,联立cos2θ+sin2θ=1,解得cosθ=-32sinθ=-12或cosθ=0sinθ=-1,即B0,-3或-3,-3 2,以下同法一;法四:当直线AB的斜率不存在时,此时B0,-3,S△PAB=12×6×3=9,符合题意,此时k l=32,直线l的方程为y=32x-3,即3x-2y-6=0,当线AB的斜率存在时,设直线AB的方程为y=kx+3,联立椭圆方程有y =kx +3x 212+y 29=1,则4k 2+3 x 2+24kx =0,其中k ≠k AP ,即k ≠-12,解得x =0或x =-24k 4k 2+3,k ≠0,k ≠-12,令x =-24k 4k 2+3,则y =-12k 2+94k 2+3,则B -24k 4k 2+3,-12k 2+94k 2+3同法一得到直线AP 的方程为x +2y -6=0,点B 到直线AP 的距离d =1255,则-24k4k 2+3+2×-12k 2+94k 2+3-65=1255,解得k =32,此时B -3,-32 ,则得到此时k l =12,直线l 的方程为y =12x ,即x -2y =0,综上直线l 的方程为3x -2y -6=0或x -2y =0.法五:当l 的斜率不存在时,l :x =3,B 3,-32,PB =3,A 到PB 距离d =3,此时S △ABP =12×3×3=92≠9不满足条件.当l 的斜率存在时,设PB :y -32=k (x -3),令P x 1,y 1 ,B x 2,y 2 ,y =k (x -3)+32x 212+y 29=1 ,消y 可得4k 2+3 x 2-24k 2-12k x +36k 2-36k -27=0,Δ=24k 2-12k 2-44k 2+3 36k 2-36k -27 >0,且k ≠k AP ,即k ≠-12,x 1+x 2=24k 2-12k 4k 2+3x 1x 2=36k 2-36k -274k 2+3,PB =k 2+1x 1+x 2 2-4x 1x 2=43k 2+13k 2+9k +2744k 2+3 ,A 到直线PB 距离d =3k +32k 2+1,S △PAB =12⋅43k 2+13k 2+9k +2744k 2+3⋅3k +32k 2+1=9,∴k =12或32,均满足题意,∴l :y =12x 或y =32x -3,即3x -2y -6=0或x -2y =0.法六:当l 的斜率不存在时,l :x =3,B 3,-32,PB =3,A 到PB 距离d =3,此时S △ABP =12×3×3=92≠9不满足条件.当直线l 斜率存在时,设l :y =k (x -3)+32,设l 与y 轴的交点为Q ,令x =0,则Q 0,-3k +32,联立y =kx -3k +323x 2+4y 2=36,则有3+4k 2 x 2-8k 3k -32x +36k 2-36k -27=0,3+4k2x2-8k3k-3 2x+36k2-36k-27=0,其中Δ=8k23k-3 22-43+4k236k2-36k-27>0,且k≠-1 2,则3x B=36k2-36k-273+4k2,x B=12k2-12k-93+4k2,则S=12AQx P-x B=123k+3212k+183+4k2=9,解的k=12或k=32,经代入判别式验证均满足题意.则直线l为y=12x或y=32x-3,即3x-2y-6=0或x-2y=0.2(2024·全国·高考甲卷)已知椭圆C:x2a2+y2b2=1(a>b>0)的右焦点为F,点M1,32在C上,且MF⊥x轴.(1)求C的方程;(2)过点P4,0的直线交C于A,B两点,N为线段FP的中点,直线NB交直线MF于点Q,证明:AQ⊥y 轴.【答案】(1)x24+y23=1(2)证明见解析【详解】(1)设F c,0,由题设有c=1且b2a=32,故a2-1a=32,故a=2,故b=3,故椭圆方程为x24+y23=1.(2)直线AB的斜率必定存在,设AB:y=k(x-4),A x1,y1,B x2,y2,由3x2+4y2=12y=k(x-4)可得3+4k2x2-32k2x+64k2-12=0,故Δ=1024k4-43+4k264k2-12>0,故-12<k<12,又x1+x2=32k23+4k2,x1x2=64k2-123+4k2,而N52,0,故直线BN:y=y2x2-52x-52,故y Q=-32y2x2-52=-3y22x2-5,所以y1-y Q=y1+3y22x2-5=y1×2x2-5+3y22x2-5=k x1-4×2x2-5+3k x2-42x2-5=k 2x1x2-5x1+x2+82x2-5=k2×64k2-123+4k2-5×32k23+4k2+82x2-5=k 128k2-24-160k2+24+32k23+4k22x2-5=0,故y1=y Q,即AQ⊥y轴.【点睛】方法点睛:利用韦达定理法解决直线与圆锥曲线相交问题的基本步骤如下:(1)设直线方程,设交点坐标为x 1,y 1 ,x 2,y 2 ;(2)联立直线与圆锥曲线的方程,得到关于x (或y )的一元二次方程,注意Δ的判断;(3)列出韦达定理;(4)将所求问题或题中的关系转化为x 1+x 2、x 1x 2(或y 1+y 2、y 1y 2)的形式;(5)代入韦达定理求解.3(2024·北京·高考真题)已知椭圆E :x 2a 2+y 2b 2=1a >b >0 ,以椭圆E 的焦点和短轴端点为顶点的四边形是边长为2的正方形.过点0,t t >2 且斜率存在的直线与椭圆E 交于不同的两点A ,B ,过点A 和C 0,1 的直线AC 与椭圆E 的另一个交点为D .(1)求椭圆E 的方程及离心率;(2)若直线BD 的斜率为0,求t 的值.【答案】(1)x 24+y 22=1,e =22(2)t =2【详解】(1)由题意b =c =22=2,从而a =b 2+c 2=2,所以椭圆方程为x 24+y 22=1,离心率为e =22;(2)直线AB 斜率不为0,否则直线AB 与椭圆无交点,矛盾,从而设AB :y =kx +t ,k ≠0,t >2 ,A x 1,y 1 ,B x 2,y 2 ,联立x 24+y 22=1y =kx +t,化简并整理得1+2k 2 x 2+4ktx +2t 2-4=0,由题意Δ=16k 2t 2-82k 2+1 t 2-2 =84k 2+2-t 2 >0,即k ,t 应满足4k 2+2-t 2>0,所以x 1+x 2=-4kt 1+2k 2,x 1x 2=2t 2-42k 2+1,若直线BD 斜率为0,由椭圆的对称性可设D -x 2,y 2 ,所以AD :y =y 1-y 2x 1+x 2x -x 1 +y 1,在直线AD 方程中令x =0,得y C =x 1y 2+x 2y 1x 1+x 2=x 1kx 2+t +x 2kx 1+t x 1+x 2=2kx 1x 2+t x 1+x 2 x 1+x 2=4k t 2-2 -4kt +t =2t =1,所以t =2,此时k 应满足4k 2+2-t 2=4k 2-2>0k ≠0 ,即k 应满足k <-22或k >22,综上所述,t =2满足题意,此时k <-22或k >22.4(2024·天津·高考真题)已知椭圆x 2a 2+y 2b 2=1(a >b >0)椭圆的离心率e =12.左顶点为A ,下顶点为B ,C 是线段OB 的中点,其中S △ABC =332.(1)求椭圆方程.(2)过点0,-32 的动直线与椭圆有两个交点P ,Q .在y 轴上是否存在点T 使得TP ⋅TQ ≤0.若存在求出这个T 点纵坐标的取值范围,若不存在请说明理由.【答案】(1)x 212+y 29=1(2)存在T 0,t -3≤t ≤32,使得TP ⋅TQ ≤0恒成立.【详解】(1)因为椭圆的离心率为e =12,故a =2c ,b =3c ,其中c 为半焦距,所以A -2c ,0 ,B 0,-3c ,C 0,-3c 2 ,故S △ABC =12×2c ×32c =332,故c =3,所以a =23,b =3,故椭圆方程为:x 212+y 29=1.(2)若过点0,-32 的动直线的斜率存在,则可设该直线方程为:y =kx -32,设P x 1,y 1 ,Q x 2,y 2 ,T 0,t ,由3x 2+4y 2=36y =kx -32可得3+4k 2 x 2-12kx -27=0,故Δ=144k 2+1083+4k 2 =324+576k 2>0且x 1+x 2=12k 3+4k 2,x 1x 2=-273+4k2,而TP =x 1,y 1-t ,TQ=x 2,y 2-t ,故TP ⋅TQ =x 1x 2+y 1-t y 2-t =x 1x 2+kx 1-32-t kx 2-32-t =1+k 2 x 1x 2-k 32+t x 1+x 2 +32+t 2=1+k 2 ×-273+4k 2-k 32+t ×12k 3+4k 2+32+t 2=-27k 2-27-18k 2-12k 2t +332+t 2+3+2t 2k 23+4k 2=3+2t2-12t -45 k 2+332+t 2-273+4k 2,因为TP ⋅TQ ≤0恒成立,故3+2t 2-12t -45≤0332+t 2-27≤0,解得-3≤t ≤32.若过点0,-32的动直线的斜率不存在,则P 0,3 ,Q 0,-3 或P 0,-3 ,Q 0,3 ,此时需-3≤t ≤3,两者结合可得-3≤t ≤32.综上,存在T 0,t -3≤t ≤32,使得TP ⋅TQ ≤0恒成立.5(2023年全国乙卷理科)已知椭圆C :y 2a 2+x 2b 2=1(a >b >0)的离心率是53,点A -2,0 在C 上.(1)求C方程;(2)过点-2,3 的直线交C 于P ,Q 两点,直线AP ,AQ 与y 轴的交点分别为M ,N ,证明:线段MN 的中点为定点.【答案】(1)y 29+x 24=1(2)证明见详解解析:(1)由题意可得b =2a 2=b 2+c 2e =c a =53,解得a =3b =2c =5,所以椭圆方程为y 29+x 24=1.(2)由题意可知:直线PQ 的斜率存在,设PQ :y =k x +2 +3,P x 1,y 1 ,Q x 2,y 2 ,联立方程y =k x +2 +3y 29+x 24=1,消去y 得:4k 2+9 x 2+8k 2k +3x +16k 2+3k =0,则Δ=64k 22k +3 2-644k 2+9 k 2+3k =-1728k >0,解得k <0,可得x 1+x 2=-8k 2k +34k 2+9,x 1x 2=16k 2+3k 4k 2+9,因为A -2,0 ,则直线AP :y =y 1x 1+2x +2 ,令x =0,解得y =2y 1x 1+2,即M 0,2y 1x 1+2,同理可得N 0,2y 2x 2+2,则2y 1x 1+2+2y2x 2+22=k x 1+2 +3 x 1+2+k x 2+2 +3 x 2+2=kx 1+2k +3 x 2+2 +kx 2+2k +3 x 1+2x 1+2 x 2+2=2kx 1x 2+4k +3 x 1+x 2 +42k +3x 1x 2+2x 1+x 2 +4=32k k 2+3k 4k 2+9-8k 4k +3 2k +34k 2+9+42k +3 16k 2+3k 4k 2+9-16k 2k +34k 2+9+4=10836=3,所以线段MN 的中点是定点0,3 .6(2020年高考课标Ⅱ)已知椭圆C 1:x 2a 2+y 2b 2=1(a >b >0)右焦点F 与抛物线C 2的焦点重合,C 1的中心与C 2的顶点重合.过F 且与x 轴垂直的直线交C 1于A ,B 两点,交C 2于C ,D 两点,且|CD |=43|AB |.(1)求C 1的离心率;(2)设M 是C 1与C 2的公共点,若|MF |=5,求C 1与C 2的标准方程.【答案】(1)12;(2)C 1:x 236+y 227=1,C 2:y 2=12x .解析:(1)∵F c ,0 ,AB ⊥x 轴且与椭圆C 1相交于A 、B 两点,则直线AB 的方程为x =c ,联立x =c x 2a 2+y 2b 2=1a 2=b 2+c 2,解得x =c y =±b 2a,则AB =2b 2a ,抛物线C 2的方程为y 2=4cx ,联立x =cy 2=4cx ,解得x =cy =±2c,∴CD =4c ,∵CD =43AB ,即4c =8b 23a ,2b 2=3ac ,即2c 2+3ac -2a 2=0,即2e 2+3e -2=0,∵0<e <1,解得e =12,因此,椭圆C 1的离心率为12;(2)由(1)知a =2c ,b =3c ,椭圆C 1的方程为x 24c 2+y 23c 2=1,联立y 2=4cxx24c2+y 23c 2=1,消去y 并整理得3x 2+16cx -12c 2=0,解得x =23c 或x =-6c (舍去),由抛物线的定义可得MF =23c +c =5c3=5,解得c =3.因此,曲线C 1的标准方程为x 236+y 227=1,曲线C 2的标准方程为y 2=12x .7(2021年新高考全国Ⅱ卷)已知椭圆C 的方程为x 2a 2+y 2b 2=1(a >b >0),右焦点为F (2,0),且离心率为63.(1)求椭圆C 的方程;(2)设M ,N 是椭圆C 上的两点,直线MN 与曲线x 2+y 2=b 2(x >0)相切.证明:M ,N ,F 三点共线的充要条件是|MN |=3.【答案】解析:(1)由题意,椭圆半焦距c =2且e =c a =63,所以a =3,又b 2=a 2-c 2=1,所以椭圆方程为x 23+y 2=1;(2)由(1)得,曲线为x 2+y 2=1(x >0),当直线MN 的斜率不存在时,直线MN :x =1,不合题意;当直线MN 的斜率存在时,设M x 1,y 1 ,N x 2,y 2 ,必要性:若M ,N ,F 三点共线,可设直线MN :y =k x -2 即kx -y -2k =0,由直线MN 与曲线x 2+y 2=1(x >0)相切可得2kk 2+1=1,解得k =±1,联立y =±x -2x23+y 2=1 可得4x 2-62x +3=0,所以x 1+x 2=322,x 1⋅x 2=34,所以MN =1+1⋅x 1+x 22-4x 1⋅x 2=3,所以必要性成立;充分性:设直线MN :y =kx +b ,kb <0 即kx -y +b =0,由直线MN 与曲线x 2+y 2=1(x >0)相切可得bk 2+1=1,所以b 2=k 2+1,联立y =kx +bx 23+y 2=1可得1+3k 2 x 2+6kbx +3b 2-3=0,所以x 1+x 2=-6kb 1+3k 2,x 1⋅x 2=3b 2-31+3k 2,所以MN =1+k 2⋅x 1+x 22-4x 1⋅x 2=1+k2-6kb 1+3k22-4⋅3b 2-31+3k 2=1+k 2⋅24k 21+3k 2=3,化简得3k 2-1 2=0,所以k =±1,所以k =1b =-2或k =-1b =2 ,所以直线MN :y =x -2或y =-x +2,所以直线MN 过点F (2,0),M ,N ,F 三点共线,充分性成立;所以M ,N ,F 三点共线的充要条件是|MN |=3.8(2020年高考课标Ⅰ卷)已知A 、B 分别为椭圆E :x 2a2+y 2=1(a >1)左、右顶点,G 为E 的上顶点,AG ⋅GB =8,P 为直线x =6上的动点,PA 与E 的另一交点为C ,PB 与E 的另一交点为D .(1)求E方程;(2)证明:直线CD 过定点.【答案】(1)x 29+y 2=1;(2)证明详见解析.【解析】(1)依据题意作出如下图象:由椭圆方程E :x 2a2+y 2=1(a >1)可得:A -a ,0 , B a ,0 ,G 0,1∴AG =a ,1 ,GB =a ,-1 ∴AG ⋅GB =a 2-1=8,∴a 2=9∴椭圆方程为:x 29+y 2=1(2)证明:设P 6,y 0 ,则直线AP 的方程为:y =y 0-06--3x +3 ,即:y =y 09x +3 联立直线AP 的方程与椭圆方程可得:x 29+y 2=1y =y 09x +3 ,整理得:y 02+9 x 2+6y 02x +9y 02-81=0,解得:x =-3或x =-3y 02+27y 02+9将x =-3y 02+27y 02+9代入直线y =y 09x +3 可得:y =6y 0y 02+9所以点C 的坐标为-3y 02+27y 02+9,6y 0y 02+9 .同理可得:点D 的坐标为3y 02-3y 02+1,-2y 0y 02+1∴直线CD 的方程为:y --2y 0y 02+1=6y 0y 02+9--2y 0y 02+1-3y 02+27y 02+9-3y 02-3y 02+1x -3y 02-3y 02+1,整理可得:y +2y 0y 02+1=8y 0y 02+3 69-y 04x -3y 02-3y 02+1 =8y 063-y 02 x -3y 02-3y 02+1整理得:y =4y 033-y 02 x +2y 0y 02-3=4y 033-y 02x -32故直线CD 过定点32,09(2020年新高考全国Ⅰ卷)已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的离心率为22,且过点A (2,1).(1)求C 的方程:(2)点M ,N 在C 上,且AM ⊥AN ,AD ⊥MN ,D 为垂足.证明:存在定点Q ,使得|DQ |为定值.【答案】(1)x 26+y 23=1;(2)详见解析.解析:(1)由题意可得:c a =324a 2+1b 2=1a 2=b 2+c 2,解得:a 2=6,b 2=c 2=3,故椭圆方程为:x 26+y 23=1.(2)设点M x 1,y 1 ,N x 2,y 2 .因为AM ⊥AN ,∴AM·AN=0,即x 1-2 x 2-2 +y 1-1 y 2-1 =0,①当直线MN 的斜率存在时,设方程为y =kx +m ,如图1.代入椭圆方程消去y 并整理得:1+2k 2 x 2+4kmx +2m 2-6=0x 1+x 2=-4km 1+2k 2,x 1x 2=2m 2-61+2k 2②,根据y 1=kx 1+m ,y 2=kx 2+m ,代入①整理可得:k 2+1 x 1x 2+km -k -2 x 1+x 2 +m -1 2+4=0将②代入,k 2+1 2m 2-61+2k 2+km -k -2 -4km1+2k2+m -1 2+4=0,整理化简得2k +3m +1 2k +m -1 =0,∵A (2,1)不在直线MN 上,∴2k +m -1≠0,∴2k +3m +1=0,k ≠1,于是MN 的方程为y =k x -23 -13,所以直线过定点直线过定点E 23,-13.当直线MN 的斜率不存在时,可得N x 1,-y 1 ,如图2.代入x 1-2 x 2-2 +y 1-1 y 2-1 =0得x 1-2 2+1-y 22=0,结合x 216+y 213=1,解得x 1=2舍 ,x 1=23,此时直线MN 过点E 23,-13,由于AE 为定值,且△ADE 为直角三角形,AE 为斜边,所以AE 中点Q 满足QD 为定值(AE 长度的一半122-232+1+132=423).由于A 2,1 ,E 23,-13 ,故由中点坐标公式可得Q 43,13.故存在点Q 43,13,使得|DQ |为定值.10(2022年高考全国乙卷)已知椭圆E 的中心为坐标原点,对称轴为x 轴、y 轴,且过A 0,-2 ,B 32,-1两点.(1)求E 的方程;(2)设过点P 1,-2 的直线交E 于M ,N 两点,过M 且平行于x 轴的直线与线段AB 交于点T ,点H 满足MT =TH.证明:直线HN 过定点.【答案】(1)y 24+x 23=1(2)(0,-2)解析:设椭圆E 的方程为mx 2+ny 2=1,过A 0,-2 ,B 32,-1,则4n =194m +n =1 ,解得m =13,n =14,所以椭圆E 的方程为:y 24+x 23=1.【小问2详解】A (0,-2),B 32,-1,所以AB :y +2=23x ,①若过点P (1,-2)的直线斜率不存在,直线x =1.代入x 23+y 24=1,可得M 1,-263 ,N 1,263 ,代入AB 方程y =23x -2,可得T -6+3,-263 ,由MT =TH 得到H -26+5,-263 .求得HN 方程:y =2+263x -2,过点(0,-2).②若过点P (1,-2)的直线斜率存在,设kx -y -(k +2)=0,M (x 1,y 1),N (x 2,y 2).联立kx -y -(k +2)=0x 23+y 24=1,得(3k 2+4)x 2-6k (2+k )x +3k (k +4)=0,可得x 1+x 2=6k (2+k )3k 2+4x 1x 2=3k (4+k )3k 2+4,y 1+y 2=-8(2+k )3k 2+4y 2y 2=4(4+4k -2k 2)3k 2+4,且x 1y 2+x 2y 1=-24k 3k 2+4(*)联立y =y 1y =23x -2,可得T 3y12+3,y 1 ,H (3y 1+6-x 1,y 1).可求得此时HN :y -y 2=y 1-y 23y 1+6-x 1-x 2(x -x 2),将(0,-2),代入整理得2(x 1+x 2)-6(y 1+y 2)+x 1y 2+x 2y 1-3y 1y 2-12=0,将(*)代入,得24k +12k 2+96+48k -24k -48-48k +24k 2-36k 2-48=0,显然成立,综上,可得直线HN 过定点(0,-2).11(2020年新高考全国卷Ⅱ)已知椭圆C :x 2a 2+y 2b2=1(a >b >0)过点M (2,3),点A 为其左顶点,且AM 的斜率为12,(1)求C 的方程;(2)点N 为椭圆上任意一点,求△AMN 的面积的最大值.【答案】(1)x 216+y 212=1;(2)18.解析:(1)由题意可知直线AM 的方程为:y -3=12(x -2),即x -2y =-4.当y =0时,解得x =-4,所以a =4,椭圆C :x 2a 2+y 2b 2=1a >b >0 过点M (2,3),可得416+9b 2=1,解得b 2=12.所以C 的方程:x 216+y 212=1.(2)设与直线AM 平行的直线方程为:x -2y =m ,如图所示,当直线与椭圆相切时,与AM 距离比较远的直线与椭圆的切点为N ,此时△AMN 的面积取得最大值.联立直线方程x -2y =m 与椭圆方程x 216+y 212=1,可得:3m +2y 2+4y 2=48,化简可得:16y 2+12my +3m 2-48=0,所以Δ=144m 2-4×163m 2-48 =0,即m 2=64,解得m =±8,与AM 距离比较远的直线方程:x -2y =8,直线AM 方程为:x -2y =-4,点N 到直线AM 的距离即两平行线之间的距离,利用平行线之间的距离公式可得:d =8+41+4=1255,由两点之间距离公式可得|AM |=(2+4)2+32=35.所以△AMN 的面积的最大值:12×35×1255=18.12(2020年高考课标Ⅲ卷)已知椭圆C :x 225+y 2m 2=1(0<m <5)的离心率为154,A ,B 分别为C 的左、右顶点.(1)求C 的方程;(2)若点P 在C 上,点Q 在直线x =6上,且|BP |=|BQ |,BP ⊥BQ ,求△APQ 的面积.【答案】(1)x 225+16y 225=1;(2)52.解析:(1)∵C :x 225+y 2m 2=1(0<m <5)∴a =5,b =m ,根据离心率e =ca=1-b a2=1-m 5 2=154,解得m =54或m =-54(舍),∴C 的方程为:x 225+y 2542=1,即x 225+16y 225=1;(2)不妨设P ,Q 在x 轴上方∵点P 在C 上,点Q 在直线x =6上,且|BP |=|BQ |,BP ⊥BQ ,过点P 作x 轴垂线,交点为M ,设x =6与x 轴交点为N 根据题意画出图形,如图∵|BP |=|BQ |,BP ⊥BQ ,∠PMB =∠QNB =90°,又∵∠PBM +∠QBN =90°,∠BQN +∠QBN =90°,∴∠PBM =∠BQN ,根据三角形全等条件“AAS ”,可得:△PMB ≅△BNQ ,∵x 225+16y 225=1,∴B (5,0),∴PM =BN =6-5=1,设P 点为(x P ,y P ),可得P 点纵坐标为y P =1,将其代入x 225+16y 225=1,可得:x P 225+1625=1,解得:x P =3或x P =-3,∴P 点为(3,1)或(-3,1),①当P 点为(3,1)时,故MB =5-3=2,∵△PMB ≅△BNQ ,∴|MB |=|NQ |=2,可得:Q 点为(6,2),画出图象,如图∵A (-5,0),Q (6,2),可求得直线AQ 的直线方程为:2x -11y +10=0,根据点到直线距离公式可得P 到直线AQ 的距离为:d =2×3-11×1+1022+112=5125=55,根据两点间距离公式可得:AQ =6+52+2-0 2=55,∴△APQ 面积为:12×55×55=52;②当P 点为(-3,1)时,故MB =5+3=8,∵△PMB ≅△BNQ ,∴|MB |=|NQ |=8,可得:Q 点为(6,8),画出图象,如图∵A (-5,0),Q (6,8),可求得直线AQ 的直线方程为:8x -11y +40=0,根据点到直线距离公式可得P 到直线AQ 的距离为:d =8×-3 -11×1+4082+112=5185=5185,根据两点间距离公式可得:AQ =6+52+8-0 2=185,∴△APQ 面积为:12×185×5185=52,综上所述,△APQ 面积为:52.1313(2023年北京卷)已知椭圆E :x 2a 2+y 2b 2=1(a >b >0)离心率为53,A 、C 分别是E 的上、下顶点,B ,D 分别是E 的左、右顶点,|AC |=4.(1)求E 的方程;(2)设P 为第一象限内E 上的动点,直线PD 与直线BC 交于点M ,直线PA 与直线y =-2交于点N .求证:MN ⎳CD .【答案】(1)x 29+y 24=1(2)证明见解析:(1)依题意,得e =c a =53,则c =53a ,又A ,C 分别为椭圆上下顶点,AC =4,所以2b =4,即b =2,所以a 2-c 2=b 2=4,即a 2-59a 2=49a 2=4,则a 2=9,所以椭圆E 的方程为x 29+y 24=1.(2)因为椭圆E 的方程为x 29+y 24=1,所以A 0,2 ,C 0,-2 ,B -3,0 ,D 3,0 ,因为P 为第一象限E 上的动点,设P m ,n 0<m <3,0<n <2 ,则m 29+n 24=1,易得k BC =0+2-3-0=-23,则直线BC 的方程为y =-23x -2,k PD =n -0m -3=n m -3,则直线PD 的方程为y =n m -3x -3 ,联立y =-23x -2y =n m -3x -3,解得x =33n -2m +63n +2m -6y =-12n 3n +2m -6,即M 33n -2m +6 3n +2m -6,-12n 3n +2m -6,而k PA =n -2m -0=n -2m ,则直线PA 的方程为y =n -2mx +2,令y =-2,则-2=n -2m x +2,解得x =-4m n -2,即N -4mn -2,-2 ,又m 29+n 24=1,则m 2=9-9n 24,8m 2=72-18n 2,所以k MN =-12n3n +2m -6+233n -2m +6 3n +2m -6--4mn-2=-6n +4m -12 n -29n -6m +18 n -2 +4m 3n +2m -6=-6n 2+4mn -8m +249n 2+8m 2+6mn -12m -36=-6n 2+4mn -8m +249n 2+72-18n 2+6mn -12m -36=-6n 2+4mn -8m +24-9n 2+6mn -12m +36=2-3n 2+2mn -4m +12 3-3n 2+2mn -4m +12 =23,又k CD =0+23-0=23,即k MN =k CD ,显然,MN 与CD 不重合,所以MN ⎳CD .14(2023年天津卷)设椭圆x 2a 2+y 2b 2=1(a >b >0)的左右顶点分别为A 1,A 2,右焦点为F ,已知A 1F =3,A 2F =1.(1)求椭圆方程及其离心率;(2)已知点P 是椭圆上一动点(不与端点重合),直线A 2P 交y 轴于点Q ,若三角形A 1PQ 的面积是三角形A 2FP 面积的二倍,求直线A 2P 的方程.【答案】(1)椭圆的方程为x 24+y 23=1,离心率为e =12.(2)y =±62x -2 .解析:(1)如图,由题意得a +c =3a -c =1,解得a =2,c =1,所以b =22-12=3,所以椭圆的方程为x 24+y 23=1,离心率为e =c a =12.(2)由题意得,直线A 2P 斜率存在,由椭圆的方程为x 24+y 23=1可得A 22,0 ,设直线A 2P 的方程为y =k x -2 ,联立方程组x 24+y 23=1y =k x -2,消去y 整理得:3+4k 2 x 2-16k 2x +16k 2-12=0,由韦达定理得x A 2⋅x P =16k 2-123+4k 2,所以x P =8k 2-63+4k 2,所以P 8k 2-63+4k 2,--12k3+4k 2,Q 0,-2k .所以S △A 2QA 1=12×4×y Q ,S △A 2PF =12×1×y P ,S △A 1A 2P =12×4×y P ,所以S △A 2QA 1=S △A 1PQ +S △A 1A 2P =2S △A 2PF +S △A 1A 2P ,所以2y Q =3y P ,即2-2k =3-12k3+4k 2,解得k =±62,所以直线A 2P 的方程为y =±62x -2 .15(2022高考北京卷)已知椭圆:E :x 2a 2+y 2b 2=1(a >b >0)的一个顶点为A (0,1),焦距为23.(1)求椭圆E 的方程;(2)过点P (-2,1)作斜率为k 的直线与椭圆E 交于不同的两点B ,C ,直线AB ,AC 分别与x 轴交于点M ,N ,当|MN |=2时,求k 的值.【答案】解析:(1)依题意可得b =1,2c =23,又c 2=a 2-b 2,所以a =2,所以椭圆方程为x 24+y 2=1;(2)解:依题意过点P -2,1 的直线为y -1=k x +2 ,设B x 1,y 1 、C x 2,y 2 ,不妨令-2≤x 1<x 2≤2,由y -1=k x +2x 24+y 2=1,消去y 整理得1+4k 2 x 2+16k 2+8k x +16k 2+16k =0,所以Δ=16k 2+8k 2-41+4k 2 16k 2+16k >0,解得k <0,所以x 1+x 2=-16k 2+8k 1+4k 2,x 1⋅x 2=16k 2+16k1+4k2,直线AB 的方程为y -1=y 1-1x 1x ,令y =0,解得x M =x 11-y 1,直线AC 的方程为y -1=y 2-1x 2x ,令y =0,解得x N =x 21-y 2,所以MN =x N -x M =x 21-y 2-x 11-y 1=x 21-k x 2+2 +1 -x 11-k x 1+2 +1=x 2-k x 2+2 +x 1k x 1+2=x 2+2 x 1-x 2x 1+2k x 2+2 x 1+2=2x 1-x 2k x 2+2 x 1+2=2,所以x 1-x 2 =k x 2+2 x 1+2 ,即x 1+x 22-4x 1x 2=k x 2x 1+2x 2+x 1 +4即-16k 2+8k 1+4k22-4×16k 2+16k 1+4k 2=k 16k 2+16k 1+4k 2+2-16k 2+8k 1+4k2+4 即81+4k 22k 2+k 2-1+4k 2 k 2+k =k1+4k216k2+16k -216k 2+8k +41+4k 2整理得8-k =4k ,解得k =-416(2022年浙江省高考)如图,已知椭圆x 212+y 2=1.设A ,B 是椭圆上异于P (0,1)的两点,且点Q 0,12 在线段AB 上,直线PA ,PB 分别交直线y =-12x +3于C ,D 两点.(1)求点P 到椭圆上点的距离的最大值;(2)求|CD |的最小值.【答案】解析:(1)设Q (23cos θ,sin θ)是椭圆上任意一点,P (0,1),则|PQ |2=12cos 2θ+(1-sin θ)2=13-11sin 2θ-2sin θ=-11sin θ+111 2+14411≤14411,当且仅当sin θ=-111时取等号,故|PQ |的最大值是121111.(2)设直线AB :y =kx +12,直线AB 方程与椭圆x 212+y 2=1联立,可得k 2+112 x 2+kx -34=0,设A x 1,y 1 ,B x 2,y 2 ,所以x 1+x 2=-kk 2+112x 1x 2=-34k 2+112 ,因为直线PA :y =y 1-1x 1x +1与直线y =-12x +3交于C ,则x C=4x 1x 1+2y 1-2=4x 1(2k +1)x 1-1,同理可得,x D =4x 2x 2+2y 2-2=4x 2(2k +1)x 2-1.则|CD |=1+14x C -x D =524x 1(2k +1)x 1-1-4x 2(2k +1)x 2-1=25x 1-x 2(2k +1)x 1-1 (2k +1)x 2-1=25x 1-x 2(2k +1)2x 1x 2-(2k +1)x 1+x 2 +1=352⋅16k 2+13k +1=655⋅16k 2+1916+13k +1≥655×4k ×34+1×123k +1=655,当且仅当k =316时取等号,故CD 的最小值为655.17(2021高考北京)已知椭圆E :x 2a 2+y 2b 2=1(a >b >0)一个顶点A (0,-2),以椭圆E 的四个顶点为顶点的四边形面积为45.(1)求椭圆E 的方程;(2)过点P (0,-3)的直线l 斜率为k 的直线与椭圆E 交于不同的两点B ,C ,直线AB ,AC 分别与直线交y =-3交于点M ,N ,当|PM |+|PN |≤15时,求k 的取值范围.【答案】(1)x 25+y 24=1;(2)[-3,-1)∪(1,3].解析:(1)因为椭圆过A 0,-2 ,故b =2,因为四个顶点围成的四边形的面积为45,故12×2a ×2b =45,即a =5,故椭圆的标准方程为:x 25+y 24=1.(2)设B x 1,y 1 ,C x 2,y 2 , 因为直线BC 的斜率存在,故x 1x 2≠0,故直线AB :y =y 1+2x 1x -2,令y =-3,则x M =-x1y 1+2,同理x N =-x 2y 2+2直线BC :y =kx -3,由y =kx -34x 2+5y 2=20可得4+5k 2 x 2-30kx +25=0,故Δ=900k 2-1004+5k 2 >0,解得k <-1或k >1.又x 1+x 2=30k 4+5k 2,x 1x 2=254+5k 2,故x 1x 2>0,所以x M x N >0又PM +PN =x M +x N =x 1y 1+2+x 2y 2+2=x1kx1-1+x2kx2-1=2kx1x2-x1+x2k2x1x2-k x1+x2+1=50k4+5k2-30k4+5k225k24+5k2-30k24+5k2+1=5k故5k ≤15即k ≤3,综上,-3≤k<-1或1<k≤3.考点02双曲线及其性质1(2024·全国·高考Ⅱ)已知双曲线C:x2-y2=m m>0,点P15,4在C上,k为常数,0<k<1.按照如下方式依次构造点P n n=2,3,...:过P n-1作斜率为k的直线与C的左支交于点Q n-1,令P n为Q n-1关于y轴的对称点,记P n的坐标为x n,y n .(1)若k=12,求x2,y2;(2)证明:数列x n-y n是公比为1+k1-k的等比数列;(3)设S n为△P n P n+1P n+2的面积,证明:对任意正整数n,S n=S n+1.【答案】(1)x2=3,y2=0(2)证明见解析(3)证明见解析【详解】(1)由已知有m=52-42=9,故C的方程为x2-y2=9.当k=12时,过P15,4且斜率为12的直线为y=x+32,与x2-y2=9联立得到x2-x+322=9.解得x=-3或x=5,所以该直线与C的不同于P1的交点为Q1-3,0,该点显然在C的左支上.故P23,0,从而x2=3,y2=0.(2)由于过P n x n,y n且斜率为k的直线为y=k x-x n+y n,与x2-y2=9联立,得到方程x2-k x-x n+y n2=9.展开即得1-k2x2-2k y n-kx nx-y n-kx n2-9=0,由于P n x n,y n已经是直线y=k x-x n+y n和x2 -y2=9的公共点,故方程必有一根x=x n.从而根据韦达定理,另一根x=2k y n-kx n1-k2-x n=2ky n-x n-k2x n1-k2,相应的y=k x-x n+y n=y n+k2y n-2kx n1-k2.所以该直线与C 的不同于P n 的交点为Q n2ky n -x n -k 2x n 1-k 2,y n +k 2y n -2kx n1-k 2,而注意到Q n 的横坐标亦可通过韦达定理表示为-y n -kx n 2-91-k 2x n ,故Q n 一定在C 的左支上.所以P n +1x n +k 2x n -2ky n 1-k 2,y n +k 2y n -2kx n1-k 2.这就得到x n +1=x n +k 2x n -2ky n 1-k 2,y n +1=y n +k 2y n -2kx n1-k 2.所以x n +1-y n +1=x n +k 2x n -2ky n 1-k 2-y n +k 2y n -2kx n1-k 2=x n +k 2x n +2kx n 1-k 2-y n +k 2y n +2ky n 1-k 2=1+k 2+2k 1-k2x n -y n =1+k 1-k x n -y n .再由x 21-y 21=9,就知道x 1-y 1≠0,所以数列x n -y n 是公比为1+k 1-k 的等比数列.(3)方法一:先证明一个结论:对平面上三个点U ,V ,W ,若UV =a ,b ,UW=c ,d ,则S △UVW =12ad -bc .(若U ,V ,W 在同一条直线上,约定S △UVW =0)证明:S △UVW =12UV ⋅UW sin UV ,UW =12UV ⋅UW 1-cos 2UV ,UW=12UV⋅UW 1-UV ⋅UWUV ⋅UW 2=12UV 2⋅UW 2-UV ⋅UW 2=12a 2+b 2c 2+d 2-ac +bd2=12a 2c 2+a 2d 2+b 2c 2+b 2d 2-a 2c 2-b 2d 2-2abcd =12a 2d 2+b 2c 2-2abcd =12ad -bc2=12ad -bc .证毕,回到原题.由于上一小问已经得到x n +1=x n +k 2x n -2ky n 1-k 2,y n +1=y n +k 2y n -2kx n 1-k 2,故x n +1+y n +1=x n +k 2x n -2ky n 1-k 2+y n +k 2y n -2kx n 1-k 2=1+k 2-2k 1-k2x n +y n =1-k1+k x n +y n .再由x 21-y 21=9,就知道x 1+y 1≠0,所以数列x n +y n 是公比为1-k 1+k 的等比数列.所以对任意的正整数m ,都有x n y n +m -y n x n +m=12x n x n +m -y n y n +m +x n y n +m -y n x n +m -12x n x n +m -y n y n +m -x n y n +m -y n x n +m =12x n -y n x n +m +y n +m -12x n +y n x n +m -y n +m =121-k 1+k m x n -y n x n +y n-121+k 1-k mx n +y n x n -y n=121-k 1+k m -1+k 1-k mx 2n -y 2n=921-k 1+k m -1+k 1-k m .而又有P n +1P n =-x n +1-x n ,-y n +1-y n ,P n +1P n +2=x n +2-x n +1,y n +2-y n +1 ,故利用前面已经证明的结论即得S n =S △P n P n +1P n +2=12-x n +1-x n y n +2-y n +1 +y n +1-y n x n +2-x n +1 =12x n +1-x n y n +2-y n +1 -y n +1-y n x n +2-x n +1 =12x n +1y n +2-y n +1x n +2 +x n y n +1-y n x n +1 -x n y n +2-y n x n +2=12921-k 1+k -1+k 1-k +921-k 1+k -1+k 1-k-921-k 1+k 2-1+k 1-k 2.这就表明S n 的取值是与n 无关的定值,所以S n =S n +1.方法二:由于上一小问已经得到x n +1=x n +k 2x n -2ky n 1-k 2,y n +1=y n +k 2y n -2kx n 1-k 2,故x n +1+y n +1=x n +k 2x n -2ky n 1-k 2+y n +k 2y n -2kx n 1-k 2=1+k 2-2k 1-k2x n +y n =1-k1+k x n +y n .再由x 21-y 21=9,就知道x 1+y 1≠0,所以数列x n +y n 是公比为1-k 1+k 的等比数列.所以对任意的正整数m ,都有x n y n +m -y n x n +m=12x n x n +m -y n y n +m +x n y n +m -y n x n +m -12x n x n +m -y n y n +m -x n y n +m -y n x n +m =12x n -y n x n +m +y n +m -12x n +y n x n +m -y n +m =121-k 1+k m x n -y n x n +y n-121+k 1-k mx n +y n x n -y n =121-k 1+k m -1+k 1-k m x 2n -y 2n =921-k 1+k m -1+k 1-k m .这就得到x n +2y n +3-y n +2x n +3=921-k 1+k -1+k1-k=x n y n +1-y n x n +1,以及x n +1y n +3-y n +1x n +3=921-k 1+k 2-1+k 1-k 2=x n y n +2-y n x n +2.两式相减,即得x n +2y n +3-y n +2x n +3 -x n +1y n +3-y n +1x n +3 =x n y n +1-y n x n +1 -x n y n +2-y n x n +2 .移项得到x n +2y n +3-y n x n +2-x n +1y n +3+y n x n +1=y n +2x n +3-x n y n +2-y n +1x n +3+x n y n +1.故y n +3-y n x n +2-x n +1 =y n +2-y n +1 x n +3-x n .而P n P n +3 =x n +3-x n ,y n +3-y n ,P n +1P n +2 =x n +2-x n +1,y n +2-y n +1 .所以P n P n +3 和P n +1P n +2平行,这就得到S △P n P n +1P n +2=S △P n +1P n +2P n +3,即S n =S n +1.【点睛】关键点点睛:本题的关键在于将解析几何和数列知识的结合,需要综合运用多方面知识方可得解.2(2023年新课标全国Ⅱ卷)已知双曲线C 的中心为坐标原点,左焦点为-25,0 ,离心率为5.(1)求C的方程;(2)记C左、右顶点分别为A1,A2,过点-4,0的直线与C的左支交于M,N两点,M在第二象限,直线MA1与NA2交于点P.证明:点P在定直线上.【答案】(1)x24-y216=1(2)证明见解析.解析:(1)设双曲线方程为x2a2-y2b2=1a>0,b>0,由焦点坐标可知c=25,则由e=ca=5可得a=2,b=c2-a2=4,双曲线方程为x24-y216=1.(2)由(1)可得A1-2,0,A22,0,设M x1,y1,N x2,y2,显然直线的斜率不为0,所以设直线MN的方程为x=my-4,且-12<m<12,与x24-y216=1联立可得4m2-1y2-32my+48=0,且Δ=64(4m2+3)>0,则y1+y2=32m4m2-1,y1y2=484m2-1,直线MA1的方程为y=y1x1+2x+2,直线NA2的方程为y=y2x2-2x-2,联立直线MA1与直线NA2的方程可得:x+2 x-2=y2x1+2y1x2-2=y2my1-2y1my2-6=my1y2-2y1+y2+2y1my1y2-6y1=m⋅484m2-1-2⋅32m4m2-1+2y1m×484m2-1-6y1=-16m4m2-1+2y148m4m2-1-6y1=-13,由x+2x-2=-13可得x=-1,即x P=-1,据此可得点P在定直线x=-1上运动.3(2022新高考全国II卷)已知双曲线C:x2a2-y2b2=1(a>0,b>0)的右焦点为F(2,0),渐近线方程为y=±3x.(1)求C的方程;(2)过F的直线与C的两条渐近线分别交于A,B两点,点P x1,y1,Q x2,y2在C上,且.x1>x2>0,y1>0.过P 且斜率为-3的直线与过Q 且斜率为3的直线交于点M .从下面①②③中选取两个作为条件,证明另外一个成立:①M 在AB 上;②PQ ∥AB ;③|MA |=|MB |.注:若选择不同的组合分别解答,则按第一个解答计分.【答案】(1)x 2-y 23=1(2)见解析:(1)右焦点为F (2,0),∴c =2,∵渐近线方程为y =±3x ,∴ba=3,∴b =3a ,∴c 2=a 2+b 2=4a 2=4,∴a =1,∴b =3.∴C 的方程为:x 2-y 23=1;(2)由已知得直线PQ 的斜率存在且不为零,直线AB 的斜率不为零,若选由①②推③或选由②③推①:由②成立可知直线AB 的斜率存在且不为零;若选①③推②,则M 为线段AB 的中点,假若直线AB 的斜率不存在,则由双曲线的对称性可知M 在x 轴上,即为焦点F ,此时由对称性可知P 、Q 关于x 轴对称,与从而x 1=x 2,已知不符;总之,直线AB 的斜率存在且不为零.设直线AB 的斜率为k ,直线AB 方程为y =k x -2 ,则条件①M 在AB 上,等价于y 0=k x 0-2 ⇔ky 0=k 2x 0-2 ;两渐近线方程合并为3x 2-y 2=0,联立消去y 并化简整理得:k 2-3 x 2-4k 2x +4k 2=0设A x 3,y 3 ,B x 3,y 4 ,线段中点N x N ,y N ,则x N =x 3+x 42=2k 2k 2-3,y N =k x N -2 =6kk 2-3,设M x 0,y 0 , 则条件③AM =BM 等价于x 0-x 3 2+y 0-y 3 2=x 0-x 4 2+y 0-y 4 2,移项并利用平方差公式整理得:x 3-x 4 2x 0-x 3+x 4 +y 3-y 4 2y 0-y 3+y 4 =0,2x 0-x 3+x 4 +y 3-y 4x 3-x 42y 0-y 3+y 4 =0,即x 0-x N +k y 0-y N =0,即x 0+ky 0=8k 2k 2-3;由题意知直线PM 的斜率为-3, 直线QM 的斜率为3,∴由y 1-y 0=-3x 1-x 0 ,y 2-y 0=3x 2-x 0 ,∴y 1-y 2=-3x 1+x 2-2x 0 ,所以直线PQ 的斜率m =y 1-y 2x 1-x 2=-3x 1+x 2-2x 0 x 1-x 2,直线PM :y =-3x -x 0 +y 0,即y =y 0+3x 0-3x ,代入双曲线的方程3x 2-y 2-3=0,即3x +y 3x -y =3中,得:y 0+3x 0 23x -y 0+3x 0 =3,解得P 的横坐标:x 1=1233y 0+3x 0+y 0+3x 0,。
2020高考数学分类汇编--解析几何圆锥曲线

2020年普通高等学校招生全国统一考试一卷理科数学4.已知A 为抛物线C :y 2=2px (p >0)上一点,点A 到C 的焦点的距离为12,到y 轴的距离为9,则p = A .2B .3C .6D .911.已知⊙M :222220x y x y +---=,直线l :220x y ++=,P 为l 上的动点,过点P 作⊙M 的切线,PA PB ,切点为,A B ,当||||PM AB ⋅最小时,直线AB 的方程为 A .210x y --= B .210x y +-=C .210x y -+=D .210x y ++=15.已知F 为双曲线2222:1(0,0)x y C a b a b-=>>的右焦点,A 为C 的右顶点,B 为C 上的点,且BF 垂直于x 轴.若AB 的斜率为3,则C 的离心率为 . 20.(12分)已知A 、B 分别为椭圆E :2221x y a+=(a >1)的左、右顶点,G 为E 的上顶点,8AG GB ⋅=,P 为直线x =6上的动点,P A 与E 的另一交点为C ,PB 与E 的另一交点为D . (1)求E 的方程;(2)证明:直线CD 过定点.4.C11.D15.220.解:(1)由题设得A (–a ,0),B (a ,0),G (0,1).则(,1)AG a =,GB =(a ,–1).由AG GB ⋅=8得a 2–1=8,即a =3.所以E 的方程为29x +y 2=1.(2)设C (x 1,y 1),D (x 2,y 2),P (6,t ).若t ≠0,设直线CD 的方程为x =my +n ,由题意可知–3<n <3.由于直线P A 的方程为y =9t (x +3),所以y 1=9t(x 1+3).直线PB 的方程为y =3t (x –3),所以y 2=3t(x 2–3).可得3y 1(x 2–3)=y 2(x 1+3).由于222219x y +=,故2222(3)(3)9x x y +-=-,可得221227(3)(3)y y x x =-++, 即221212(27)(3)()(3)0.m y y m n y y n ++++++=①将x my n =+代入2219xy +=得222(9)290.m y mny n +++-=所以12229mn y y m +=-+,212299n y y m -=+.代入①式得2222(27)(9)2(3)(3)(9)0.m n m n mn n m +--++++= 解得n =–3(含去),n =32.故直线CD 的方程为3=2x my +,即直线CD 过定点(32,0). 若t =0,则直线CD 的方程为y =0,过点(32,0).综上,直线CD 过定点(32,0).2020年普通高等学校招生全国统一考试二卷理科数学5.若过点)1,2(的圆与两坐标轴都相切,则圆心到直线032=--y x 的距离为A .55B .552C .553D .554 8.设O 为坐标原点,直线a x =与双曲线)0,0(1:2222>>=-b a by a x C 的两条渐近线分别交于E D 、ODE 的面积为8,则C 的焦距的最小值为A .4B .8C .16D .3219.(12分)已知椭圆1C :()012222>>=+b a b y a x 的右焦点F 与抛物线2C 的焦点重合,1C 的中心与的2C 的顶点重合. 过F 且与x 轴垂直的直线交1C 于A ,B 两点,交2C 于C ,D 两点,且AB CD 34=. (1)求1C 的离心率;设M 是1C 与2C 的公共点,若5=MF ,求1C 与2C 的标准方程.2020年普通高等学校招生全国统一考试理科数学5.设O 为坐标原点,直线x =2与抛物线C :22(0)y px p =>交于D ,E 两点,若OD OE ⊥,则C 的焦点坐标为A .1(,0)4B .1(,0)2C .(1,0)D .(2,0)11.设双曲线C :22221x y a b-=(a >0,b >0)的左、右焦点分别为F 1,F 2.P是C 上一点,且F 1P ⊥F 2P .若△PF 1F 2的面积为4,则a = A .1 B .2 C .4 D .820.(12分)已知椭圆222:1(05)25x y C m m+=<<,A ,B 分别为C 的左、右顶点. (1)求C 的方程;(2)若点P 在C 上,点Q 在直线6x =上,且||||BP BQ =,BP BQ ⊥,求APQ △的面积. 5.B11.A20.解:(1)由题设可得54=,得22516m =, 所以C 的方程为221252516x y +=. (2)设(,),(6,)P P Q P x y Q y ,根据对称性可设0Q y >,由题意知0P y >, 由已知可得(5,0)B ,直线BP 的方程为1(5)Qy x y =--,所以||BP y =,||BQ =, 因为||||BP BQ =,所以1P y =,将1P y =代入C 的方程,解得3P x =或3-. 由直线BP 的方程得2Q y =或8.所以点,P Q 的坐标分别为1122(3,1),(6,2);(3,1),(6,8)P Q P Q -.11||PQ 11PQ 的方程为13y x =,点(5,0)A -到直线11PQ的距离为2,故11APQ △的面积为1522=.22||PQ =直线22P Q 的方程为71093y x =+,点A 到直线22P Q故22AP Q △的面积为1522=. 综上,APQ △的面积为52. 2020年普通高等学校招生全国统一考试一卷文科数学6.已知圆2260x y x +-=,过点(1,2)的直线被该圆所截得的弦的长度的最小值为 A .1B .2C .3D .411.设12,F F 是双曲线22:13y C x -=的两个焦点,O 为坐标原点,点P 在C 上且||2OP =,则12PF F △的面积为 A .72B .3C .52D .221.已知A 、B 分别为椭圆E :2221x y a+=(a >1)的左、右顶点,G 为E 的上顶点,8AG GB ⋅=,P 为直线x =6上的动点,P A 与E 的另一交点为C ,PB 与E 的另一交点为D . (1)求E 的方程;(2)证明:直线CD 过定点. 6.B11.B21.解:(1)由题设得(,0),(,0),(0,1)A a B a G -.则(,1)AG a =,(,1)GB a =-.由8AG GB ⋅=得218a -=,即3a =.所以E 的方程为2219x y +=.(2)设1122(,),(,),(6,)C x y D x y G t .若0t ≠,设直线CD 的方程为x my n =+,由题意可知33n -<<. 由于直线PA 的方程为(3)9t y x =+,所以11(3)9ty x =+.直线PB 的方程为(3)3t y x =-,所以22(3)3ty x =-.可得12213(3)(3)y x y x -=+.由于222219x y +=,故2222(3)(3)9x x y +-=-,可得121227(3)(3)y y x x =-++, 即221212(27)(3)()(3)0m y y m n y y n ++++++=.①将x my n =+代入2219xy +=得222(9)290m y mny n +++-=.所以212122229,99mn n y y y y m m -+=-=-++. 代入①式得2222(27)(9)2(3)(3)(9)0m n m n mn n m +--++++=. 解得3n =-(舍去),32n =. 故直线CD 的方程为32x my =+,即直线CD 过定点3(,0)2. 若0t =,则直线CD 的方程为0y =,过点3(,0)2.综上,直线CD 过定点3(,0)2.2020年普通高等学校招生全国统一考试二卷文科数学8.若过点(2,1)的圆与两坐标轴都相切,则圆心到直线2x -y -3=0的距离为A B C D 9.设O 为坐标原点,直线x =a 与双曲线C :2222-x y a b=l(a >0,b >0)的两条渐近线分别交于D ,E 两点.若△ODE 的面积为8,则C 的焦距的最小值为 A .4B .8C .16D .3219.(12 分)已知椭圆C 1:22221x y a b+=(a >b >0)的右焦点F 与抛物线C 2的焦点重合,C 1的中心与C 2的顶点重合.过F 且与x 轴重直的直线交C 1于A ,B 两点,交C 2于C ,D 两点,且|CD |=43|AB |. (1)求C 1的离心率;(2)若C 1的四个顶点到C 2的准线距离之和为12,求C 1与C 2的标准方程. 8.B9.B19.解:(1)由已知可设2C 的方程为24y cx =,其中c不妨设,A C 在第一象限,由题设得,A B 的纵坐标分别为2b a ,2b a-;,C D 的纵坐标分别为2c ,2c -,故22||b AB a=,||4CD c =.由4||||3CD AB =得2843b c a=,即2322()c c a a ⨯=-,解得2c a =-(舍去),12c a =.所以1C 的离心率为12.(2)由(1)知2a c =,b =,故22122:143x y C c c+=,所以1C 的四个顶点坐标分别为(2,0)c ,(2,0)c -,),(0,),2C 的准线为x c =-. 由已知得312c c c c +++=,即2c =.所以1C 的标准方程为2211612x y +=,2C 的标准方程为28y x =.2020年普通高等学校招生全国统一考试三卷文科数学6.在平面内,A ,B 是两个定点,C 是动点,若=1AC BC ⋅,则点C 的轨迹为 A .圆B .椭圆C .抛物线D .直线7.设O 为坐标原点,直线x =2与抛物线C :()220y px p =>交于D ,E 两点,若OD ⊥OE ,则C 的焦点坐标为 A .(14,0) B .(12,0) C .(1,0) D .(2,0)14.设双曲线C :22221x y a b-= (a >0,b >0)的一条渐近线为y x ,则C 的离心率为_________.21.(12分)已知椭圆222:1(05)25x y C m m +=<<,A ,B 分别为C 的左、右顶点. (1)求C 的方程;(2)若点P 在C 上,点Q 在直线6x =上,且||||BP BQ =,BP BQ ⊥,求APQ △的面积. 6.A7.B1421.解:(1=22516m =,所以C 的方程为1252516+=. (2)设(,),(6,)P P Q P x y Q y ,根据对称性可设0Q y >,由题意知0P y >, 由已知可得(5,0)B ,直线BP 的方程为1(5)Qy x y =--,所以||BP y =,||BQ =, 因为||||BP BQ =,所以1P y =,将1P y =代入C 的方程,解得3P x =或3-. 由直线BP 的方程得2Q y =或8.所以点,P Q 的坐标分别为1122(3,1),(6,2);(3,1),(6,8)P Q P Q -.11||PQ 11PQ 的方程为13y x =,点(5,0)A -到直线11PQ,故11APQ △的面积为1522=.22||PQ =直线22P Q 的方程为71093y x =+,点A 到直线22P Q的距离为26,故22AP Q △的面积为152262⨯=. 综上,APQ △的面积为52. 2020年普通高等学校招生全国统一考试(北京卷)(5)已知半径为1的圆经过点)4,3(,则其圆心到原点的距离的最小值为(A )4 (B )5 (C )6 (D )7(7)设抛物线的顶点为O ,焦点为F ,准线为l ;P 是抛物线异己O 的一点,过P 做PQ ⊥l 于Q ,则线段FQ 的垂直平分线 (A )经过点O (B )经过点P(C )平行于直线OP (D )垂直于直线OP(12)已知双曲线:163C -=,则C 的右焦点的坐标为________;C 的焦点到其渐近线的距离是________. (20)(本小题15分)已知椭圆22221x y C a b+=:过点()21A --,,且2a b =(I )求椭圆C 的方程:(II )过点4,0B -()的直线l 交椭圆C 于点,M N ,直线,MA NA 分别交直线4x =-于点,P Q 求PBBQ的值 2020年普通高等学校招生全国统一考试(江苏卷)6.在平面直角坐标系xOy 中,若双曲线222105()x y a a -=>的一条渐近线方程为y =,则该双曲线的离心率是 ▲ . 18.(本小题满分16分)在平面直角坐标系xOy 中,已知椭圆22:143x y E +=的左、右焦点分别为F 1,F 2,点A在椭圆E 上且在第一象限内,AF 2⊥F 1F 2,直线AF 1与椭圆E 相交于另一点B .(1)求12AF F △的周长;(2)在x 轴上任取一点P ,直线AP 与椭圆E 的右准线相交于点Q ,求OP QP ⋅的最小值;(3)设点M 在椭圆E 上,记OAB △与MAB △的面积分别为S 1,S 2,若213S S =,求点M 的坐标. 6.3218.满分16分.解:(1)椭圆22:143x y E +=的长轴长为2a ,短轴长为2b ,焦距为2c ,则2224,3,1a b c ===.所以12AF F △的周长为226a c +=. (2)椭圆E 的右准线为4x =. 设(,0),(4,)P x Q y ,则(,0),(4,)OP x QP x y ==--, 2(4)(2)44,OP QP x x x ⋅=-=--≥-在2x =时取等号.所以OP QP ⋅的最小值为4-.(3)因为椭圆22:143x y E +=的左、右焦点分别为12,F F ,点A 在椭圆E 上且在第一象限内,212AF F F ⊥,则123(1,0),(1,0),(1,)2F F A -.所以直线:3430.AB x y -+=设(,)M x y ,因为213S S =,所以点M 到直线AB 距离等于点O 到直线AB 距离的3倍. 由此得|343||30403|355x y -+⨯-⨯+=⨯, 则34120x y -+=或3460x y --=.由2234120,143x y x y -+=⎧⎪⎨+=⎪⎩得2724320x x ++=,此方程无解;由223460,143x y x y --=⎧⎪⎨+=⎪⎩得271240x x --=,所以2x =或27x =-.代入直线:3460l x y --=,对应分别得0y =或127y =-. 因此点M 的坐标为(2,0)或212(,)77--.2020年普通高等学校招生全国统一考试(天津卷)7.设双曲线C 的方程为22221(0,0)x y a b a b-=>>,过抛物线24y x =的焦点和点(0,)b 的直线为l .若C 的一条渐近线与l 平行,另一条渐近线与l 垂直,则双曲线C 的方程为A .22144x y -=B .2214y x -= C .2214x y -= D .221x y -= 12.已知直线80x +=和圆222(0)x y r r +=>相交于,A B 两点.若||6AB =,则r的值为_________. 18.(本小题满分15分)已知椭圆22221(0)x y a b a b+=>>的一个顶点为(0,3)A -,右焦点为F ,且||||OA OF =,其中O 为原点. (Ⅰ)求椭圆的方程;(Ⅱ)已知点C 满足3OC OF =,点B 在椭圆上(B 异于椭圆的顶点),直线AB 与以C 为圆心的圆相切于点P ,且P 为线段AB 的中点.求直线AB 的方程. 7.D12.518.满分15分.(Ⅰ)解:由已知可得3b =.记半焦距为c ,由||||OF OA =可得3c b ==.又由222a b c =+,可得218a =.所以,椭圆的方程为221189x y +=.(Ⅱ)解:因为直线AB 与以C 为圆心的圆相切于点P ,所以AB CP ⊥.依题意,直线AB 和直线CP 的斜率均存在.设直线AB 的方程为3y kx =-.由方程组223,1,189y kx x y =-⎧⎪⎨+=⎪⎩消去y ,可得()2221120k x kx +-=,解得0x =,或21221k x k =+.依题意,可得点B 的坐标为2221263,2121k k k k ⎛⎫- ⎪++⎝⎭.因为P 为线段AB 的中点,点A 的坐标为(0,3)-,所以点P 的坐标为2263,2121k k k -⎛⎫ ⎪++⎝⎭.由3OC OF =,得点C 的坐标为(1,0),故直线CP 的斜率为2230216121k k k --+-+,即23261k k -+.又因为AB CP ⊥,所以231261k k k ⋅=--+,整理得22310k k -+=,解得12k =,或1k =. 所以,直线AB 的方程为132y x =-,或3y x =-. 2020年普通高等学校招生全国统一考试新高考9.已知曲线22:1C mx ny +=.A .若m >n >0,则C 是椭圆,其焦点在y 轴上B .若m =n >0,则CC .若mn <0,则C是双曲线,其渐近线方程为y = D .若m =0,n >0,则C 是两条直线 13.C :y 2=4x 的焦点,且与C 交于A ,B 两点,则AB =________. 22.(12分)已知椭圆C :22221(0)x y a b a b +=>>的离心率为2,且过点A (2,1). (1)求C 的方程:(2)点M ,N 在C 上,且AM ⊥AN ,AD ⊥MN ,D 为垂足.证明:存在定点Q ,使得|DQ |为定值.9.ACD13.16322.解:(1)由题设得22411a b +=,22212a b a -=,解得26a =,23b =. 所以C 的方程为22163x y +=. (2)设11(,)M x y ,22(,)N x y .若直线MN 与x 轴不垂直,设直线MN 的方程为y kx m =+, 代入22163x y +=得222(12)4260k x kmx m +++-=. 于是2121222426,1212km m x x x x k k -+=-=++.① 由AM AN ⊥知0AM AN ⋅=,故1212(2)(2)(1)(1)0x x y y --+--=, 可得221212(1)(2)()(1)40k x x km k x x m ++--++-+=. 将①代入上式可得22222264(1)(2)(1)401212m km k km k m k k -+---+-+=++. 整理得(231)(21)0k m k m +++-=.因为(2,1)A 不在直线MN 上,所以210k m +-≠,故2310k m ++=,1k ≠.于是MN 的方程为21()(1)33y k x k =--≠. 所以直线MN 过点21(,)33P -. 若直线MN 与x 轴垂直,可得11(,)N x y -.由0AM AN ⋅=得1111(2)(2)(1)(1)0x x y y --+---=. 又2211163x y +=,可得2113840x x -+=.解得12x =(舍去),123x =. 此时直线MN 过点21(,)33P -. 令Q 为AP 的中点,即41(,)33Q .若D 与P 不重合,则由题设知AP 是Rt ADP △的斜边,故1||||2DQ AP ==. 若D 与P 重合,则1||||2DQ AP =. 综上,存在点41(,)33Q ,使得||DQ 为定值.2020年普通高等学校招生全国统一考试(浙江卷)8.已知点O (0,0),A (–2,0),B (2,0).设点P 满足|PA |–|PB |=2,且P 为函数y =图象上的点,则|OP |=A .2BCD 15.已知直线(0)y kx b k =+>与圆221x y +=和圆22(4)1x y -+=均相切,则k =_______,b =_______.21.(本题满分15分)如图,已知椭圆221:12x C y +=,抛物线22:2(0)C y px p =>,点A 是椭圆1C 与抛物线2C 的交点,过点A 的直线l 交椭圆1C 于点B ,交抛物线2C 于点M (B ,M 不同于A ). (Ⅰ)若116p =,求抛物线2C 的焦点坐标; (Ⅱ)若存在不过原点的直线l 使M 为线段AB 的中点,求p 的最大值.8.D1521.满分15分。
2020高考数学题型整理分类《(17)解析几何》解析版(含历年真题)

(十七) “解析几何”专题提能课A 组——易错清零练1.(2018·嘉兴模拟)已知直线l 1:ax +(a +2)y +1=0,l 2:x +ay +2=0,其中a ∈R ,则“a =-3”是“l 1⊥l 2”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件解析:选A 若l 1⊥l 2,则a +a (a +2)=0,即a (a +3)=0,解得a =0或a =-3,所以“a =-3”是“l 1⊥l 2”的充分不必要条件.故选A.2.已知双曲线Γ:x 2a 2-y 2b 2=1(a >0,b >0),过双曲线Γ的右焦点F ,且倾斜角为π2的直线l 与双曲线Γ交于A ,B 两点,O 是坐标原点,若∠AOB =∠OAB ,则双曲线Γ的离心率为( )A.3+72 B.11+332C.3+396D.1+174解析:选C 由题意可知AB 是通径,根据双曲线的对称性和∠AOB =∠OAB ,可知 △AOB 为等边三角形,所以tan ∠AOF =b 2a c =33,整理得b 2=33ac ,由c 2=a 2+b 2,得c 2=a 2+33ac ,两边同时除以a 2,得e 2-33e -1=0,解得e =3+396.故选C. 3.过点P (2,1)作直线l ,使l 与双曲线x 24-y 2=1有且仅有一个公共点,这样的直线l共有( )A .1条B .2条C .3条D .4条解析:选B 依题意,双曲线的渐近线方程是y =±12x ,点P 在直线y =12x 上.①当直线l 的斜率不存在时,直线l 的方程为x =2,此时直线l 与双曲线有且仅有一个公共点(2,0),满足题意.②当直线l 的斜率存在时, 设直线l 的方程为y -1=k (x -2), 即y =kx +1-2k ,由⎩⎪⎨⎪⎧y =kx +1-2k ,x 2-4y 2=4,消去y 得x 2-4(kx +1-2k )2=4, 即(1-4k 2)x 2-8(1-2k )kx -4(1-2k )2-4=0,(*)若1-4k 2=0,则k =±12,当k =12时,方程(*)无实数解,因此k =12不满足题意;当k =-12时,方程(*)有唯一实数解,因此k =-12满足题意.若1-4k 2≠0,即k ≠±12,此时Δ=64k 2(1-2k )2+16(1-4k 2)[(1-2k )2+1]=0不成立,因此满足题意的实数k 不存在.综上所述,满足题意的直线l 共有2条.4.已知椭圆x 24+y 2m =1的离心率等于32,则m =________.解析:①当椭圆的焦点在x 轴上时, 则a 2=4,即a =2.又e =c a =32,所以c =3,m =b 2=a 2-c 2=4-(3)2=1. ②当椭圆的焦点在y 轴上时,椭圆的方程为y 2m +x 24=1,则b 2=4,即b =2.又e =c a =32,故1-b 2a 2=32,解得b a =12,即a =2b , 所以a =4,m =a 2=16.综上,m =1或16. 答案:1或165.已知圆C 1:(x +3)2+y 2=1和圆C 2:(x -3)2+y 2=9,动圆M 同时与圆C 1及圆C 2外切,则动圆圆心M 的轨迹方程为________.解析:如图所示,设动圆M 与圆C 1及圆C 2分别外切于A 和B 两点.连接MC 1,MC 2.根据两圆外切的条件,得 |MC 1|-|AC 1|=|MA |, |MC 2|-|BC 2|=|MB |. 因为|MA |=|MB |,所以|MC 1|-|AC 1|=|MC 2|-|BC 2|,即|MC 2|-|MC 1|=|BC 2|-|AC 1|=3-1=2<6=|C 1C 2|. 所以点M 到两定点C 1,C 2的距离的差是常数.又根据双曲线的定义,得动点M 的轨迹为双曲线的左支(点M 与C 2的距离比与C 1的距离大),可设轨迹方程为x 2a 2-y 2b2=1(a >0,b >0,x <0),其中a =1,c =3,则b 2=8. 故动圆圆心M 的轨迹方程为x 2-y 28=1(x <0). 答案:x 2-y 28=1(x <0)B 组——方法技巧练1.已知点M (-3,2)是坐标平面内一定点,若抛物线y 2=2x 的焦点为F ,点Q 是该抛物线上的一动点,则|M Q |-|Q F |的最小值是( )A.72 B .3 C.52D .2解析:选C 抛物线的准线方程为x =-12,过Q 作准线的垂线,垂足为Q ′,如图.依据抛物线的定义,得|Q M |-|Q F |=|Q M |-|QQ ′|,则当Q M 和QQ ′共线时,|Q M |-|QQ ′|的值最小,最小值为⎪⎪⎪⎪-3-⎝⎛⎭⎫-12=52. 2.已知圆C :(x -3)2+(y -1)2=1和两点A (-t,0),B (t ,0)(t >0),若圆C 上存在点P ,使得∠APB =90°,则t 的取值范围是( )A .(0,2]B .[1,2]C .[2,3]D .[1,3]解析:选D 依题意,设点P (3+cos θ,1+sin θ), ∵∠APB =90°,∴AP ―→·BP ―→=0,∴(3+cos θ+t )(3+cos θ-t )+(1+sin θ)2=0, 得t 2=5+23cos θ+2sin θ=5+4sin ⎝⎛⎭⎫θ+π3, ∵sin ⎝⎛⎭⎫θ+π3∈[-1,1],∴t 2∈[1,9], ∵t >0,∴t ∈[1,3].3.(2018·金华、台州、温州三市联考)已知双曲线C :x 23-y 2=1的左、右焦点分别为F 1,F 2,过点F 2的直线与双曲线C 的右支相交于P ,Q 两点,且点P 的横坐标为2,则 △PF 1Q 的周长为( )A.1633B .5 3 C.1433D .4 3解析:选A 易知双曲线C :x 23-y 2=1中,a =3,b =1,所以c =a 2+b 2=2,则F 1(-2,0),F 2(2,0).因为点P 的横坐标为2,所以P Q ⊥x 轴.令x =2,则y 2=43-1=13,则y =±33,即|PF 2|=33,则|PF 1|=|PF 2|2+|F 1F 2|2=733,故△PF 1Q 的周长为|PF 1|+|Q F 1|+|P Q |=1633,故选A. 4.已知圆O :x 2+y 2=1,圆M :(x -a )2+(y -a +4)2=1.若圆M 上存在点P ,过点P 作圆O 的两条切线,切点分别为A ,B ,使得∠APB =60°,则实数a 的取值范围为( )A.⎣⎡⎦⎤2-22,2+22 B.⎝⎛⎭⎫2-22,2+22 C .[2-2,2+2]D.()2-2,2+2解析:选A 圆O 的半径为1,圆M 上存在点P ,过点P 作圆O 的两条切线,切点分别为A ,B ,使得∠APB =60°,则∠APO =30°.在Rt △PAO 中,|PO |=AOsin ∠APO=2,又圆M 的半径为1,圆心坐标为M (a ,a -4), ∴|MO |-1≤|PO |≤|MO |+1, ∵|MO |=a 2+(a -4)2, ∴a 2+(a -4)2-1≤2≤a 2+(a -4)2+1,解得2-22≤a ≤2+22. ∴实数a 的取值范围为⎣⎡⎦⎤2-22,2+22. 5.(2018·宁波模拟)如图,F 1,F 2是椭圆C 1与双曲线C 2的公共焦点,A ,B 分别是C 1,C 2在第二、四象限的交点,若AF 1⊥BF 1,且∠AF 1O =π3,则C 1与C 2的离心率之和为( )A .2 3B .4C .2 5D .2 6解析:选A 设椭圆方程为x 2a 2+y 2b 2=1(a >b >0),由双曲线和椭圆的对称性可知,A ,B关于原点对称,又AF 1⊥BF 1,且∠AF 1O =π3,故|AF 1|=|OF 1|=|OA |=|OB |=c ,∴A ⎝⎛⎭⎫-c 2,32c ,代入椭圆方程x 2a 2+y 2b 2=1,结合b 2=a 2-c 2及e =c a ,整理可得,e 4-8e 2+4=0,∵0<e <1,∴e 2=4-23=(3-1)2,∴e =3-1. 同理可求得双曲线的离心率e 1=3+1, ∴e +e 1=2 3.6.(2017·山东高考)在平面直角坐标系xOy 中,双曲线x 2a 2-y 2b 2=1(a >0,b >0)的右支与焦点为F 的抛物线x 2=2py (p >0)交于A ,B 两点.若|AF |+|BF |=4|OF |,则该双曲线的渐近线方程为________.解析:设A (x 1,y 1),B (x 2,y 2),由抛物线的定义可知|AF |=y 1+p 2,|BF |=y 2+p2,|OF |=p2, 由|AF |+|BF |=y 1+p 2+y 2+p2=y 1+y 2+p =4|OF |=2p ,得y 1+y 2=p .k AB =y 2-y 1x 2-x 1=x 222p -x 212p x 2-x 1=x 2+x 12p .由⎩⎨⎧x 21a 2-y 21b2=1,x 22a 2-y22b 2=1,得k AB =y 2-y 1x 2-x 1=b 2(x 1+x 2)a 2(y 1+y 2)=b 2a 2·x 1+x 2p,则b 2a 2·x 1+x 2p =x 2+x 12p ,∴b 2a 2=12,故b a =22, ∴双曲线的渐近线方程为y =±22x .答案:y =±22xC 组——创新应用练1.在平面直角坐标系xOy 中,设直线y =-x +2与圆x 2+y 2=r 2(r >0)交于A ,B 两点,O 为坐标原点,若圆上一点C 满足OC ―→=54OA ―→+34OB ―→,则r =( )A .210 B.10 C .2 5D.5解析:选B 已知OC ―→=54OA ―→+34OB ―→,两边平方化简得OA ―→·OB ―→=-35r 2,所以cos ∠AOB =-35,所以cos ∠AOB 2=55,又圆心O (0,0)到直线的距离为|2|2=2, 所以2r =55,解得r =10.2.双曲线x 2a 2-y 2b 2=1(a >0,b >0)的两条渐近线将平面划分为“上、下、左、右”四个区域(不含边界),若点(2,1)在“右”区域内,则双曲线离心率e 的取值范围是( )A.⎝⎛⎭⎫1,52 B.⎝⎛⎭⎫52,+∞ C.⎝⎛⎭⎫1,54 D.⎝⎛⎭⎫54,+∞ 解析:选B 依题意,注意到题中的双曲线x 2a 2-y 2b2=1的渐近线方程为y =±ba x ,且“右”区域是由不等式组⎩⎨⎧y <b a x ,y >-ba x所确定,又点(2,1)在“右”区域内,于是有1<2b a ,即b a >12,因此题中的双曲线的离心率e =1+⎝⎛⎭⎫b a 2∈⎝⎛⎭⎫52,+∞.3.已知双曲线x 2a 2-y 2b 2=1(a >0,b >0)的两条渐近线分别为l 1,l 2,经过右焦点F 垂直于l 1的直线分别交l 1,l 2于A ,B 两点.若|OA |,|AB |,|OB |成等差数列,且AF ―→与FB ―→反向,则该双曲线的离心率为( )A.52B. 3C. 5D.52解析:选C 设实轴长为2a ,虚轴长为2b ,令∠AOF =α,则由题意知tan α=ba ,在△AOB 中,∠AOB =180°-2α,tan ∠AOB =-tan 2α=|AB ||OA |,∵|OA |,|AB |,|OB |成等差数列,∴设|OA |=m -d ,|AB |=m ,|OB |=m +d ,∵OA ⊥BF ,∴(m -d )2+m 2=(m +d )2,整理得d =14m ,∴-tan 2α=-2tan α1-tan 2α=|AB ||OA |=m 34m =43,解得b a =2或b a =-12(舍去),∴b =2a ,c =4a 2+a 2=5a ,∴e =ca = 5.4.已知F 1,F 2分别为椭圆x 2a 2+y 2b2=1(a >b >0)的左、右焦点,P 为椭圆上的一点.△F 1PF 2中,∠F 1PF 2的外角平分线为l ,点F 2关于l 的对称点为Q ,F 2Q 交l 于点R .当点P 在椭圆上运动时,求点R 的轨迹方程.解:如图,直线l 为∠F 1PF 2的外角平分线且点F 2与点Q 关于直线l 对称,由椭圆的光学性质知,F 1,P ,Q 三点共线.根据对称性,|P Q |=|PF 2|,所以|F 1Q |=|PF 1|+|PF 2|=2a .连接OR ,因为O 为F 1F 2的中点,R 为F 2Q 的中点,所以|OR |=12|F 1Q |=a .设R (x ,y ),则x 2+y 2=a 2(y ≠0),故点R 的轨迹方程为x 2+y 2=a 2(y ≠0).5.(2018·诸暨高三适应性考试)已知F 是抛物线C :x 2=2py (p >0)的焦点,过F 的直线交抛物线C 于不同两点A (x 1,y 1),B (x 2,y 2),且x 1x 2=-1.(1)求抛物线C 的方程;(2)过点B 作x 轴的垂线交直线AO (O 是原点)于D ,过点A 作直线DF 的垂线与抛物线C 的另一交点为E ,AE 中点为G .①求点D 的纵坐标; ②求|GB ||GD |的取值范围.解:(1)设直线AB 的方程为y =kx +p2,联立⎩⎪⎨⎪⎧y =kx +p 2,x 2=2py消去y ,化简得x 2-2pkx -p 2=0, ∴x 1x 2=-p 2=-1,∴p =1, ∴抛物线C 的方程为x 2=2y .(2)①∵直线OA 的方程为y =y 1x 1x =x 12x ,∴D ⎝⎛⎭⎫x 2,x 1x 22,即D ⎝⎛⎭⎫x 2,-12. 即点D 的纵坐标为-12.②∵k DF =-1x 2,∴k AE =x 2,∴直线AE 的方程为y -y 1=x 2(x -x 1). 联立⎩⎪⎨⎪⎧y -y 1=x 2(x -x 1),y =x 22消去y ,得x 22-x 2x -y 1-1=0,∴x E=2x2-x1,∴G(x2,2y2+y1+1),∴G,B,D三点共线.∴|GB||GD|=y2+y1+12y2+y1+32.∵y1·y2=1 4,∴|GD||GB|=2-y1+1214y1+y1+1=2-y1y1+12=2-11+12y1∈(1,2).∴|GB||GD|∈⎝⎛⎭⎫12,1.。
高考数学分类-解析几何

1(2020A 卷2)在椭圆Γ中,A 为长轴一个端点,B 为短轴一个端点,F 1,F 2为两个焦点,若−−→AF 1·−−→AF 2+−−→BF 1·−−→BF 2=0,则|AB ||F 1F 2|的值为.2(2020A 卷11)在平面直角坐标系中,点A ,B ,C 在双曲线xy =1上,满足△ABC 为等腰直角三角形.求△ABC 的面积的最小值.3(2020B 卷2)在平面直角坐标系xOy 中,圆Ω经过点(0,0),(2,4),(3,3),则圆Ω上的点到原点的距离的最大值为.4(2020B 卷9)在椭圆Γ中,A 为长轴一个端点,B 为短轴一个端点,F 1,F 2为两个焦点,若−−→AF 1·−−→AF 2+−−→BF 1·−−→BF 2=0,求tan ∠ABF 1·tan ∠ABF 2的值.5(2020C 卷7)设A ,B 为平面直角坐标系xOy 中的曲线xy =1(x,y >0)上的两点,向量−→m =(1,|OA |),则数量积−→m ·−−→OB 的最小值为.6(2020C 卷11)在平面直角坐标系中,椭圆Γ:x 24+y 23=1,点P 在椭圆Γ的内部,且在直线y =x 上移动.点K ,L 在Γ上,满足−−→P K ,−→P L 的方向分别为x 轴正方向与y 轴正方向.点Q 使得P KQL 为矩形.是否存在平面上两点A ,B ,使得当矩形P KQL 变化时,|QA |−|QB |为非零常数?若存在,求出线段AB 的所有可能的长度;若不存在,请说明理由.7(2019A 卷4)设A ,B 为椭圆Γ的长轴顶点,E ,F 为Γ的两个焦点,|AB |=4,|AF |=2+√3,P 为Γ上一点,满足|P E |·|P F |=2,则△P EF 的面积为.8(2019A 卷10)在平面直角坐标系xOy 中,圆Ω与抛物线Γ:y 2=4x 恰有一个公共点,且圆Ω与x 轴相切于Γ的焦点F ,求圆Ω的半径.9(2019B 卷7)在平面直角坐标系中,若以(r +1,0)为圆心,r 为半径的圆上存在一点(a,b )满足b 2≥4a ,则r 的最小值为.10(2019B 卷9)在椭圆Γ中,F 为一个焦点,A ,B 为两个顶点,若|F A |=3,|F B |=2,求|AB |的所有可能值.11(2018A 卷4)在平面直角坐标系xOy 中,椭圆C :x 2a 2+y 2b2=1(a >b >0)的左右焦点分别是F 1,F 2,椭圆C 的弦ST 与UV 分别平行于x 轴与y 轴,且相交于点P .已知线段P U ,P S ,P V ,P T 的长分别为1,2,3,6,则△P F 1F 2的面积为.12(2018A卷11)在平面直角坐标系xOy中,设AB是抛物线y2=4x的过点F(1,0)的弦,△AOB 的外接圆交抛物线于点P(不同于点O,A,B).若P F平分∠AP B,求|P F|的所有可能值.13(2018B卷6)设抛物线C:y2=2x的准线与x轴交于点A,过点B(−1,0)作一条直线l与抛物线C相切于点K.过点A作l的平行线,与抛物线C交于点M,N,则△KMN的面积为.14(2018B卷11)如图所示,在平面直角坐标系xOy中,A,B与C,D分别是椭圆Γ:x2a2+y2b2=1(a>b>0)的左右顶点与上下顶点,设P,Q是Γ上且位于第一象限的两点,满足OQ∥AP,M是线段AP的中点,射线OM与椭圆交于点R.证明:线段OQ,OR,BC能构成一个直角三角形.15(2017A卷3)在平面直角坐标系xOy中,椭圆C的方程为x29+y210=1,F为C的上焦点,A为C的右顶点,P是C上位于第一象限内的动点,则四边形OAP F的面积的最大值为.16(2017B卷7)设a为非零实数,在平面直角坐标系xOy中,二次曲线x2+ay2+a2=0的焦距为4,则a的值为.17(2017B卷11)在平面直角坐标系xOy中,曲线C1:y2=4x,曲线C2:(x−4)2+y2=8,经过C1上一点P作一条倾斜角为45◦的直线l,与C2交于两个不同的点Q,R,求|P Q|·|P R|的取值范围.18(2016A卷7)双曲线C的方程为x2−y23=1,左右焦点分别为F1,F2,过点F2作直线与双曲线C的右半支交于点P,Q,使得∠F1P Q=90◦,则△F1P Q的内切圆半径为.19(2016A卷11)如图所示,在平面直角坐标系xOy中,F是x轴正半轴上的一个动点,以F为焦点,O为顶点作抛物线C,设P是第一象限内C上的一点,Q是x轴负半轴上一点,使得P Q为C的切线,且|P Q|=2.圆C1,C2均与直线OP相切于点P,且均与轴相切.求点F的坐标,使圆C1与C2的面积之和取到最小值.20(2016B卷2)设A={a|−1≤a≤2},则平面点集B={(x,y)|x,y∈A,x+y≥0}的面积为.21(2016B卷6)在平面直角坐标系xOy中,圆C1:x2+y2−a=0关于直线l对称的圆为C2: x2+y2+2x−2ay+3=0,则直线l的方程为.22(2016B卷11)值平面直角坐标系xOy中,双曲线C的方程为x2−y2=1.求符合以下要求的所有大于1的实数a:过点(a,0)任意作两条互相垂直的直线l1和l2,若l1与双曲线C交于P,Q两点,l2与C交于R,S 两点,则总有|P Q|=|RS|成立.。
2020届高考解析几何(2)汇编专题数学(文)试题Word版含解析

专题12 解析几何(2)解析几何大题:10年10考,每年1题.命题的特点:2011-2015年和2019年的载体都是圆,利用圆作为载体,更利于考查数形结合,圆承担的使命就是“形”,尽量不要对圆像椭圆一样运算,2016-2018年的载体连续3年都是抛物线,2010年的载体是椭圆.1.(2019年)已知点A,B关于坐标原点O对称,|AB|=4,⊙M过点A,B且与直线x+2=0相切.(1)若A在直线x+y=0上,求⊙M的半径;(2)是否存在定点P,使得当A运动时,|MA|﹣|MP|为定值?并说明理由.2.(2018年)设抛物线C:y2=2x,点A(2,0),B(﹣2,0),过点A的直线l与C交于M,N两点.(1)当l与x轴垂直时,求直线BM的方程;(2)证明:∠ABM=∠ABN.3.(2017年)设A,B为曲线C:y=24x上两点,A与B的横坐标之和为4.(1)求直线AB的斜率;(2)设M为曲线C上一点,C在M处的切线与直线AB平行,且AM⊥BM,求直线AB的方程.4.(2016年)在直角坐标系xOy中,直线l:y=t(t≠0)交y轴于点M,交抛物线C:y2=2px(p>0)于点P,M关于点P的对称点为N,连结ON并延长交C于点H.(1)求OH ON;(2)除H以外,直线MH与C是否有其它公共点?说明理由.5.(2015年)已知过点A (0,1)且斜率为k 的直线l 与圆C :(x ﹣2)2+(y ﹣3)2=1交于点M 、N 两点.(1)求k 的取值范围; (2)若OM ⋅ON u u u u r u u u r =12,其中O 为坐标原点,求|MN |.6.(2014年)已知点P (2,2),圆C :x 2+y 2﹣8y =0,过点P 的动直线l 与圆C 交于A ,B 两点,线段AB 的中点为M ,O 为坐标原点.(1)求M 的轨迹方程;(2)当|OP |=|OM |时,求l 的方程及△POM 的面积.7.(2013年)已知圆M :(x +1)2+y 2=1,圆N :(x ﹣1)2+y 2=9,动圆P 与圆M 外切并与圆N 内切,圆心P 的轨迹为曲线C .(1)求C 的方程;(2)l 是与圆P ,圆M 都相切的一条直线,l 与曲线C 交于A ,B 两点,当圆P 的半径最长时,求|AB |.8.(2012年)设抛物线C :x 2=2py (p >0)的焦点为F ,准线为l ,A ∈C ,已知以F 为圆心,FA 为半径的圆F 交l 于B ,D 两点.(1)若∠BFD =90°,△ABD 的面积为,求p 的值及圆F 的方程;(2)若A ,B ,F 三点在同一直线m 上,直线n 与m 平行,且n 与C 只有一个公共点,求坐标原点到m ,n 距离的比值.9.(2011年)在平面直角坐标系xOy中,曲线y=x2﹣6x+1与坐标轴的交点都在圆C上.(1)求圆C的方程;(2)若圆C与直线x﹣y+a=0交与A,B两点,且OA⊥OB,求a的值.10.(2010年)设F1,F2分别是椭圆E:x2+22yb=1(0<b<1)的左、右焦点,过F1的直线l与E相交于A、B两点,且|AF2|,|AB|,|BF2|成等差数列.(1)求|AB|;(2)若直线l的斜率为1,求b的值.专题12 解析几何(2)详细解析解析几何大题:10年10考,每年1题.命题的特点:2011-2015年和2019年的载体都是圆,利用圆作为载体,更利于考查数形结合,圆承担的使命就是“形”,尽量不要对圆像椭圆一样运算,2016-2018年的载体连续3年都是抛物线,2010年的载体是椭圆.1.(2019年)已知点A,B关于坐标原点O对称,|AB|=4,⊙M过点A,B且与直线x+2=0相切.(1)若A在直线x+y=0上,求⊙M的半径;(2)是否存在定点P,使得当A运动时,|MA|﹣|MP|为定值?并说明理由.【解析】(1)∵⊙M过点A,B且A在直线x+y=0上,∴点M在线段AB的中垂线x﹣y=0上,设⊙M的方程为:(x﹣a)2+(y﹣a)2=R2(R>0),则圆心M(a,a)到直线x+y=0的距离d,又|AB|=4,∴在Rt△OMB中,d2+(12|AB|)2=R2,即224R+=①又∵⊙M与x=﹣2相切,∴|a+2|=R②由①②解得R2a=⎧⎨=⎩或4R6a=⎧⎨=⎩,∴⊙M的半径为2或6;(2)∵线段AB为⊙M的一条弦O是弦AB的中点,∴圆心M在线段AB的中垂线上,设点M的坐标为(x,y),则|OM|2+|OA|2=|MA|2,∵⊙M与直线x+2=0相切,∴|MA|=|x+2|,∴|x+2|2=|OM|2+|OA|2=x2+y2+4,∴y2=4x,∴M的轨迹是以F(1,0)为焦点x=﹣1为准线的抛物线,∴|MA|﹣|MP|=|x+2|﹣|MP|=|x+1|﹣|MP|+1=|MF|﹣|MP|+1,∴当|MA|﹣|MP|为定值时,则点P与点F重合,即P的坐标为(1,0),∴存在定点P(1,0)使得当A运动时,|MA|﹣|MP|为定值.2.(2018年)设抛物线C:y2=2x,点A(2,0),B(﹣2,0),过点A的直线l与C交于M,N两点.(1)当l与x轴垂直时,求直线BM的方程;(2)证明:∠ABM=∠ABN.【解析】(1)当l与x轴垂直时,x=2,代入抛物线解得y=±2,∴M(2,2)或M(2,﹣2),直线BM的方程:y=12x+1,或:y=﹣12x﹣1.(2)证明:设直线l的方程为l:x=ty+2,M(x1,y1),N(x2,y2),联立直线l与抛物线方程得222y xx ty⎧=⎨=+⎩,消x得y2﹣2ty﹣4=0,即y1+y2=2t,y1y2=﹣4,则有k BN+k BM=112y x++222yx+=()()()222112121222222y yy y y yx x⎛⎫⨯+⨯++⎪⎝⎭++=()()()1212122222y yy yx x⎛⎫++⎪⎝⎭++=0,∴直线BN与BM的倾斜角互补,∴∠ABM=∠ABN.3.(2017年)设A,B为曲线C:y=24x上两点,A与B的横坐标之和为4.(1)求直线AB的斜率;(2)设M为曲线C上一点,C在M处的切线与直线AB平行,且AM⊥BM,求直线AB的方程.【解析】(1)设A(x1,214x),B(x2,224x)为曲线C:y=24x上两点,则直线AB的斜率为k=22121244x xx x--=14(x1+x2)=14×4=1;(2)设直线AB的方程为y=x+t,代入曲线C:y=24x,可得x2﹣4x﹣4t=0,即有x1+x2=4,x1x2=﹣4t,再由y=24x的导数为y′=12x,设M(m,24m),可得M处切线的斜率为12m,由C在M处的切线与直线AB平行,可得12m=1,解得m=2,即M(2,1),由AM⊥BM可得,k AM•k BM=﹣1,即为221212114422x xx x--⋅--=﹣1,化为x1x2+2(x1+x2)+20=0,即为﹣4t+8+20=0,解得t =7.则直线AB 的方程为y =x +7.4.(2016年)在直角坐标系xOy 中,直线l :y =t (t ≠0)交y 轴于点M ,交抛物线C :y 2=2px (p >0)于点P ,M 关于点P 的对称点为N ,连结ON 并延长交C 于点H .(1)求OHON ;(2)除H 以外,直线MH 与C 是否有其它公共点?说明理由.【解析】(1)将直线l 与抛物线方程联立,解得P (22t p,t ), ∵M 关于点P 的对称点为N , ∴2x x N M +=22t p ,2y y N M +=t , ∴N (2t p,t ), ∴ON 的方程为y =p tx , 与抛物线方程联立,解得H (22t p,2t ) ∴OHON =y y HN =2;(2)由(1)知k MH =2p t, ∴直线MH 的方程为y =2p t x +t ,与抛物线方程联立,消去x 可得y 2﹣4ty +4t 2=0, ∴△=16t 2﹣4×4t 2=0,∴直线MH 与C 除点H 外没有其它公共点.5.(2015年)已知过点A (0,1)且斜率为k 的直线l 与圆C :(x ﹣2)2+(y ﹣3)2=1交于点M 、N 两点.(1)求k 的取值范围; (2)若OM ⋅ON u u u u r u u u r =12,其中O 为坐标原点,求|MN |.【解析】(1)由题意可得,直线l 的斜率存在,设过点A (0,1)的直线方程为y =kx +1,即kx ﹣y +1=0.由已知可得圆C 的圆心C 的坐标(2,3),半径R =1.1,kA (0,1)的直线与圆C :(x ﹣2)2+(y ﹣3)2=1相交于M ,N 两点. (2)设M (x 1,y 1);N (x 2,y 2),由题意可得,经过点M 、N 、A 的直线方程为y =kx +1,代入圆C 的方程(x ﹣2)2+(y ﹣3)2=1, 可得 (1+k 2)x 2﹣4(k +1)x +7=0, ∴x 1+x 2=()2411k k ++,x 1•x 2=271k +, ∴y 1•y 2=(kx 1+1)(kx 2+1)=k 2x 1x 2+k (x 1+x 2)+1=271k +•k 2+k •()2411k k +++1=2212411k k k +++, 由OM ⋅ON u u u u r u u u r =x 1•x 2+y 1•y 2=2212481k k k+++=12,解得 k =1, 故直线l 的方程为 y =x +1,即 x ﹣y +1=0.圆心C 在直线l 上,MN 长即为圆的直径.所以|MN |=2.6.(2014年)已知点P (2,2),圆C :x 2+y 2﹣8y =0,过点P 的动直线l 与圆C 交于A ,B 两点,线段AB 的中点为M ,O 为坐标原点.(1)求M 的轨迹方程;(2)当|OP |=|OM |时,求l 的方程及△POM 的面积.【解析】(1)由圆C :x 2+y 2﹣8y =0,得x 2+(y ﹣4)2=16,∴圆C 的圆心坐标为(0,4),半径为4. 设M (x ,y ),则()C ,4x y M =-u u u u r ,()2,2x y MP =--u u u r .由题意可得:C 0M ⋅MP =u u u u r u u u r .即x (2﹣x )+(y ﹣4)(2﹣y )=0.整理得:(x ﹣1)2+(y ﹣3)2=2.∴M 的轨迹方程是(x ﹣1)2+(y ﹣3)2=2.(2)由(1)知M 的轨迹是以点N (1,3由于|OP |=|OM |,故O 在线段PM 的垂直平分线上,又P 在圆N 上,从而ON ⊥PM .∵k ON =3,∴直线l 的斜率为﹣13. ∴直线PM 的方程为()1223y x -=--,即x +3y ﹣8=0. 则O 到直线l= 又N 到l5= ∴|PM |=5=.∴1162555S ∆POM =⨯=. 7.(2013年)已知圆M :(x +1)2+y 2=1,圆N :(x ﹣1)2+y 2=9,动圆P 与圆M 外切并与圆N 内切,圆心P的轨迹为曲线C .(1)求C 的方程;(2)l 是与圆P ,圆M 都相切的一条直线,l 与曲线C 交于A ,B 两点,当圆P 的半径最长时,求|AB |.【解析】(1)由圆M :(x +1)2+y 2=1,可知圆心M (﹣1,0);圆N :(x ﹣1)2+y 2=9,圆心N (1,0),半径3.设动圆的半径为R ,∵动圆P 与圆M 外切并与圆N 内切,∴|PM |+|PN |=R +1+(3﹣R )=4,而|NM |=2,由椭圆的定义可知:动点P 的轨迹是以M ,N 为焦点,4为长轴长的椭圆,∴a =2,c =1,b 2=a 2﹣c 2=3. ∴曲线C 的方程为22143x y +=(x ≠﹣2).(2)设曲线C 上任意一点P (x ,y ),由于|PM |﹣|PN |=2R ﹣2≤3﹣1=2,所以R ≤2,当且仅当⊙P 的圆心为(2,0),R =2时,其半径最大,其方程为(x ﹣2)2+y 2=4.①l 的倾斜角为90°,则l 与y 轴重合,可得|AB |=②若l 的倾斜角不为90°,由于⊙M 的半径1≠R ,可知l 与x 轴不平行,设l 与x 轴的交点为Q ,则1Q R Q r P =M ,可得Q (﹣4,0),所以可设l :y =k (x +4), 由l 于M1=,解得4k =±.当4k =时,联立224143y x x y ⎧=⎪⎪⎨⎪+=⎪⎩,得到7x 2+8x ﹣8=0. ∴1287x x +=-,1287x x =-. ∴|AB |21x -187=,由于对称性可知:当k =|AB |=187. 综上可知:|AB |=187. 8.(2012年)设抛物线C :x 2=2py (p >0)的焦点为F ,准线为l ,A ∈C ,已知以F 为圆心,FA 为半径的圆F 交l 于B ,D 两点.(1)若∠BFD =90°,△ABD的面积为,求p 的值及圆F 的方程;(2)若A ,B ,F 三点在同一直线m 上,直线n 与m 平行,且n 与C 只有一个公共点,求坐标原点到m ,n 距离的比值.【解析】(1)由对称性知:△BFD 是等腰直角△,斜边|BD |=2p点A 到准线l的距离F F d =A =B =,∵△ABD 的面积S △ABD=∴11D 222d p ⨯B ⨯=⨯= 解得p =2,所以F 坐标为(0,1), ∴圆F 的方程为x 2+(y ﹣1)2=8.(2)由题设200,2x x p ⎛⎫A ⎪⎝⎭(00x >),则F 0,2p ⎛⎫ ⎪⎝⎭, ∵A ,B ,F 三点在同一直线m 上,又AB 为圆F 的直径,故A ,B 关于点F 对称.由点A ,B 关于点F 对称得:200,2x x p p ⎛⎫B -- ⎪⎝⎭2022x p p p ⇒-=-2203x p ⇒=,得:3,2p ⎫A ⎪⎭,直线m:32p p p y x -=+02x ⇒+=, 22x py =22x y p ⇒=3x y p '⇒==x ⇒=⇒切点,36p ⎛⎫P ⎪ ⎪⎝⎭, 直线n:6p y x -=⎝⎭06x p ⇒-=, 坐标原点到m ,n3=. 9.(2011年)在平面直角坐标系xOy 中,曲线y =x 2﹣6x +1与坐标轴的交点都在圆C 上.(1)求圆C 的方程;(2)若圆C 与直线x ﹣y +a =0交与A ,B 两点,且OA ⊥OB ,求a 的值.【解析】(1)法一:曲线y =x 2﹣6x +1与y 轴的交点为(0,1),与x 轴的交点为(,0),(3﹣,0).可知圆心在直线x =3上,故可设该圆的圆心C 为(3,t ),则有32+(t ﹣1)2=()2+t 2,解得t =1,故圆C3=,所以圆C 的方程为(x ﹣3)2+(y ﹣1)2=9. 法二:圆x 2+y 2+Dx +Ey +F =0, x =0,y =1有1+E +F =0,y =0,x 2 ﹣6x +1=0与x 2+Dx +F =0是同一方程,故有D =﹣6,F =1,E =﹣2,即圆方程为x 2+y 2﹣6x ﹣2y +1=0.(2)设A (x 1,y 1),B (x 2,y 2),其坐标满足方程组()()220319x y a x y -+=⎧⎪⎨-+-=⎪⎩,消去y ,得到方程2x 2+(2a ﹣8)x +a 2﹣2a +1=0,由已知可得判别式△=56﹣16a ﹣4a 2>0. 在此条件下利用根与系数的关系得到x 1+x 2=4﹣a ,x 1x 2=2212a a -+①, 由于OA ⊥OB 可得x 1x 2+y 1y 2=0,又y 1=x 1+a ,y 2=x 2+a ,所以可得2x 1x 2+a (x 1+x 2)+a 2=0② 由①②可得a =﹣1,满足△=56﹣16a ﹣4a 2>0.故a =﹣1. 10.(2010年)设F 1,F 2分别是椭圆E :x 2+22y b =1(0<b <1)的左、右焦点,过F 1的直线l 与E 相交于A 、B 两点,且|AF 2|,|AB |,|BF 2|成等差数列.(1)求|AB |;(2)若直线l 的斜率为1,求b 的值.【解析】(1)由椭圆定义知|AF 2|+|AB |+|BF 2|=4,又2|AB |=|AF 2|+|BF 2|,得43AB =. (2)l 的方程式为y =x +c,其中c =设A (x 1,y 1),B (x 2,y 2),则A ,B 两点坐标满足方程组2221y x c y x b =+⎧⎪⎨+=⎪⎩,化简得(1+b 2)x 2+2cx +1﹣2b 2=0. 则12221c x x b-+=+,2122121b x x b -=+. 因为直线AB 的斜率为1,所以21x AB =-,即2143x =-. 则()()()()()2242121222222414128849111b b b x x x x b b b --=+-=-=+++.解得2b =.。
2020年高考文科数学分类汇编:专题九解析几何

《2018年高考文科数学分类汇编》第九篇:解析几何一、选择题1.【2018全国一卷4】已知椭圆C :22214x y a +=的一个焦点为(20),,则C 的离心率为A .13B .12C D2.【2018全国二卷6】双曲线22221(0,0)x y a b a b-=>>A .y =B .y =C .y =D .y = 3.【2018全国二11】已知1F ,2F 是椭圆C 的两个焦点,P 是C 上的一点,若12PF PF ⊥,且2160PF F ∠=︒,则C 的离心率为A .1B .2CD 14.【2018全国三卷8】直线20x y ++=分别与x 轴,y 轴交于A ,B 两点,点P 在圆()2222x y -+=上,则ABP △面积的取值范围是A .[]26,B .[]48,C .D .⎡⎣5.【2018全国三卷10】已知双曲线22221(00)x y C a b a b-=>>:,,则点(4,0)到C 的渐近线的距离为AB .2C .2D .6.【2018天津卷7】已知双曲线22221(0,0)x y a b a b-=>>的离心率为2,过右焦点且垂直于x 轴的直线与双曲线交于A ,B 两点. 设A ,B 到双曲线的同一条渐近线的距离分别为1d和2d ,且126d d +=,则双曲线的方程为A221412x y -=B221124x y -= C22139x y -=D 22193x y -= 7.【2018浙江卷2】双曲线221 3=x y -的焦点坐标是A .(−2,0),(2,0)B .(−2,0),(2,0)C .(0,−2),(0,2)D .(0,−2),(0,2)8.【2018上海卷13】设P 是椭圆 ²5x + ²3y =1上的动点,则P 到该椭圆的两个焦点的距离之和为( )A.2B.2C.2D.4二、填空题1.【2018全国一卷15】直线1y x =+与圆22230x y y ++-=交于A B ,两点,则AB =________.2.【2018北京卷10】已知直线l 过点(1,0)且垂直于x 轴,若l 被抛物线24y ax =截得的线段长为4,则抛物线的焦点坐标为_________.3.【2018北京卷12】若双曲线2221(0)4x y a a -=>的离心率为52,则a =_________. 4.【2018天津卷12】在平面直角坐标系中,经过三点(0,0),(1,1),(2,0)的圆的方程为__________.5.【2018江苏卷8】在平面直角坐标系xOy 中,若双曲线22221(0,0)x y a b a b-=>>的右焦点(,0)F c ,则其离心率的值是 . 6.【2018江苏卷12】在平面直角坐标系xOy 中,A 为直线:2l y x =上在第一象限内的点,(5,0)B ,以AB 为直径的圆C 与直线l 交于另一点D .若0AB CD ⋅=u u u r u u u r,则点A 的横坐标为 .7.【2018浙江卷17】已知点P (0,1),椭圆24x +y 2=m (m >1)上两点A ,B 满足AP u u u u r =2PB u u u u r ,则当m =___________时,点B 横坐标的绝对值最大.8.【2018上海卷2】2.双曲线2214x y -=的渐近线方程为 . 9.【2018上海卷12】已知实数x ₁、x ₂、y ₁、y ₂满足:²²1x y +=₁₁,²²1x y +=₂₂,212x x y y +=₁₂₁,的最大值为__________ 三、解答题1.【2018全国一卷20】设抛物线22C y x =:,点()20A ,,()20B -,,过点A 的直线l 与C交于M ,N 两点.(1)当l 与x 轴垂直时,求直线BM 的方程; (2)证明:ABM ABN =∠∠.2.【2018全国二卷20】设抛物线24C y x =:的焦点为F ,过F 且斜率为(0)k k >的直线l 与C 交于A ,B 两点,||8AB =.(1)求l 的方程;(2)求过点A ,B 且与C 的准线相切的圆的方程.3.【2018全国三卷20】已知斜率为k 的直线l 与椭圆22143x y C +=:交于A ,B 两点.线段AB 的中点为(1,)(0)M m m >.(1)证明:12k <-; (2)设F 为C 的右焦点,P 为C 上一点,且FP FA FB ++=0u u u r u u u r u u u r.证明:2||||||FP FA FB =+u u u r u u u r u u u r .4.【2018北京卷20】已知椭圆2222:1(0)x y M a b a b +=>>的离心率为3,焦距为.斜率为k 的直线l 与椭圆M 有两个不同的交点A ,B .(Ⅰ)求椭圆M 的方程;(Ⅱ)若1k =,求||AB 的最大值;(Ⅲ)设(2,0)P -,直线PA 与椭圆M 的另一个交点为C ,直线PB 与椭圆M 的另一个交点为D .若C ,D 和点71(,)44Q -共线,求k .5.【2018天津卷19】设椭圆22221(0)x y a b a b+=>>的右顶点为A ,上顶点为B .已知椭圆的离心率为3,||AB = (I )求椭圆的方程;(II )设直线:(0)l y kx k =<与椭圆交于,P Q 两点,l 与直线AB 交于点M ,且点P ,M 均在第四象限.若BPM △的面积是BPQ △面积的2倍,求k 的值.6.【2018江苏卷18】如图,在平面直角坐标系xOy 中,椭圆C 过点1)2,焦点12(F F ,圆O 的直径为12F F .(1)求椭圆C 及圆O 的方程;(2)设直线l 与圆O 相切于第一象限内的点P .①若直线l 与椭圆C 有且只有一个公共点,求点P 的坐标;②直线l 与椭圆C 交于,A B 两点.若OAB △的面积为26,求直线l 的方程. 7.【2018浙江卷21】如图,已知点P 是y 轴左侧(不含y 轴)一点,抛物线C :y 2=4x 上存在不同的两点A ,B 满足PA ,PB 的中点均在C 上. (Ⅰ)设AB 中点为M ,证明:PM 垂直于y 轴;(Ⅱ)若P 是半椭圆x 2+24y =1(x <0)上的动点,求△P AB 面积的取值范围. 8.【2018上海卷20】(本题满分16分,第1小题满分4分,第2小题满分6分,第2小题满分6分,第3小题满分6分)设常数t >2,在平面直角坐标系xOy 中,已知点F (2,0),直线l :x=t ,曲线τ:²8y x =00x t y (≦≦,≧),l 与x 轴交于点A ,与τ交于点B ,P 、Q 分别是曲线τ与线段AB 上的动点.(1)用t 为表示点B 到点F 的距离;(2)设t =3,2FQ =∣∣,线段OQ 的中点在直线FP 上,求△AQP 的面积; (3)设t =8,是否存在以FP 、FQ 为邻边的矩形FPEQ ,使得点E 在τ上?若存在,求点P 的坐标;若不存在,说明理由. 参考答案 一、选择题1.C2.A3.D4.A5.D6.C7.B8.C 二、填空题1. 222.)0,1(3.44.0222=-+x y x 5.2 6.3 7.58.x y 21±= 9.32+三、解答题1.解:(1)当l 与x 轴垂直时,l 的方程为x =2,可得M 的坐标为(2,2)或(2,–2).所以直线BM 的方程为y =112x +或112y x =--.(2)当l 与x 轴垂直时,AB 为MN 的垂直平分线,所以∠ABM =∠ABN .当l 与x 轴不垂直时,设l 的方程为(2)(0)y k x k =-≠,M (x 1,y 1),N (x 2,y 2),则x 1>0,x 2>0.由2(2)2y k x y x=-⎧⎨=⎩,得ky 2–2y –4k =0,可知y 1+y 2=2k ,y 1y 2=–4.直线BM ,BN 的斜率之和为 1221121212122()22(2)(2)BM BN y y x y x y y y k k x x x x ++++=+=++++.① 将112y x k =+,222yx k=+及y 1+y 2,y 1y 2的表达式代入①式分子,可得 121221121224()882()0y y k y y x y x y y y k k++-++++===.所以k BM +k BN =0,可知BM ,BN 的倾斜角互补,所以∠ABM +∠ABN . 综上,∠ABM =∠ABN .2.解:(1)由题意得F (1,0),l 的方程为y =k (x –1)(k >0).设A (x 1,y 1),B (x 2,y 2).由2(1)4y k x y x=-⎧⎨=⎩得2222(24)0k x k x k -++=. 216160k ∆=+=,故212224k x x k ++=. 所以212244(1)(1)k AB AF BF x x k +=+=+++=.由题设知22448k k +=,解得k =–1(舍去),k =1.因此l 的方程为y =x –1.(2)由(1)得AB 的中点坐标为(3,2),所以AB 的垂直平分线方程为 2(3)y x -=--,即5y x =-+.设所求圆的圆心坐标为(x 0,y 0),则00220005(1)(1)16.2y x y x x =-+⎧⎪⎨-++=+⎪⎩,解得0032x y =⎧⎨=⎩,或00116.x y =⎧⎨=-⎩, 因此所求圆的方程为22(3)(2)16x y -+-=或22(11)(6)144x y -++=.3.解:(1)设11()A x y ,,22()B x y ,,则2211143x y +=,2222143x y +=.两式相减,并由1212=y y k x x --得1212043x x y y k +++⋅=. 由题设知1212x x +=,122y y m +=,于是34k m=-. 由题设得302m <<,故12k <-. (2)由题意得F (1,0).设33()P x y ,,则331122(1)(1)(1)(00)x y x y x y -+-+-=,,,,.由(1)及题设得3123()1x x x =-+=,312()20y y y m =-+=-<.又点P 在C 上,所以34m =,从而3(1)2P -,23=.于是1||22x FA ==-uu r .同理2||=22x FB -uu r .所以1214()32FA FB x x +=-+=uu r uu r .故2||=||+||FP FA FB uu r uu r uu r .4.解:(Ⅰ)由题意得2c =,所以c =又c e a ==,所以a =2221b a c =-=, 所以椭圆M 的标准方程为2213x y +=.(Ⅱ)设直线AB 的方程为y x m =+,由2213y x m x y =+⎧⎪⎨+=⎪⎩消去y 可得2246330x mx m ++-=, 则2223644(33)48120m m m ∆=-⨯-=->,即24m <,设11(,)A x y ,22(,)B x y ,则1232m x x +=-,212334m x x -=,则12|||AB x x =-==易得当20m =时,max ||AB ,故||AB. (Ⅲ)设11(,)A x y ,22(,)B x y ,33(,)C x y ,44(,)D x y ,则221133x y += ①,222233x y += ②,又(2,0)P -,所以可设1112PA y k k x ==+,直线PA 的方程为1(2)y k x =+, 由122(2)13y k x x y =+⎧⎪⎨+=⎪⎩消去y 可得2222111(13)121230k x k x k +++-=, 则2113211213k x x k +=-+,即2131211213k x x k =--+,学科*网 又1112y k x =+,代入①式可得13171247x x x --=+,所以13147y y x =+, 所以1111712(,)4747x y C x x --++,同理可得2222712(,)4747x y D x x --++.故3371(,)44QC x y =+-u u u r ,4471(,)44QD x y =+-u u u r ,因为,,Q C D 三点共线,所以34437171()()()()04444x y x y +--+-=,将点,C D 的坐标代入化简可得12121y y x x -=-,即1k =. 5. 解:(I )设椭圆的焦距为2c ,由已知得2259c a =,又由222a b c =+,可得23a b =.由||AB ==,从而3,2a b ==.所以,椭圆的方程为22194x y +=. (II )设点P 的坐标为11(,)x y ,点M 的坐标为22(,)x y ,由题意,210x x >>,点Q 的坐标为11(,)x y --.由BPM △的面积是BPQ △面积的2倍,可得||=2||PM PQ ,从而21112[()]x x x x -=--,即215x x =.易知直线AB 的方程为236x y +=,由方程组236,,x y y kx +=⎧⎨=⎩消去y ,可得2632x k =+.由方程组221,94,x y y kx ⎧+⎪=⎨⎪=⎩消去y ,可得1294x k =+. 由215x x =,可得2945(32)k k +=+,两边平方,整理得2182580k k ++=,解得89k =-,或12k =-.当89k =-时,290x =-<,不合题意,舍去;当12k =-时,212x =,1125x =,符合题意. 所以,k 的值为12-. 6.解:(1)因为椭圆C 的焦点为12() 3,0,(3,0)F F -,可设椭圆C 的方程为22221(0)x y a b a b +=>>.又点1(3,)2在椭圆C 上,所以2222311,43,a ba b ⎧+=⎪⎨⎪-=⎩,解得224,1,a b ⎧=⎪⎨=⎪⎩ 因此,椭圆C 的方程为2214x y +=.因为圆O 的直径为12F F ,所以其方程为223x y +=.(2)①设直线l 与圆O 相切于0000(),,(00)P x y x y >>,则22003x y +=, 所以直线l 的方程为0000()x y x x y y =--+,即0003x y x y y =-+.由220001,43,x y x y x y y ⎧+=⎪⎪⎨⎪=-+⎪⎩消去y ,得222200004243640()x y x x x y +-+-=.(*)因为直线l 与椭圆C 有且只有一个公共点,所以222222000000()()(24)(44364820)4x x y y y x ∆=--+-=-=. 因为00,0x y >,所以002,1x y ==.因此,点P 的坐标为(2,1).②因为三角形OAB 的面积为26, 所以21 26AB OP ⋅=,从而42AB =. 设1122,,()(),A x y B x y ,由(*)得22000001,22448(2)x y x x ±-=,所以2222121()()x B y y x A =-+-222000222200048(2)(1)(4)x y x y x y -=+⋅+. 因为22003x y +=,所以22022016(2)32(1)49x AB x -==+,即42002451000x x -+=, 解得22005(202x x ==舍去),则2012y =,因此P 的坐标为102(,). 综上,直线l 的方程为532y x =-+.7.解:(Ⅰ)设00(,)P x y ,2111(,)4A y y ,2221(,)4B y y .因为PA ,PB 的中点在抛物线上,所以1y ,2y 为方程202014()422y x y y ++=⋅即22000280y y y x y -+-=的两个不同的实数根. 所以1202y y y +=.因此,PM 垂直于y 轴.(Ⅱ)由(Ⅰ)可知120212002,8,y y y y y x y +=⎧⎪⎨=-⎪⎩ 所以2221200013||()384PM y y x y x =+-=-,12||y y -= 因此,PAB △的面积32212001||||4)24PABS PM y y y x =⋅-=-△. 因为220001(0)4y x x +=<,所以2200004444[4,5]y x x x -=--+∈. 因此,PAB △面积的取值范围是4. 8.解:(1)由抛物线的性质可知,抛物线x y 82=的准线为2-=x ,抛物线上的点B 到焦点)0,2(F 的距离等于点B 到准线2-=x 的距离,由题意知,点B 的横坐标为t ,则2+=t BF 。
2020年高考试题分类汇编(解析几何)

2020年高考试题分类汇编(解析几何)年高考试题分类汇编(解析几何)考点1直线、圆1.1.((20202020·北京卷)已知半径为·北京卷)已知半径为1的圆经过点(3,4),则其圆心到原点的距离的最小值为小值为A .4B .5C .6D .7 1.1.((20202020·全国卷Ⅰ·理科)已知·全国卷Ⅰ·理科)已知M :222220x y x y +---=,直线l :220x y ++=.P 为直线l 上的动点,过P 作M 的切线PA ,PB ,切点为A ,B ,当PM AB ⋅最小时,直线AB 的方程为的方程为A .210x y --=B .210x y +-=C .210x y -+=D .210x y ++= 1.1.((20202020·全国卷Ⅰ·文科)已知圆·全国卷Ⅰ·文科)已知圆2260x y x +-=,过点(1,2)的直线被圆所截得的弦的长度最小值为得的弦的长度最小值为A .1B .2C .3D .4 1.1.((20202020·全国卷Ⅱ·文理科)若过点·全国卷Ⅱ·文理科)若过点(2,1)的圆与两坐标轴都相切,则圆心到直线230x y --=的距离为的距离为 A .55B .255C .355D .4551.(20202020·全国卷Ⅲ·理科)·全国卷Ⅲ·理科)若直线l 与y x =和圆2215x y +=都相切,则l 的方程为程为A .21y x =+B .122y x =+ C .112y x =+ D .1122y x =+考点2椭圆1.1.((20202020·北京卷)已知椭圆·北京卷)已知椭圆C :22221x y a b+=过点(2,1)A --,且2a b =.(Ⅰ)求椭圆C 的方程:的方程:(Ⅱ)过点(4,0)B -的直线l 交椭圆C 于点M ,N ,直线MA ,NA 分别交直线4x =-于点P ,Q .求PB BQ的值.的值.1.1.((20202020·海南卷)已知椭圆·海南卷)已知椭圆C :22221x ya b+=(0a b >>)的过点(2,3)M ,A 为其左顶点,且AM 的斜率为12. (Ⅰ)求C 的方程:的方程:(Ⅱ)点N 为椭圆上任意一点,求AMN ∆的面积的最大值的面积的最大值. .1.1.((20202020·全国卷Ⅰ·文理科)已知·全国卷Ⅰ·文理科)已知A ,B 分别为椭圆E :2221x y a+=(1a >)的左、右顶点,G 为E 的上顶点,8AG GB ⋅=P 为直线6x =上的动点,PA 与E 的另一个交点为C ,PB 与E 的另一个交点为D . (Ⅰ)求E 的方程;的方程;(Ⅱ)证明:直线CD 过定点过定点. .1.1.((20202020·全国卷Ⅱ·理科)已知椭圆·全国卷Ⅱ·理科)已知椭圆1C :22221x y a b+=(0a b >>)的右焦点为F 与抛物线2C 的焦点重合,1C 的中心与2C 的顶点重合,过F 且与x 轴垂直的直线交1C 于A ,B 两点,交2C 于C ,D 两点,且43CD AB =. (Ⅰ)求1C 的离心率;的离心率;(Ⅱ)设M 是1C 与2C 的公共点,若5MF =,求1C 与2C 的标准方程的标准方程. . 1.1.((20202020·全国卷Ⅱ·文科)已知椭圆·全国卷Ⅱ·文科)已知椭圆1C :22221x y a b+=(0a b >>)的由焦点为F 与抛物线2C 的焦点重合,1C 的中心与2C 的顶点重合,过F 且与x 轴垂直的直线交1C 于A ,B 两点,交2C 于C ,D 两点,且43CD AB =.(Ⅰ)求1C 的离心率;的离心率;(Ⅱ)若1C 的四个顶点到2C 的准线的距离之和为12,求1C 与2C 的标准方程的标准方程. . 1.1.((20202020·全国卷Ⅲ·理科)已知椭圆·全国卷Ⅲ·理科)已知椭圆C :222125x y m +=(05m <<)的离心率为154,A ,B 分别为C 的左、右顶点的左、右顶点. .(Ⅰ)求C 的方程;的方程;(Ⅱ)若点P 在C 上,点Q 在直线6x =上,且BP BQ =,BP BQ ⊥,求APQ ∆的面积的面积. .考点3 抛物线1.1.((20202020·北京卷)设抛物线的顶点为·北京卷)设抛物线的顶点为O ,焦点为F ,准线为l .P 是抛物线上异于O 的一点,过P 作PQ l ⊥于Q ,则线段FQ 的垂直平分线的垂直平分线 A.A.经过点经过点O B.经过点P C.C.平行于直线平行于直线OP D.垂直于直线OP 1.1.((20202020·海南卷)斜率为·海南卷)斜率为3的直线过抛物线C :24y x =的焦点,且与C 交于A ,B 两点,则AB = .1.1.((20202020·全国卷Ⅰ·理科)已知·全国卷Ⅰ·理科)已知A 为抛物线C :22y px =(0p >)上的一点,点A 到C 的焦点的距离为12,到y 轴的距离为9,则p =A .2B .3C .6D .9 1.1.((20202020·全国卷Ⅲ·理科)设·全国卷Ⅲ·理科)设O 为坐标原点,直线2x =与抛物C :22y px =(0p >)交于D ,E 两点,若OD OE ⊥,则C 的焦点坐标为的焦点坐标为A .1(,0)4B .1(,0)2 C .(1,0) D .(2,0)考点4 双曲线1.(20202020·北京卷)·北京卷)已知双曲线C :22163x y -=,则C 的右焦点的坐标为的右焦点的坐标为 ;C 的焦点到其渐近线的距离是的焦点到其渐近线的距离是 . .1.1.((20202020·海南卷)已知曲线·海南卷)已知曲线C :221mx ny += A .若0m n >>,则C 是椭圆,其焦点在y 轴上轴上 B .若0m n =>,则C 是圆,其半径为nC .若0mn <,则C 是双曲线,其渐近线方程为m y x n =±-D .若0m =,0n >,则C 是两条直线是两条直线1.1.((20202020·全国卷Ⅰ·理科)已知·全国卷Ⅰ·理科)已知F 为双曲线C :22221x y a b -=(0a >,0b >)的右焦点,A 为C 的右顶点,B 为C 上的点,且BF 垂直于x 轴,若AB 的斜率为3,则C 的离心率为的离心率为 . .1.1.((20202020·全国卷Ⅰ·文科)设·全国卷Ⅰ·文科)设1F ,2F 为双曲线C :2213y x -=的两个焦点,O为坐标原点,点P 在C 上且2OP =,则12PF F ∆的面积为的面积为A .72B .3C .52D .2 1.1.((20202020·全国卷Ⅱ·文理科)设·全国卷Ⅱ·文理科)设O 为坐标原点,直线x a =与双曲线C :22221x y a b-=(0a >,0b >)的两条渐近线分别交于D ,E 两点,若ODE ∆的面积为8,则C 的焦距的最小值为的焦距的最小值为A .4B .8C .16D .32 1.1.((20202020·全国卷Ⅲ·理科)设双曲线·全国卷Ⅲ·理科)设双曲线C :22221x y a b-=(0a >,0b >)的左、右焦点为1F ,2F ,离心率为5,P 是C 上一点,且12F P F P ⊥,若12PF F ∆的面积为4,则a =A .1B .2C .4D .8。
解析几何(2020高考)

解析几何(2020高考)1.如图,在平面直角坐标系中,已知椭圆C :22221x y a b+=(a >b >0)的短轴长为2,F 1,F 2分别是椭圆C 的左、右焦点,过点F 2的动直线与椭圆交于点P ,Q ,过点F 2与PQ 垂直的直线与椭圆C 交于A 、B 两点.当直线AB 过原点时,PF 1=3PF 2.(1)求椭圆的标准方程;(2)若点H(3,0),记直线PH ,QH ,AH ,BH 的斜率依次为1k ,2k ,3k ,4k .①若12215k k +=,求直线PQ 的斜率;②求1234()()k k k k ++的最小值.(第18题)2.在平面直角坐标系xOy 中,已知椭圆221:195y x C +=与22221(06)36y x C b b +=<<: 的离心率相等.椭圆1C 的右焦点为F ,过点F 的直线与椭圆1C 交于A B ,两点,射线OB 与椭圆2C 交于点C .椭圆2C 的右顶点为D .(1)求椭圆2C 的标准方程; (2)若ABO △求直线AB 的方程;(3)若2AF BF =,求证:四边形AOCD是平行四边形.3.4.如图,在平面直角坐标系xOy 中,椭圆2222:1(0)x y E a b a b+=>>的右准线为直线4x =,左顶点为A ,右焦点为F . 已知斜率为2的直线l 经过点F ,与椭圆E 相交于,B C 两点,且O 到直线l 的距离为255.(1) 求椭圆E 的标准方程;(2) 若过O 的直线:m y kx =与直线,AB AC 分别相交于,M N 两点,且OM ON =,求k 的值.5.在平面直角坐标系xOy中,椭圆C:22221x ya b+=(a>b>0)左、右焦点分别为F1,F2,离心率为2,两准线间距离为8,圆O的直径为F1F2,直线l与圆O相切于第四象限点T,与y轴交于M点,与椭圆C交于点N(N点在T点上方),且OM=ON.(1)求椭圆C的标准方程;(2)求直线l的方程;(3)求直线l上满足到F1,F2距离之和为的所有点的坐标.参考解答1.解:(1)因为椭圆C :22221x y a b+=(a >b >0)的短轴长为2,所以b =1,当直线AB 过原点时,PQ ⊥x 轴,所以△PF 1F 2为直角三角形, 由定义知PF 1+PF 2=2a ,而PF 1=3PF 2,故132PF a =,212PF a =, 由2221212PF PF F F =+得2222291144(1)444a a c a a =+=+-,化简得a 2=2, 故椭圆的方程为2212x y +=. (2)①设直线PQ :(1)y k x =-,代入到椭圆方程得:2222(12)4(22)0k x k x k +-+-=, 设P(1x ,1y ),Q(2x ,2y ),则2122412k x x k +=+,21222212k x x k-=+, 所以121221121212[(1)(3)(1)(3)]33(3)(3)y y k x x x x k k x x x x --+--+=+=----, 化简可得122228715k k k k +==+, 解得:1k =或78k =,即为直线PQ 的斜率.②当这两条直线中有一条与坐标轴垂直时,1234()()0k k k k ++=, 当两条直线与坐标轴都不垂直时, 由①知122287k k k k +=+,同理可得342287kk k k-+=+ 故21234422244()()1565611356()113k k k k k k k k k--++==++++4225≥=-, 当且仅当221k k =即k =±1时取等号.综上,1234()()k k k k ++的最小值为4225-. 2.3.4.(1) 设椭圆E 的焦距为2c ,则直线l 的方程为2()y x c =-,即220x y c --=. 因为O 到直线l 25,222002521c d ⨯--==+255=,则1c =. ………………….3分 因为椭圆E 的右准线的为直线4x =,则24a c =,所以24a =,2223b a c =-=,故椭圆E 的标准方程为22143x y +=. ………………….4分(2) 由(1)知l :2(1)y x =-,设11(,)B x y ,22(,)C x y .由222(1),3412y x x y =-⎧⎨+=⎩得2193240x x -+=,则212123241940,32,194.19x x x x ⎧⎪∆=-⨯⨯>⎪⎪+=⎨⎪⎪=⎪⎩………….6分 由(2,0)A -,11(,)B x y 可知11:(2)2y AB y x x =++, 由11,(2)2y kx y y x x =⎧⎪⎨=+⎪+⎩得1112(2)M y x k x y =+-, ………………….9分 同理2222(2)N y x k x y =+-,因为OM ON =2211M N k k +=+,由图可知0M N x x +=, ………………….12分 所以1222112[(2)]2[(2)]0y k x y y k x y +-++-=,即122211(1)[(2)2(1)](1)[(2)2(1)]0x k x x x k x x -+--+-+--=, 所以121212122112124(1)(1)4[()1](1)(2)(1)(2)2()4x x x x x x k x x x x x x x x ---++==-++-+++- ……………….14分 4324[1]4(43219)19191432832419241919-+-+===+-⨯⨯+-. ………………….16分5.。
2020-2022年高考数学真题分类汇编专题05 平面解析几何+立体几何(教师版+学生版)

专题05 平面解析几何1.【2021年新高考1卷】已知1F ,2F 是椭圆C :22194x y+=的两个焦点,点M 在C 上,则12MF MF ⋅的最大值为( )A .13B .12C .9D .6【答案】C【分析】本题通过利用椭圆定义得到1226MF MF a +==,借助基本不等式212122MF MF MF MF ⎛+⎫⋅≤ ⎪⎝⎭即可得到答案.【解析】由题,229,4a b ==,则1226MF MF a +==,所以2121292MF MF MF MF ⎛+⎫⋅≤= ⎪⎝⎭(当且仅当123MF MF ==时,等号成立). 故选:C .2.【2021年新高考2卷】抛物线22(0)y px p =>的焦点到直线1y x =+的距离为2,则p =( ) A .1 B .2 C .22 D .4【答案】B【分析】首先确定抛物线的焦点坐标,然后结合点到直线距离公式可得p 的值. 【解析】抛物线的焦点坐标为,02p ⎛⎫⎪⎝⎭,其到直线10x y -+=的距离:012211pd -+==+,解得:2p =(6p =-舍去).故选:B. 3.【2022年新高考1卷】已知O 为坐标原点,点在抛物线上,过点的直线交C 于P ,Q 两点,则( )A .C 的准线为B .直线AB 与C 相切 C .D .【答案】BCD【分析】求出抛物线方程可判断A ,联立AB 与抛物线的方程求交点可判断B ,利用距离公式及弦长公式可判断C、D.【解析】将点的代入抛物线方程得,所以抛物线方程为,故准线方程为,A错误;,所以直线的方程为,联立,可得,解得,故B正确;设过的直线为,若直线与轴重合,则直线与抛物线只有一个交点,所以,直线的斜率存在,设其方程为,,联立,得,所以,所以或,,又,,所以,故C正确;因为,,所以,而,故D正确.故选:BCD 4.【2022年新高考2卷】已知O为坐标原点,过抛物线焦点F的直线与C交于A,B两点,其中A在第一象限,点,若,则()A.直线的斜率为B.C.D.【答案】ACD【分析】由及抛物线方程求得,再由斜率公式即可判断A选项;表示出直线的方程,联立抛物线求得,即可求出判断B选项;由抛物线的定义求出即可判断C选项;由,求得,为钝角即可判断D选项.【解析】对于A,易得,由可得点在的垂直平分线上,则点横坐标为,代入抛物线可得,则,则直线的斜率为,A 正确;对于B ,由斜率为可得直线的方程为,联立抛物线方程得,设,则,则,代入抛物线得,解得,则,则,B 错误;对于C ,由抛物线定义知:,C 正确;对于D ,,则为钝角, 又,则为钝角,又,则,D 正确.故选:ACD.5.【2021年新高考1卷】已知点P 在圆()()225516x y -+-=上,点()4,0A 、()0,2B ,则( )A .点P 到直线AB 的距离小于10 B .点P 到直线AB 的距离大于2C .当PBA ∠最小时,32PB =D .当PBA ∠最大时,32PB =【答案】ACD【分析】计算出圆心到直线AB 的距离,可得出点P 到直线AB 的距离的取值范围,可判断AB 选项的正误;分析可知,当PBA ∠最大或最小时,PB 与圆M 相切,利用勾股定理可判断CD 选项的正误.【解析】圆()()225516x y -+-=的圆心为()5,5M ,半径为4,直线AB 的方程为142x y +=,即240x y +-=,圆心M 到直线AB 的距离为2252541111545512+⨯-==>+,所以,点P 到直线AB 的距离的最小值为115425-<,最大值为1154105+<,A 选项正确,B 选项错误;如下图所示:当PBA ∠最大或最小时,PB 与圆M 相切,连接MP 、BM ,可知PM PB ⊥,()()22052534BM =-+-4MP =,由勾股定理可得2232BP BM MP =-=CD 选项正确.故选:ACD.【点睛】结论点睛:若直线l 与半径为r 的圆C 相离,圆心C 到直线l 的距离为d ,则圆C 上一点P 到直线l 的距离的取值范围是[],d r d r -+.6.【2021年新高考2卷】已知直线2:0l ax by r +-=与圆222:C x y r +=,点(,)A a b ,则下列说法正确的是( )A .若点A 在圆C 上,则直线l 与圆C 相切B .若点A 在圆C 内,则直线l 与圆C 相离 C .若点A 在圆C 外,则直线l 与圆C 相离D .若点A 在直线l 上,则直线l 与圆C 相切 【答案】ABD【分析】转化点与圆、点与直线的位置关系为222,a b r +的大小关系,结合点到直线的距离及直线与圆的位置关系即可得解. 【解析】圆心()0,0C 到直线l的距离2d =若点(),A a b 在圆C 上,则222a b r +=,所以2d r =,则直线l 与圆C 相切,故A 正确;若点(),A a b 在圆C 内,则222a b r +<,所以2d r =,则直线l 与圆C 相离,故B 正确;若点(),A a b 在圆C 外,则222a b r +>,所以2d r =,则直线l 与圆C 相交,故C 错误;若点(),A a b 在直线l 上,则2220a b r +-=即222=a b r +,所以2d r ,直线l 与圆C 相切,故D 正确.故选:ABD.7.【2020年新高考1卷(山东卷)】已知曲线22:1C mx ny +=.( ) A .若m >n >0,则C 是椭圆,其焦点在y 轴上 B .若m =n >0,则CC .若mn <0,则C是双曲线,其渐近线方程为y = D .若m =0,n >0,则C 是两条直线 【答案】ACD【分析】结合选项进行逐项分析求解,0m n >>时表示椭圆,0m n =>时表示圆,0mn <时表示双曲线,0,0m n =>时表示两条直线.【解析】对于A ,若0m n >>,则221mx ny +=可化为22111x y m n +=, 因为0m n >>,所以11m n<, 即曲线C 表示焦点在y 轴上的椭圆,故A 正确;对于B ,若0m n =>,则221mx ny +=可化为221x y n+=, 此时曲线C 表示圆心在原点,半径为nn的圆,故B 不正确; 对于C ,若0mn <,则221mx ny +=可化为22111x y m n +=,此时曲线C 表示双曲线, 由220mx ny +=可得my x n=±-,故C 正确; 对于D ,若0,0m n =>,则221mx ny +=可化为21y n=, ny n=±,此时曲线C 表示平行于x 轴的两条直线,故D 正确; 故选:ACD.【点睛】本题主要考查曲线方程的特征,熟知常见曲线方程之间的区别是求解的关键,侧重考查数学运算的核心素养. 8.【2022年新高考1卷】写出与圆和都相切的一条直线的方程________________. 【答案】或或【分析】先判断两圆位置关系,分情况讨论即可. 【解析】圆的圆心为,半径为,圆的圆心为,半径为,两圆圆心距为,等于两圆半径之和,故两圆外切,如图,当切线为l时,因为,所以,设方程为O到l的距离,解得,所以l的方程为,当切线为m时,设直线方程为,其中,,由题意,解得,当切线为n时,易知切线方程为,故答案为:或或.9.【2022年新高考1卷】已知椭圆,C的上顶点为A,两个焦点为,,离心率为.过且垂直于的直线与C交于D,E两点,,则的周长是________________.【答案】13【分析】利用离心率得到椭圆的方程为,根据离心率得到直线的斜率,进而利用直线的垂直关系得到直线的斜率,写出直线的方程:,代入椭圆方程,整理化简得到:,利用弦长公式求得,得,根据对称性将的周长转化为的周长,利用椭圆的定义得到周长为.【解析】∵椭圆的离心率为,∴,∴,∴椭圆的方程为,不妨设左焦点为,右焦点为,如图所示,∵,∴,∴为正三角形,∵过且垂直于的直线与C交于D,E两点,为线段的垂直平分线,∴直线的斜率为,斜率倒数为,直线的方程:,代入椭圆方程,整理化简得到:,判别式,∴,∴,得,∵为线段的垂直平分线,根据对称性,,∴的周长等于的周长,利用椭圆的定义得到周长为.故答案为:13.10.【2022年新高考2卷】设点,若直线关于对称的直线与圆有公共点,则a的取值范围是________.【答案】【分析】首先求出点关于对称点的坐标,即可得到直线的方程,根据圆心到直线的距离小于等于半径得到不等式,解得即可;【解析】解:关于对称的点的坐标为,在直线上,所以所在直线即为直线,所以直线为,即;圆,圆心,半径,依题意圆心到直线的距离,即,解得,即;故答案为:11.【2022年新高考2卷】已知直线l 与椭圆在第一象限交于A ,B 两点,l 与x轴,y 轴分别交于M ,N 两点,且,则l 的方程为___________.【答案】【分析】令的中点为,设,,利用点差法得到,设直线,,,求出、的坐标,再根据求出、,即可得解; 【解析】解:令的中点为,因为,所以,设,,则,,所以,即所以,即,设直线,,,令得,令得,即,,所以, 即,解得或(舍去),又,即,解得或(舍去),所以直线,即;故答案为:12.【2021年新高考1卷】已知O 为坐标原点,抛物线C :22y px =(0p >)的焦点为F ,P为C 上一点,PF 与x 轴垂直,Q 为x 轴上一点,且PQ OP ⊥,若6FQ =,则C 的准线方程为______. 【答案】32x =-【分析】先用坐标表示P Q ,,再根据向量垂直坐标表示列方程,解得p ,即得结果. 【解析】抛物线C :22y px = (0p >)的焦点,02p F ⎛⎫⎪⎝⎭,∵P 为C 上一点,PF 与x 轴垂直, 所以P 的横坐标为2p ,代入抛物线方程求得P 的纵坐标为p ±,不妨设(,)2pP p ,因为Q 为x 轴上一点,且PQ OP ⊥,所以Q 在F 的右侧, 又||6FQ =,(6,0),(6,)2pQ PQ p ∴+∴=- 因为PQ OP ⊥,所以PQ OP ⋅=2602pp ⨯-=, 0,3p p >∴=,所以C 的准线方程为32x =-故答案为:32x =-.【点睛】利用向量数量积处理垂直关系是本题关键.13.【2021年新高考2卷】若双曲线22221x y a b -=的离心率为2,则此双曲线的渐近线方程___________.【答案】y =【分析】根据离心率得出2c a =,结合222+=a b c 得出,a b 关系,即可求出双曲线的渐近线方程.【解析】由题可知,离心率2ce a==,即2c a =,又22224a b c a +==,即223b a =,则ba=故此双曲线的渐近线方程为y =.故答案为:y =.14.【2020年新高考1卷(山东卷)C :y 2=4x 的焦点,且与C 交于A ,B 两点,则AB =________. 【答案】163【分析】先根据抛物线的方程求得抛物线焦点坐标,利用点斜式得直线方程,与抛物线方程联立消去y 并整理得到关于x 的二次方程,接下来可以利用弦长公式或者利用抛物线定义将焦点弦长转化求得结果.【解析】∵抛物线的方程为24y x =,∴抛物线的焦点F 坐标为(1,0)F , 又∵直线AB 过焦点F 且斜率为3,∴直线AB 的方程为:3(1)y x =- 代入抛物线方程消去y 并化简得231030x x -+=,解法一:解得121,33x x == ,所以212116||1||13|3|33AB k x x =+-=+⋅-=解法二:10036640∆=-=>,设1122(,),(,)A x y B x y ,则12103x x +=, 过,A B 分别作准线1x =-的垂线,设垂足分别为,C D 如图所示. 12||||||||||11AB AF BF AC BD x x =+=+=+++1216+2=3x x =+故答案为:163【点睛】本题考查抛物线焦点弦长,涉及利用抛物线的定义进行转化,弦长公式,属基础题. 15.【2022年新高考1卷】已知点在双曲线上,直线l 交C 于P ,Q 两点,直线的斜率之和为0.(1)求l 的斜率; (2)若,求的面积.【答案】(1);(2).【分析】(1)由点在双曲线上可求出,易知直线l的斜率存在,设,,再根据,即可解出l的斜率;(2)根据直线的斜率之和为0可知直线的倾斜角互补,再根据即可求出直线的斜率,再分别联立直线与双曲线方程求出点的坐标,即可得到直线的方程以及的长,由点到直线的距离公式求出点到直线的距离,即可得出的面积.【解析】(1)因为点在双曲线上,所以,解得,即双曲线易知直线l的斜率存在,设,,联立可得,,所以,,.所以由可得,,即,即,所以,化简得,,即,所以或,当时,直线过点,与题意不符,舍去,故.(2)不妨设直线的倾斜角为,因为,所以,因为,所以,即,即,解得,于是,直线,直线,联立可得,,因为方程有一个根为,所以,,同理可得,,.所以,,点到直线的距离,故的面积为.16.【2022年新高考2卷】已知双曲线的右焦点为,渐近线方程为.(1)求C的方程;(2)过F的直线与C的两条渐近线分别交于A,B两点,点在C上,且.过P且斜率为的直线与过Q且斜率为的直线交于点M.从下面①②③中选取两个作为条件,证明另外一个成立:①M在上;②;③.注:若选择不同的组合分别解答,则按第一个解答计分.【答案】(1);(2)见解析【分析】(1)利用焦点坐标求得的值,利用渐近线方程求得的关系,进而利用的平方关系求得的值,得到双曲线的方程;(2)先分析得到直线的斜率存在且不为零,设直线AB的斜率为k,M(x0,y0),由③|AM|=| BM|等价分析得到;由直线和的斜率得到直线方程,结合双曲线的方程,两点间距离公式得到直线PQ的斜率,由②等价转化为,由①在直线上等价于,然后选择两个作为已知条件一个作为结论,进行证明即可.【解析】(1)右焦点为,∴,∵渐近线方程为,∴,∴,∴,∴,∴.∴C的方程为:;(2)由已知得直线的斜率存在且不为零,直线的斜率不为零,若选由①②推③或选由②③推①:由②成立可知直线的斜率存在且不为零;若选①③推②,则为线段的中点,假若直线的斜率不存在,则由双曲线的对称性可知在轴上,即为焦点,此时由对称性可知、关于轴对称,与从而,已知不符;总之,直线的斜率存在且不为零.设直线的斜率为,直线方程为,则条件①在上,等价于;两渐近线的方程合并为,联立消去y并化简整理得:设,线段中点为,则,设,则条件③等价于,移项并利用平方差公式整理得:,,即,即;由题意知直线的斜率为, 直线的斜率为,∴由,∴,所以直线的斜率,直线,即,代入双曲线的方程,即中,得:,解得的横坐标:,同理:,∴∴, ∴条件②等价于,综上所述:条件①在上,等价于;条件②等价于;条件③等价于;选①②推③:由①②解得:,∴③成立;选①③推②:由①③解得:,,∴,∴②成立;选②③推①:由②③解得:,,∴,∴,∴①成立.17.【2021年新高考1卷】在平面直角坐标系xOy 中,已知点()117,0F -、()21217,02F MF MF -=,,点M 的轨迹为C .(1)求C 的方程; (2)设点T 在直线12x =上,过T 的两条直线分别交C 于A 、B 两点和P ,Q 两点,且TA TB TP TQ ⋅=⋅,求直线AB 的斜率与直线PQ 的斜率之和.【答案】(1)()221116y x x -=≥;(2)0. 【分析】(1) 利用双曲线的定义可知轨迹C 是以点1F 、2F 为左、右焦点双曲线的右支,求出a 、b 的值,即可得出轨迹C 的方程;(2)方法一:设出点的坐标和直线方程,联立直线方程与曲线C 的方程,结合韦达定理求得直线的斜率,最后化简计算可得12k k +的值. 【解析】(1) 因为12122217MF MF F F -=<=,所以,轨迹C 是以点1F 、2F 为左、右焦点的双曲线的右支,设轨迹C 的方程为()222210,0x y a b a b -=>>,则22a =,可得1a =,2174b a =-=,所以,轨迹C 的方程为()221116y x x -=≥.(2)[方法一] 【最优解】:直线方程与双曲线方程联立,如图所示,设1(,)2T n ,设直线AB 的方程为112211(),,(2,(),)y n k x A x y B x y -=-.联立1221()2116y n k x y x ⎧-=-⎪⎪⎨⎪-=⎪⎩,化简得22221111211(16)(2)1604k x k k n x k n k n -+---+-=.则22211112122211111624,1616k n k n k k n x x x x k k +-+-+==--.故12,11||)||)22TA x TB x --.则222111221(12)(1)11||||(1)()()2216n k TA TB k x x k ++⋅=+--=-.设PQ 的方程为21()2y n k x -=-,同理22222(12)(1)||||16n k TP TQ k ++⋅=-. 因为TA TB TP TQ ⋅=⋅,所以22122212111616k k k k ++=--,化简得22121717111616k k +=+--,所以22121616k k -=-,即2212k k =.因为11k k ≠,所以120k k +=.[方法二] :参数方程法设1(,)2T m .设直线AB 的倾斜角为1θ,则其参数方程为111cos 2sin x t y m t θθ⎧=+⎪⎨⎪=+⎩,联立直线方程与曲线C 的方程2216160(1)x y x --≥=,可得222221111cos 116(cos )(sin 2sin )1604t m t t mt θθθθ+-++-=+,整理得22221111(16cos sin )(16cos 2sin )(12)0t m t m θθθθ-+--+=.设12,TA t TB t ==,由根与系数的关系得2212222111(12)12||||16cos sin 117cos t m m TA TB t θθθ-++⋅===--⋅.设直线PQ 的倾斜角为2θ,34,TP t TQ t ==,同理可得2342212||||117cos m T T t P Q t θ+⋅==-⋅ 由||||||||TA TB TP TQ ⋅=⋅,得2212cos cos θθ=.因为12θθ≠,所以12s o o s c c θθ=-.由题意分析知12θθπ+=.所以12tan tan 0θθ+=, 故直线AB 的斜率与直线PQ 的斜率之和为0. [方法三]:利用圆幂定理因为TA TB TP TQ ⋅=⋅,由圆幂定理知A ,B ,P ,Q 四点共圆.设1(,)2T t ,直线AB 的方程为11()2y t k x -=-,直线PQ 的方程为21()2y t k x -=-,则二次曲线1212()()022k kk x y t k x y t --+--+=. 又由22116y x -=,得过A ,B ,P ,Q 四点的二次曲线系方程为:221212()()(1)0(0)2216k k y k x y t k x y t x λμλ--+--++--=≠,整理可得:[]2212121212()()()()16k x y k k xy t k k k k k x μμλλλλ++--+++-12(2)02y k k t m λ++-+=,其中21212()42k k t m t k k λμ⎡⎤=+-+-⎢⎥⎣⎦. 由于A ,B ,P ,Q 四点共圆,则xy 项的系数为0,即120k k +=.【整体点评】(2)方法一:直线方程与二次曲线的方程联立,结合韦达定理处理圆锥曲线问题是最经典的方法,它体现了解析几何的特征,是该题的通性通法,也是最优解; 方法二:参数方程的使用充分利用了参数的几何意义,要求解题过程中对参数有深刻的理解,并能够灵活的应用到题目中.方法三:圆幂定理的应用更多的提现了几何的思想,二次曲线系的应用使得计算更为简单.18.【2021年新高考2卷】已知椭圆C 的方程为22221(0)x y a b a b +=>>,右焦点为F ,(1)求椭圆C 的方程;(2)设M ,N 是椭圆C 上的两点,直线MN 与曲线222(0)x y b x +=>相切.证明:M ,N ,F 三点共线的充要条件是||MN =【答案】(1)2213x y +=;(2)证明见解析.【分析】(1)由离心率公式可得a =2b ,即可得解;(2)必要性:由三点共线及直线与圆相切可得直线方程,联立直线与椭圆方程可证MN充分性:设直线():,0MN y kx b kb =+<,由直线与圆相切得221b k =+,联立直线与椭圆方=1k =±,即可得解.【解析】(1)由题意,椭圆半焦距c =c e a ==,所以a = 又2221b a c =-=,所以椭圆方程为2213x y +=;(2)由(1)得,曲线为221(0)x y x +=>,当直线MN 的斜率不存在时,直线:1MN x =,不合题意; 当直线MN 的斜率存在时,设()()1122,,,M x y N x y , 必要性:若M ,N ,F三点共线,可设直线(:MN y k x =即0kx y --=,由直线MN 与曲线221(0)x y x +=>1=,解得1k =±,联立(2213y x x y ⎧=±⎪⎨⎪+=⎩可得2430x -+=,所以1212324x x x x +=⋅=,所以MN 所以必要性成立;充分性:设直线():,0MN y kx b kb =+<即0kx y b -+=, 由直线MN 与曲线221(0)x y x +=>1=,所以221b k =+,联立2213y kx b x y =+⎧⎪⎨+=⎪⎩可得()222136330k x kbx b +++-=, 所以2121222633,1313kb b x x x x k k -+=-⋅=++,所以MN ==()22310k -=,所以1k =±, 所以1k b =⎧⎪⎨=⎪⎩或1k b =-⎧⎪⎨=⎪⎩:MN y x=y x =-,所以直线MN 过点F ,M ,N ,F 三点共线,充分性成立; 所以M ,N ,F 三点共线的充要条件是||MN = 【点睛】关键点点睛:解决本题的关键是直线方程与椭圆方程联立及韦达定理的应用,注意运算的准确性是解题的重中之重.19.【2020年新高考1卷(山东卷)】已知椭圆C :22221(0)x y a b a b +=>>过点()2,1A . (1)求C 的方程:(2)点M ,N 在C 上,且AM AN ⊥,AD MN ⊥,D 为垂足.证明:存在定点Q ,使得DQ 为定值.【答案】(1)22163x y +=;(2)详见解析.【分析】(1)由题意得到关于,,a b c 的方程组,求解方程组即可确定椭圆方程.(2)方法一:设出点M ,N 的坐标,在斜率存在时设方程为y kx m =+, 联立直线方程与椭圆方程,根据已知条件,已得到,m k 的关系,进而得直线MN 恒过定点,在直线斜率不存在时要单独验证,然后结合直角三角形的性质即可确定满足题意的点Q 的位置. 【解析】(1)由题意可得:22222411c aa b a b c ⎧=⎪⎪⎪+=⎨⎪=+⎪⎪⎩,解得:2226,3a b c ===,故椭圆方程为:22163x y +=.(2)[方法一]:通性通法 设点()()1122,,,M x y N x y ,若直线MN 斜率存在时,设直线MN 的方程为:y kx m =+, 代入椭圆方程消去y 并整理得:()222124260kxkmx m +++-=,可得122412km x x k +=-+,21222612m x x k -=+,因为AM AN ⊥,所以·0AM AN =,即()()()()121222110x x y y --+--=, 根据1122,kx m y kx m y =+=+,代入整理可得:()()()()22121212140x x km k x x km ++--++-+=,所以()()()22222264121401212m km k km k m k k -⎛⎫++---+-+= ⎪++⎝⎭, 整理化简得()()231210k m k m +++-=,因为(2,1)A 不在直线MN 上,所以210k m +-≠,故23101k m k ++=≠,,于是MN 的方程为2133y k x ⎛⎫=-- ⎪⎝⎭()1k ≠,所以直线过定点直线过定点21,33P ⎛⎫- ⎪⎝⎭.当直线MN 的斜率不存在时,可得()11,N x y -, 由·0AM AN =得:()()()()111122110x x y y --+---=, 得()1221210x y -+-=,结合2211163x y +=可得:2113840x x -+=, 解得:123x =或22x =(舍).此时直线MN 过点21,33P ⎛⎫- ⎪⎝⎭. 令Q 为AP 的中点,即41,33Q ⎛⎫⎪⎝⎭,若D 与P 不重合,则由题设知AP 是Rt ADP △的斜边,故12DQ AP =, 若D 与P 重合,则12DQ AP =,故存在点41,33Q ⎛⎫⎪⎝⎭,使得DQ 为定值. [方法二]【最优解】:平移坐标系将原坐标系平移,原来的O 点平移至点A 处,则在新的坐标系下椭圆的方程为22(2)(1)163x y +++=,设直线MN 的方程为4mx ny .将直线MN 方程与椭圆方程联立得224240x x y y +++=,即22()2()0x mx ny x y mx ny y +++++=,化简得22(2)()(1)0n y m n xy m x +++++=,即2(2)()(1)0y y n m n m x x ⎛⎫⎛⎫+++++= ⎪ ⎪⎝⎭⎝⎭.设()()1122,,,M x y N x y ,因为AM AN ⊥则1212AM AN y y k k x x ⋅=⋅112m n +==-+,即3m n =--. 代入直线MN 方程中得()340n y x x ---=.则在新坐标系下直线MN 过定点44,33⎛⎫-- ⎪⎝⎭,则在原坐标系下直线MN 过定点21,33P ⎛⎫- ⎪⎝⎭.又AD MN ⊥,D 在以AP 为直径的圆上.AP 的中点41,33⎛⎫⎪⎝⎭即为圆心Q .经检验,直线MN 垂直于x 轴时也成立.故存在41,33Q ⎛⎫ ⎪⎝⎭,使得1||||2DQ AP =.[方法三]:建立曲线系 A 点处的切线方程为21163x y ⨯⨯+=,即30x y +-=.设直线MA 的方程为11210k x y k --+=,直线MB 的方程为22210k x y k --+=,直线MN 的方程为0kx y m -+=.由题意得121k k .则过A ,M ,N 三点的二次曲线系方程用椭圆及直线,MA MB 可表示为()()22112212121063x y k x y k k x y k λ⎛⎫+-+--+--+= ⎪⎝⎭(其中λ为系数). 用直线MN 及点A 处的切线可表示为()(3)0kx y m x y μ-+⋅+-=(其中μ为系数).即()()22112212121()(3)63x y k x y k k x y k kx y m x y λμ⎛⎫+-+--+--+=-++- ⎪⎝⎭. 对比xy 项、x 项及y 项系数得()()()121212(1),4(3),21(3).k k k k k m k k k m λμλμλμ⎧+=-⎪++=-⎨⎪+-=+⎩①②③将①代入②③,消去,λμ并化简得3210m k ++=,即2133m k =--.故直线MN 的方程为2133y k x ⎛⎫=-- ⎪⎝⎭,直线MN 过定点21,33P ⎛⎫- ⎪⎝⎭.又AD MN ⊥,D 在以AP 为直径的圆上.AP 中点41,33⎛⎫⎪⎝⎭即为圆心Q .经检验,直线MN 垂直于x 轴时也成立.故存在41,33Q ⎛⎫ ⎪⎝⎭,使得1||||2DQ AP ==.[方法四]:设()()1122,,,M x y N x y .若直线MN 的斜率不存在,则()()1111,,,M x y N x y -. 因为AM AN ⊥,则0AM AN ⋅=,即()1221210x y -+-=.由2211163x y +=,解得123x =或12x =(舍).所以直线MN 的方程为23x =.若直线MN 的斜率存在,设直线MN 的方程为y kx m =+,则()()()222122()6120x kx m k x x x x ++-=+--=.令2x =,则()()1222(21)(21)2212k m k m x x k +-++--=+.又()()221221262y m y y y y y k k -⎛⎫⎛⎫+-=+-- ⎪ ⎪⎝⎭⎝⎭,令1y =,则()()122(21)(21)1112k m k m y y k +--+---=+.因为AM AN ⊥,所以()()()()12122211AM AN x x y y ⋅=--+--2(21)(231)12k m k m k +-++=+0=,即21m k =-+或2133m k =--.当21m k =-+时,直线MN 的方程为21(2)1y kx k k x =-+=-+.所以直线MN 恒过(2,1)A ,不合题意;当2133m k =--时,直线MN 的方程为21213333y kx k k x ⎛⎫=--=-- ⎪⎝⎭,所以直线MN 恒过21,33P ⎛⎫- ⎪⎝⎭.综上,直线MN 恒过21,33P ⎛⎫- ⎪⎝⎭,所以||3AP =又因为AD MN ⊥,即AD AP ⊥,所以点D 在以线段AP 为直径的圆上运动.取线段AP 的中点为41,33Q ⎛⎫ ⎪⎝⎭,则1||||2DQ AP =.所以存在定点Q ,使得||DQ 为定值.【整体点评】(2)方法一:设出直线MN 方程,然后与椭圆方程联立,通过题目条件可知直线过定点P ,再根据平面几何知识可知定点Q 即为AP 的中点,该法也是本题的通性通法; 方法二:通过坐标系平移,将原来的O 点平移至点A 处,设直线MN 的方程为4mx ny ,再通过与椭圆方程联立,构建齐次式,由韦达定理求出,m n 的关系,从而可知直线过定点P ,从而可知定点Q 即为AP 的中点,该法是本题的最优解;方法三:设直线:MN y kx m =+,再利用过点,,A M N 的曲线系,根据比较对应项系数可求出,m k 的关系,从而求出直线过定点P ,故可知定点Q 即为AP 的中点;方法四:同方法一,只不过中间运算时采用了一元二次方程的零点式赋值,简化了求解()()1222--x x 以及()()1211y y --的计算.20.【2020年新高考2卷(海南卷)】已知椭圆C :22221(0)x y a b a b +=>>过点M (2,3),点A 为其左顶点,且AM 的斜率为12 , (1)求C 的方程;(2)点N 为椭圆上任意一点,求△AMN 的面积的最大值.【答案】(1)2211612x y +=;(2)18.【分析】(1)由题意分别求得a ,b 的值即可确定椭圆方程;(2)首先利用几何关系找到三角形面积最大时点N 的位置,然后联立直线方程与椭圆方程,结合判别式确定点N 到直线AM 的距离即可求得三角形面积的最大值. 【解析】(1)由题意可知直线AM 的方程为:13(2)2y x -=-,即24-=-x y .当y =0时,解得4x =-,所以a =4,椭圆()2222:10x y C a b a b+=>>过点M (2,3),可得249116b +=,解得b 2=12.所以C 的方程:2211612x y +=.(2)设与直线AM 平行的直线方程为:2x y m -=,如图所示,当直线与椭圆相切时,与AM 距离比较远的直线与椭圆的切点为N ,此时△AMN 的面积取得最大值.联立直线方程2x y m -=与椭圆方程2211612x y +=,可得:()2232448m y y ++=, 化简可得:2216123480y my m ++-=,所以()221444163480m m ∆=-⨯-=,即m 2=64,解得m =±8,与AM 距离比较远的直线方程:28x y -=, 直线AM 方程为:24-=-x y ,点N 到直线AM 的距离即两平行线之间的距离, 利用平行线之间的距离公式可得:12514d ==+由两点之间距离公式可得||AM =.所以△AMN 的面积的最大值:1182⨯=.【点睛】解决直线与椭圆的综合问题时,要注意:(1)注意观察应用题设中的每一个条件,明确确定直线、椭圆的条件;(2)强化有关直线与椭圆联立得出一元二次方程后的运算能力,重视根与系数之间的关系、弦长、斜率、三角形的面积等问题.【】专题05 平面解析几何1.【2021年新高考1卷】已知1F ,2F 是椭圆C :22194x y+=的两个焦点,点M 在C 上,则12MF MF ⋅的最大值为( )A .13B .12C .9D .62.【2021年新高考2卷】抛物线22(0)y px p =>的焦点到直线1y x =+的距离为2,则p =( ) A .1B .2C .22D .43.【2022年新高考1卷】已知O 为坐标原点,点在抛物线上,过点的直线交C 于P ,Q 两点,则( )A .C 的准线为B .直线AB 与C 相切 C .D .4.【2022年新高考2卷】已知O 为坐标原点,过抛物线焦点F 的直线与C 交于A ,B 两点,其中A 在第一象限,点,若,则( ) A .直线的斜率为B .C .D .5.【2021年新高考1卷】已知点P 在圆()()225516x y -+-=上,点()4,0A 、()0,2B ,则( )A .点P 到直线AB 的距离小于10 B .点P 到直线AB 的距离大于2C .当PBA ∠最小时,32PB =D .当PBA ∠最大时,32PB =6.【2021年新高考2卷】已知直线2:0l ax by r +-=与圆222:C x y r +=,点(,)A a b ,则下列说法正确的是( )A .若点A 在圆C 上,则直线l 与圆C 相切B .若点A 在圆C 内,则直线l 与圆C 相离 C .若点A 在圆C 外,则直线l 与圆C 相离D .若点A 在直线l 上,则直线l 与圆C 相切7.【2020年新高考1卷(山东卷)】已知曲线22:1C mx ny +=.( ) A .若m >n >0,则C 是椭圆,其焦点在y 轴上 B .若m =n >0,则C nC .若mn <0,则C 是双曲线,其渐近线方程为my x n=±- D .若m =0,n >0,则C 是两条直线 8.【2022年新高考1卷】写出与圆和都相切的一条直线的方程________________. 9.【2022年新高考1卷】已知椭圆,C 的上顶点为A ,两个焦点为,,离心率为.过且垂直于的直线与C 交于D ,E 两点,,则的周长是________________. 10.【2022年新高考2卷】设点,若直线关于对称的直线与圆有公共点,则a 的取值范围是________.11.【2022年新高考2卷】已知直线l 与椭圆在第一象限交于A ,B 两点,l 与x轴,y 轴分别交于M ,N 两点,且,则l 的方程为___________.12.【2021年新高考1卷】已知O 为坐标原点,抛物线C :22y px =(0p >)的焦点为F ,P 为C 上一点,PF 与x 轴垂直,Q 为x 轴上一点,且PQ OP ⊥,若6FQ =,则C 的准线方程为______.13.【2021年新高考2卷】若双曲线22221x y a b -=的离心率为2,则此双曲线的渐近线方程___________.14.【2020年新高考1卷(山东卷)】斜率为3的直线过抛物线C :y 2=4x 的焦点,且与C 交于A ,B 两点,则AB =________. 15.【2022年新高考1卷】已知点在双曲线上,直线l 交C 于P ,Q 两点,直线的斜率之和为0.(1)求l 的斜率; (2)若,求的面积.16.【2022年新高考2卷】已知双曲线的右焦点为,渐近线方程为.(1)求C 的方程;(2)过F 的直线与C 的两条渐近线分别交于A ,B 两点,点在C 上,且.过P 且斜率为的直线与过Q 且斜率为的直线交于点M .从下面①②③中选取两个作为条件,证明另外一个成立: ①M 在上;②;③.注:若选择不同的组合分别解答,则按第一个解答计分.17.【2021年新高考1卷】在平面直角坐标系xOy 中,已知点()1F 、)2122F MF MF -=,,点M 的轨迹为C .(1)求C 的方程; (2)设点T 在直线12x =上,过T 的两条直线分别交C 于A 、B 两点和P ,Q 两点,且TA TB TP TQ ⋅=⋅,求直线AB 的斜率与直线PQ 的斜率之和.18.【2021年新高考2卷】已知椭圆C 的方程为22221(0)x y a b a b +=>>,右焦点为F ,(1)求椭圆C 的方程;(2)设M ,N 是椭圆C 上的两点,直线MN 与曲线222(0)x y b x +=>相切.证明:M ,N ,F 三点共线的充要条件是||MN =19.【2020年新高考1卷(山东卷)】已知椭圆C :22221(0)x y a b a b +=>>过点()2,1A . (1)求C 的方程:(2)点M ,N 在C 上,且AM AN ⊥,AD MN ⊥,D 为垂足.证明:存在定点Q ,使得DQ 为定值.20.【2020年新高考2卷(海南卷)】已知椭圆C :22221(0)x y a b a b +=>>过点M (2,3),点A 为其左顶点,且AM 的斜率为12 , (1)求C 的方程;(2)点N 为椭圆上任意一点,求△AMN 的面积的最大值.【】三年专题05 立体几何(选择题、填空题)(理科专用)1.【2022年新高考1卷】南水北调工程缓解了北方一些地区水资源短缺问题,其中一部分水蓄入某水库.已知该水库水位为海拔时,相应水面的面积为;水位为海拔时,相应水面的面积为,将该水库在这两个水位间的形状看作一个棱台,则该水库水位从海拔上升到时,增加的水量约为()()A.B.C.D.【答案】C【解析】【分析】根据题意只要求出棱台的高,即可利用棱台的体积公式求出.【详解】依题意可知棱台的高为(m),所以增加的水量即为棱台的体积.棱台上底面积,下底面积,∴.故选:C.2.【2022年新高考1卷】已知正四棱锥的侧棱长为l,其各顶点都在同一球面上.若该球的体积为,且,则该正四棱锥体积的取值范围是()A.B.C.D.【答案】C【解析】【分析】设正四棱锥的高为,由球的截面性质列方程求出正四棱锥的底面边长与高的关系,由此确定正四棱锥体积的取值范围. 【详解】 ∵ 球的体积为,所以球的半径,设正四棱锥的底面边长为,高为,则,,所以,所以正四棱锥的体积,所以,当时,,当时,,所以当时,正四棱锥的体积取最大值,最大值为, 又时,,时,,所以正四棱锥的体积的最小值为, 所以该正四棱锥体积的取值范围是.故选:C.3.【2022年新高考2卷】已知正三棱台的高为1,上、下底面边长分别为和,其顶点都在同一球面上,则该球的表面积为( ) A .B .C .D .【答案】A 【解析】 【分析】根据题意可求出正三棱台上下底面所在圆面的半径,再根据球心距,圆面半径,以及球的半径之间的关系,即可解出球的半径,从而得出球的表面积. 【详解】设正三棱台上下底面所在圆面的半径,所以,即,设球心到上下底面的距离分别为,球的半径为,所以,,故或,即或,解得符合题意,所以球的表面积为.故选:A .4.【2021年甲卷理科】2020年12月8日,中国和尼泊尔联合公布珠穆朗玛峰最新高程为8848.86(单位:m ),三角高程测量法是珠峰高程测量方法之一.如图是三角高程测量法的一个示意图,现有A ,B ,C 三点,且A ,B ,C 在同一水平面上的投影,,A B C '''满足45AC B ∠'''=︒,。
2020年高考数学试题分类汇编解析几何精品

、选择题2 2cA -1.(重庆理8)在圆x y 2x 6y 0内,过点E (0, 1)的最长弦和最短弦分别是AC 和BD,则四边形ABCDW面积为A. 5、. 2 B 10、. 2 C. 15.2 D. 20.2【答案】B2 2 2C1:3 4 1(a> b>0) C1:x2 *y- 12.(浙江理8)已知椭圆 a b 与双曲线 4 有公共的焦点,C1的一条渐近线与以C1的长轴为直径的圆相交于A,B两点,若C1恰好将线段AB三等分,则2 13 -2 1a 2b 2A. 2 B, a 13 C, 2 D. b 2【答案】C3.(四川理10)在抛物线y x2 ax 5(aw0)上取横坐标为x1 4, x2 2的两点,过L 2 L 2这两点引一条割线,有平行于该割线的一条直线同时与抛物线和圆5x 5y 36相切,则抛物线顶点的坐标为A. ( 2, 9) B (0, 5) C (2, 9) D (1, 6)【答案】C【解析】由已知的割线的坐标(4,11 4a),(2,2 a 1),K 2 a,设直线方程为36 b22y (a 2)x b,则5 1 (2 a)五、解析几何2y x ax 5 ,b又y (a 2)x b6 a 4 ( 2, 9)4.(陕西理2)设抛物线的顶点在原点,准线方程为x 2,则抛物线的方程是2 2A, y 8x B . y 8x C. y2 4x D . y2 4x5. 理8 )已知双曲线2 2上工2 ,2a b1(a>0, b>0)的两条渐近线均和圆2x2或卫D. 3 2A. 5B. 2 y_5 C. 3 D. 66.(全国新课标理 7) 已知直线 l 过双曲线C 的一个焦点,且与 C 的对称轴垂直,l 与C 交于A, B 两点,1ABi为C 的实轴长的2倍,C 的离心率为 (A)短(B)由 (C) (D) 3 7.(全国大纲理 10)已知抛物线 2 C :y 4x的焦点为F,直线y 2x 4与C 交于A, B 两点.则cos AFB = A. 5 3B. 5C .8.(江西理 9)若曲线C 1 :点,则实数 m 的取值范围是A.( B .C.[ 9.(湖南理 5) 设双曲线 y 9 D .2xD.(与曲线C2:,0)U (0,y(y的渐近线方程为mx m ) 0有四个不同的交3x 2y0,则a 的值为A. 4 【答案】C D. 110.(湖北理 4)将两个顶点在抛物线 2 px(p 0)上, 另一个顶点是此抛物线焦点的正三角形个数记为 A. n=0 【答案】C 11.(福建理 n, 则 B. n=1 C .n=2D. n7) 设圆锥曲线 r 的两个焦点分别为F1, F2,若曲线r 上存在点P 满足PF 1 : F 1F 2 : PF2 1或3 A. 22=4:3:2 ,则曲线r 的离心率等于 B. 3 或 2【答案】A12 .(北京理8)设A 0,0 , B 4,0 , C t 4,4 , D t ,4 t R .记N t 为平行四边形 ABCg 部(不含边界)的整点的个数,其中整点是指横、纵坐标都是整数的点,则函数 的值域为C 22 c13 .(安徽理2)双曲线2x y8的实轴长是则线段AB 的中点到y 轴的距离为、填空题15 .(湖北理14)如图,直角坐标系 x O y 所在的平面为,直角坐标系xOy (其中y 轴一与射影C 的方程是 【答案】(2, 2) (x 1)2 y2 12 x 2116 .(浙江理17)设F1,F 2分别为椭圆 3的左、右焦点,点A,B 在椭圆上,若uuruurnF 1A 5F 2B;则点 A 的坐标是A. 9,10,11B.9,10,12 C.9,11,12D.10,11,12(A) 2(B) 2 2(C) 4(D) 4 214.(辽宁理已知F 是抛物线 y2=x 的焦点, A,B 是该抛物线上的两点, IAF BF =3(A)4(B) 1'轴重合)所在的平面为,xOx 45 。
平面解析几何(选择题、填空题)—高考真题文科数学分项汇编(解析版)

专题07平面解析几何(选择题、填空题)1.【2020年高考全国Ⅰ卷文数】已知圆 x 2 y 26x 0,过点(1,2)的直线被该圆所截得的弦的长度的最小值为A .1B .2D .4C .3【答案】B 【解析】圆 x2y 2 6x 0化为(x 3)2 y 29,所以圆心C 坐标为C (3,0),半径为3,设 P (1,2),当过点 P 的直线和直线CP 垂直时,圆心到过点 P 的直线的距离最大,所求的弦长最短,此时|CP | (3 1) ( 2) 2 22 2根据弦长公式得最小值为2 9 |CP |22 9 8 2 .故选:B .【点睛】本题考查圆的简单几何性质,以及几何法求弦长,属于基础题.2.【2020年高考全国Ⅲ卷文数】在平面内,A ,B 是两个定点,C 是动点,若 AC BC =1,则点 C 的轨迹为A .圆B .椭圆C .抛物线D .直线【答案】A 【解析】设AB 2a a 0 ,以 AB 中点为坐标原点建立如图所示的平面直角坐标系,,设则: A a ,0 ,B a ,0C x , y,可得: AC x a , y ,BC x a , y ,从而: AC BC x a x a y 2,结合题意可得: x a xa y 21,整理可得: x y a2 2 21,即点 C 的轨迹是以 AB 中点为圆心, a 1为半径的圆.2故选:A .【点睛】本题主要考查平面向量及其数量积的坐标运算,轨迹方程的求解等知识,意在考查学生的转化能力和计算求解能力.3.【2020年高考全国Ⅲ卷文数】点(0, 1)到直线 y k x 1 距离的最大值为A .1【答案】BB . 2C . 3D .2【解析】由 y k (x 1)可知直线过定点 P ( 1,0),设 A (0, 1),当直线 y k (x 1)与 AP 垂直时,点 A 到直线 y k (x 1)距离最大,即为| AP | 2 .故选:B .【点睛】该题考查的是有关解析几何初步的问题,涉及到的知识点有直线过定点问题,利用几何性质是解题的关键,属于基础题.4.【2020年高考全国Ⅱ卷文数】若过点(2,1)的圆与两坐标轴都相切,则圆心到直线 2x −y −3=0的距离为5B . 2 55C . 3 55D . 4 55A .5【答案】B【解析】由于圆上的点 2,1 在第一象限,若圆心不在第一象限,则圆与至少与一条坐标轴相交,不合乎题意,所以圆心必在第一象限,a设圆心的坐标为 a ,a ,则圆的半径为,圆的标准方程为 x a y a 2 a2. 2由题意可得 2 a 1 a 2 a2,2可得a26a 5 0,解得 a 1或a 5,所以圆心的坐标为 1,1 或 5,5 ,的距离均为d 1 2 1 1 3 2 5;5圆心到直线5的距离均为d 2 2 5 5 32 55圆心到直线5圆心到直线2x y 3 0的距离均为d 252 5;5所以,圆心到直线2x y 3 0的距离为 2 5 .5故选:B .【点睛】本题考查圆心到直线距离的计算,求出圆的方程是解题的关键,考查计算能力,属于中等题.5.【2020年高考全国Ⅲ卷文数】设 O 为坐标原点,直线 x =2与抛物线 C : y 2若 OD ⊥OE ,则 C 的焦点坐标为2px p 0交于 D ,E 两点,A .( 14,0)【答案】BB .( 12,0)C .(1,0)D .(2,0)【解析】因为直线 x 2与抛物线 y22px (p 0)交于 E ,D 两点,且OD OE ,根据抛物线的对称性可以确定 DOx EOx ,所以D 2,2 ,4代入抛物线方程4 4p ,求得 p 1,所以其焦点坐标为(1 ,0),2故选:B .【点睛】该题考查的是有关圆锥曲线的问题,涉及到的知识点有直线与抛物线的交点,抛物线的对称性,点在抛物线上的条件,抛物线的焦点坐标,属于简单题目.y 126.【2020年高考全国Ⅰ卷文数】设 F 1,F 2是双曲线C : x 2O的两个焦点,为坐标原点,点 P 在C 上3且|OP | 2,则△PF 1F 2的面积为A . 72B .3C . 52D .2【答案】B【解析】由已知,不妨设 F 1( 2,0),F 2(2,0),则 a 1,c 2,因为|OP | 1 1 | F 1F 2 |,2所以点 P 在以 F 1F 2为直径的圆上,即 F 1F 2P 是以 P 为直角顶点的直角三角形,故| PF 1 | | PF 2 | | F 1F 2 |2 2 2,即| PF 1 | | PF 2 | 16,又| PF 1 | | PF 2 | 2a 2,2 2所以4 | PF 1 | | PF 2 | 2 | PF 1 |2 | PF 2 |2 2 | PF 1 || PF 2 | 16 2 | PF 1 || PF 2 |,解得| PF 1 || PF 2 | 6,所以S △F 1F 2P 1 | PF 1 || PF 2 | 32故选:B【点晴】本题考查双曲线中焦点三角形面积的计算问题,涉及到双曲线的定义,考查学生的数学运算能力,是一道中档题.7.【2020年高考全国Ⅱ卷文数】设 O 为坐标原点,直线 x =a 与双曲线 C : x 22 b 2y 2 =l(a >0,b >0)的两条渐近a线分别交于 D ,E 两点.若△ODE 的面积为 8,则 C 的焦距的最小值为A .4 B .8 C .16 D .32【答案】B【解析】 C : x a 22 by 22 1(a 0,b 0), 双曲线的渐近线方程是 y b x ,a直线 x a 与双曲线C : xa22 by 2 1(a 0,b 0)的两条渐近线分别交于 D , E 两点2不妨设 D 为在第一象限, E 在第四象限,x ax a联立 b ,解得 ,y x y ba 故 D (a ,b ),x a联立 x ab ,解得y b ,y xa 故 E (a ,b ),| ED | 2b ,ODE 面积为:S △ODE 1 a 2b ab 8,2双曲线C : x 22 by 2 1(a 0,b 0),2a其焦距为2c 2 a 2 b 2 2 2ab 2 16 8,当且仅当a b 2 2取等号,C 的焦距的最小值:8.故选:B .【点睛】本题主要考查了求双曲线焦距的最值问题,解题关键是掌握双曲线渐近线的定义和均值不等式求最值方法,在使用均值不等式求最值时,要检验等号是否成立,考查了分析能力和计算能力,属于中档题.8.【2020年高考天津】设双曲线C 的方程为 x22 by 2 1(a 0,b 0),过抛物线2y24x 的焦点和点(0,b )a的直线为l .若C 的一条渐近线与l 平行,另一条渐近线与l 垂直,则双曲线C 的方程为A . x 2y2y 12C . x2y41B . x221D . x y 12 2444【答案】Dx y 1,即直线的斜率为 b ,【解析】由题可知,抛物线的焦点为 1,0 ,所以直线的方程为lb 又双曲线的渐近线的方程为 y b x ,所以 b b , b b 1,因为a 0,b 0,解得a 1,b 1.a a a故选: D .【点睛】本题主要考查抛物线的简单几何性质,双曲线的几何性质,以及直线与直线的位置关系的应用,属于基础题.9.【2020年高考北京】已知半径为 1的圆经过点(3,4),则其圆心到原点的距离的最小值为A . 4B . 5D . 7C . 6【答案】A【解析】设圆心C x , y ,则 x 3 2 y 4 2 1,化简得 x 3 2 y 4 2 1,所以圆心C 的轨迹是以M (3,4)为圆心,1为半径的圆,|OC | 1 |OM | 3 42 5,所以|OC | 5 1 4,所以2当且仅当C在线段OM上时取得等号,故选:A.【点睛】本题考查了圆的标准方程,属于基础题.10.【2020年高考北京】设抛物线的顶点为O,焦点为F,准线为l.P是抛物线上异于O的一点,过P作PQ l于Q,则线段FQ的垂直平分线A.经过点OB.经过点 PD.垂直于直线OPC.平行于直线OP【答案】B因为线段FQ的垂直平分线上的点到F,Q的距离相等,又点P在抛物线上,根据定义可知,PQ PF,所以线段FQ的垂直平分线经过点P .故选:B.【点睛】本题主要考查抛物线的定义的应用,属于基础题.11.【2020年高考浙江】已知点O(0,0),A(–2,0),B(2,0).设点P满足|PA|–|PB|=2,且P为函数y 3 4 x2图象上的点,则|OP|=222B . 4 105A .C . 7D . 10【答案】D【解析】因为| PA | | PB | 2 4,所以点 P 在以 A ,B 为焦点,实轴长为2,焦距为4的双曲线的右支4 1 3,即双曲线的右支方程为 x 2 y 1 x 0,而点 P 还在2c 2,a 1可得, b 2 c 2 a上,由23函数 y 3 4 x 的图象上,所以,2132 y 3 4 x 2 x 13 27 ,即 OP 10.由 x,解得 y 3 1 x 0 223 3244 y故选:D.【点睛】本题主要考查双曲线的定义的应用,以及二次曲线的位置关系的应用,意在考查学生的数学运算能力,属于基础题.12.【2020年新高考全国Ⅰ卷】已知曲线C :mx ny 1.2 2A .若 m >n >0,则 C 是椭圆,其焦点在 y 轴上B .若 m =n >0,则C 是圆,其半径为 nmC .若 mn <0,则 C 是双曲线,其渐近线方程为 y x nD .若 m =0,n >0,则 C 是两条直线【答案】ACDx 2y2 1可化为 1 11【解析】对于 A ,若m n 0,则mx ,ny 2 2mn因为m n 0,所以 m 1 1n,y即曲线C 表示焦点在轴上的椭圆,故 A 正确;对于 B ,若m n 0,则mx2ny21可化为 x 2 y21,n此时曲线C 表示圆心在原点,半径为n 的圆,故 B 不正确;nx 1可化为 1 11,对于 C ,若mn 0,则mx ny 2 22y2m n此时曲线C 表示双曲线,m由mx ny2 20可得 y x ,故 C 正确;n对于 D ,若m 0,n 0,则mx 2 ny 2 1可化为y 2 1,nn ,此时曲线C 表示平行于轴的两条直线,故 D 正确;xyn 故选:ACD.【点睛】本题主要考查曲线方程的特征,熟知常见曲线方程之间的区别是求解的关键,侧重考查数学运算的核心素养.13.【2019年高考浙江卷】渐近线方程为 x ±y =0的双曲线的离心率是2A .B .1D .22C . 2【答案】C【解析】因为双曲线的渐近线方程为 x y 0,所以a b ,则c a 2 b22a ,所以双曲线的离心率e c 2 .故选 C.a【名师点睛】本题根据双曲线的渐近线方程可求得 a b ,进一步可得离心率,属于容易题,注重了双曲线基础知识、基本计算能力的考查.理解概念,准确计算,是解答此类问题的基本要求.部分考生易出现理解性错误.14.【2019年高考全国Ⅰ卷文数】双曲线 C : x a22 by 2 1(a 0,b 0)的一条渐近线的倾斜角为 130°,则 C2的离心率为A .2sin40°B .2cos40°11C .D .sin50cos50【答案】D【解析】由已知可得 b tan130 , b tan50 ,a a1 b 250 sin 50 cos2 250501 e c 1 tan 50 1 sin 22, a a cos 2cos 250 cos50故选 D .【名师点睛】对于双曲线: x2y 21 b 22 1 a 0 , b 0 ,有e c ;a 2 ba a 2对于椭圆 x2y 22 1 a b 0 ,有e c 1 b ,防止记混.a 2 ba a 15.【2019年高考全国Ⅰ卷文数】已知椭圆 C 的焦点为 F 1( 1,0),F 2(1,0),过 F 的直线与 C 交于 A ,B 两2点.若| AF 2 | 2| F 2B |,| AB | | BF 1 |,则 C 的方程为A . x2B . x 2 y 12y 12232C . x 2y 12D . x 2y 124354【答案】B【解析】法一:如图,由已知可设 F 2B n ,则 AF 2 2n , BF 1 AB 3n ,由椭圆的定义有2a BF 1 BF 2 4n , AF 1 2a AF 2 2n .中,由余弦定理推论得cos F 1AB 4n 29n 29n 21.在△AF 1B2 2n 3n33.2在△AF 1F 2中,由余弦定理得4n 24n 22 2n 2n 1 4,解得n 323 1 2 , 所求椭圆方程为 x 2a 4n 2 3 , a 3 , b a c 2 22 y 1,故选 B .232法二:由已知可设 F 2B n ,则 AF 2 2n , BF 1 AB 3n ,由椭圆的定义有2a BF 1 BF 2 4n , AF 1 2a AF 2 2n .4n4 2 2n 2 cos AF 2F 14n2 2在△AF 1F 2和△BF 1F 2中,由余弦定理得,n 2 4 2 n 2 cos BF 2F 1 9n 2又 AF 2F 1 , BF 2F 1互补, cos AF 2F 1 cos BF 2F 1 0,两式消去cos AF 2F 1,cos BF 2F 1,得3. 2a 4n 2 3 , a 3 , ba c2 23 1 2 , 所求椭圆3n 6 11n2 2,解得n22方程为 x 2y 1,故选 B .232【名师点睛】本题考查椭圆标准方程及其简单性质,考查数形结合思想、转化与化归的能力,很好地落实了直观想象、逻辑推理等数学素养.x 2 y 1的一个焦点,则 p =216.【2019年高考全国Ⅱ卷文数】若抛物线 y 2=2px (p >0)的焦点是椭圆3p pA .2B .3D .8C .4【答案】D2px (p 0)的焦点( p ,0)是椭圆 x y 23p221的一个焦点,所以3p p ( p )2【解析】因为抛物线 y ,2p 2解得 p 8,故选 D .【名师点睛】本题主要考查抛物线与椭圆的几何性质,渗透逻辑推理、运算能力素养.解答时,利用抛物线与椭圆有共同的焦点即可列出关于 p 的方程,从而解出 p ,或者利用检验排除的方法,如 p 2时,抛物线焦点为(1,0),椭圆焦点为(±2,0),排除 A ,同样可排除 B ,C ,从而得到选 D .17.【2019年高考全国Ⅱ卷文数】设 F 为双曲线 C : x 22 b 22 1(a >0,b >0)的右焦点,O 为坐标原点,y a以 OF 为直径的圆与圆x 2+y 2=a 2交于 P ,Q 两点.若|PQ |=|OF |,则 C 的离心率为A . 2B . 3D . 5C .2【答案】Ax【解析】设 PQ 与轴交于点A ,由对称性可知 PQ x 轴,又 PQ |OF | c , | PA | c , PA 为以OF 为直径的圆的半径,2∴|OA | c ,c c ,,P 2 22a 上, c2c a ,即 c 22 ca 2 2.2又 P 点在圆 x 2y222 a 2, e2442e 2,故选 A .【名师点睛】本题为圆锥曲线离心率的求解,难度适中,审题时注意半径还是直径,优先考虑几何法,避免代数法从头至尾运算繁琐,准确率大大降低,双曲线离心率问题是圆锥曲线中的重点问题,需强化练习,才能在解决此类问题时事半功倍,信手拈来.解答本题时,准确画图,由图形对称性得出 P 点坐标,代入圆的方程得到 c 与 a 的关系,可求双曲线的离心率.18.【2019年高考全国Ⅲ卷文数】已知 F 是双曲线 C : x2y 1的一个焦点,点 P 在 C 上,O 为坐标原245点,若 OP = OF ,则△OPF 的面积为3252A .C .B .D .7292【答案】B,则 x 0 y 1①.22【解析】设点 P x 0, y045又 OP OF 4 5 3, x 02y 0 9②.225,即 y 0 5,由①②得 y 0293S △OPF 1 OF y 0 1 3 5 5,2223故选 B .【名师点睛】本题易错在忽视圆锥曲线方程和两点间的距离公式的联系导致求解不畅.设P x 0, y 0 ,由OP = OF ,再结合双曲线方程可解出19.【2019年高考北京卷文数】已知双曲线A . 6y 0,利用三角形面积公式可求出结果.x 22 y 21(a >0)的离心率是 5,则 a =a B .41C .2D .2【答案】D【解析】∵双曲线的离心率e c 5,c a21,a2 1 5,解得a 1a ∴,2a故选 D.【名师点睛】本题主要考查双曲线的离心率的定义,双曲线中 a ,b ,c 的关系,方程的数学思想等知识,意在考查学生的转化能力和计算求解能力.20.【 2019年高考天津卷文数】已知抛物线 y 24x 的焦点为 F ,准线为 l .若 l 与双曲线x 22 by 2 1(a 0,b 0)的两条渐近线分别交于点 A 和点 B ,且|AB | 4|OF |(O 为原点),则双曲2a线的离心率为A . 2B . 3D . 5C .2【答案】D 【解析】抛物线 y24x 的准线l 的方程为 x 1,双曲线的渐近线方程为 y b x ,a则有 A ( 1, b ),B ( 1, b ),a a ∴ AB 2b 2b, a 4,b 2a ,a∴e c a b2 25 .aa故选 D.【名师点睛】本题考查抛物线和双曲线的性质以及离心率的求解,解题关键是求出 AB 的长度.解答时,只需把 AB 4 OF 用a ,b ,c 表示出来,即可根据双曲线离心率的定义求得离心率.21.【2018年高考全国Ⅰ卷文数】已知椭圆C : xa22y 2 1的一个焦点为(2,0),则C 的离心率为41A .312B .2D . 2 23C .2【答案】Cb c【解析】由题可得c 2,因为b 4,所以a 8,即a 2 2,2 2 2 222,故选 C .所以椭圆C 的离心率e22 2【名师点睛】本题主要考查椭圆的方程及离心率,考查考生的运算求解能力,考查的数学核心素养是数学运算.在求解的过程中,一定要注意离心率的公式,再者就是要学会从题的条件中判断与之相关的量,结合椭圆中a ,b ,c 的关系求得结果.22.【2018年高考全国Ⅱ卷文数】已知 F 1,F 2是椭圆C 的两个焦点, P 是C 上的一点,若 PF 1 PF 2,且PF 2F 1 60 ,则C 的离心率为3A .1B .2 3D . 3 123 1C .2【答案】D【解析】在△F 1PF 2中, F 1PF 2 90设 PF 2 m ,, PF 2F 1 60 ,则2c F 1F 2 2m , PF 1 3m ,又由椭圆定义可知2a PF 1 PF 2 ( 3 1)m ,则e c 2c2m 3 1,故选 D .a2a ( 3 1)m【名师点睛】本题主要考查椭圆的定义和简单的几何性质,考查考生的数形结合能力、运算求解能力,考查的数学核心素养是直观想象、数学运算.结合有关平面几何的知识以及椭圆的定义、性质加以灵活分析,关键是寻找椭圆中 a ,c 满足的关系式.椭圆定义的应用主要有两个方面:一是判断平面内动点与两定点的轨迹是否为椭圆,二是利用定义求焦点三角形的周长、面积、椭圆的弦长及最值和离心率问题等;“焦点三角形”是椭圆问题中的常考知识点,在解决这类问题时经常会用到正弦定理,余弦定理以及椭圆的定义.23.【2018年高考全国Ⅱ卷文数】双曲线 x a22 by 2 1(a 0,b 0)的离心率为 3,则其渐近线方程为2A . y 2xB . y 3xC . y 2 xD . y 3 x22【答案】A【解析】因为 e c 3,所以 b22c 2 a 2b 2,因为渐近线方程为 e 2 1 3 1 2,所以 aaa a 2y b x ,所以渐近线方程为 y 2x ,故选 A .a【名师点睛】本题主要考查双曲线的简单几何性质,考查考生的运算求解能力,考查的数学核心素养是数学运算.(1)焦点在 x 轴上的双曲线的标准方程为 x a22 by 2 1(a 0,b 0),焦点坐标为(±c ,0),实轴长为 2a ,2虚轴长为 2b ,渐近线方程为 y b x ;a(2)焦点在 y 轴上的双曲线的标准方程为 2 bx 2 1(a 0,b 0),焦点坐标为(0,±c ),实轴长为 2a ,y 22a虚轴长为 2b ,渐近线方程为 y a x .b24.【2018年高考全国Ⅲ卷文数】直线 x y 2 0分别与 x 轴, y 轴交于 A , B 两点,点 P 在圆(x 2)2 y 2 2上,则△ABP 面积的取值范围是B . 4,8 A . 2,6C . 2,3 2 2 2,3 2D .【答案】A【解析】直线 x y 2 0分别与轴,轴交于 A ,B 两点, A 2,0 ,B 0, 2 ,则 AB 2 2 .x y 点 P 在圆(x 2)2 y22上, 圆心为(2,0),则圆心到直线的距离d 1 2 0 2 2 2 .22,3 2,则S △ABP 1 AB d 2 2d 2 2,6 .故点 P 到直线 x y 2 0的距离d 2的范围为2故答案为 A.【名师点睛】本题主要考查直线与圆,考查了点到直线的距离公式,三角形的面积公式,属于中档题 .先求出 A ,B 两点坐标得到 AB ,再计算圆心到直线的距离,得到点 P 到直线距离的范围,由面积公式计算即可.25.【2018年高考全国Ⅲ卷文数】已知双曲线C : x 22 by2 21(a 0,b 0)的离心率为 2,则点(4,0)到Ca的渐近线的距离为A . 2B .2C . 3 22D .2 2【答案】D【解析】 e c 1 (b )2, b 1,所以双曲线C 的渐近线方程为 x y 0,所以点(4,0)2aaa4到渐近线的距离d2 2,故选 D .1 1【名师点睛】本题主要考查双曲线的性质、点到直线的距离公式,考查考生的运算求解能力、化归与转化能力、逻辑思维能力,考查的数学核心素养是逻辑推理、数学运算、直观想象.熟记结论:若双曲线 x a22 by 2 1(a 0,b 0)是等轴双曲线,则 a =b ,离心率 e = 2,渐近线方程为2y =±x ,且两条渐近线互相垂直.26.【2018年高考浙江卷】双曲线 x2y21的焦点坐标是3A .(− 2,0),( 2,0)B .(−2,0),(2,0)C .(0,− 2 ),(0, 2 )D .(0,−2),(0,2)【答案】B 【解析】设 x22 1的焦点坐标为( c ,0),因为c 2 a 2 b 23 1 4,c 2, y3所以焦点坐标为( 2,0),故选 B .【名师点睛】本题主要考查双曲线基本量之间的关系,考查考生的运算求解能力,考查的数学核心素养是数学运算.解答本题时,先根据所给的双曲线方程确定焦点所在的坐标轴,然后根据基本量之间的关系进行运算.27.【2018年高考天津卷文数】已知双曲线 x a22 by 2 1(a 0, b 0)的离心率为2,过右焦点且垂直于轴2x的直线与双曲线交于 A ,B 两点.设 A ,B 到双曲线同一条渐近线的距离分别为d1和d 2,且d 1 d 2 6,则双曲线的方程为A . x 2y 12B . x 2y 123993C . x 2y 12D .x 2 y 12412124【答案】A【解析】设双曲线的右焦点坐标为 F (c ,0)(c 0),则 x A x B c ,由 c 2a 2 by 2 1可得 ya ,2b 2不妨设 A (c , b), B (c , b2 2),a a 双曲线的一条渐近线方程为bx ay 0,据此可得d 1 |bc b 2| bc b 2,d 2 |bc b| bc b2 2,cb2a 2b 2ca 2则d 1 d 2 2bc 2b 6,则b 3,b29,c21 a 92 2,据此可得a23,则双曲线的方程为 x 2 y 1.2双曲线的离心率e c 1 b aa 239故选 A .【名师点睛】求双曲线的标准方程的基本方法是待定系数法.具体过程是先定形,再定量,即先确定双曲线标准方程的形式,然后再根据 a ,b ,c ,e 及渐近线之间的关系,求出 a ,b 的值.如果已知双曲线的渐近线方程,求双曲线的标准方程,可利用有公共渐近线的双曲线方程为 x a22 by 2 0 ,2再由条件求出λ的值即可.解答本题时,由题意首先求得 A ,B 的坐标,然后利用点到直线距离公式求得b 的值,之后求解 a 的值即可确定双曲线方程.28.【2020年高考全国Ⅲ卷文数】设双曲线 C : x a22 by 2 1 (a >0,b >0)的一条渐近线为 y = 2 x ,则 C 的离心2率为_________.【答案】3【解析】由双曲线方程 xa 22 by2 1可得其焦点在轴上,2x因为其一条渐近线为y 2x,b a 2,e ac 1 ba2 3 .2所以故答案为:3【点睛】本题考查的是有关双曲线性质,利用渐近线方程与离心率关系是解题的关键,要注意判断焦点所在位置,属于基础题.29.【2020年高考天津】已知直线x 3y 8 0和圆 x2 y2 r2(r 0)相交于A,B两点.若| AB| 6,则r的值为_________.【答案】58【解析】因为圆心 0,0 到直线x 3y 8 0的距离d 4,1 3由| AB | 2 r d 2可得6 2 r2 42,解得r = 5.2故答案为:5.【点睛】本题主要考查圆的弦长问题,涉及圆的标准方程和点到直线的距离公式,属于基础题.30.【2020年高考北京】已知双曲线C : x2 y 1,则C的右焦点的坐标为_________;C的焦点到其渐263近线的距离是_________.【答案】 3,0 ;3【解析】在双曲线C中,a 6,b 3,则c a22 3,则双曲线C的右焦点坐标为 3,0 ,b双曲线C的渐近线方程为y2 x,即x 2y 0,23所以,双曲线C的焦点到其渐近线的距离为 3 .1 22故答案为: 3,0 ; 3 .【点睛】本题考查根据双曲线的标准方程求双曲线的焦点坐标以及焦点到渐近线的距离,考查计算能力,属于基础题.31.【2020年高考浙江】已知直线 y kx b (k 0)与圆 x 2 y 2 1和圆(x 4)2 y 2 1均相切,则k _______,b =_______.3; 2 3【答案】33|b | 1|4k b |1,【解析】由题意,C 1,C 2到直线的距离等于半径,即1,k 12 2k22所以|b | 4k b ,所以k 0(舍)或者b 2k ,解得k 3 ,b 2 3 .333 ; 2 33故答案为:3【点晴】本题主要考查直线与圆的位置关系,考查学生的数学运算能力,是一道基础题.32.【2020年高考江苏】在平面直角坐标系 xOy 中,若双曲线 x 22 y 1(a 0)的一条渐近线方程为 y 5 x ,2a 52则该双曲线的离心率是▲.3【答案】2【解析】双曲线 x a22 y 1,故 b 5 .由于双曲线的一条渐近线方程为 y 25 x ,即52b 5 a 2,所以c a b 2 c 4 5 3,所以双曲线的离心率为 a 3222.a32故答案为:【点睛】本小题主要考查双曲线的渐近线,考查双曲线离心率的求法,属于基础题.33.【2020年新高考全国Ⅰ卷】斜率为 3的直线过抛物线 C :y AB =________.2=4x 的焦点,且与 C 交于 A ,B 两点,则163【答案】【解析】∵抛物线的方程为 y24x ,∴抛物线的焦点 F 坐标为 F (1,0),又∵直线 AB 过焦点 F 且斜率为 3,∴直线 AB 的方程为: y 3(x 1)代入抛物线方程消去 y 并化简得3x 2 10x 3 0,解法一:解得 x 1 1,x 2 33| x 1 x 2 | 1 3 |3 1 | 16所以| AB | 1 k233解法二: 100 36 64 0设 A (x 1, y 1),B (x 2, y 2),则 x 1 x 2 103,过 A ,B 分别作准线 x 1的垂线,设垂足分别为C ,D 如图所示.| AB | | AF | | BF | | AC | | BD | x 1 1 x 2 1 x 1 x 2+2=16316故答案为:3【点睛】本题考查抛物线焦点弦长,涉及利用抛物线的定义进行转化,弦长公式,属基础题.3,0),A ,B 是圆 C : x (y 1) 36上的两2234.【2020年高考江苏】在平面直角坐标系 xOy 中,已知 P (22个动点,满足 PA PB ,则△PAB 面积的最大值是【答案】10 5▲.【解析】Q PA PB PC AB3 1 14 4设圆心C 到直线 AB 距离为d ,则|AB |=2 36 d 2,| PC | 所以 S V PAB 1 2 36 d(d 1) (36 d (0 d 6) y 2(d 1)( 2d 当0 d 4时,y 0;当4 d 6时,故答案为:10 5)(d 1)2 222令 y (36 d 2)(d 1)22d 36) 0 d 4(负值舍去)y y 0,因此当 d 4时,取最大值,即S PAB 取最大值为10 5,【点睛】本题考查垂径定理、利用导数求最值,考查综合分析求解能力,属中档题.35.【2019年高考北京卷文数】设抛物线 y =4x 的焦点为 F ,准线为 l .则以 F 为圆心,且与 l 相切的圆的2方程为__________.【答案】(x 1) y 42 2【解析】抛物线 y =4x 中,2p =4,p =2,2焦点 F (1,0),准线 l 的方程为 x =−1,以 F 为圆心,且与 l 相切的圆的方程为(x −1)+y =22,即为(x 1)22y24 .2【名师点睛】本题可采用数形结合法,只要画出图形,即可很容易求出结果.36.【2019年高考全国Ⅲ卷文数】设 F 1,F 2为椭圆 C : x2y21的两个焦点,M 为 C 上一点且在第一象限.若+36 20△MF 1F 2为等腰三角形,则 M 的坐标为___________.【答案】 3, 15【解析】由已知可得a236 ,b 2 20 , c 2 a 2b 2 16 ,c 4,MF 1 F 1F 2 2c 8,∴ MF 2 4.1 F 1F2 y 0 4y 0,△MF 1F 2设点M 的坐标为 x 0 , y x0, y 0 00 ,则S 02又 S △MF 1F 2 1 4 8 2 4 15 , 4y 0 4 15,解得 y 0 15,222215 1,解得 x 0 3( x 0 3舍去),20 x 236\ M 的坐标为 3, 15.【名师点睛】本题考查椭圆标准方程及其简单性质,考查数形结合思想、转化与化归的能力,很好地落实了直观想象、逻辑推理等数学素养.解答本题时,根据椭圆的定义分别求出 MF 1、MF2,设出M 的坐标,结合三角形面积可求出M 的坐标.y237.【2019年高考江苏卷】在平面直角坐标系 xOy 中,若双曲线 x 2 2 1(b 0)经过点(3,4),则该双b曲线的渐近线方程是▲.【答案】 y 2x4【解析】由已知得3221,解得b 2或b 2,b2因为b 0,所以b 2 .因为 a 1,所以双曲线的渐近线方程为 y 2x .【名师点睛】双曲线的标准方程与几何性质,往往以小题的形式考查,其难度一般较小,是高考必得分题.双曲线渐近线与双曲线标准方程中的 a ,b 密切相关,事实上,标准方程中化 1为 0,即得渐近线方程.438.【2019年高考江苏卷】在平面直角坐标系 xOy 中,P 是曲线 y x (x 0)上的一个动点,则点 P 到x直线 x +y =0的距离的最小值是【答案】4▲.【解析】当直线 x +y =0平移到与曲线 y x 4相切位置时,切点 Q 即为点 P ,此时到直线 x +y =0的距x离最小.由 y 1 42 1,得 x 2(x 2舍), y 3 2,即切点Q ( 2,3 2),x2 3 2则切点 Q 到直线 x +y =0的距离为 4,1 12 2故答案为4.【名师点睛】本题考查曲线上任意一点到已知直线的最小距离,渗透了直观想象和数学运算素养.采取导数法和公式法,利用数形结合和转化与化归思想解题.39.【2019年高考浙江卷】已知圆C 的圆心坐标是(0,m )r,半径长是 .若直线2x y 3 0与圆 C 相切于点 A ( 2, 1),则mr=___________, =___________.【答案】 2, 5【解析】由题意可知k AC 1 AC : y 1 1 (x 2),把(0,m )代入直线 AC 的方程得m 2,22此时r | AC | 4 1 5 .【名师点睛】本题主要考查圆的方程、直线与圆的位置关系.首先通过确定直线 AC 的斜率,进一步得到其方程,将(0,m )代入后求得m ,计算得解.解答直线与圆的位置关系问题,往往要借助于数与形的结合,特别是要注意应用圆的几何性质.40.【2019年高考浙江卷】已知椭圆 x 2y 1的左焦点为 F ,点 P 在椭圆上且在轴的上方,若线段 PF2x95的中点在以原点O 为圆心, OF 为半径的圆上,则直线 PF 的斜率是___________.【答案】 15【解析】方法 1:如图,设 F 1为椭圆右焦点.由题意可知|OF |=|OM |= c= 2,由中位线定理可得 PF 1 2|OM | 4,设 P (x , y ),可得(x 2)y2 216,与方程 x 2y 1联立,可解得 x 3,x 2212(舍),9521515 P3 ,21x 又点 P 在椭圆上且在轴的上方,求得 ,所以k PF15 . 222方法 2:(焦半径公式应用)由题意可知|OF |=|OM |= c= 2,32由中位线定理可得PF1 2|OM | 4,即a ex p 4 x p ,1515,所以P 3 ,21从而可求得 k PF 15 .222【名师点睛】本题主要考查椭圆的标准方程、椭圆的几何性质、圆的方程与性质的应用,利用数形结合思想,是解答解析几何问题的重要途径.结合图形可以发现,利用三角形中位线定理,将线段长度用圆的方程表示,与椭圆方程联立可进一步求解.也可利用焦半径及三角形中位线定理解决,则更为简洁. 41.【2018年高考全国I卷文数】直线y x 1与圆x y2 22y 3 0交于A,B两点,则AB ________.【答案】2 2y 1 2 4,所以圆的圆心为0, 1,且半径是2,【解析】根据题意,圆的方程可化为 x20 1 1根据点到直线的距离公式可以求得d 1 2 2,12结合圆中的特殊三角形,可知AB 2 4 2 2 2,故答案为2 2 .【名师点睛】该题考查的是有关直线被圆截得的弦长问题,在解题的过程中,熟练应用圆中的特殊三角形,即半弦长、弦心距和圆的半径构成的直角三角形,借助于勾股定理求得结果.首先将圆的一般方程转化为标准方程,得到圆心坐标和圆的半径的大小,之后应用点到直线的距离求得弦心距,借助于圆中特殊三角形,利用勾股定理求得弦长.42.【2018年高考天津卷文数】在平面直角坐标系中,经过三点(0,0),(1,1),(2,0)的圆的方程为__________.【答案】x y 2x 02 2【解析】设圆的方程为 x2 y2 Dx Ey F 0,圆经过三点(0,0),(1,1),(2,0),F 0 D 2则 1 1 D E F 0,解得 E 0,则圆的方程为 x2 y22x 0.F 04 0 2D F 0【名师点睛】求圆的方程,主要有两种方法:(1)几何法:具体过程中要用到初中有关圆的一些常用性质和定理.如:①圆心在过切点且与切线垂直的直线上;②圆心在任意弦的中垂线上;③两圆相切时,切点与两圆心三点共线.(2)待定系数法:根据条件设出圆的方程,再由题目给出的条件,列出等式,求出相关量.一般地,与圆心和半径有关,选择标准式,否则,选择一般式.不论是哪种形式,都要确定三个独立参数,所以应该有三个独立等式.43.【2018年高考浙江卷】已知点 P (0,1),椭圆 x2+y =m (m >1)上两点 A ,B 满足 AP 2PB ,则当24m =___________时,点 B 横坐标的绝对值最大.【答案】5【解析】设 A (x 1, y 1), B (x 2, y 2),x 1 2x 2,1 y 1 2(y 2 1),由 AP 2PB 得所以 y 1 2y 2 3,x 12x 22因为 A , B 在椭圆上,所以 4 y 12m , 4 y 22 m ,4x 22(2y 2 3)2 m ,所以4所以 x 22(y 2 3)m 2,424与 x 22m 对应相减得 y 3 m 1 (m y 22, x 22210m 9) 4,2444当且仅当m 5时取最大值.【名师点睛】解析几何中的最值是高考的热点,在圆锥曲线的综合问题中经常出现,求解此类问题的一般思路为在深刻认识运动变化的过程之中,抓住函数关系,将目标量表示为一个(或者多个)变量的函数,然后借助于函数最值的探求来使问题得以解决.44.【2018年高考北京卷文数】若双曲线 x a22 y 1(a 0)的离心率为25,则a ________________.24【答案】4【解析】在双曲线中c a2b 2a 2 4,且e ac 5,2a 2 4 5,即a 2 16,2所以a因为a 0,所以a 4.数学运算.在求解有关离心率的问题时,一般不直接求出 c 和 a 的值,而是根据题目给出的条件,建立关于参数 c ,a ,b 的方程或不等式,通过解方程或不等式求得离心率的值或取值范围.45.【2018年高考北京卷文数】已知直线 l 过点(1,0)且垂直于轴,若 l 被抛物线 y 4ax 截得的线段2长为 4,则抛物线的焦点坐标为_________.【答案】 1,0 【解析】由题意可得,点 P 1,2 在抛物线上,将 P 1,2 代入 y 2 4ax 中,解得a 1, y 4x ,由2抛物线方程可得:2p 4, p 2, p 1, 焦点坐标为 1,0 .2【名师点睛】此题考查抛物线的相关知识,属于易得分题,关键在于能够结合抛物线的对称性质,得到抛物线上点的坐标,再者熟练准确记忆抛物线的焦点坐标公式也是保证本题能够得分的关键.根据题干描述画出相应图形,分析可得抛物线经过点 1,2 ,将点 1,2 坐标代入可求参数的值,进而可求焦点坐a标.x 22 by 22 1(a 0,b 0)的右焦点F (c ,0)46.【2018年高考江苏卷】在平面直角坐标系 xOy 中,若双曲线a到一条渐近线的距离为 3 c ,则其离心率的值是________________.2【答案】2bc 0bcc【解析】因为双曲线的焦点 F (c ,0)到渐近线 y b x ,即bx ay 0的距离为a b2 2b ,a所以b3 c ,2因此a 2c 2b 2c23 c 2 1 c 2,a 1 c ,e 2.442。
2020届新高考高三数学试题分项汇编专题8 平面解析几何(原卷版+解析版)

物线上的另一点 B 射出,则 ABM 的周长为( )
71 A. 26
12
B. 9 10
83 C. 26
12
D. 9 26
x2 y2 11.(2020 届山东省菏泽一中高三 2 月月考)已知双曲线 C: 1 ,( a 0 , b 0 )的左、右焦点分别为
a2 b2
F1 , F2 , O 为坐标原点,P 是双曲线在第一象限上的点, PF1 2 PF2 2m ,( m 0 ), PF1 PF2 m2 ,则双曲线
专题 8 平面解析几何
纵观近几年的高考试题,考查圆锥曲线的题目有小有大,其中小题以考查圆、椭圆、双曲线、抛物线的方 程及几何性质为主,难度在中等或以上;大题则主要考查直线与椭圆、直线与抛物线的位置关系问题;命 题的主要特点有:一是以过特殊点的直线与圆锥曲线相交为基础设计“连环题”,结合曲线的定义及几何性质, 利用待定系数法先行确定曲线的标准方程,进一步研究弦长、图形面积、最值、取值范围等;二是以不同 曲线(圆、椭圆、抛物线)的位置关系为基础设计“连环题”,结合曲线的定义及几何性质,利用待定系数法 先行确定曲线的标准方程,进一步研究弦长、图形面积、最值、取值范围等;三是直线与圆锥曲线的位置 关系问题,综合性较强,往往与向量(共线、垂直、数量积)结合,涉及方程组联立,根的判别式、根与 系数的关系、弦长问题等. 预测 2021 年将保持稳定,一大二小.其中客观题考查圆、椭圆、双曲线、抛物线问题,难度在中等或以下. 主观题考查或直线与椭圆的位置关系、直线与抛物线的位置关系,相关各种综合问题应有充分准备.
7
7 A.直线 l 倾斜角的余弦值为
8
4 B.若 F1P F1F2 ,则 C 的离心率 e
3
C.若 PF2 F1F2 ,则 C 的离心率 e 2 D. △PF1F2 不可能是等边三角形
2020年高考数学试题分项版—解析几何(原卷版)

2020年高考数学试题分项版——解析几何(原卷版)一、选择题1.(2020·全国Ⅰ理,4)已知A 为抛物线C :y 2=2px (p >0)上一点,点A 到C 的焦点的距离为12,到y 轴的距离为9,则p 等于( ) A .2 B .3 C .6 D .92.(2020·全国Ⅰ理,11)已知⊙M :x 2+y 2-2x -2y -2=0,直线l :2x +y +2=0,P 为l 上的动点,过点P 作⊙M 的切线PA ,PB ,切点为A ,B ,当|PM |·|AB |最小时,直线AB 的方程为( ) A .2x -y -1=0 B .2x +y -1=0 C .2x -y +1=0D .2x +y +1=03.(2020·全国Ⅱ理,5)若过点(2,1)的圆与两坐标轴都相切,则圆心到直线2x -y -3=0的距离为( ) A.55 B.255 C.355 D.4554.(2020·全国Ⅱ理,8)设O 为坐标原点,直线x =a 与双曲线C :x 2a 2-y 2b 2=1(a >0,b >0)的两条渐近线分别交于D ,E 两点.若△ODE 的面积为8,则C 的焦距的最小值为( ) A .4 B .8 C .16 D .325.(2020·全国Ⅲ理,5)设O 为坐标原点,直线x =2与抛物线C :y 2=2px (p >0)交于D ,E 两点,若OD ⊥OE ,则C 的焦点坐标为( ) A.⎝⎛⎭⎫14,0 B.⎝⎛⎭⎫12,0 C .(1,0) D .(2,0) 6.(2020·全国Ⅲ理,10)若直线l 与曲线y =x 和圆x 2+y 2=15都相切,则l 的方程为( )A .y =2x +1B .y =2x +12C .y =12x +1D .y =12x +127.(2020·全国Ⅲ理,11)设双曲线C :x 2a 2-y 2b 2=1(a >0,b >0)的左、右焦点分别为F 1,F 2,离心率为 5.P 是C 上一点,且F 1P ⊥F 2P .若△PF 1F 2的面积为4,则a 等于( ) A .1 B .2 C .4 D .88.(2020·新高考全国Ⅰ,9)已知曲线C :mx 2+ny 2=1.( ) A .若m >n >0,则C 是椭圆,其焦点在y 轴上 B .若m =n >0,则C 是圆,其半径为nC .若mn <0,则C 是双曲线,其渐近线方程为y =±-m nxD .若m =0,n >0,则C 是两条直线9.(2020·新高考全国Ⅱ,10)已知曲线C :mx 2+ny 2=1.( ) A .若m >n >0,则C 是椭圆,其焦点在y 轴上 B .若m =n >0,则C 是圆,其半径为nC .若mn <0,则C 是双曲线,其渐近线方程为y =±-m nx D .若m =0,n >0,则C 是两条直线10.(2020·北京,5)已知半径为1的圆经过点(3,4),则其圆心到原点的距离的最小值为( ) A .4 B .5 C .6 D .711.(2020·北京,7)设抛物线的顶点为O ,焦点为F ,准线为l .P 是抛物线上异于O 的一点,过P 作PQ ⊥l 于Q ,则线段FQ 的垂直平分线( ) A .经过点O B .经过点PC .平行于直线OPD .垂直于直线OP12.(2020·天津,7)设双曲线C 的方程为x 2a 2-y 2b 2=1(a >0,b >0),过抛物线y 2=4x 的焦点和点(0,b )的直线为l .若C 的一条渐近线与l 平行,另一条渐近线与l 垂直,则双曲线C 的方程为( ) A.x 24-y 24=1 B .x 2-y 24=1 C.x 24-y 2=1 D .x 2-y 2=113.(2020·浙江,8)已知点O (0,0),A (-2,0),B (2,0),设点P 满足|PA |-|PB |=2,且P 为函数y =34-x 2图象上的点,则|OP |等于( ) A.222 B.4105C.7D.10 14.(2020·全国Ⅰ文,6)已知圆x 2+y 2-6x =0,过点(1,2)的直线被该圆所截得的弦的长度的最小值为( )A .1B .2C .3D .415.(2020·全国Ⅰ文,11)设F 1,F 2是双曲线C :x 2-y 23=1的两个焦点,O 为坐标原点,点P 在C 上且|OP |=2,则△PF 1F 2的面积为( ) A.72 B .3 C.52D .2 16.(2020·全国Ⅱ文,8)若过点(2,1)的圆与两坐标轴都相切,则圆心到直线2x -y -3=0的距离为( ) A.55 B.255 C.355 D.45517.(2020·全国Ⅱ文,9)设O 为坐标原点,直线x =a 与双曲线C :x 2a 2-y 2b 2=1(a >0,b >0)的两条渐近线分别交于D ,E 两点.若△ODE 的面积为8,则C 的焦距的最小值为( ) A .4 B .8 C .16 D .3218.(2020·全国Ⅲ文,7)设O 为坐标原点,直线x =2与抛物线C :y 2=2px (p >0)交于D ,E 两点,若OD ⊥OE ,则C 的焦点坐标为( ) A.⎝⎛⎭⎫14,0 B.⎝⎛⎭⎫12,0 C .(1,0) D .(2,0) 19.(2020·全国Ⅲ文,8)点(0,-1)到直线y =k (x +1)距离的最大值为( ) A .1 B. 2 C. 3 D .2 二、填空题1.(2020·全国Ⅰ理,15)已知F 为双曲线C :x 2a 2-y 2b 2=1(a >0,b >0)的右焦点,A 为C 的右顶点,B 为C 上的点,且BF 垂直于x 轴.若AB 的斜率为3,则C 的离心率为________. 2.(2020·新高考全国Ⅰ,13)斜率为3的直线过抛物线C :y 2=4x 的焦点,且与C 交于A ,B 两点,则|AB |=________.3.(2020·新高考全国Ⅱ,14)斜率为3的直线过抛物线C :y 2=4x 的焦点,且与C 交于A ,B 两点,则|AB |=________.4.(2020·北京,12)已知双曲线C :x 26-y 23=1,则C 的右焦点的坐标为________;C 的焦点到其渐近线的距离是________.5.(2020·天津,12)已知直线x -3y +8=0和圆x 2+y 2=r 2(r >0)相交于A ,B 两点.若|AB |=6,则r 的值为________.6.(2020·江苏,6)在平面直角坐标系xOy 中,若双曲线x 2a 2-y 25=1(a >0)的一条渐近线方程为y =52x ,则该双曲线的离心率是________. 7.(2020·江苏,14)在平面直角坐标系xOy 中,已知P ⎝⎛⎭⎫32,0,A ,B 是圆C :x 2+⎝⎛⎭⎫y -122=36上的两个动点,满足PA =PB ,则△PAB 面积的最大值是________.8.(2020·浙江,15)已知直线y =kx +b (k >0)与圆x 2+y 2=1和圆(x -4)2+y 2=1均相切,则k =________,b =________.9.(2020·全国Ⅲ文,14)设双曲线C :x 2a 2-y 2b 2=1(a >0,b >0)的一条渐近线为y =2x ,则C的离心率为________. 三、解答题1.(2020·全国Ⅰ理,20)已知A ,B 分别为椭圆E :x 2a 2+y 2=1(a >1)的左、右顶点,G 为E的上顶点,AG →·GB →=8.P 为直线x =6上的动点,PA 与E 的另一交点为C ,PB 与E 的另一交点为D . (1)求E 的方程;(2)证明:直线CD 过定点.2.(2020·全国Ⅱ理,19)已知椭圆C 1:x 2a 2+y 2b 2=1(a >b >0)的右焦点F 与抛物线C 2的焦点重合,C 1的中心与C 2的顶点重合.过F 且与x 轴垂直的直线交C 1于A ,B 两点,交C 2于C ,D 两点,且|CD |=43|AB |.(1)求C 1的离心率;(2)设M 是C 1与C 2的公共点,若|MF |=5,求C 1与C 2的标准方程.3.(2020·全国Ⅲ理,20)已知椭圆C :x 225+y 2m 2=1(0<m <5)的离心率为154,A ,B 分别为C的左、右顶点. (1)求C 的方程;(2)若点P 在C 上,点Q 在直线x =6上,且|BP |=|BQ |,BP ⊥BQ ,求△APQ 的面积.4.(2020·新高考全国Ⅰ,22)已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的离心率为22,且过点A (2,1).(2)点M ,N 在C 上,且AM ⊥AN ,AD ⊥MN ,D 为垂足.证明:存在定点Q ,使得|DQ |为定值.5.(2020·新高考全国Ⅱ,21)已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)过点M (2,3),点A 为其左顶点,且AM 的斜率为12.(1)求C 的方程;(2)点N 为椭圆上任意一点,求△AMN 的面积的最大值.6.(2020·北京,20)已知椭圆C :x 2a 2+y 2b 2=1过点A (-2,-1),且a =2b .(1)求椭圆C 的方程;(2)过点B (-4,0)的直线l 交椭圆C 于点M ,N ,直线MA ,NA 分别交直线x =-4于点P ,Q .求|PB ||BQ |的值.7.(2020·天津,18)已知椭圆x 2a 2+y 2b 2=1(a >b >0)的一个顶点为A (0,-3),右焦点为F ,且|OA |=|OF |,其中O 为原点.(2)已知点C 满足3OC →=OF →,点B 在椭圆上(B 异于椭圆的顶点),直线AB 与以C 为圆心的圆相切于点P ,且P 为线段AB 的中点.求直线AB 的方程.8.(2020·江苏,18)在平面直角坐标系xOy 中,已知椭圆E :x 24+y 23=1的左、右焦点分别为F 1,F 2,点A 在椭圆E 上且在第一象限内,AF 2⊥F 1F 2,直线AF 1与椭圆E 相交于另一点B .(1)求△AF 1F 2的周长;(2)在x 轴上任取一点P ,直线AP 与椭圆E 的右准线相交于点Q ,求OP →·QP →的最小值; (3)设点M 在椭圆E 上,记△OAB 与△MAB 的面积分别为S 1,S 2,若S 2=3S 1,求点M 的坐标.9.(2020·浙江,21)如图,已知椭圆C 1:x 22+y 2=1,抛物线C 2:y 2=2px (p >0),点A 是椭圆C 1与抛物线C 2的交点.过点A 的直线l 交椭圆C 1于点B ,交抛物线C 2于点M (B ,M 不同于A ).(1)若p =116,求抛物线C 2的焦点坐标;(2)若存在不过原点的直线l 使M 为线段AB 的中点,求p 的最大值.10.(2020·全国Ⅰ文,21)已知A ,B 分别为椭圆E :x 2a 2+y 2=1(a >1)的左、右顶点,G 为E的上顶点,AG →·GB →=8.P 为直线x =6上的动点,PA 与E 的另一交点为C ,PB 与E 的另一交点为D . (1)求E 的方程;(2)证明:直线CD 过定点.11.(2020·全国Ⅱ文,19)已知椭圆C 1:x 2a 2+y 2b 2=1(a >b >0)的右焦点F 与抛物线C 2的焦点重合,C 1的中心与C 2的顶点重合.过F 且与x 轴垂直的直线交C 1于A ,B 两点,交C 2于C ,D 两点,且|CD |=43|AB |.(1)求C 1的离心率;(2)若C 1的四个顶点到C 2的准线距离之和为12,求C 1与C 2的标准方程.12.(2020·全国Ⅲ文,21)已知椭圆C:x225+y2m2=1(0<m<5)的离心率为154,A,B分别为C的左、右顶点.(1)求C的方程;(2)若点P在C上,点Q在直线x=6上,且|BP|=|BQ|,BP⊥BQ,求△APQ的面积.。
专题05 2020版平面解析几何(原卷版)

x
p 交于 E,G 两点,若
2
sinMFG 1 ,则抛物线 C 的方程是 3
A. y2 x
B. y2 2x
C. y2 4x
D. y2 8x
9.【2020·湖北省高三其他(理)】已知过抛物线 C : y2 4x 焦点 F 的直线交抛物线 C 于 P , Q 两点,交圆
x2 y2 2x 0 于 M , N 两点,其中 P , M 位于第一象限,则
,
0
B.
1 2
,
0
C. (1, 0)
D. (2, 0)
x2
4.【2020 年高考全国Ⅲ卷理数】11.设双曲线 C:
a2
y2 b2
1 (a>0,b>0)的左、右焦点分别为 F1,F2,
离心率为 5 .P 是 C 上一点,且 F1P⊥F2P.若△PF1F2 的面积为 4,则 a=
A. 1 C. 4
14.【2020 年高考北京】已知双曲线 C : x2 y2 1,则 C 的右焦点的坐标为_________;C 的焦点到其渐 63
近线的距离是_________.
15.【2020 年高考浙江】已知直线 y kx b(k 0) 与圆 x2 y2 1 和圆 (x 4)2 y2 1均相切,则 k _______,
21.【2020
x2 年高考全国Ⅲ卷理数】已知椭圆 C :
25
y2 m2
1(0 m 5) 的离心率为
15 , A , B 分别为 C 的 4
左、右顶点.
(1)求 C 的方程; (2)若点 P 在 C 上,点 Q 在直线 x 6 上,且 | BP || BQ | , BP BQ ,求 △APQ 的面积.
1 PM
2020年全国各地高中数学真题分类汇编—解析几何(含答案)

2020年全国各地⾼考真题分类汇编—解析⼏何1.(2020•天津)设双曲线C的⽅程为﹣=1(a>0,b>0),过抛物线y2=4x的焦点和点(0,b)的直线为l.若C的⼀条渐近线与l平⾏,另⼀条渐近线与l垂直,则双曲线C 的⽅程为()A.﹣=1B.x2=1C.﹣y2=1D.x2﹣y2=12.(2020•北京)已知半径为1的圆经过点(3,4),则其圆⼼到原点的距离的最⼩值为()A.4B.5C.6D.73.(2020•浙江)已知点O(0,0),A(﹣2,0),B(2,0).设点P满⾜|PA|﹣|PB|=2,且P 为函数y=3图象上的点,则|OP|=()A.B.C.D.4.(2020•北京)设抛物线的顶点为O,焦点为F,准线为l.P是抛物线上异于O的⼀点,过P作PQ⊥l于Q,则线段FQ的垂直平分线()A.经过点O B.经过点PC.平⾏于直线OP D.垂直于直线OP5.(2020•新课标Ⅲ)点(0,﹣1)到直线y=k(x+1)距离的最⼤值为()A.1B.C.D.26.(2020•新课标Ⅲ)设O为坐标原点,直线x=2与抛物线C:y2=2px(p>0)交于D,E两点,若OD⊥OE,则C的焦点坐标为()A.(,0)B.(,0)C.(1,0)D.(2,0)7.(2020•新课标Ⅱ)设O为坐标原点,直线x=a与双曲线C:﹣=1(a>0,b>0)的两条渐近线分别交于D,E两点.若△ODE的⾯积为8,则C的焦距的最⼩值为()A.4B.8C.16D.328.(2020•新课标Ⅱ)若过点(2,1)的圆与两坐标轴都相切,则圆⼼到直线2x﹣y﹣3=0的距离为()A.B.C.D.9.(2020•新课标Ⅰ)已知A为抛物线C:y2=2px(p>0)上⼀点,点A到C的焦点的距离为12,到y轴的距离为9,则p=()A.2B.3C.6D.910.(2020•新课标Ⅰ)已知圆x2+y2﹣6x=0,过点(1,2)的直线被该圆所截得的弦的⻓度的最⼩值为()A.1B.2C.3D.4 11.(2020•新课标Ⅲ)在平⾯内,A,B是两个定点,C是动点.若•=1,则点C的轨迹为()A.圆B.椭圆C.抛物线D.直线12.(2020•新课标Ⅰ)设F1,F2是双曲线C:x2﹣=1的两个焦点,O为坐标原点,点P在C上且|OP|=2,则△PF1F2的⾯积为()A.B.3C.D.213.(2020•新课标Ⅲ)设双曲线C:﹣=1(a>0,b>0)的左、右焦点分别为F1,F2,离⼼率为.P是C上⼀点,且F 1P⊥F2P.若△PF1F2的⾯积为4,则a=()A.1B.2C.4D.814.(2020•新课标Ⅰ)已知⊙M:x2+y2﹣2x﹣2y﹣2=0,直线l:2x+y+2=0,P为l上的动点.过点P作⊙M的切线PA,PB,切点为A,B,当|PM|•|AB|最⼩时,直线AB的⽅程为()A.2x﹣y﹣1=0B.2x+y﹣1=0C.2x﹣y+1=0D.2x+y+1=015.(2020•上海)已知椭圆+y2=1,作垂直于x轴的垂线交椭圆于A、B两点,作垂直于y 轴的垂线交椭圆于C、D两点,且AB=CD,两垂线相交于点P,则点P的轨迹是()A.椭圆B.双曲线C.圆D.抛物线⼆.多选题(共1⼩题)16.(2020•海南)已知曲线C:mx2+ny2=1.()A.若m>n>0,则C是椭圆,其焦点在y轴上B.若m=n>0,则C是圆,其半径为C.若mn<0,则C是双曲线,其渐近线⽅程为y=±xD.若m=0,n>0,则C是两条直线17.(2020•天津)已知直线x﹣y+8=0和圆x2+y2=r2(r>0)相交于A,B两点.若|AB|=6,则r的值为.18.(2020•北京)已知双曲线C:﹣=1,则C的右焦点的坐标为;C的焦点到其渐近线的距离是.19.(2020•上海)已知椭圆C:+=1的右焦点为F,直线l经过椭圆右焦点F,交椭圆C于P、Q两点(点P在第⼆象限),若点Q关于x轴对称点为Q′,且满⾜PQ⊥FQ′,求直线l的⽅程是.20.(2020•浙江)已知直线y=kx+b(k>0)与圆x2+y2=1和圆(x﹣4)2+y2=1均相切,则k =,b=.21.(2020•新课标Ⅲ)设双曲线C:﹣=1(a>0,b>0)的⼀条渐近线为y=x,则C的离⼼率为.22.(2020•江苏)在平⾯直⻆坐标系xOy中,若双曲线﹣=1(a>0)的⼀条渐近线⽅程为y=x,则该双曲线的离⼼率是.23.(2020•新课标Ⅰ)已知F为双曲线C:﹣=1(a>0,b>0)的右焦点,A为C的右顶点,B为C上的点,且BF垂直于x轴.若AB的斜率为3,则C的离⼼率为.24.(2020•海南)斜率为的直线过抛物线C:y2=4x的焦点,且与C交于A,B两点,则|AB|=.25.(2020•上海)已知直线l1:x+ay=1,l2:ax+y=1,若l1∥l2,则11与l2的距离为.26.(2020•天津)已知椭圆+=1(a>b>0)的⼀个顶点为A(0,﹣3),右焦点为F,且|OA|=|OF|,其中O为原点.(Ⅰ)求椭圆的⽅程;(Ⅱ)已知点C满⾜3=,点B在椭圆上(B异于椭圆的顶点),直线AB与以C为圆⼼的圆相切于点P,且P为线段AB的中点.求直线AB的⽅程.27.(2020•北京)已知椭圆C:+=1过点A(﹣2,﹣1),且a=2b.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2020年高考试题分类汇编(解析几何)
考点1直线、圆
1.(2020·北京卷)已知半径为1的圆经过点(3,4),则其圆心到原点的距离的最小值为
A .4
B .5
C .6
D .7 1.(2020·全国卷Ⅰ·理科)已知
M :222220x y x y +---=,直线l :
220x y ++=.P 为直线l 上的动点,过P 作M 的切线PA ,PB ,切点为A ,B ,
当PM AB ⋅最小时,直线AB 的方程为
A .210x y --=
B .210x y +-=
C .210x y -+=
D .210x y ++= 1.(2020·全国卷Ⅰ·文科)已知圆2260x y x +-=,过点(1,2)的直线被圆所截得的弦的长度最小值为
A .1
B .2
C .3
D .4
1.(2020·全国卷Ⅱ·文理科)若过点(2,1)的圆与两坐标轴都相切,则圆心到直线230x y --=的距离为
A .
5 B .5 C .5 D .5
1.(2020·全国卷Ⅲ·理科)若直线l 与y =和圆221
5
x y +=都相切,则l 的方程为
A .21y x =+
B .122y x =+
C .112y x =+
D .1122
y x =+
考点2椭圆
1.(2020·北京卷)已知椭圆C :22
221x y a b
+=过点(2,1)A --,且2a b =.
(Ⅰ)求椭圆C 的方程:
(Ⅱ)过点(4,0)B -的直线l 交椭圆C 于点M ,N ,直线MA ,NA 分别交直线
4x =-于点P ,Q .求
PB BQ
的值.
1.(2020·海南卷)已知椭圆C :22
221x y a b
+=(0a b >>)的过点(2,3)M ,A 为
其左顶点,且AM 的斜率为12
.
(Ⅰ)求C 的方程:
(Ⅱ)点N 为椭圆上任意一点,求AMN ∆的面积的最大值.
1.(2020·全国卷Ⅰ·文理科)已知A ,B 分别为椭圆E :2
221x y a
+=(1a >)
的左、右顶点,G 为E 的上顶点,8AG GB ⋅=.P 为直线6x =上的动点,PA 与E 的另一个交点为C ,PB 与E 的另一个交点为D . (Ⅰ)求E 的方程;
(Ⅱ)证明:直线CD 过定点.
1.(2020·全国卷Ⅱ·理科)已知椭圆1C :22
221x y a b
+=(0a b >>)的右焦点为
F 与抛物线2C 的焦点重合,1C 的中心与2C 的顶点重合,过F 且与x 轴垂直的直线交1C 于A ,B 两点,交2C 于C ,D 两点,且4
3
CD AB =. (Ⅰ)求1C 的离心率;
(Ⅱ)设M 是1C 与2C 的公共点,若5MF =,求1C 与2C 的标准方程.
1.(2020·全国卷Ⅱ·文科)已知椭圆1C :22
221x y a b
+=(0a b >>)的由焦点为
F 与抛物线2C 的焦点重合,1C 的中心与2C 的顶点重合,过F 且与x 轴垂直的直线交1C 于A ,B 两点,交2C 于C ,D 两点,且4
3
CD AB =. (Ⅰ)求1C 的离心率;
(Ⅱ)若1C 的四个顶点到2C 的准线的距离之和为12,求1C 与2C 的标准方程.
1.(2020·全国卷Ⅲ·理科)已知椭圆C :22
2125x y m +=(05m <<)的离心率为
,A ,B 分别为C 的左、右顶点.
(Ⅰ)求C 的方程;
(Ⅱ)若点P 在C 上,点Q 在直线6x =上,且BP BQ =,BP BQ ⊥,求APQ ∆的面积.
考点3 抛物线
1.(2020·北京卷)设抛物线的顶点为O ,焦点为F ,准线为l .P 是抛物线上异于O 的一点,过P 作PQ l ⊥于Q ,则线段FQ 的垂直平分线 A.经过点O B.经过点P C.平行于直线OP D.垂直于直线OP
1.(2020的直线过抛物线C :24y x =的焦点,且与C 交于
A ,
B 两点,则AB = .
1.(2020·全国卷Ⅰ·理科)已知A 为抛物线C :22y px =(0p >)上的一点,点A 到C 的焦点的距离为12,到y 轴的距离为9,则p =
A .2
B .3
C .6
D .9 1.(2020·全国卷Ⅲ·理科)设O 为坐标原点,直线2x =与抛物C :22y px =(0p >)交于D ,
E 两点,若OD OE ⊥,则C 的焦点坐标为
A .1(,0)4
B .1
(,0)2 C .(1,0) D .(2,0)
考点4 双曲线
1.(2020·北京卷)已知双曲线C :22
163
x y -=,则C 的右焦点的坐标为 ;
C 的焦点到其渐近线的距离是 . 1.(2020·海南卷)已知曲线C :221mx ny += A .若0m n >>,则C 是椭圆,其焦点在y 轴上
B .若0m n =>,则C
C .若0mn <,则C 是双曲线,其渐近线方程为y =
D .若0m =,0n >,则C 是两条直线
1.(2020·全国卷Ⅰ·理科)已知F 为双曲线C :22
221x y a b
-=(0a >,0b >)
的右焦点,A 为C 的右顶点,B 为C 上的点,且BF 垂直于x 轴,若AB 的斜率为3,则C 的离心率为 .
1.(2020·全国卷Ⅰ·文科)设1F ,2F 为双曲线C :2
2
13
y x -=的两个焦点,O 为坐标原点,点P 在C 上且2OP =,则12PF F ∆的面积为
A .72
B .3
C .5
2
D .2
1.(2020·全国卷Ⅱ·文理科)设O 为坐标原点,直线x a =与双曲线C :22
2
21x y a b
-=(0a >,0b >)的两条渐近线分别交于D ,E 两点,若ODE ∆的面积为8,则C 的焦距的最小值为
A .4
B .8
C .16
D .32
1.(2020·全国卷Ⅲ·理科)设双曲线C :22
221x y a b
-=(0a >,0b >)的左、
右焦点为1F ,2F ,P 是C 上一点,且12F P F P ⊥,若12PF F ∆的面积为4,则a =
A .1
B .2
C .4
D .8。