中心对称与中心对称图形教材解析
中心对称图形(二)教材分析重点
![中心对称图形(二)教材分析重点](https://img.taocdn.com/s3/m/f84c9edbec3a87c24028c4a5.png)
《中心对称图形(二)》教材分析一、教学目标1、理解圆及其有关概念,了解弧、弦、圆心角的关系。
2、探索圆的性质,了解圆周角与圆心角的关系、直径所对圆周角的特征。
3、认识圆的轴对称性和中心对称性,探索并了解垂径定理。
4、探索并了解点与圆、直线与圆以及圆与圆的位置关系。
5、了解切线的概念,探索切线与过切点的半径之间的关系,能判定一条直线是否为圆的切线,会过圆上一点画圆的切线。
6、了解三角形的内心和外心及三角形内切圆、三角形外接圆、内接三角形、外切三角形的概念。
7、了解正多边形的概念。
8、会计算弧长及扇形的面积,会计算圆锥的侧面积和全面积。
二、教学内容本章主要学习圆的定义、弦、弧、弦心距、圆心角、圆周角、扇形和三角形的外接圆等有关概念,以及直线与圆的位置关系和圆与圆的位置关系。
第一单元是圆的有关性质,在“5.1圆”这一节,主要是让学生通过圆的形成,归纳出圆的定义。
虽然在小学阶段,学生已经对圆有一定的认识,但还没有抽象出“圆是到定点的距离等于定长的点的集合。
通过探索如何过一点、过两点和过不在同一条直线上的三点作圆,使学生认识到“不在同一条直线上的三个点确定一个圆”,“确定”的含义是指“经过不在同一条直线上的三个点有且只有一个圆”,这一确定圆的条件,它不仅仅是一个画圆的问题,而是使学生体会到在画圆中所体现的归纳的数学思想。
另外,也使学生初步了解三角形的外心等有关知识。
圆是一种特殊的图形,它既是中心对称图形又是轴对称图形,这一点在前面学习对称性时,学生已经有所了解。
本章安排圆的对称性主要是借助于圆的旋转不变性去探索圆中弧、弦、弦心距、圆心角之间的关系,借助于圆的轴对称性,去探索“垂经定理”;而且由对称性可以尝试用其他的方法来验证有关的结论。
在探索圆周角和圆心角之间的关系时,主要是归结为同弧所对圆周角与圆心角的关系(即圆周角定理),让学生形成分类讨论的思想。
第二单元是直线与圆的位置关系。
借助图形平移的思想讨论直线与圆的位置关系,课本通过操作、观察直线与圆的相对运动,揭示直线与圆的三种位置关系是由圆心到直线的距离与半径之间的大小关系决定的,并着重研究了圆的切线的性质与判定。
中心对称与中心对称图形 教材教法(二)
![中心对称与中心对称图形 教材教法(二)](https://img.taocdn.com/s3/m/550d5263a98271fe910ef916.png)
中心对称与中心对称图形教材教法(二)本节内容和生活结合较多,新课导入可考虑以下方法:
(1)从相似概念引入:中心对称概念与轴对称概念比较相似,中心对称图形与轴对称图形比较相似,可从轴对称类比引入,
(2)从汉字引入:有许多汉字都是中心对称图形,如“田”、“日”、“曰”、“中”、“申”、“王”,等等,可从汉字引入,
(3)从生活实例引入:生活中有许多中心对称实例和中心对称图形,如飞机的螺旋桨,风车的风轮,纽结,雪花,等等,可从生活实例引入,
(4)从商标引入:各公司、企业的商标中有许多中心对称实例和中心对称图形,如联想,联合证券,湘财证券,中国工商银行,中国银行,等等,可从这些商标引入,
(5)从车标引入:各品牌汽车的车标中有许多都是中心对称图形,如奥迪,韩国现代,本田,富康,欧宝,宝马,等等,可从车标引入,
(6)从几何图形引入:学习过的许多图形都是中心对称图形,如圆,平行四边形,矩形,菱形,正方形,等等,可从几何图形引入,
(7)从艺术品引入:艺术品中有许多都是呈中心对称或是中心对称图形,可从艺术品引入。
人教版九年级数学上册23.2.2.2《中心对称图形》说课稿
![人教版九年级数学上册23.2.2.2《中心对称图形》说课稿](https://img.taocdn.com/s3/m/822a86013d1ec5da50e2524de518964bcf84d229.png)
人教版九年级数学上册23.2.2.2《中心对称图形》说课稿一. 教材分析人教版九年级数学上册23.2.2.2《中心对称图形》是本册教材中关于中心对称图形的一部分内容。
在此之前,学生已经学习了关于对称图形的相关知识,对于对称图形的概念和性质有一定的了解。
本节课通过引入中心对称图形的概念,使学生对对称图形有更深入的认识,并学会如何判断一个图形是否是中心对称图形。
教材通过丰富的实例和图示,引导学生探索中心对称图形的性质,培养学生的观察能力和推理能力。
二. 学情分析九年级的学生已经具备了一定的数学基础,对于图形的对称性有一定的了解。
但是,对于中心对称图形的概念和性质,学生可能还比较陌生。
因此,在教学过程中,需要引导学生通过观察实例,发现中心对称图形的性质,加深对中心对称图形的理解。
同时,学生可能对一些抽象的概念理解起来有一定的困难,因此在教学过程中,需要注重直观演示和实例分析,帮助学生理解和掌握中心对称图形的性质。
三. 说教学目标1.知识与技能目标:让学生理解中心对称图形的概念,掌握中心对称图形的性质,并能够运用这些性质判断一个图形是否是中心对称图形。
2.过程与方法目标:通过观察实例,引导学生发现中心对称图形的性质,培养学生的观察能力和推理能力。
3.情感态度与价值观目标:激发学生对数学的兴趣,培养学生的抽象思维能力,使学生感受到数学的美妙和实际应用的价值。
四. 说教学重难点1.教学重点:中心对称图形的概念及其性质。
2.教学难点:中心对称图形的性质的证明和运用。
五. 说教学方法与手段1.教学方法:采用问题驱动法、实例分析法和小组合作法进行教学。
2.教学手段:利用多媒体课件、实物模型和黑板进行教学。
六. 说教学过程1.导入新课:通过展示一些生活中的实例,引导学生观察和思考这些实例中的图形是否有某种特殊的对称性。
2.探究中心对称图形的性质:让学生分组讨论,每组选取一个实例,观察和分析中心对称图形的性质。
教师引导学生总结中心对称图形的性质,并给出证明。
3.2-2 中心对称与中心对称图形
![3.2-2 中心对称与中心对称图形](https://img.taocdn.com/s3/m/3b2eda0f844769eae109ed04.png)
P.79 判断下列图形是否为中心对称图形 如果是, 判断下列图形是否为中心对称图形? 如果是,请 是否为中心对称图形? 画出对称中心。 画出对称中心。
随堂练习 1.把下列英文字母看成图案, 1.把下列英文字母看成图案, 把下列英文字母看成图案 哪些英文大写字母是中心对称图案 是中心对称图案? 哪些英文大写字母是中心对称图案?
方法: 由定义) 方法:(由定义)对 应点连线经过图形 中同一点; 中同一点;并且被 这一点平分. 这一点平分.
A E O F D B C
A、B,C、D,E、F,是对应点,A、E、F、B共线,连接CD B,C、D,E、F,是对应点 、 是对应点,A 共线,连接CD AB得交点 对应点连线经过同一点 再证被 平分. 得交点O,(对应点连线经过同一点),再证被O 与AB得交点O,(对应点连线经过同一点),再证被O平分.
你认为中心对称 中心对称图形有联系吗 你认为中心对称与中心对称图形有联系吗? 中心对称与 有联系吗?
如果将成中心对称的两个图形看成一个整体 如果将成中心对称的两个图形看成一个整体, 将成中心对称的两个图形看成一个整体, 那么这个图形的整体就是中心对称图形. 那么这个图形的整体就是中心对称图形. 反过来, 反过来,将一个中心对称图形沿过对称中心的任一 条直线分成两个图形,那么这两个图形成中心对称. 分成两个图形,那么这两个图形成中心对称.
3.23.2-2中心对称与中心对称图形
能举出生活中两个图形成中心对称的例子吗? 能举出生活中两个图形成中心对称的例子吗? 两个图形成中心对称的例子吗
这两幅图反应的是什么现象 它们有什么不同? 这两幅图反应的是什么现象? 它们有什么不同? 轴对称是两个图形之间的特殊位置关系。 轴对称是两个图形之间的特殊位置关系。对于 什么现象? 之间的特殊位置关系 任何一个图形,都可以作出 作出它关于任一直线对称的 任何一个图形,都可以作出它关于任一直线对称的 图形. 图形.
中心对称与中心对称图形 教材教法(一)
![中心对称与中心对称图形 教材教法(一)](https://img.taocdn.com/s3/m/ed7ffe1acc7931b765ce1517.png)
中心对称与中心对称图形教材教法(一)教材分析:
通过具体实例认识中心对称,探索它的基本性质,理解“连结对称点的线段都经过对称中心,并且被对称中心平分”这一基本性质,并理解中心对称图形是旋转角度为180°的旋转对称图形。
教法建议:
1.教学过程中,要注意知识的延续和发展,同时,要结合具体的图形,通过观察、测量、分析等活动来探究中心对称的性质。
2.教学中,应注意让学生自己通过丰富的具体图形认识中心对称与中心对称图形,体会中心对称图形是旋转角度为 180°的较为特殊的旋转对称图形。
3.应引导学生在认识中心对称的基础上,熟练地画出已知图形关于某一点成中心对称的图形。
4.对一些学有余力的学生,可以让他们通过自己实践,体会两次翻折(对称轴互相垂直)与中心对称的关系。
中心对称与中心对称图形讲义
![中心对称与中心对称图形讲义](https://img.taocdn.com/s3/m/3d70d7f3b8f67c1cfad6b8b2.png)
中心对称与中心对称图形【知识梳理】⒈概念:如果把一个图形绕着某一点旋转180度后能与另一个图形重合,那么我们就说,这两个图形成中心对称,这个点叫做对称中心,两个图形中的对应点叫做对称点中心对称图形:平面内,如果把一个图形绕着某一点旋转180度后能与自身重合,那么这个图形叫做中心对称图形。
这个点就是它的对称中心。
说一说:观察你生活的周围各处,指出几个中心对称的现象,并指出生活中几个中心对称图形2、成中心对称的两个图形有哪些特征?。
3、利用中心对称基本性质作图操作1 作点A关于O点的对称点操作2 作线段AB关于O点成中心对称的图形操作3 作三角形ABC关于点O成中心对称的图形3、中心对称与轴对称进行类比4. 对比轴对称图形与中心对称图形轴对称图形中心对称图形有一条对称轴——直线有一个对称中心——点沿对称轴对折绕对称中心旋转180O对折后与原图形重合旋转后与原图形重合【例题精讲】【例1】下列图形中,哪些是旋转对称图形,哪些不是旋转对称图形?如果是旋转对称图形,请在图中标出旋转中心,并在括号内填入“是”,以及所有的旋转角和最小旋转角;如果不是旋转对称图形,请在括号内填入“不是”.(1)等边的三角形ABC,且AO=BO=OC.(2)正方形ABCD,且AC与BD相交于点0.(3)由圆的五等分点画出的五角星图形.(4)由六个相同的平行四边形及圆拼成的图形.(5)直角三角形.(6)梯形.【例2】(1)在第1题中,哪些图形是中心对称图形?中心对称图形与旋转对称图形的主要区别是什么?【例3】(1)画出下列中心对称图形的对称中心.红十字会标2002年国际数学家大会会标的一部分图案【例4】(1)在下图中,画出五边形ABCDE关于点0的中心对称图形.(2)五边形ABCDE是不是旋转对称图形?为什么?【例5】已知下列两个图形关于某点中心对称,画出对称中心.【课堂练习】一、选细心选一选1.如图:下列四个图案中既是轴对称图形,又是中心对称图形的是()A.B.C.D.2.下列图形中,是中心对称图形的是()A B.C.D.3.下列图形中,既是轴对称图形又是中心对称图形的是()A.平行四边形 B.圆C.正五边形D.等腰三角形4.下列图形中,既是轴对称又是中心对称的图形是()A.直角三角形B.正五边形C.正六边形D.等腰梯形5.在平面直角坐标系中,点A(l,3)关于原点D对称的点A′的坐标为()A.(﹣1,3)B.(1,﹣3)C.(3,1)D.(﹣1,﹣3)6.民间剪纸在我国有着悠久的历史,下列图案是中心对称图形的是()A.B.C.D.7、“俄罗斯方块”同学们一定玩过吧,下面给出几种基本图形,请你利用它们设计一个中心对称图案,试一试,你一定行!(除了给出的四种基本图案,你还可以在方框内自主设计其他图案,可以重复使用某种基本图案)综合提高练习1.下面这几个车标中,是中心对称图形而不是轴对称图形的共有()A 、1B 、2C 、3D 、4巩固:如图,是4×4的正方形网格,把其中一个标有数字的白色小正方形涂黑,就可以使图中的黑色部分构成一个中心对称图形,则这个白色小正方形内的数字是_________.2.小明把如图所示的扑克牌放在一张桌子上,请一位同学避开他任意将其中一张牌倒过来,然后小明很快辨认出被倒过来的那张扑克牌是()A 、方块5B 、梅花6C 、红桃7D 、黑桃8巩固:4张扑克牌如图1所示放在桌子上,小明将其中一张旋转180°后得到如图2所示,那么他所旋转的牌从左起是()A 、第一张B 、第二张C 、第三张D 、第四张3.如图,△ABC与△A1B1C1关于点O成中心对称,下列说法:①∠BAC=∠B1A1C1;②AC=A1C1;③OA=OA1;④△ABC与△A1B1C1的面积相等,其中正确的有()4.如图,在4×4的正方形网格中,每个小正方形的顶点称为格点,左上角阴影部分是一个以格点为顶点的正方形(简称格点正方形).若再作一个格点正方形,并涂上阴影,使这两个格点正方形无重叠面积,且组成的图形是轴对称图形,又是中心对称图形,则这个格点正方形的作法共有()变式:如图①是3×3正方形方格,将其中两个方格涂黑,并且使涂黑后的整个图案是轴对称图形,约定绕正方形ABCD的中心旋转能重合的图案都视为同一种图案,例如图②中的四幅图就视为同一种图案,则得到的不同图案共有()5.如图,在边长为1个单位长度的小正方形组成的网格中,给出了格点△ABC(顶点是网格线的交点)和点A1.(1)画出一个格点△A1B1C1,并使它与△ABC全等且A与A1是对应点;(2)画出点B关于直线AC的对称点D,并指出AD可以看作由AB绕A点经过怎样的旋转而得到的.巩固:如图,是一个4×4的正方形网格,每个小正方形的边长为1.请你在网格中以左上角的三角形为基本图形,通过平移、对称或旋转变换,设计一个精美图案,使其满足:①既是轴对称图形,又是以点O为对称中心的中心对称图形;②所作图案用阴影标识,且阴影部分面积为4.。
中心对称与中心对称图形讲义
![中心对称与中心对称图形讲义](https://img.taocdn.com/s3/m/202a35925fbfc77da369b11f.png)
中心对称与中心对称图形【知识梳理】⒈概念:如果把一个图形绕着某一点旋转180度后能与另一个图形重合,那么我们就说,这两个图形成中心对称,这个点叫做对称中心,两个图形中的对应点叫做对称点中心对称图形:平面内,如果把一个图形绕着某一点旋转180度后能与自身重合,那么这个图形叫做中心对称图形。
这个点就是它的对称中心。
说一说:观察你生活的周围各处,指出几个中心对称的现象,并指出生活中几个中心对称图形2、成中心对称的两个图形有哪些特征?。
3、利用中心对称基本性质作图操作1 作点A关于O点的对称点操作2 作线段AB关于O点成中心对称的图形操作3 作三角形ABC关于点O成中心对称的图形3、中心对称与轴对称进行类比轴对称中心对称有一条对称轴——直线有一个对称中心——点图形沿对称轴对折(翻转180度)后重合图形绕对称中心旋转180度后重合对称点的连线被对称轴垂直平分对称点连线经过对称中心,且被对称中心平分4. 对比轴对称图形与中心对称图形轴对称图形中心对称图形有一条对称轴——直线有一个对称中心——点沿对称轴对折绕对称中心旋转180O对折后与原图形重合旋转后与原图形重合【例题精讲】【例1】下列图形中,哪些是旋转对称图形,哪些不是旋转对称图形?如果是旋转对称图形,请在图中标出旋转中心,并在括号内填入“是”,以及所有的旋转角和最小旋转角;如果不是旋转对称图形,请在括号内填入“不是”.(1)等边的三角形ABC,且AO=BO=OC.(2)正方形ABCD,且AC与BD相交于点0.(3)由圆的五等分点画出的五角星图形.(4)由六个相同的平行四边形及圆拼成的图形.(5)直角三角形.(6)梯形.【例2】(1)在第1题中,哪些图形是中心对称图形?中心对称图形与旋转对称图形的主要区别是什么?【例3】(1)画出下列中心对称图形的对称中心.红十字会标2002年国际数学家大会会标的一部分图案【例4】(1)在下图中,画出五边形ABCDE关于点0的中心对称图形.(2)五边形ABCDE是不是旋转对称图形?为什么?【例5】已知下列两个图形关于某点中心对称,画出对称中心.【课堂练习】一、选细心选一选1.如图:下列四个图案中既是轴对称图形,又是中心对称图形的是()A.B.C.D.2.下列图形中,是中心对称图形的是()A B.C.D.3.下列图形中,既是轴对称图形又是中心对称图形的是()A.平行四边形 B.圆C.正五边形D.等腰三角形4.下列图形中,既是轴对称又是中心对称的图形是()A.直角三角形B.正五边形C.正六边形D.等腰梯形5.在平面直角坐标系中,点A(l,3)关于原点D对称的点A′的坐标为()A.(﹣1,3)B.(1,﹣3)C.(3,1)D.(﹣1,﹣3)6.民间剪纸在我国有着悠久的历史,下列图案是中心对称图形的是()A.B.C.D.7、“俄罗斯方块”同学们一定玩过吧,下面给出几种基本图形,请你利用它们设计一个中心对称图案,试一试,你一定行!(除了给出的四种基本图案,你还可以在方框内自主设计其他图案,可以重复使用某种基本图案)。
中心对称图形教案
![中心对称图形教案](https://img.taocdn.com/s3/m/d08b9d58f11dc281e53a580216fc700abb68520a.png)
中心对称图形一.教材分析(1)主要内容:《中心对称图形》是课程标准实验教科书北师大版八年级(上)第4章的第八节,是一节综合实践性较强的活动课﹒本节课利用日常生活中的一些旋转对称图形引出中心对称图形的概念,引导学生探究中心对称图形的性质,研究特殊图形的识别和应用﹒学生通过观察、猜想、实验、归纳、类比等亲身经历将实际问题抽象为数学模型,感受、理解知识的产生和发展过程,培养学生的抽象思维能力﹒本节课的最终目的是要求学生在了解中心对称图形及其基本性质后,自觉运用类比的方法(与轴对称图形类比),从直观思维、运动变换的观点去认识三角形、四边形、圆、生活中的中心对称图形,对这些图形获得理性和感性的认识,从而理解数学变换思想和数学美感﹒(2)教材的地位和作用“中心对称图形”是初中数学教学中的重要内容之一,它既与“轴对称图形"有紧密的联系和区别,同时又是图形的三种基本运动方式(平移,翻折,旋转)中的“旋转”的特殊情况﹒通过对这一节课的学习,丰富学生对“对称图形”的认识,同时又向学生渗透了“旋转变换”的思想,使学生学会用运动的观点研究问题,发展学生的空间智能﹒本节课在生活中有丰富的实际素材,学习本节课后学生能进一步感受到数学的应用价值,能用数学的观点观察生活,解决生活中的实际问题,为续内容的学习奠定良好的基础,学习中涉及的归纳、类比等思想方法,对激发学生探索精神和创新意识等方面都有重要意义﹒二.学情分析学生已学过《生活中的轴对称》和《图形的平移和旋转》,初步积累了一定的图形变换的数学活动经验,在此基础上,组织学生观察、分析、识图、简单图案欣赏和设计等实践操作活动,丰富学生对图形变换的认识﹒由于学生的操作能力相对比较差,呈现内容时,力图为学生提供生动有趣的现实情境,安排观察、实践、交流等活动,进一步深化学生对中心对称图形定义和性质的理解,以及对识图、画图等操作技能的掌握,丰富学生数学活动体验,有意识培养学生积极的情感、态度,促进良好的数学观的养成﹒三.目标分析●知识与技能目标1。
苏科版数学八年级下册9.2《中心对称与中心对称图形》教学设计
![苏科版数学八年级下册9.2《中心对称与中心对称图形》教学设计](https://img.taocdn.com/s3/m/d53731d770fe910ef12d2af90242a8956becaae4.png)
苏科版数学八年级下册9.2《中心对称与中心对称图形》教学设计一. 教材分析《中心对称与中心对称图形》是苏科版数学八年级下册第九章第二节的内容。
本节内容是在学生已经掌握了轴对称的概念和性质的基础上进行学习的,旨在让学生了解中心对称的概念和性质,以及中心对称图形的特点。
教材通过丰富的实例,引导学生探究中心对称图形的性质,从而培养学生的观察能力、操作能力和推理能力。
二. 学情分析学生在学习本节内容前,已经掌握了轴对称的相关知识,对对称性有一定的认识。
但由于中心对称与轴对称在概念和性质上有较大的区别,学生在理解和掌握上可能会有一定的难度。
因此,在教学过程中,教师需要关注学生的认知差异,针对不同学生的学习情况,采取合适的教学策略,引导学生逐步理解和掌握中心对称的概念和性质。
三. 教学目标1.了解中心对称的概念和性质,能识别中心对称图形。
2.能运用中心对称的性质解决一些简单的问题。
3.培养学生的观察能力、操作能力和推理能力。
四. 教学重难点1.中心对称的概念和性质。
2.中心对称图形的特点。
五. 教学方法1.情境教学法:通过丰富的实例,引导学生观察和操作,从而理解和掌握中心对称的概念和性质。
2.小组合作学习:学生在小组内进行讨论和探究,分享学习心得,培养团队合作精神。
3.启发式教学:教师提问引导学生思考,激发学生的学习兴趣,提高学生的解决问题的能力。
六. 教学准备1.教学课件:制作中心对称与中心对称图形的课件,包括图片、动画和例题等。
2.教学素材:准备一些中心对称图形的图片,用于课堂展示和练习。
3.学生活动用品:如剪刀、彩纸等,用于学生的操作活动。
七. 教学过程1.导入(5分钟)利用课件展示一些生活中的对称现象,如建筑、艺术作品等,引导学生关注对称性。
提问:你们认为这些现象是什么对称?引出中心对称的概念。
2.呈现(15分钟)展示一些中心对称图形的图片,如圆、平行四边形等,引导学生观察和思考:这些图形有什么特点?教师引导学生总结出中心对称图形的定义和性质。
第03讲 中心对称与中心对称图形(知识解读+达标检测)(解析版)
![第03讲 中心对称与中心对称图形(知识解读+达标检测)(解析版)](https://img.taocdn.com/s3/m/dbda1572f08583d049649b6648d7c1c709a10b00.png)
第03讲中心对称与中心对称图形【题型1中心对称图形】【题型2中心对称的性质】【题型3利用中心对称的性质-找对称中心】【题型4利用中心对称的性质-求边长长度】【题型5利用中心对称的性质-求点坐标】【题型6利用中心对称的性质-求面积】【题型7利用中心对称的性质-作图】考点:中心对称(两个图形)1.概念把一个图形绕着某一点旋转180°,如果它能够与另一个图形重合,那么就说这两个图形关于这个点对称或中心对称;2.性质(1)关于中心对称的两个图形是全等形。
(2)关于中心对称的两个图形,对称点连线都经过对称中心,并且被对称中心平分。
(3)关于中心对称的两个图形,对应线段平行(或在同一直线上)且相等。
3.判定如果两个图形的对应点连线都经过某一点,并且被这一点平分,那么这两个图形关于这一点对称。
4.作图步骤:(1)连接原图形上所有的特殊点和对称中心。
(2)将以上所连线段延长找对称点,使得特殊点与对称中心的距离和对称点与对称中心的距离相等。
(3)将对称点按原图形的形状顺次连接起来,即可得出关于中心对称的图形5.中心对称图形(一个图形)把一个图形绕某一个点旋转180°,如果旋转后的图形能够和原来的图形互相重合,那么这个图形叫做中心对称图形,这个店就是它的对称中心。
【题型1中心对称图形】【典例1】(2023秋•南沙区期末)剪纸是我国源远流长的传统工艺,下列剪纸中是中心对称图形的是()A.B.C.D.【答案】A【解答】解:选项B、C、D中的图形都不能找到一个点,使图形绕某一点旋转180°后与原来的图形重合,所以不是中心对称图形.选项A中的图形能找到一个点,使图形绕某一点旋转180°后与原来的图形重合,所以是中心对称图形.故选:A.【变式1-1】(2023秋•蒙城县校级期末)下列图形中,是中心对称图形的是()A.B.C.D.【答案】C【解答】解:A、B、D中的图形不是中心对称图形,故A、B、D不符合题意;C中的图形是中心对称图形,故C符合题意.故选:C.【变式1-2】(2023秋•清河区校级期末)四幅作品分别代表“立春”、“立夏”、“芒种”、“大雪”,其中既是轴对称图形,又是中心对称图形的是()A.B.C.D.【答案】D【解答】解:A.该图是轴对称图形,不是中心对称图形,故此选项不合题意;B.该图是轴对称图形,不是中心对称图形,故此选项不合题意;C.该图不是轴对称图形,也不是中心对称图形,故此选项不合题意;D.该图既是轴对称图形,又是中心对称图形,故此选项合题意;故选:D.【变式1-3】(2023秋•沙坪坝区校级期末)下列图形中,既是轴对称图形,又是中心对称图形的是()A.B.C.D.【答案】D【解答】解:A、图形不是轴对称图形,也不是中心对称图形,故A不符合题意;B、图形是中心对称图形,不是轴对称图形,故B不符合题意;C、图形是中心对称图形,不是轴对称图形,故C不符合题意;D、图形既是中心对称图形,也是轴对称图形,故D符合题意.故选:D.【题型2中心对称的性质】【典例2】(2022秋•浦北县期末)如图,△ABC与△A'B'C'关于点O成中心对称,则下列结论不成立的是()A.点A与点A'是对称点B.BO=B'OC.AB=A'B'D.∠ACB=∠C'A'B'【答案】D【解答】解:∵△ABC与△A'B'C'关于点O成中心对称,∴点A与点A'是对称点,BO=B'O,AB=A'B',∴A,B,C正确,故选:D.【变式2-1】(2023春•内江期末)如图,△ADE与△CDB关于点D成中心对称,连结AB,以下结论错误的是()A.AD=CD B.∠C=∠EC.AE=CB D.S△ADE=S△ADB【答案】B【解答】解:∵△ADE与△CDB关于点D成中心对称,∴AD=CD,BD=ED,AE=CB,∠E=∠CBD,∵BD=ED,=S△ADE,∴S△ABD故选:B.【变式2-2】(2023春•泉港区期末)如图,△AOD与△BOC关于点O成中心对称,连结AB、CD,以下结论错误的是()A.OA=OB B.△AOD≌△COBC.AD=BC D.S△ACD=S△BCD【答案】A【解答】解:∵△AOD与△BOC关于点O成中心对称,∴△AOD≌△COB,故选项B正确;∴AD=BC,故选项C正确;但不一定OA=OB,故选项A不正确;∵△AOD≌△COB,=S△BCO,∴S△AOD+S△COD=S△BCD+S△COD,即S△ACD=S△BCD,故选项D正确,∴S△AOD故选:A.【变式2-3】(2023秋•安新县期中)如图,D是△ABC边BC的中点,连接AD并延长到点E,使DE=AD,连接BE.(1)△ADC和△EDB成中心对称;(2)已知△ADC的面积为4,则△ABE的面积是8.【答案】(1)△EDB;(2)8.【解答】解:(1)根据中心对称图形的性质可得;△ADC和△EDB成中心对称,故答案为:△EDB;(2)由(1)得:△ADC和△EDB成中心对称,∴线段BD是△ABC的中线,=S△ACD=4,∴S△ABD∵D是△ABC边BC的中点,=2S△EDB=8,∴S△ABE故答案为:8.【题型3利用中心对称的性质-找对称中心】【典例3】(2023秋•张北县期中)如图,在正方形网格中,A,B,C,D,E,F,G,H,M,N是网格线交点,△ABC与△DEF关于某点对称,则其对称中心是()A.点G B.点H C.点M D.点N【答案】C【解答】解:AD、CF、BE相交于点M,∴点M是△ABC与△DEF的对称中心,故选:C.【变式3-1】(2023春•渭南期末)如图,在平面直角坐标系xOy中,△ABC经过中心对称变换得到△A′B′C′,那么对称中心的坐标为()A.(0,0)B.(﹣1,0)C.(﹣1,﹣1)D.(0,﹣1)【答案】B【解答】解:由图可知,点A与点A'关于(﹣1,0)对称,点B与点B'关于(﹣1,0)对称,点C与点C′关于(﹣1,0)对称,所以△ABC与△A′B′C′关于点(﹣1,0)成中心对称,故选:B.【变式3-2】(2023春•高碑店市期末)如图,△ABC与△DEF关于某点成中心对称,则其对称中心是()A.点P B.点Q C.点M D.点N【答案】C【解答】解:如图,连接BE、CF,发现其交于点M,根据中心对称的性质可知点M即为其对称中心.故选C.【题型4利用中心对称的性质-求边长长度】【典例4】(2023秋•仪陇县期中)如图,菱形ABCD的对角线AC、BD交于点O,AC=2,BD=8,将△BOC绕着点C旋转180°得到△B′O′C,连接AB',则AB'的长是()A.3B.4C.5D.7【答案】C【解答】解:∵四边形ABCD是菱形,∴AC⊥BD,OC=AC,OB=BD,∵AC=2,BD=8,∴OC=1,OB=4,∵△BOC绕着点C旋转180°得到△B′O′C,∴∠O′=∠BOC=90°,CO′=OC=1,O′B′=OB=4,∴AO′=AC+O′C=3,∴AB′==5.故选:C.【变式4-1】(2022秋•广宗县期末)如图是一个中心对称图形,A为对称中心,若∠C=90°,∠B=30°,AC=1,则BB′的长为()A.4B.C.D.【答案】A【解答】解:∵在Rt△ABC中,∠B=30°,AC=1,∴AB=2AC=2,∴BB′=2AB=4.故选:A.【变式4-2】(2023秋•富县期末)如图,△ABC与△AB'C'关于点A对称,若∠C=90°,∠B=30°,AC=1,则BB'的长为4.【答案】4.【解答】解:如图,∵△ABC与△AB'C'关于点A对称,∴△ABC≌△AB′C′,∴AB=AB′,∵∠C=90°,∠B=30°,AC=1,∴AB=2AC=2,∴BB′=2AB=4,故答案为:4.【变式4-3】(2023秋•前郭县期中)如图,△AOB与△COD关于点O成中心对称,已知∠BAO=90°,AB=4,AO=3,则AD的长为2.【答案】2.【解答】解:∵△AOB与△COD关于点O成中心对称,∴AO=CO=3,CD=AB=4,∠C=∠BAO=90°,∴AD=,故答案为:2.【题型5利用中心对称的性质-求点坐标】【典例5】(2023秋•青岛月考)如图,线段AB与线段CD关于点P对称,若点A(3,3)、B(5,1)、D(﹣3,﹣1),则点C的坐标为()A.(﹣3,﹣3)B.(﹣1,﹣3)C.(﹣4,﹣2)D.(﹣2,﹣4)【答案】B【解答】解:∵B(5,1)、D(﹣3,﹣1)关于点P对称,=1,=0,∴点P的坐标为(1,0).设点C(x,y),∵A(3,3),∴=1,=0,∴x=﹣1,y=﹣3.∴C(﹣1,﹣3).故选:B.【变式5-1】(2022•市南区校级二模)如图,在平面直角坐标系中,△ABC与△A'B'C'关于D (﹣1,0)成中心对称.已知点A的坐标为(﹣3,﹣2),则点A'的坐标是()A.(1,3)B.(1,2)C.(3,2)D.(2,3)【答案】B【解答】解:设点A'的坐标是(a,b),根据题意知:=﹣1,=0.解得a=1,b=2.即点A'的坐标是(1,2),故选:B.【变式5-2】(2022春•青州市期末)如图,将△ABC绕点C(0,1)旋转180°得到△A'B'C,设点A的坐标为(﹣2,3),则点A'的坐标为()A.(2,﹣3)B.(﹣1,2)C.(2,﹣2)D.(2,﹣1)【答案】D【解答】解:设A′(m,n),∵AC=CA′,A(﹣2,3),C(0,1),∴=0,=1,∴m=2,n=﹣1,∴A′(2,﹣1),故选:D.【题型6利用中心对称的性质-求面积】【典例6】(2022秋•乌鲁木齐县校级期中)如图,正方形边长为a,则阴影部分面积为.【答案】见试题解答内容【解答】解:由题意得:S阴影=S正方形=,故答案为:.【变式6-1】(2022春•南关区期末)如图,直线a、b垂直相交于点O,曲线C关于点O成中心对称,点A的对称点是点A1,AB⊥a于点B,A1D⊥b于点D,若OB=5,OD=3,则阴影部分的面积之和为15.【答案】15.【解答】解:∵直线a、b垂直相交于点O,曲线C关于点O成中心对称,点A的对称点是点A',AB⊥a于点B,A'D⊥b于点D,OB=5,OD=3,∴AB=3,∴图形①与图形②面积相等,∴阴影部分的面积之和=长方形ABOE的面积=3×5=15.故答案为:15.【变式6-2】(2023春•徐汇区期末)如图,长为6,宽为3的矩形ABCD,阴影部分的面积为9.【答案】9.【解答】解:因为O为矩形的对称中心,则阴影部分的面积是矩形面积的一半,因为矩形面积为6×3=18,所以阴影部分的面积为9.故答案为:9.【变式6-3】(2023秋•东湖区期中)如图为某公园中心对称的观赏鱼池,阴影部分为观赏喂鱼台,已知OA=OB=2米.求阴影部分的面积.【答案】8π平方米.【解答】解:因为观赏鱼池是中心对称,且OA=OB=2米,所以阴影部分相当于2个以点O为圆心,OA长为半径的圆,所以阴影部分的面积为2×π×22=8π(平方米),答:阴影部分的面积为8π平方米.【题型7利用中心对称的性质-作图】【典例7】(2023秋•浦北县期末)如图,△ABC和△DEF关于点O成中心对称.(1)找出它们的对称中心O;(2)若AB=6,AC=5,BC=4,求△DEF的周长.【答案】(1)见解析;(2)15.【解答】解:(1)如图所示,点O即为所求;(2)∵△ABC和△DEF关于点O成中心对称,∴△ABC≌△DEF,∴AB=DE=6,AC=DF=5,BC=EF=4,∴△DEF的周长=DE+DF+EF=6+5+4=15;答:△DEF的周长为15.【变式7-1】(2023春•雁塔区校级期末)如图,在平面直角坐标系中,△ABC的三个顶点坐标分别为A(1,4),(4,2),C(3,5).(1)请画出△A1B1C1,使△A1B1C1与△ABC关于原点成中心对称,并写出点A1,B1,C1的坐标.(2)求△A1B1C1的面积?【答案】见试题解答内容【解答】解:(1)如图所示,△A1B1C1即为所求.A1(﹣1,﹣4),B1(﹣4,﹣2),C1(﹣3,﹣5);(2)根据中心对称的性质可得S=3×3﹣=9﹣﹣1﹣3=.【变式7-2】(2022秋•沙河市期末)如图所示,三角形ABC和三角形A′B′C′关于某一点成中心对称,一同学不小心把墨水泼在纸上,只能看到三角形ABC和线段BC的对应线段B′C′,请你帮该同学找到对称中心O,且补全三角形A′B′C′.【答案】见试题解答内容【解答】解:如图,△A′B′C′即为所求;一.选择题(共10小题)1.(2023秋•江海区期末)下列环保标志,既是轴对称图形,也是中心对称图形的是()A.B.C.D.【答案】D【解答】解:A、是轴对称图形,不是中心对称图形,则此项不符合题意;B、是轴对称图形,不是中心对称图形,则此项不符合题意;C、不是轴对称图形,也不是中心对称图形,则此项不符合题意;D、是轴对称图形,也是中心对称图形,则此项符合题意;故选:D.2.(2023秋•长海县期末)平面直角坐标系内与点P(﹣1,2)关于原点对称的点的坐标是()A.(1,﹣2)B.(1,2)C.(2,﹣1)D.(﹣2,﹣1)【答案】A【解答】解:与点P(﹣1,2)关于原点对称的点的坐标是(1,﹣2).故选:A.3.(2023秋•武汉期中)已知点A(a,2023)与点A′(2024,b)是关于原点O的对称点,则a﹣b的值为()A.﹣1B.1C.﹣4047D.4047【答案】A【解答】解:∵点A(a,2023)与点A'(2024,b)是关于原点O的对称点,∴a=﹣2024,b=﹣2023,∴a﹣b=﹣2024﹣(﹣2023)=﹣1.故选:A.4.(2023秋•莱州市期末)下列各图中,四边形ABCD是正方形,其中阴影部分两个三角形成中心对称的是()A.B.C.D.【答案】A【解答】解:根据中心对称的定义可知,选项A中阴影部分两个三角形成中心对称.故选:A.5.(2022春•相城区校级期中)如图,菱形ABCD的对角线AC、BD交于点O,将△BOC 绕着点C旋转180°得到△B'O'C,若AC=2,AB′=5,则菱形ABCD的边长是()A.3B.4C.D.【答案】D【解答】解:∵四边形ABCD是菱形,且△BOC绕着点C旋转180°得到△B'O'C,AC =2,∴OA=OC=O'C=1,OB⊥OC,BC=B′C,∴O'B'⊥O'C,O'A=AC+O'C=2+1=3,∵AB′=5,∴,∴,∴,即菱形ABCD的边长是,故选:D.6.(2022秋•五华县期中)如图是北师大版九年级上册数学教材第25页第4题内容的变式,如图,三个边长相同的正方形重叠在一起,O1、O2是其中两个正方形的中心,阴影部分的面积和是8,则正方形的边长为()A.2B.4C.8D.2【答案】B【解答】解:如图所示,连接O1B、O1C,∵∠BO1F+∠FO1C=90°,∠FO1C+∠CO1G=90°,∴∠BO1F=∠CO1G,∵四边形ABCD是正方形,∴∠O1BF=∠O1CG=45°,在△O1BF和△O1CG中,,∴△O1BF≌△O1CG(ASA),∴=,,∴两个正方形重叠阴影部分的面积是S正方形ABCD,同理,另外两个正方形重叠阴影部分的面积也是S正方形ABCD,∴阴影部分的面积和=8=S正方形ABCD=16,∴S正方形ABCD∴正方形ABCD的边长==4,故选:B.7.(2023秋•德城区期中)如图,已知△ABC与△A'B'C'关于点O成中心对称,则下列判断不正确的是()A.∠ABC=∠A'B'C'B.∠BOC=∠B'A'C'C.AB=A'B'D.OA=OA'【答案】B【解答】解:∵△ABC与△A'B'C'关于点O成中心对称,∴△ABC≌△A′B′C′,∴∠ABC=∠A′B′C′,AB=A′B′,OA=OA′,故A,C,D正确,故选:B.8.(2023秋•泽州县期中)如图,在平面直角坐标系中,OA=AB=5,点B到y轴的距离为4,将△OAB关于原点对称得到△O′A′B′,再将△O′A′B′向左平移5个单位长度得到△O″A″B″,则点B″的坐标为()A.(﹣8,﹣8)B.(﹣8,﹣9)C.(﹣9,﹣9)D.(﹣9,﹣8)【答案】D【解答】解:如图,作BC⊥y轴于点C,∵点B到y轴的距离为4,∴BC=4,∴AC==3,∴OC=5+3=8,∴点B的坐标为(4,8),∴点B关于原点对称的点B′的坐标为(﹣4,﹣8),∴点B″的坐标为(﹣9,﹣8).故选:D.9.(2023秋•邯郸期末)如图,在正方形网格中,A,B,C,D,E,F,G,H,M,N是网格线交点,△ABC与△DEF关于某点对称,则其对称中心是()A.点G B.点H C.点M D.点N【答案】C【解答】解:AD、CF、BE相交于点M,∴点M是△ABC与△DEF的对称中心,故选:C.10.(2023秋•仪陇县期中)如图,菱形ABCD的对角线AC、BD交于点O,AC=2,BD=8,将△BOC绕着点C旋转180°得到△B′O′C,连接AB',则AB'的长是()A.3B.4C.5D.7【答案】C【解答】解:∵四边形ABCD是菱形,∴AC⊥BD,OC=AC,OB=BD,∵AC=2,BD=8,∴OC=1,OB=4,∵△BOC绕着点C旋转180°得到△B′O′C,∴∠O′=∠BOC=90°,CO′=OC=1,O′B′=OB=4,∴AO′=AC+O′C=3,∴AB′==5.故选:C.二.填空题(共6小题)11.(2023春•徐汇区期末)如图,长为6,宽为3的矩形ABCD,阴影部分的面积为9.【答案】9.【解答】解:因为O为矩形的对称中心,则阴影部分的面积是矩形面积的一半,因为矩形面积为6×3=18,所以阴影部分的面积为9.故答案为:9.12.(2023春•青冈县期末)如图,△ABC与△DEC关于点C成中心对称,AG为△ABC的=5.高,若CE=5,AG=2,则S△DEC【答案】5.【解答】解:∵△ABC与△DEC关于点C成中心对称,AG=2,=S△ABC,∴CE=BC,S△DEC∴,=5,∴S△DEC故答案为:5.13.(2023•靖江市校级模拟)第二十四届北京冬奥会入场式引导牌上的图案融入了中国结和雪花两种元素.如图所示,这个图案绕着它的中心旋转角α(0°<α<360°)后能够与它本身重合,则角α可以为60(答案不唯一)度.(写出一个即可)【答案】见试题解答内容【解答】解:360°÷6=60°,则这个图案绕着它的中心旋转60°后能够与它本身重合,故答案为:60(答案不唯一).14.(2023秋•开平市期末)如图,△AB'C'是△ABC绕点A旋转180°后得到的,已知∠B =90°,AB=1,∠C=30°,则CC'的长为4.【答案】4.【解答】解:在Rt△ABC中,sin C=,则,得AC=2.又因为△AB'C'是△ABC绕点A旋转180°后得到的,所以AC′=AC,且C,A,C′三点共线,所以CC′=2AC=4.故答案为:4.15.(2023秋•前郭县期中)如图,△AOB与△COD关于点O成中心对称,已知∠BAO=90°,AB=4,AO=3,则AD的长为2.【答案】2.【解答】解:∵△AOB与△COD关于点O成中心对称,∴AO=CO=3,CD=AB=4,∠C=∠BAO=90°,∴AD=,故答案为:2.16.(2023秋•二道区校级月考)如图,阴影部分组成的图案既是关于x轴成轴对称的图形又是关于坐标原点O成中心对称的图形.若点A的坐标为(1,3),点B的坐标为(3,1),点M的坐标为(a,b),点N的坐标为(c,d),则a+c的值为﹣2.【答案】﹣2.【解答】解:由图形可知,点A和点N关于x轴成轴对称,点M和点B关于坐标原点O 成中心对称,因为点A的坐标为(1,3),点B的坐标为(3,1),所以a=﹣3,c=1,a+c=﹣3+1=﹣2,故答案为:﹣2.三.解答题(共3小题)17.(2023秋•新民市期末)如图所示,在平面直角坐标系中,已知A(0,1),B(2,0),C(4,3).(1)在平面直角坐标系中画出△ABC,则△ABC的面积是4;(2)若点D与点C关于原点对称,则点D的坐标为(﹣4,﹣3);(3)已知P为x轴上一点,若△ABP的面积为4,求点P的坐标.【答案】(1)4;(2)(﹣4,﹣3);(3)(10,0)或(﹣6,0).【解答】解:(1)如图所示:△ABC的面积是:3×4﹣;故答案为:4;(2)点D与点C关于原点对称,则点D的坐标为:(﹣4,﹣3);故答案为:(﹣4,﹣3);(3)∵P为x轴上一点,△ABP的面积为4,∴BP=8,∴点P的横坐标为:2+8=10或2﹣8=﹣6,故P点坐标为:(10,0)或(﹣6,0).18.(2023秋•荔湾区校级期中)如图,△AGB与△CGD关于点G中心对称,若点E,F分别在GA,GC上,且AE=CF,求证:BF=DE.【答案】证明见解析.【解答】证明:∵△AGB与△CGD关于点G中心对称,∴BG=DG,AG=CG,∵AE=CF,∴AG﹣AE=CG﹣CF,∴EG=FG,又∵∠DGE=∠BGF,∴△DGE≌△BGF(SAS),∴BF=DE.19.(2022春•余江区期中)(1)如图1,在等边三角形ABC中,AB=2,BD是AC边上的高,延长BC至点E,使CE=CD,求BE的长;(2)如图2,将△ABC以点C为旋转中心,顺时针旋转180°,得到△DEC,过点A作AF∥BE,交DE的延长线于点F,求证:∠B=∠F.【答案】(1)BE的长为3;(2)见解析.【解答】(1)解:∵等边三角形ABC中,BD是AC边上的高,∴AB=BC=AC=2,∠ADB=∠CDB=90°,DB=DB,∴△ADB≌△CDB(HL),∴AD=CD=AC=AB=1,∵CE=CD,∴CE=CD=1,∴BE=BC+CE=3,∴BE的长为3;(2)证明:∵将△ABC以点C为旋转中心,顺时针旋转180°,得到△DEC,∴B、C、E在同一直线上,且△ABC≌△DEC,∴∠B=∠CED,∵AF//BE,∴∠F=∠CED,∴∠B=∠F.。
中心对称图形说课稿(一等奖)
![中心对称图形说课稿(一等奖)](https://img.taocdn.com/s3/m/09cadca7fad6195f312ba6fd.png)
中心对称图形》说课稿各位评委老师大家好:今天我说课的课题是《中心对称与中心对称图形》第二课时——中心对称图形,下面就教材分析、教学分析、学法分析、教学程序设计等四个方面,谈谈我对本课题的理解和认识。
一、教材分析(一)、教材地位作用本节课选自九年义务教育课程标准实验教科书,湘教版八年级下册第二章第三节《中心对称与中心对称图形》第二课时。
本节课与图形的三种运动(平移、翻折、旋转)之一的“旋转”有着不可分割的联系,通过对这一节课的学习,既可以让学生认识图形“旋转” 在几何知识中的重要体现,同时也完善了初中部分对“对称图形” (轴对称图形、中心对称图形)的知识讲授,它不但起到了承上启下的作用,为后面学习图形的设计打下基础。
(二)、教学目标(八年级学生对新事物充满好奇,他们喜欢动手,勤于思考,乐于探究,已经具备了一定的探索新知的能力。
因此,我制定如下教学目标)1、知识与技能目标(1)了解中心对称图形及其基本性质;掌握平行四边形是中心对称图形。
(2)能判断一个图形是不是中心对称图形并了解其运用.2、过程与方法目标经历对中心对称图形概念和性质的探索过程,提高分析、归纳的能力,体验数形结合数学思想。
3、情感态度与价值观目标经历数学知识融于生活实际的学习过程,体验抽象的数学来源于生活,同时又服务于生活,感受数学之美。
(三)、教学重点及难点(新课程提出教师是学生学习的引导者、合作者、参与者,探索中心对称图形的性质,对于锻炼学生的动手操作能力,培养其逻辑思维意识提供了有利的平台,为学生在今后解决图形运动问题奠定了数学模型。
因此,本节课的教学重点是)【教学重点】中心对称图形的概念及有关性质.【教学难点】中心对称图形的性质.【难点成因】对于中心对称图形性质的得出,首先需要学生通过动手操作,在观察的基础上,归纳数学结论,而这需要学生具备一定的分析、归纳和较好的表达能力,但学生在这一方面的可预见性和耐挫折能力并不是很成熟,从而形成困难二、教法分析数学是一门培养人的思维,发展人的思维的重要学科,因此在教学中,不仅要使学生“知其然”,而且还要使学生“知其所以然”。
人教版初三数学:中心对称与中心对称图形--知识讲解
![人教版初三数学:中心对称与中心对称图形--知识讲解](https://img.taocdn.com/s3/m/20a7cfd2915f804d2a16c165.png)
中心对称与中心对称图形--知识讲解【学习目标】1、理解中心对称和中心对称图形的定义和性质,掌握他们之间的区别和联系;2、掌握关于原点对称的点的坐标特征,以及如何求对称点的坐标;3、探索图形之间的变化关系(轴对称、平移、旋转及其组合),灵活运用轴对称、平移和旋转的组合进行图案设计.【要点梳理】要点一、中心对称和中心对称图形1.中心对称:把一个图形绕着某一个点旋转180°,如果它能够与另一个图形重合,那么就说这两个图形关于这个点对称或中心对称,这个点叫做对称中心.这两个图形中的对应点叫做关于中心的对称点.要点诠释:(1)有两个图形,能够完全重合,即形状大小都相同;(2)位置必须满足一个条件:将其中一个图形绕着某一个点旋转180°能够与另一个图形重合 (全等图形不一定是中心对称的,而中心对称的两个图形一定是全等的) .2.中心对称图形:把一个图形绕着某一个点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形叫做中心对称图形,这个点就是它的对称中心.要点诠释:(1)中心对称图形指的是一个图形;(2)线段,平行四边形,圆等等都是中心对称图形.3.中心对称与中心对称图形的区别与联系:中心对称中心对称图形区别①指两个全等图形之间的相互位置关系.②对称中心不定.①指一个图形本身成中心对称.②对称中心是图形自身或内部的点.联系如果将中心对称的两个图形看成一个整体(一个图形),那么这个图形就是中心对称图形.如果把中心对称图形对称的部分看成是两个图形,那么它们又关于中心对称.要点二、关于原点对称的点的坐标特征关于原点对称的两个点的横、纵坐标均互为相反数.即点关于原点的对称点坐标为,反之也成立.要点三、中心对称、轴对称、旋转对称【高清课堂:高清ID号:388635关联的位置名称(播放点名称):中心对称与中心对称图形的区别与联系】1.中心对称图形与旋转对称图形的比较:2.中心对称图形与轴对称图形比较:要点诠释:中心对称图形是特殊的旋转对称图形;掌握三种图形的不同点和共同点是灵活运用的前提.【典型例题】类型一、中心对称和中心对称图形【高清课堂:高清ID号:388635关联的位置名称(播放点名称):例3及练习】1.(2015春•鄄城县期末)如图,△ABC与△A1B1C1关于点O成中心对称,下列说法:①∠BAC=∠B1A1C1;②AC=A1C1;③OA=OA1;④△ABC与△A1B1C1的面积相等,其中正确的有()A.1个B.2个C.3个D.4个【答案】D【解析】中心对称的两个图形全等,则①②④正确;对称点到对称中心的距离相等,故③正确;故①②③④都正确.故选D.【总结升华】中心对称的关键是:旋转180°之后可以与原来的图形重合.举一反三【变式】如图,若正方形EFGH由正方形ABCD绕某点旋转得到,则可以作为旋转中心的是()A.M或O或N B.E或O或C C.E或O或N D.M或O或C【答案】A【高清课堂:高清ID号:388635关联的位置名称(播放点名称):经典例题2】2. 我们平时见过的几何图形,如:线段、角、等腰三角形、等边三角形、平行四边形、矩形、菱形、正方形中,有哪些是中心对称图形?哪些是轴对称图形?中心对称图形指出对称中心,轴对称图形指出对称轴.【答案与解析】【总结升华】线段、角、等腰三角形、等边三角形、平行四边形、矩形、菱形、正方形是重要的几种对称几何图形,要了解其性质特点更要熟记.类型二、作图3. 已知:如图甲,试用一条直线把图形分成面积相等的两部分(至少三种方法).【答案与解析】【总结升华】解决这类问题时,关键是将图形转化成两个中心对称图形(如果原图形本身就是中心对称图形,则直接过对称中心作直线即可),再由两点确定一条直线,过两个对称中心画直线即满足条件. 举一反三【高清课堂:高清ID 号: 388635 关联的位置名称(播放点名称):例5及练习】【变式】如图①, 1O ,2O ,3O ,4O 为四个等圆的圆心,A ,B ,C ,D 为切点,请你在图中画出一条直线,将这四个圆分成面积相等的两部分,并说明这条直线经过的两个点是 ;如图②,1O ,2O ,3O ,4O ,5O 为五个等圆的圆心,A ,B ,C ,D ,E 为切点,请你在图中画出一条直线,将这五个圆...分成面积相等的两部分,并说明这条直线经过的两个点是 .【答案】图①:13O O 或24O O 或AC 或BD;图②:5O M 或4O A类型三、利用图形变换的性质进行计算或证明1o 2o3o 4oCB D A 图① 图② 1o 2o 3o 4o 5o A BC E D4.(2014春•青神县校级月考)已知:如图,三角形ABM与三角形ACM关于直线AF成轴对称,三角形ABE与三角形DCE关于点E成中心对称,点E、D、M都在线段AF上,BM的延长线交CF于点P.(1)求证:AC=CD;(2)若∠BAC=2∠MPC,请你判断∠F与∠MCD的数量关系,并说明理由.【解题思路】(1)利用中心对称图形的性质以及轴对称图形的性质得出全等三角形进而得出对应线段相等;(2)利用(1)中所求,进而得出对应角相等,进而得出答案.【答案与解析】(1)证明:∵△ABM与△ACM关于直线AF成轴对称,∴△ABM≌△ACM,∴AB=AC,又∵△ABE与△DCE关于点E成中心对称,∴△ABE≌△DCE,∴AB=CD,∴AC=CD;(2)解:∠F=∠MCD.理由:由(1)可得∠BAE=∠CAE=∠CDE,∠CMA=∠BMA,∵∠BAC=2∠MPC,∠BMA=∠PMF,∴设∠MPC=α,则∠BAE=∠CAE=∠CDE=α,设∠BMA=β,则∠PMF=∠CMA=β,∴∠F=∠CPM﹣∠PMF=α﹣β,∠MCD=∠CDE﹣∠DMC=α﹣β,∴∠F=∠MCD.【总结升华】此题主要考查了中心对称图形的性质以及全等三角形的性质等知识,根据题意得出对应角相等进而得出是解题关键.举一反三【高清课堂:高清ID号:388635关联的位置名称(播放点名称):例4及练习】【变式】如图,三个圆是同心圆,则图中阴影部分的面积为.【答案】4.附录资料:弧长和扇形面积、圆锥的侧面展开图—知识讲解(基础)【学习目标】1.通过复习圆的周长、圆的面积公式,探索n °的圆心角所对的弧长和扇形面积的计算公式,并应用这些公式解决问题;2.了解圆锥母线的概念,理解圆锥侧面积计算公式,理解圆锥全面积的计算方法,会应用公式解决问题;3. 能准确计算组合图形的面积.【要点梳理】要点一、弧长公式 半径为R 的圆中360°的圆心角所对的弧长(圆的周长)公式: n °的圆心角所对的圆的弧长公式:(弧是圆的一部分)要点诠释:(1)对于弧长公式,关键是要理解1°的圆心角所对的弧长是圆周长的,即;(2)公式中的n表示1°圆心角的倍数,故n和180都不带单位,R 为弧所在圆的半径;(3)弧长公式所涉及的三个量:弧长、圆心角度数、弧所在圆的半径,知道其中的两个量就可以求出第三个量.要点二、扇形面积公式 1.扇形的定义由组成圆心角的两条半径和圆心角所对的弧所围成的图形叫做扇形. 2.扇形面积公式 半径为R 的圆中360°的圆心角所对的扇形面积(圆面积)公式: n °的圆心角所对的扇形面积公式:要点诠释:(1)对于扇形面积公式,关键要理解圆心角是1°的扇形面积是圆面积的,即;(2)在扇形面积公式中,涉及三个量:扇形面积S 、扇形半径R 、扇形的圆心角,知道其中的两个量就可以求出第三个量. (3)扇形面积公式,可根据题目条件灵活选择使用,它与三角形面积公式有点类似,可类比记忆;(4)扇形两个面积公式之间的联系:.要点三、圆锥的侧面积和全面积连接圆锥顶点和底面圆上任意一点的线段叫做圆锥的母线.圆锥的母线长为,底面半径为r ,侧面展开图中的扇形圆心角为n °,则圆锥的侧面积2360l S rl ππ=扇n =, 圆锥的全面积.要点诠释:扇形的半径就是圆锥的母线,扇形的弧长就是圆锥底面圆的周长.因此,要求圆锥的侧面积就是求展开图扇形面积,全面积是由侧面积和底面圆的面积组成的.【典型例题】类型一、弧长和扇形的有关计算1.如图(1),AB 切⊙O 于点B ,OA=23,AB=3,弦BC∥OA,则劣弧BC 的弧长为( ). A .33π B .32πC .πD .32π图(1) 【答案】A.【解析】连结OB 、OC ,如图(2)则0OBA ∠︒=9,OB=3,0A ∠︒=3,0AOB ∠︒=6, 由弦BC ∥OA 得60OBC AOB ∠∠=︒=, 所以△OBC 为等边三角形,0BOC ∠︒=6. 则劣弧BC 的弧长为6033=1803ππ,故选A. 图(2) 【总结升华】主要考查弧长公式:.举一反三:【变式】制作弯形管道时,需要先按中心线计算“展直长度”再下料,•试计算如图所示的管道的展直长度,即的长(结果精确到0.1mm)CBAO【答案】R=40mm ,n=110∴的长==≈76.8(mm)因此,管道的展直长度约为76.8mm .【高清ID 号:359387 高清课程名称: 弧长 扇形 圆柱 圆锥 关联的位置名称(播放点名称):经典例题1-2】2.如图,⊙O 的半径等于1,弦AB 和半径OC 互相平分于点M.求扇形OACB 的面积(结果保留π)【答案与解析】∵弦AB 和半径OC 互相平分,∴OC ⊥AB ,OM=MC=OC=OA .∴∠B=∠A=30°,∴∠AOB=120° ∴S 扇形=.【总结升华】运用了垂径定理的推论,考查扇形面积计算公式.举一反三:【高清ID 号:359387 高清课程名称:弧长 扇形 圆柱 圆锥 关联的位置名称(播放点名称):经典例题1-2】 【变式】如图(1),在△ABC 中,BC=4,以点A 为圆心,2为半径的⊙A 与BC 相切于点D ,交AB 于E ,交AC 于F ,点P 是⊙A 上的一点,且∠EPF=40°,则图中阴影部分的面积是( ).A .449-π B .849-πC .489-πD .889-π图(1)A EB C F P【答案】连结AD,则AD⊥BC,△ABC的面积是:BC•AD=×4×2=4,∠A=2∠EPF=80°.则扇形EAF的面积是:28028=.3609ππ⨯故阴影部分的面积=△ABC的面积-扇形EAF的面积=84-9π.图(2)故选B.类型二、圆锥面积的计算3.(2014秋•广东期末)如图,一个圆锥的高为cm,侧面展开图是半圆,求:(1)圆锥的底面半径r与母线R之比;(2)圆锥的全面积.【思路点拨】(1)设出圆锥的底面半径及圆锥的母线长,利用底面周长等于圆锥的弧长得到圆锥的母线与底面的半径之比即可;(2)首先求得圆锥的底面半径和圆锥的母线长,然后利用圆锥的侧面积的计算方法求得其侧面积即可.【答案与解析】解:(1)由题意可知∴,R=2r(3分)r:R=r:2r=1:2;(2)在Rt△AOC中,∵R2=r2+h2∴,4r2=r2+27r2=9,r=±3∵r>0∴r=3,R=6.∴S侧=πRr=18π(cm2)(cm2)∴S全=S侧+S底=18π+9π=27π(cm2).【总结升华】本题考查了圆锥的计算,解题的关键是牢记有关的公式.类型三、组合图形面积的计算4.(2015•槐荫区三模)如图,AB是⊙O的直径,弦CD⊥AB,垂足为E,∠CDB=30°,CD=2,求图中阴影部分的面积.【答案与解析】解:∵AB是⊙O的直径,弦CD⊥AB,∴CE=.∵∠CDB=30°,∴∠COE=60°,在Rt△OEC中,OC==2,∵CE=DE,∠COE=∠DBE=60°∴Rt△COE≌Rt△DBE,∴S阴影=S扇形OBC=π×OC2=π×4=π.【总结升华】本题考查了垂径定理,扇形的面积等,解此题的关键是求出扇形和三角形的面积.。
人教版九年级数学上册23.2.2《中心对称》说课稿
![人教版九年级数学上册23.2.2《中心对称》说课稿](https://img.taocdn.com/s3/m/9495aa58b42acfc789eb172ded630b1c59ee9bfb.png)
人教版九年级数学上册23.2.2《中心对称》说课稿一. 教材分析人教版九年级数学上册23.2.2《中心对称》是本册教材中的一个重要内容。
这部分内容主要介绍了中心对称图形的概念、性质及其在实际问题中的应用。
通过学习中心对称,学生能够理解中心对称图形的定义,掌握中心对称图形的性质,并能运用中心对称解决一些实际问题。
教材通过丰富的例题和练习题,帮助学生巩固所学知识,提高解决问题的能力。
二. 学情分析九年级的学生已经具备了一定的几何知识基础,对图形的变换和性质有一定的了解。
但是,对于中心对称图形的概念和性质,学生可能还存在一些模糊的认识。
因此,在教学过程中,需要引导学生通过观察、操作、思考等活动,逐步建立中心对称图形的概念,理解其性质。
同时,学生需要通过大量的练习,提高运用中心对称解决实际问题的能力。
三. 说教学目标1.知识与技能目标:学生能够理解中心对称图形的定义,掌握中心对称图形的性质,并能运用中心对称解决一些实际问题。
2.过程与方法目标:学生通过观察、操作、思考等活动,培养观察能力、动手能力和思维能力。
3.情感态度与价值观目标:学生能够积极参与课堂活动,提高学习数学的兴趣,培养合作意识和创新精神。
四. 说教学重难点1.教学重点:中心对称图形的定义及其性质。
2.教学难点:中心对称图形的性质的应用。
五. 说教学方法与手段1.教学方法:采用问题驱动法、案例教学法、合作学习法等,引导学生主动参与课堂,提高学习效果。
2.教学手段:利用多媒体课件、几何画板等辅助教学,增强课堂教学的趣味性和互动性。
六. 说教学过程1.导入新课:通过展示一些生活中的中心对称图形,引导学生发现中心对称图形的魅力,激发学习兴趣。
2.探究新知:学生通过观察、操作、思考等活动,探究中心对称图形的定义和性质。
教师引导学生参与讨论,总结中心对称图形的性质。
3.例题讲解:教师通过讲解典型例题,引导学生运用中心对称图形的性质解决问题。
4.练习巩固:学生通过自主练习和小组讨论,巩固所学知识,提高解决问题的能力。
《中心对称和中心对称图形》说课稿
![《中心对称和中心对称图形》说课稿](https://img.taocdn.com/s3/m/f3f65c9f83d049649a665804.png)
教学的设计与安排
观察下列图形,再将图形分成两类。
(2)
(3)
(1)
(4)
(5)
(6)
如图,下列图案是我国几家银行的标志, 其中轴对称图形有( C )
(A)1个
(B)2个
(C)3个
(D)4个
合作探索1
如图,点O是等边三角形ABC的两条高的交点, 以点O为旋转中心,把等边三角形ABC按顺时针 方向旋转.
必要认真上好同时也要求学生认真学好本节课。
教材分析
㈡教学目标ຫໍສະໝຸດ 本节课是初二教材,对学生的情况分析如下:
⑴知识掌握上,由于前面已经学习过“轴对称和轴对称图形”,与本节 课的内容有相似之处,因此学生应该会较自然地对两者进行对比; ⑵进入到初二的学生,完全可以进行自主的、独立的思维、学习,他 们也渴望通过自己的思考获得知识并不希望老师把所有的知识都“灌” 给他们,因此,在教学中,要充分利用这个特点,让学生进行自主学 习; ⑶由于初中阶段的学生的抽象思维并不是很强,因此,他们要理解旋 转变化是比较困难的,因此,在教学中只要求学生能达到大纲的规定 要求即可,不必另外在进行扩充。
本节的难点有二,其一对中心对称的概念的理解,这主要是由于其 中牵涉到了一个比较抽象的旋转变化的思想,处于初中阶段的学生 要理解还是比较困难的,另一个是判定定理的应用,及判定两个图 形是否关于某一点对称和作出一个已知图形关于已知点的对称图形, 这也是由于此阶段的学生的逻辑思维比较差,要有条理的说明一个 问题还是比较困难,及学生的亲自动手作图能力也比较差造成的。
做一做 1
观察下面6个图形,并回答下面的问题
(1)哪些是轴对称图形? (2)哪些是中心对称图形? (3)哪些既是轴对称图形,又是中心对称图形? (4)哪些既不是轴对称图形,又不是中心对称图形?
《中心对称与中心对称图形》教学设计——常熟市实验中学 吴静
![《中心对称与中心对称图形》教学设计——常熟市实验中学 吴静](https://img.taocdn.com/s3/m/dec59d32915f804d2b16c127.png)
《中心对称与中心对称图形》教学设计
2.
连接任意一对对称点
6.几何画板演示平行四边形旋转180°和原来的图形重合
练习2:寻找中心对称图形平行四边形和长方形的对称中心。
练习:以平面内的任一点O为对称中心作出四边形ABCD的对称四边形。
练习1:有一块长方形的田地,上面有一口圆形的井,现在要用直线将这
练习2:有一个“L”型的钢板如图所示,现在要用一条直线把它分成两块,并且要满足分割后两块的面积相等,
让学生总结,谈自己的收获和活动经验。
1. 中心对称和中心对称图形概念,两者有什么区别和联系?。
初中数学_3.3中心对称教学设计学情分析教材分析课后反思
![初中数学_3.3中心对称教学设计学情分析教材分析课后反思](https://img.taocdn.com/s3/m/f40cedb528ea81c758f578ed.png)
八年级下册3.3《中心对称》教学设计一、教学目标:☆知识与技能:了解中心对称、中心对称图形的概念,探索它的基本性质.☆过程与方法经历有关中心对称的观察、操作、欣赏和设计的过程,进一步积累数学活动经验,增强动手实践能力,发展空间观念.☆情感态度价值观发现生活中的数学美,欣赏自然界的中心对称图形;二、教学重点:了解中心对称、中心对称图形的概念,探索它的基本性质教学难点:在参与活动中发展学生观察问题、分析问题、解决问题的科学探究能力;三、教学时间:( 1学时)四、教学过程一、【复习引入】:[活动过程]:1.通过几何画板的动画演示,带领学生回顾旋转的定义以及性质;2.提出问题:当旋转哪些特殊角度会使旋转前后图形有特殊的位置关系?师生互动引出课题;[活动目的]:利用几何画板的演示,教师的提问、追问让学生体会中心对称与旋转之间的从属关系,为后续学习做铺垫;二、【探究新知】☞知识点1:两成中心对称★两图形成中心对称定义:关于这个点对称或中心对称[活动过程]:教师提问:图中两组图形通过怎样的图形变换能够重合?师生互动后利用几何画板演示总结定义,引导学生找出定义中的关键词;[活动目的]:引入定义以后,通过学生找关键词,体会成中心对称是旋转的一种特殊情况;☞知识点2:探索成中心对称两图形的性质★动手画图,探究中心对称的性质请自己画一个图形,选取一个旋转中心,把所画的图形绕旋转中心旋转180°,连接旋转前后一组对应点,你发现了什么?再选几组对应点试一试,并与同伴交流。
★中心对称的性质:[活动过程]:教师提出问题,引导学生通过小组合作画出旋转以后的图形,通过小组作品的展示,总结两图形成中心对称的性质,教师通过几何画板演示,以及学生说理进一步验证,最后学生动手画图;[活动目的]:通过学生的动手操作,经历探索性质的过程,通过几何画板直观演示,加深对性质的认识,最后通过推理证明,让学生感受数学的严谨性,在学生小组合作过程中,培养学生的团队意识.☞知识点3:中心对称图形先独立观察,再小组交流归纳:中心对称图形:[设计过程]:教师提出问题:通过怎样的变换图形能与原图形重合?师生互动总结定义,通过两组练习题进行训练,加深学生对中心对称图形的认识,并进一步举例我们所学过的平面图形中的中心对称图形.[活动目的]:通过几何画板直观演示认识定义,在总结定义关键词时,教师引导学生对比其与两图形成中心对称的区别与联系,发展学生类比学习的意识,通过练习、举例进一步加深学生对知识的理解.☞知识点4:旋转对称图形观看微视频,学习旋转对称图形定义[设计过程]:1.学生自主学习微课,了解旋转对称图形定义;2.举例说明旋转对称图形与中心对称图形之间的联系;[活动目的]:学习新知识的过程中,对比其与中心对称图形的联系,了解二者之间的从属关系,加深对中心对称图形的认识,发展类比学习的意识;三、【效果检测】1.下列图形中,中心对称图形有A. 个B. 个C. 个D. 个2.下列四个图形中,既是轴对称图形又是中心对称图形的是 ( )A. B. C. D.3.如图,与关于成中心对称,下列结论中不成立的是A. B. C. D.4.如图所示是一个中心对称图形,为对称中心,若,,,则的长为.5如图,在平面直角坐标系中,点,,,的坐标分别为,,,.Ⅰ请在图中画出,使得与关于点成中心对称;Ⅱ直接写出(1)中的三个顶点坐标.第3题第4题知者加速;我们把图(1)称作正六边形的基本图,将此基本图不断复制并平移,使得相邻两个基本图的一边重合,这样得到图(2),图(3),,如此进行下去,直至得图(n).(1)将图(n)放在直角坐标系中,设其中第一个基本图的对称中心的坐标为,则;(2)图(n)的对称中心的横坐标为.[活动过程]:学生学习完主要知识后是否达成了本节课的学习目标呢?教师通过效果检测来掌握.同时效果检测完成后教师应及时公布答案,组织学生通过“小组互帮进行对组内学习有困难的同学进行个别帮扶”,及时解决组内个别同学存在的问题.[活动目的]:通过学生自学、小组互帮、教师个别点拨等方式使学生养成独立思考、合作交流、反思质疑的学习习惯,再此过程中教师应对小组讨论给予适当的指导,包括知识的启发引导、学生交流合作中注意的问题及对困难学生的帮助等,使小组合作学习更具实效性.四、【自主建网】★1.通过本节课的学习:你有哪些收获与感悟?2.展示两图形成轴对称实例,体会二者之间联系;[活动过程]:学生回答,教师引导,串联本节课所学知识点;类比轴对称,体会二者之间的联系与区别,发展学生类比学习的意识;【因人作业】必做题:课本84页----1,2,3选做题:课本84页-----4[设计说明]:通过因人作业的设置,让不同层次的学生都能学有所获,能享受到成功的喜悦.《中心对称》学情分析《中心对称》是八下年级数学第三章《图形的平移与旋转》的第三节;学生的知识与技能基础:学生在小学阶段已经学习过平移、旋转.按照课标要求,小学阶段学习平移、旋转应该达到的水平是:通过实例,在方格纸上认识图形的平移,能在方格纸上按水平或垂直方向将简单图形平移;通过实例,在方格纸上认识图形的旋转,能在方格纸上将简单图形旋转90°,升入初中之后,学生在七年级下学期已经学习了轴对称,积累了一定的图形变换的数学活动经验.本章在此基础上,让学生进行观察、分析、画图等活动丰富学生对图形变换的认识;在本节课学习之前,学生已经学习了图形的旋转,掌握了旋转的定义与基本性质,立足于小学的基础和已经有的生活经验,本节课将探索中心对称的相关性质因为学生的基础和学力是有差异的,所以在上课的过程中应该遵循“为了每个学生”的教育教学理念。
《中心对称与中心对称图形》评课
![《中心对称与中心对称图形》评课](https://img.taocdn.com/s3/m/e40ba2e9551810a6f524860c.png)
《中心对称和中心对称图形》评课增城市荔城街第一中学数学科组徐耀洪2010年9月15日,在增城市第二中学进行了初三年级的第一次“一课两讲”的教学教研活动,分别由增城市第二中学的欧阳顺银老师和香江中学的封明强老师授课,两位老师的讲课各有侧重、各有特色,都很成功,给我们做了很好的示范作用。
但给我们更多的是思考——思考如何能把学习的主动性交回给学生,如何上一节高效的数学课。
以下是我对这两节课的一些粗浅的认识,不当之处请见谅。
首先,从教材来看,《中心对称与中心对称图形》是在学习旋转的基础上引申出的一个全新概念,因此本节的课程应该是建立在充分理解旋转概念的基础上的。
教学中重点在于中心对称的定义和性质以及作法。
难点就在于性质的理解。
其次《中心对称与中心对称图形》是继《轴对称》之后图形的又一变换。
在中考中二者常常结合在一起考查,因此在教学中既要突出中心对称的定义与作法外还应结合轴对称让学生理解二者的区别与联系。
在教学过程中,两位老师都突出了重难点,抓住了课程的根本,又有着不同的侧重点。
增城市第二中学的欧阳顺银老师:欧阳顺银老师给我的总体感觉是:教师吃透了教材,用活了教材;学生探究了方法,掌握了知识,受到了美的熏陶,尝试了美的创造。
1、引入自然,能结合学生已经掌握的《轴对称》的知识和生活的实际引入《中心对称》;(1)采取从学生最熟悉的实际问题情境入手的方式,贴近学生的生活实际,让学生认识到数学来源于生活,又服务于生活,进一步感悟到把实际问题抽象成数学问题的训练,从而激发学生的求知欲。
(2)所有新知识的学习都以对相关具体问题情境的探索作为开始,它们是学生了解与学习这些新知识的有效方法,同时也活跃了课堂气氛,激发学生的学习兴趣。
2、活用教材是本课的一个突出特点《中心对称图形》是继图形的平移、轴对称和旋转变换后,对旋转变换的特例──中心对称所做的进一步探究。
它是综合运用各种图形变换进行图案设计的重要基础,与现实生活有着直接的,紧密的联系。
3.2中心对称与中心对称图形教案(1)
![3.2中心对称与中心对称图形教案(1)](https://img.taocdn.com/s3/m/e8acbe030740be1e650e9aaa.png)
3.2中心对称与中心对称图形教案(1)主备人: 李芳 审核: 徐红石 时间:2009年10月26日【教学目标】1.了解中心对称图形及其基本性质 ;2.在探索的过程中培养学生有条理地表达,及与人交流合作的能力;【教学重点】成中心对称图形概念及其基本性质【教学难点】1.中心对称的性质.2.成中心对称的图形的画法【教学过程】【自学质疑】1.把一个图形绕着某一点旋转______,如果它能够与另一个图形重合,那么称这两个图形关于这点对称,也称这两个图形成中心对称。
这个点叫做____________,图形中的对称点叫做__________。
2.通过预习请说一说中心对称与图形旋转之间的关系。
3.中心对称的基本性质是什么?4.已知A 点和O 点,画出点A 关于点O 的对称点A【问题探究】1.展示几幅图片(1) 几幅轴对称的图片(2)几幅中心对称的图片2.利用课本提供的两个实物图,引导学生观察、探索:他们的形状、大小是否相同?如果将其中一个图形绕着某一点旋转1800,能与另一个重合吗?3. 引出概念:如果把一个图形绕着某一点旋转180度后能与另一个图形重合,那么我们就说,这C ′两个图形成中心对称,这个点叫做对称中心,两个图形中的对应叫做对称点。
4.探索活动如图,O 为对称中心,点A 与点A ′点B 与点B ′,点C 与点C ′点D 与点D ′ 活动一 用一张透明纸覆盖在图3-5上,描出四边形ABCD 。
用大头针钉在点O 处,将四边形ABCD 绕点O 旋转180度问题一: 四边形ABCD 与四边形A B C D ⅱⅱ关于点O 成中心对称吗?问题二:在图3-5中,分别连接关于点O 的对称点A 和A ′,B 和B ′、点C 和C ′,点D 和D ′。
你发现了什么?中心对称的性质:5【精讲点拨】(利用中心对称基本性质作图)例1:( 操作1 : 作点关于点的对称点)已知A 点和O 点,画出点A 关于点O 的对称点A例2:(操作2 作线段关于点成中心对称的图形)已知线段AB 和O 点,画出线段AB 关于点O 的对称线段A’B’1、成中心对称的2个图形,对称点的连线都2、经过对称中心,并且被对称中心平分D ′ A ′ B ′ OC ′例3:(操作3 作三角形关于点成中心对称的图形)已知△ABC 和点O ,画出△DEF ,使△DEF 与△ABC 关于O 成中心对称。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
中心对称与中心对称图形教材解析
主备人: 李芳审核: 徐红石时间:2009年10月27日
【教学目标】
比照轴对称与轴对称图形的关系,认识中心对称图形,知道中心对称图形的性质
【教学重点】中心对称图形的定义及其性质
【教学难点】1.中心对称图形与轴对称图形的区别;
2.利用中心对称图形的有关概念和基本性质解决问题。
【教学过程】
【自学质疑】
1.把一个平面图形绕一点旋转180°,如果旋转后的图形与原的图形互相重合,那么这个图形叫做____________,这个点就是它的__________。
2.中心对称图形的识别:(1)各组顶点都关于同一点对称;(2)对应点的连线经过同一点,且被该点________。
【问题探究】
1.欣赏图片:
问题:这些图形有什么共同的特征?
2.共同回顾轴对称图形,某图形沿某条轴对折能重合,那么有没有什么图形绕
着某点旋转也能重合呢?
有没有什么图形绕着某点旋转180能够重合呢?
【新知探究】
1. (引出概念)中心对称图形:
平面内,如果把一个图形绕着某一点旋转180度后能与自身重合,那么这个图形叫做中心对称图形。
这个点就是它的对称中心。
练一练下面哪个图形是中心对称图形?
你能列举生活中的中心对称图形的例子吗?
2.探究中心对称图形的的性质:
在轴对称中,如等腰梯形ABCD 中,OP 为对称轴,则点A 与点D 是一对对应点,那么A 、D 两点连线与对称轴的关系为:被对称轴垂直且平分
下图是一幅中心对称图形,请你找出点A 绕点O 旋180O 后的对应点B,点C 的
对应点D 呢?你是怎么找的? 现在你能很快地找到点E 的对应点F 吗?
从上面的操作过程,你能发现中心对称图形上的一对对应点与对称中心的关系吗?
即:中心对称图形上的每一对对应点所连成的线段都被对称中心平分。
⒊
【例1:如图:AC=BD ,∠A=∠B ,点E 、F 在AB 上,且DE ∥CF ,试说明图形是中心对称图形的理由。
(分析:要说明图形是中心对称图形,只要说明点A 、B ,点C 、D ,点E 、F 都关于同一点对称。
本例题注重引导学生根据中心对称图形的定义,用说理的方法确认一个图形是中心对称图形,并指出它的对称中心。
)
例2:如图、PQ ⊥MN ,交点为O ,作出点A 关于直线MN 对称点B ,点
A 关于直
线PQ 对称点C ,试说明点B 与点C 关于点O 成中心对称
A O
B
C D E F B N M Q
P A . O
点评:要说明某两点关于对称中心对称,必须把握两点:(1)到对称中心的距离相等,(2)三点共线
【反馈矫正】练习1、2
【迁移引申】
1.有一块方角形钢板请你用一条直线将其分为面积相等的两部分(至少两种)
2.如图(1)魔术师把4张扑克牌放在桌子上,然后蒙住眼睛,请一位观众上台,把某一张牌旋转180°,魔术师解除蒙具后,看到4张扑克牌如图(2)所示,他很快确定了哪一张牌被旋转,你知道是什么原因吗?
3、世界上因为有了圆的图案,万物才显得富有生机,以下来自现实生活的图形中都有圆,它们看上去是那么美丽与和谐,这正是因为圆具有轴对称和中心对称性。
请问以下三个图形中是轴对称图形的有,是中心对称图形的有。
4、今有正方形的土地一块,要在其上修筑两条笔直的道路,使道路把这块土地分成形状相同且面积相等的四部分,若道路宽度可忽略不计,请你设计三种不同的修筑方案(在给出的图中的三个正方形上分别画图,并简述画图步骤.
【小结内容】
本节课学到了哪些知识?
(1) 中心对称图形的定义;
(2) 中心对称图形的性质;
(3) 中心对称图形的应用。
课后反思:
对于中心对称图形的判断及画法通过作业反映没有任何问题,但对于说理如要说明某两点关于对称中心对称,必须把握两点:(1)到对称中心的距离相等,
(2)三点共线,学生普片存在问题,这个难点在教学中没有攻克掉,感到很遗憾。