(完整版)工程数学习题集复变函数积分变换
复变函数与积分变换五套试题及答案
复变函数与积分变换试题(一)一、填空(3分×10)1.的模 ,幅角 。
)31ln(i --2.-8i 的三个单根分别为: ,,。
3.Ln z 在 的区域内连续。
4.的解极域为:。
z z f =)(5.的导数。
xyi y x z f 2)(22+-==')(z f 6.。
=⎥⎦⎤⎢⎣⎡0,sin Re 3z z s 7.指数函数的映照特点是:。
8.幂函数的映照特点是:。
9.若=F [f (t )],则= F 。
)(ωF )(t f )][(1ω-f 10.若f (t )满足拉氏积分存在条件,则L [f (t )]=。
二、(10分)已知,求函数使函数为解析函222121),(y x y x v +-=),(y x u ),(),()(y x iv y x u z f +=数,且f (0)=0。
三、(10分)应用留数的相关定理计算⎰=--2||6)3)(1(z z z z dz四、计算积分(5分×2)1.⎰=-2||)1(z z z dz2. C :绕点i 一周正向任意简单闭曲线。
⎰-c i z z3)(cos 五、(10分)求函数在以下各圆环内的罗朗展式。
)(1)(i z z z f -=1.1||0<-<i z 2.+∞<-<||1i z 六、证明以下命题:(5分×2)(1)与构成一对傅氏变换对。
)(0t t -δo iwt e -(2))(2ωπδ=⎰∞+∞-ω-dt e t i 七、(10分)应用拉氏变换求方程组满足x (0)=y (0)=z (0)=0的解y (t )。
⎪⎩⎪⎨⎧='+=+'+='++'0401z y z y x z y x 八、(10分)就书中内容,函数在某区域内解析的具体判别方法有哪几种。
复变函数与积分变换试题答案(一)一、1., 2.-i 2i -i22942ln π+ππk arctg 22ln 32+-333.Z 不取原点和负实轴 4. 空集5.2z 6.07.将常形域映为角形域8.角形域映为角形域9.10.⎰∞+∞-ωωπωωd e F i )(21⎰∞+-0)(dte tf st 二、解:∵∴(5分)yu x x v ∂∂-=-=∂∂xuy y v ∂∂==∂∂c xy u +=cxy y x i z f ++⎪⎭⎫ ⎝⎛+-=222121)(∵f (0)=0c =0(3分)∴(2分)222222)2(2)(2)(z ixyi y x i y x i xy z f -=+--=--=三、解:原式=(2分)⎥⎦⎤⎢⎣⎡--∑=k k z z z z s i ,)3)(1(1Re 2621π01=z 12=z (2分)⎥⎦⎤⎢⎣⎡---=∑=k k z z z z s i ,)3)(1(1Re 2643π33=z ∞=4z 2312(3,)3)(1(1Re 66⨯=⎥⎦⎤⎢⎣⎡--分)z z z s =0⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡⋅--=⎥⎦⎤⎢⎣⎡∞--0,1)31)(11(11Re 2,)3)(1(1Re 266z z z z s z z z s 分)(∴原式=(2分) =23126⨯⨯i πi 63π-四、1.解:原式(3分)z 1=0z 2=1⎥⎦⎤⎢⎣⎡-π=∑=k k z z z s i ,)1(1Re 221=0(2分)]11[2+-=i π2.解:原式=iz z i=''=s co !22πi z z i =-π=)(cos i i cos π-=1ich π-五、1.解:ni z z f ∑∞⎪⎫⎛--⋅=⋅⋅=⋅=1111111111)(分)(分)(分)((2分)11)(--∞=-=∑n n n i z in nn i z i )(1-=∑∞-=2.解:⎪⎭⎫⎝⎛-+⋅-=-+⋅-=i z i i z i z i i z z f 11)(11)(1)(11)(2分)(分)((1分)(2分)nn i z i i z ∑∞=⎪⎭⎫ ⎝⎛---=02)(120)(11+∞=-=∑n n n i z i 20)(--∞=-=∑n n n i z i 六、1.解:∵(3分)∴结论成立0)(0t i e t t ti t i e dt e t t ωωωδ-==--∞+∞-=-⎰(2)解:∵(2分)1)(2210==ωπδπ=ωω-ω-∞+∞-⎰t i t i e dw e ∴与1构成傅氏对)(2w πδ∴(2分))(2ωπδω=-∞+∞-⎰dt e t i 七、解:∵(3分)⎪⎪⎩⎪⎪⎨⎧=+=++=++)3(0)(4)()2(0)()()()1(1)()()(s sZ s Y s Z s sY s X S s sZ s Y s sX S (2)-(1):∴(3分)⎪⎭⎫ ⎝⎛-⋅-=s s s Y 111)(2⎪⎭⎫ ⎝⎛++--=--=1111211112s s s s s s ∴cht e e t Y t t -=--=-121211)(八、解:①定义;②C-R 充要条件Th ;③v 为u 的共扼函数10分复变函数与积分变换试题(二)一、填空(3分×10)1.函数f (z )在区域D 内可导是f (z )在D 内解析的()条件。
复变函数与积分变换习题册(含答案)
第1章 复数与复变函数 (作业1)一、填空题 1、ieπ2的值为 。
2、k 为任意整数,则34+k 的值为 。
3、复数i i (1)-的指数形式为 。
4、设b a ,为实数,当=a , b= 时,).35)(1()3()1(i i b i a ++=-++ 二、判断题(正确的划√,错误的划 ) 1、2121z z z z +=+ ( )2、()()())z Re(iz Im ;z Im iz Re =-= ( )3、()()i i i 125432+=++ ( ) 三、选择题1.当ii z -+=11时,5075100z z z ++的值等于( ) (A )i (B )i - (C )1 (D )1-2.复数)(tan πθπθ<<-=2i z 的三角表示式是( )(A ))]2sin()2[cos(secθπθπθ+++i (B ))]23sin()23[cos(sec θπθπθ+++i (C ))]23sin()23[cos(secθπθπθ+++-i (D ))]2sin()2[cos(sec θπθπθ+++-i 3.使得22z z =成立的复数z 是( )(A )不存在的 (B )唯一的 (C )纯虚数 (D )实数 4.若θi re i i=+--2)1(3,则( ) (A )πθ-==3arctan ,5r (B )πθ-==3arctan ,210r (C )3arctan ,210-==πθr (D )3arctan ,5-==πθr 5. 设复数z 位于第二象限,则z arg 等于( )。
(A) x y arctan 2+π (B) x y arctan +π (C) x y arctan 2-π (D) xy arctan +-π 四、计算与证明题 1、设ii i i z -+-=11,求.),Im(),Re(z z z z2、当x y ,等于什么实数时,等式()i iy i x +=+-++13531成立?3、求复数ii-+23的辐角。
工程数学(复变函数 积分变换 场论).pdf
积 分
为正向的有向曲线称为 C 反向曲线,记为 C 。 除特
别声明外,有向曲线C 的正向总是指起点到终点的方 向,对一简单闭曲线总是指逆时针方向。
吴新民
-3-
第一节 复变函数积分的概念
定义 设函数 w f (z) 在区域 D 有定义,C 为
D内一条以 A 为起点 B 为终点的光滑的有向曲线,
复 变
k 1
由线积分存在定理得,当 0 上面的两个和式的极
函
数 限都是存在的,且有
的
积 分
f (z)dz udx vdy i vdx udy (3.1.2)
C
C
C
(3.1.2) 表明:
1)当 f (z) 是连续函数,C 是光滑曲线,则 f (z)dz
一定存在;
C (z z0 )n 0
三
章 复
r
i
n1
2 (cos(n 1) i sin(n 1) )d
0
0
变
即
函 数 的 积
C
(z
1 z0 )n
dz
2i
0
n1 n1
(3.1.5)
分
吴新民
- 15 -
第一节
三 积分的性质
复变函数积分的概念
1) f (z)dz f (z)dz
(3.1.6)
第
C
C
三 章
2) f (z)dz f (z)dz, ( 为常数) (3.1.7)
C
C
复 变
3) ( f (z) g(z))dz f (z)dz g(z)dz (3.1.8)
函
C
(完整版)《复变函数与积分变换》习题册(2)
第一章 复数与复变函数本章知识点和基本要求掌握复数的概念和它的各种表示方法及运算; 熟悉复平面、模与辐角的概念;熟练掌握乘积与商的模、隶莫弗公式、方根运算公式; 了解区域的概念;理解复变函数的概念; 理解复变函数的极限和连续的概念。
一、填空题1、若等式))(()75(i y i x i i -+=-成立,则=x ______, =y _______.2、设(12)(35)13i x i y i ++-=-,则x = ,y =3、若1231izi i,则z4、若(3)(25)2i i zi,则Re z5、若421iz i i+=-+,则z = 6、设(2)(2)z i i =+-+,则arg z =7复数1z i =-的三角表示式为 ,指数表示式为 .8、复数i z 212--=的三角表示式为 _________________,指数表示式为_________________. 9、设i z 21=,i z -=12,则)(21z z Arg = _ _____。
10、设4i e 2z π=,则Rez=____________. Im()z = 。
z11、。
方程0273=+z 的根为_________________________________。
12、一曲线的复数方程是2z i -=,则此曲线的直角坐标方程为 . 13、方程3)Im(=-z i 表示的曲线是__________________________.14、复变函数12+-=z z w 的实部=),(y x u _________,虚部=),(y x v _________。
15、不等式114z z -++<所表示的区域是曲线 的内部.16二、判断题(正确打√,错误打⨯)1、复数7613i i +>+. ( )2、若z 为纯虚数,则z z ≠. ( )3、若 a 为实常数,则a a = ( )4、复数0的辐角为0.5、()f z u iv =+在000iy x z +=点连续的充分必要条件是(,),(,)u x y v x y 在00(,)x y 点连续。
《工程数学-复变函数与积分变换》吉林大学数学学院 习题详解
《工程数学-复变函数与积分变换》课后习题详解 吉林大学数学学院 (主编:王忠仁 张静)高等教育出版社 习题一(P12)1.1 对任何z ,22z z =是否成立?如果是,就给出证明。
如果不是,对哪些z 值才成立?解:设z x iy =+,则2222z x y xyi =-+,222z x y =+;若22z z =成立,则有22222x y xyi x y -+=+,即222220x y x yxy ⎧-=+⎨=⎩,解得0y =,即z x =。
所以,对任何z ,22z z =不成立,只对z 为实数时才成立。
1.2 求下列各式的值:(1)5(3)i -; (2)6(1)i +; (3)61- ; (4)13(1)i -。
解:(1)因为632ii eπ--=,所以5555566631(3)223232()16(3)22i i i i e e e i i πππ--⨯-⎛⎫-====--=-+ ⎪⎝⎭(2)因为412ii e π+=,所以63663442(1)2288i i i e e e i πππ⨯⎛⎫+====- ⎪⎝⎭(3)因为1cos sin i ππ-=+,所以()166221cos sin cossin66k k k w i i ππππππ++=-=+=+,其中0,1k =;即031cossin6622w i i ππ=+=+,1cos sin 22w i i ππ=+=, 25531cossin 6622w i i ππ=+=-+,37731cos sin 6622w i i ππ=+=--,433cossin 22w i i ππ=+=-,5111131cos sin 6622w i i ππ=+=-。
(4)因为12cos()sin()44i i ππ⎡⎤-=-+-⎢⎥⎣⎦,所以11362244(1)2cos sin 33k k k w i i ππππ⎡⎤-+-+⎢⎥=-=+⎢⎥⎢⎥⎣⎦,其中0,1,2k =;即1602cos()sin()1212w i ππ⎡⎤=-+-⎢⎥⎣⎦,161772cos sin1212w i ππ⎡⎤=+⎢⎥⎣⎦,162552cos sin 44w i ππ⎡⎤=+⎢⎥⎣⎦。
复变函数与积分变换习题答案
复变函数与积分变换习题答案习题六1. 求映射1w z=下,下列曲线的像. (1) 22x y ax += (0a ≠,为实数) 解:222211i=+i i x y w u v z x y x y x y ===-+++ 221x x u x y ax a===+,所以1w z =将22x y ax +=映成直线1u a=. (2) .y kx =(k 为实数) 解: 22221i x y w z x y x y ==-++ 222222x y kxu v x y x y x y ==-=-+++ v ku =-故1w z=将y kx =映成直线v ku =-.2. 下列区域在指定的映射下映成什么?(1)Im()0,(1i)z w z >=+;解: (1i)(i )()i(+)w x y x y x y =+?+=-+ ,.20.u x y v x y u v y =-=+-=-<所以Im()Re()w w >.故(1i)w z =+?将Im()0,z >映成Im()Re()w w >. (2) Re(z )>0. 0=. 解:设z =x +i y , x >0, 0i i i(i )i x y y x w z x iy x y x y x y -====+++++ Re(w )>0. Im(w )>0. 若w =u +i v , 则2222,u vy x u v u v==++ 因为0221101,()22u u v u v <<-+>+ 故i w z =将Re(z )>0, 00,Im(w )>0, 1212w > (以(12,0)为圆⼼、12为半径的圆)3. 求w =z 2在z =i 处的伸缩率和旋转⾓,问w =z 2将经过点z =i 且平⾏于实轴正向的曲线的切线⽅向映成w 平⾯上哪⼀个⽅向?并作图.解:因为w '=2z ,所以w '(i)=2i , |w '|=2, 旋转⾓arg w '=π2. 于是, 经过点i 且平⾏实轴正向的向量映成w 平⾯上过点-1,且⽅向垂直向上的向量.如图所⽰.→4. ⼀个解析函数,所构成的映射在什么条件下具有伸缩率和旋转⾓的不变性?映射w =z 2在z 平⾯上每⼀点都具有这个性质吗?答:⼀个解析函数所构成的映射在导数不为零的条件下具有伸缩率和旋转不变性映射w =z 2在z =0处导数为零,所以在z =0处不具备这个性质.5. 求将区域06. 试求所有使点1±不动的分式线性变换. 解:设所求分式线性变换为az bw cz d+=+(ad -bc ≠0)由11-→-.得 1a bb acd c d-+-==+--+ 因为(1)a z c dw cz d ++-=+,即(1)(1)1a z c z w cz d++++=+,由11→代⼊上式,得22a ca d c d+=?=+. 因此11(1)(1)d cd cd c w z z cz d z +++=+=+?++ 令dq c =,得 1(1)(1)/()(1)(1)11(1)(1)/()2(1)(1)1w z q z q z q z a w z q z q z q z +++++++===?-+++---- 其中a 为复数.反之也成⽴,故所求分式线性映射为1111w z a w z ++=?--, a 为复数.7. 若分式线性映射,az bw cz d+=+将圆周|z |=1映射成直线则其余数应满⾜什么条件?解:若az b w cz d +=+将圆周|z |=1映成直线,则dz c=-映成w =∞. ⽽dz c=-落在单位圆周|z |=1,所以1d c -=,|c |=|d |.故系数应满⾜ad -bc ≠0,且|c |=|d |.8. 试确定映射,11z w z -=+作⽤下,下列集合的像. (1) Re()0z =; (2) |z |=2; (3) Im(z )>0. 解:(1) Re(z )=0是虚轴,即z =i y 代⼊得. 22222i 1(1i )12i i 1111y y y yw y y y y ----+===+?++++ 写成参数⽅程为2211y u y -+=+, 221yv y =+, y -∞<<+∞. 消去y 得,像曲线⽅程为单位圆,即u 2+v 2=1.(2) |z |=2.是⼀圆围,令i 2e ,02πz θθ=≤≤.代⼊得i i 2e 12e 1w θθ-=+化为参数⽅程.354cos u θ=+ 4sin 54cos u θθ=+ 02πθ≤≤ 消去θ得,像曲线⽅程为⼀阿波罗斯圆.即22254()()33u v -+=(3) 当Im(z )>0时,即11Im()011w w z w w ++=-?<--, 令w =u +i v 得221(1)i 2Im()Im()01(1)i (1)w u v v w u v u v +++-==<--+-+.即v >0,故Im(z )>0的像为Im(w )>0.9. 求出⼀个将右半平⾯Re(z )>0映射成单位圆|w |<1的分式线性变换. 解:设映射将右半平⾯z 0映射成w =0,则z 0关于轴对称点0z 的像为w =∞,所以所求分式线性变换形式为00z z w k z z -=?-其中k 为常数.⼜因为00z z w k z z -=?-,⽽虚轴上的点z 对应|w |=1,不妨设z =0,则i 00||1e ()z z w k k k z z θθ-=?==?=∈-R故000e (Re()0)i z z w z z z θ-=?>-.10. 映射e 1i z w zαα-=?-?将||1z <映射成||1w <,实数?的⼏何意义显什么?解:因为2i i 22(1)()()1||()e e (1)(1)z z w z z z ?αααααα-----'=?=?-?- 从⽽2i i 2221||1()e e (1||)1||w ?αααα-'=?=?-- 所以i 2arg ()arg e arg (1||)w ?αα?'=-?-= 故?表⽰i e 1z w zθαα-=?-在单位圆α处的旋转⾓arg ()w α'.11. 求将上半平⾯Im(z )>0,映射成|w |<1单位圆的分式线性变换w =f (z ),并满⾜条件(1) f (i)=0, arg (i)f '=0; (2) f (1)=1, f.解:将上半平⾯Im(z )>0, 映为单位圆|w |<1的⼀般分式线性映射为w =k z z αα-?-(Im(α)>0). (1) 由f (i)=0得α=i ,⼜由arg (i)0f '=,即i 22i()e (i)f z z θ'=?+,πi()21(i)e 02f θ-'==,得π2θ=,所以ii iz w z -=?+. (2) 由f (1)=1,得k =11αα--;由f ,得k α联⽴解得w =12. 求将|z |<1映射成|w |<1的分式线性变换w =f (z),并满⾜条件: (1) f (12)=0, f (-1)=1. (2) f (12)=0, 12πarg ()2f '=, (3) f (a )=a , arg ()f a ?'=.解:将单位圆|z |<1映成单位圆|w |<1的分式线性映射,为i e1z w zθαα-=-?, |α|<1.(1) 由f (12)=0,知12α=.⼜由f (-1)=1,知 1i i i 2121e e (1)1e 1π1θθθθ--?=-=?=-?=+.故12221112zz z w z --=-?=--. (2) 由f (12)=0,知12α=,⼜i 254e (2)z w z θ-'=?- i 11224π()earg ()32f f θθ''=?==,于是π21i 2221e ()i 12zz z w z--==?--. (3) 先求=()z ξ?,使z =a 0ξ→=,arg ()a ?θ'=,且|z |<1映成|ξ|<1. 则可知 i =()=e 1z a z a zθξ?-?-?再求w =g (ξ),使ξ=0→w =a , arg (0)0g '=,且|ξ|<1映成|w |<1. 先求其反函数=()w ξψ,它使|w|<1映为|ξ|<1,w =a 映为ξ=0,且arg ()arg(1/(0))0w g ψ''==,则=()=1w aw a wξψ--?.因此,所求w 由等式给出.i =e 11w a z aa w a zθ--?-?-?.13. 求将顶点在0,1,i 的三⾓形式的部映射为顶点依次为0,2,1+i 的三⾓形的部的分式线性映射.解:直接⽤交⽐不变性公式即可求得02w w --∶1i 01i 2+-+-=02z z --∶i 0i 1--2w w -.1i 21i +-+=1z z -.i 1i- 4z(i 1)(1i)w z -=--+.14. 求出将圆环域2<|z |<5映射为圆环域4<|w |<10且使f (5)=-4的分式线性映射. 解:因为z=5,-5,-2,2映为w=-4,4,10,-10,由交⽐不变性,有2525-+∶2525---+=104104-+--∶104104+- 故w =f (z )应为55z z -+∶2525---+=44w w +-∶104105+- 即 44w w +-=55z z --+20w z=-.讨论求得映射是否合乎要求,由于w =f (z )将|z |=2映为|w |=10,且将z =5映为w =-4.所以|z |>2映为|w |<10.⼜w =f (z )将|z |=5映为|w |=4,将z =2映为w =-10,所以将|z |<5映为|w |>4,由此确认,此函数合乎要求.15.映射2w z =将z 平⾯上的曲线221124x y ??-+= ??映射到w 平⾯上的什么曲线?解:略.16. 映射w =e z将下列区域映为什么图形. (1) 直线⽹Re(z )=C 1,Im(z )=C 2;(2) 带形区域Im(),02πz αβαβ<<≤<≤; (3) 半带形区域Re()0,0Im(),02πz z αα><<≤≤.解:(1)令z =x +i y , Re(z )=C 1, z =C 1+i y 1i =e e Cyw ??, Im(z )=C 2,则z =x +i C 22i =e e C x w ??故=e zw 将直线Re(z )映成圆周1e Cρ=;直线Im(z )=C 2映为射线2C ?=.(2)令z =x +i y ,y αβ<<,则i i =e ee e ,z x yx y w y αβ+==?<<故=e zw 将带形区域Im()z αβ<<映为arg()w αβ<<的⾓为βα-的⾓形区域. (3)令z =x +i y ,x >0,0 i =e e e (0,0)e 1,0arg z x yx w x y w αα=?><<<故=e zw 将半带形区域Re(z )>0,01, 0arg w α<<(02πα≤≤).17. 求将单位圆的外部|z |>1保形映射为全平⾯除去线段-1w z=将|z |>1映为|w 1|<1,再⽤分式线性映射. 1211i 1w w w +=-?-将|w 1|<1映为上半平⾯Im(w 2)>0, 然后⽤幂函数232w w =映为有割痕为正实轴的全平⾯,最后⽤分式线性映射3311w w w -=+将区域映为有割痕[-1,1]的全平⾯. 故221121132222132111111i 1111111()11211i 1111z z z z w w w w w z w w z w w ++--?- ? ?----=====+++?? ++-?++ ? ?--.18. 求出将割去负实轴Re()0z -∞<≤,Im(z )=0的带形区域ππIm()22z -<<映射为半带形区域πIm()πw -<<,Re(w )>0的映射.解:⽤1e zw =将区域映为有割痕(0,1)的右半平⾯Re(w 1)>0;再⽤1211ln1w w w +=-将半平⾯映为有割痕(-∞,-1]的单位圆外域;⼜⽤3w =⾯;再⽤43ln w w =将区域映为半带形00;最后⽤42i πw w =-映为所求区域,故e 1ln e 1z z w +=-.19. 求将Im(z )<1去掉单位圆|z |<1保形映射为上半平⾯Im(w )>0的映射. 解:略.20. 映射cos w z =将半带形区域00保形映射为∞平⾯上的什么区域. 解:因为 1cos ()2iz iz w z e e -==+ 可以分解为w 1=i z ,12e ww =,32211()2w w w =+由于cos w z =在所给区域单叶解析,所以(1) w 1=i z 将半带域旋转π2,映为0w =将区域映为单位圆的上半圆部|w 2|<1,Im(w 2)>0. (3) 2211()2w w w =+将区域映为下半平⾯Im(w )<0.。
工程数学-复变函数与积分变换吉林大学数学学院习题详解
《工程数学-复变函数与积分变换》课后习题详解 吉林大学数学学院 (主编:王忠仁 张静)高等教育出版社 习题一(P12)对任何z ,22z z =是否成立如果是,就给出证明。
如果不是,对哪些z 值才成立解:设z x iy =+,则2222z x y xyi =-+,222z x y =+;若22z z =成立,则有22222x y xyi x y -+=+,即222220x y x yxy ⎧-=+⎨=⎩,解得0y =,即z x =。
所以,对任何z ,22z z =不成立,只对z 为实数时才成立。
求下列各式的值:(1)5)i ; (2)6(1)i +; (3; (4)13(1)i -。
解:(162ii eπ-=,所以555556661)223232())2i i i i e e e i i πππ--⨯-⎛⎫====-=- ⎪⎝⎭(2)因为41ii e π+=,所以63663442(1)288i i i e e e i πππ⨯⎫+====-⎪⎭(3)因为1cos sin i ππ-=+,所以()1622cos sin cossin66k k k w i i ππππππ++==+=+,其中0,1,2,3,4,5k =;即01cossin6622w i i ππ=+=+,1cos sin 22w i i ππ=+=,2551cossin 662w i i ππ=+=+,3771cos sin 662w i i ππ=+=-,433cossin 22w i i ππ=+=-,511111cos sin 662w i i ππ=+=-。
(4)因为1cos()sin()44i i ππ⎤-=-+-⎥⎦,所以11362244(1)2cos sin 33k k k w i i ππππ⎡⎤-+-+⎢⎥=-=+⎢⎥⎢⎥⎣⎦,其中0,1,2k =;即1602cos()sin()1212w i ππ⎡⎤=-+-⎢⎥⎣⎦,161772cos sin1212w i ππ⎡⎤=+⎢⎥⎣⎦,162552cos sin 44w i ππ⎡⎤=+⎢⎥⎣⎦。
复变函数与积分变换习题册(含答案)
第1章 复数与复变函数 (作业1)一、填空题 1、ieπ2的值为 。
2、k 为任意整数,则34+k 的值为 。
3、复数i i (1)-的指数形式为 。
4、设b a ,为实数,当=a , b= 时,).35)(1()3()1(i i b i a ++=-++ 二、判断题(正确的划√,错误的划 ) 1、2121z z z z +=+ ( )2、()()())z Re(iz Im ;z Im iz Re =-= ( )3、()()i i i 125432+=++ ( ) 三、选择题1.当ii z -+=11时,5075100z z z ++的值等于( ) (A )i (B )i - (C )1 (D )1-2.复数)(tan πθπθ<<-=2i z 的三角表示式是( )(A ))]2sin()2[cos(secθπθπθ+++i (B ))]23sin()23[cos(sec θπθπθ+++i (C ))]23sin()23[cos(secθπθπθ+++-i (D ))]2sin()2[cos(sec θπθπθ+++-i 3.使得22z z =成立的复数z 是( )(A )不存在的 (B )唯一的 (C )纯虚数 (D )实数 4.若θi re i i=+--2)1(3,则( ) (A )πθ-==3arctan ,5r (B )πθ-==3arctan ,210r (C )3arctan ,210-==πθr (D )3arctan ,5-==πθr 5. 设复数z 位于第二象限,则z arg 等于( )。
(A) x y arctan 2+π (B) x y arctan +π (C) x y arctan 2-π (D) xy arctan +-π 四、计算与证明题 1、设ii i i z -+-=11,求.),Im(),Re(z z z z2、当x y ,等于什么实数时,等式()i iy i x +=+-++13531成立?3、求复数ii-+23的辐角。
《工程数学-复变函数与积分变换》吉林大学数学学院 习题详解
《工程数学-复变函数与积分变换》课后习题详解大学数学学院 (主编:王忠仁 静)高等教育 习题一(P12)1.1 对任何z ,22z z =是否成立?如果是,就给出证明。
如果不是,对哪些z 值才成立?解:设z x iy =+,则2222z x y xyi =-+,222z x y =+;若22z z =成立,则有22222x y xyi x y -+=+,即222220x y x yxy ⎧-=+⎨=⎩,解得0y =,即z x =。
所以,对任何z ,22z z =不成立,只对z 为实数时才成立。
1.2 求下列各式的值:(1)5)i ; (2)6(1)i +; (3; (4)13(1)i -。
解:(162ii eπ-=,所以555556661)223232())2i i i i e e e i i πππ--⨯-⎛⎫====-=- ⎪⎝⎭(2)因为41ii e π+=,所以63663442(1)288i i i e e e i πππ⨯⎫+====-⎪⎭(3)因为1cos sin i ππ-=+,所以()1622cos sin cossin66k k k w i i ππππππ++==+=+,其中0,1,2,3,4,5k =;即01cossin6622w i i ππ=+=+,1cos sin 22w i i ππ=+=,2551cossin 662w i i ππ=+=+,3771cos sin 662w i i ππ=+=-,433cossin 22w i i ππ=+=-,511111cos sin 662w i i ππ=+=-。
(4)因为1cos()sin()44i i ππ⎤-=-+-⎥⎦,所以11362244(1)2cos sin 33k k k w i i ππππ⎡⎤-+-+⎢⎥=-=+⎢⎥⎢⎥⎣⎦,其中0,1,2k =;即1602cos()sin()1212w i ππ⎡⎤=-+-⎢⎥⎣⎦,161772cos sin1212w i ππ⎡⎤=+⎢⎥⎣⎦,162552cos sin 44w i ππ⎡⎤=+⎢⎥⎣⎦。
工程数学(复变与积分变换 A 集)目录
工程数学(复变与积分变换A集)目录 1工程数学(复变与积分变换A集)目录A.1 复数与复变函数(第一章) (2)1.1复数 (2)1.2复变函数 (4)A.2 导数(第二章) (6)2.3解析函数 (6)2.4调和函数 (8)A.3 积分(第三章) (9)3.3柯西积分公式解析函数的导数 (9)A.4 级数(第四章) (11)4.3泰勒级数 (11)4.4罗朗级数 (13)A.5 留数(第五章) (15)5.2留数及留数定理(2) (15)5.3应用留数计算定积分 (17)A.6 傅里叶变换(第七章) (18)7.1傅里叶积分 (18)7.2傅里叶变换 (19)7.3δ函数及其傅里叶变换 (20)2 工程数学习题集(复变函数与积分变换A 集)A.1 复数与复变函数(第一章)1.1 复数1.选择题(1) ( )Re()iz =(A) (B)Re()iz −Im()z −(C) (D)Im()z Im()iz (2) 下列对任意复数均成立的等式为( )z (A)22z z = (B)()22z z = (C)()22arg arg z z = (D)()22R e R e z z = 2. 将下例函数化为三角表达式和指数表达式(1)i +1解(2)i 解(3) 21i − 解A.1 复数与复变函数(第一章) 33. 填空题(1) 设,则复数的形式为8214z i i i =−+z x iy =+ 复数的模为z 辐角主值为(2) 设复数5z i =−,则其三角形式指数形式(3) 当满足z 条件时,21z z +是实数. 4.选择题(1) 设12z i =+,则3Im z =( )(A)-2(B)1 (C)8 (D)14(2) 设(1)2z i =−,则的值为( ) 100501z z ++(A)(B)i (C)1 (D)-1 i −5.计算下例各题的值(1) (2) 8(1)i −+13(1)i +(4) 10(1)−4 工程数学习题集(复变函数与积分变换A 集)1.2 复变函数6. 选择题 (1) 12(1)−=( )(A)无定义 (B)-1 (C)cos()2k ππ+ (D)sin()2i k ππ+ (2) 方程()2Re 1z =所代表的曲线为( )(A)圆周 (B)椭圆(C)双曲线 (D)抛物线(3) 下例正确的是( )(A)()Ln z 在1z =−处无定义 (B)(1)0Ln −=(C)的虚部等于(1)Ln −π (D)(1)Ln −的实部等于07. 求的值z (1) 23i z eπ−= (2) e 21z 1−=(3) (1)z Ln = (4) ln(1)z i =−A.1 复数与复变函数(第一章) 58. 选择题(1)设{}01D z z =<<,则为( )D (A)无界区域 (B)复连通域 (C)单连通域 (D)闭区域(2) 下例正确的是( )(A)为单调函数. (B)为有界函数.z e z e (C)为多值函数. (D)为周期函数.z e z e 9. 判断正误 (1) 因为12(1i +<+)i )i z ,所以12.( ) (1i +<+(2) 为有界函数. ( )sin ,cos z (3) . ( )2()2Ln z Lnz =(4) {}Re()D z z z =≤所表示的为整个复平面. ( )11. 计算下例各值(1) (2) (1)i i+(3) 32(1)− (4) cos(2)i −(5) (6) sin i ()tan 2Arc i6 工程数学习题集(复变函数与积分变换A 集)A.2 导数(第二章)2.3 解析函数1. 选择题(1) 函数()w f z u iv ==+在点处解析,则下列命题不成立的是( )0z (A)仅在点处可微且满足柯西-黎曼方程,u v 0z (B)存在点的某一邻域在0z ()0,U z u v 、()0U z 内满足柯西-黎曼方程(C)在,u v ()0U z 内可微(D) B 与C 同时成立(3) 函数()w f z u iv ==+的实、虚部在区域内有一阶连续的偏导数,则( ),u v D (A)在内满足柯西-黎曼方程 (B),u v D ()f z 在内连续D (C)()f z 在内可导 (D)D ()f z 在内解析D (4) 设函数()f z 在区域内解析,则与D ()f z ≡常数不等价的命题是( )(A)()0f z ′≡ (B)()()Re Im f z f z ≡≡常数(C) ()f z 解析 (D) ()f z ≡常数2. 讨论下列函数的解析性(1) ()1f z z=(2) ()()Re f z z z =(3) ()22f z xy ix =+yA.2 导数(第二章) 73. 判断题(1) 解析函数的导函数仍为解析函数. ( )(2) 初等函数在其定义域内解析,可导. ( )(3) 如果()f z 在解析,那么0z ()f z 在连续. ( )0z (4) 函数()2f z z =在平面上解析. () z 4. 选择题(1) 如果是0z ()f z 的奇点, 则()f z 在处一定为( )0z (A)不可导 (B)可导(C) 不解析 (D)解析(2)如果()0f z ′存在,那么()f z 在处一定有( )0z (A)解析 (B)不解析(C) 不连续 (D)连续5. 讨论()322333f z x x yi xy y =+−−i )的解析性,并求导数.6. 设函数()(3232f z my nx y i x lxy =+++为解析函数,试确定. ,,l m n8 工程数学习题集(复变函数与积分变换A 集)2.4 调和函数7. 判断题(1) 解析函数()()(,,)f z u x y iv x y =+的(),u x y 与(),v x y 互为共扼调和函数.( )(2) 若与(),u x y (),v x y 都是调和函数,则()()(),,f z u x y iv x y =+是解析函数.( )(3) 设为区域内的调和函数,(,u u x y =)D u u f i x y ∂∂=−∂∂,则f 是内的解析函数. D ( )8. 选择题(1) 函数()()(),,f z u x y iv x y =+解析,则下列命题中错误的是( )(A) 均是调和函数 (B)是u 的共轭调和函数,u v v (C) 是的共轭调和函数 (D) u v u −是的共轭调和函数v (2)下列函数中不是调和函数的是( )(A)(),arctany h x y x = (B).()()22,ln 2h x y x y x y =++−; (C)()22,x h x y y x y2=−+ (D)()2,si x h x y e y =n 3 9. 已知()2,3v x y xy x =−+,求以为虚部的解析函数v ()f z u iv =+.10. 已知,求以u 为实部的解析函数(),2sin xu x y e y =()f z u iv =+,使()00f =.A.3 积分(第三章) 9A.3 积分(第三章)3.3 柯西积分公式 解析函数的导数1. 选择题 (1) 设zC e :|2|1,dz z 2C z −=−∫ 则=( )(A) (B) i e 2πei 2π(C) (D)2e 2πi e 22π(2) 设C 3sinz:||1,dz z 2C z π=−∫ 则(=( ) (A) i π− (B) i π(C) (D) 0i 2π−2. 计算题 (1) ∫=−−1|2|2z z dz z e (2) ∫=−3||3zdz 1z e z z )( (3) 22sin (1)z z dz z =−∫(4) ∫C zdz ze ,其中C 为由正向圆周2||=z 与负向圆周1||=z 所组成。
(完整版)复变函数与积分变换习题答案
一、将下列复数用代数式、三角式、指数式表示出来。
(1) i 解:2cossin22ii e i πππ==+(2) -1解:1cos sin i e i πππ-==+ (3)1+解:()/3122cos /3sin /3i e i πππ+==+ (4) 1cos sin i αα-+ 解:2221cos sin 2sin 2sincos2sin(sincos )2222222sincos()sin()2sin 222222i i i i i e πααααααααααπαπαα⎛⎫- ⎪⎝⎭-+=+=+⎛⎫=-+-= ⎪⎝⎭(5) 3z解:()3333cos3sin3i z r e r i θθθ==+ (6) 1i e +解:()1cos1sin1i i e ee e i +==+(7)11ii-+ 解:3/411cos3/4sin 3/411i i i i e i i i πππ--==-==+++二、计算下列数值(1) 解:1ar 21ar 21ar 2 b i ctg k a bi ctg abi ctgaπ⎛⎫+ ⎪⎝⎭==⎧⎪=⎨⎪⎩(2)解:6226363463222i k i i i i e i ee e iπππππππ⎛⎫⎛⎫++ ⎪ ⎪⎝⎭⎝⎭⎛⎫+ ⎪⎝⎭⎧=+⎪⎪⎪⎨====-+⎪⎪⎪=-⎩(3) i i 解:()2222ii k k i i e eππππ⎛⎫⎛⎫+-+ ⎪ ⎪⎝⎭⎝⎭==(4)解:()1/2222ii k k eeππππ⎛⎫⎛⎫++ ⎪ ⎪⎝⎭⎝⎭==(5) cos5α解:由于:()()552cos5i i e e ααα-+=,而:()()()()()()()()5555555555cos sin cos sin cos sin cos sin nni nn nni n n e i C i e i C i αααααααααα-=--==+==-=-∑∑所以:()()()()()()()()()()()555505555043253543251cos5cos sin cos sin 21 cos sin 112 5cos sin cos sin cos 5cos sin 10cos sin cos n n n nn n n n nn n C i i C i i C i ααααααααααααααααα--=--=⎡⎤=+-⎣⎦⎡⎤=+-⎣⎦=++=-+∑∑(6) sin5α解:由于:()()552sin 5i i ee ααα--=,所以:()()()()()()()()()()()()55550555505234245552341sin 5cos sin cos sin 21 cos sin 1121 sin cos sin sin cos sin 10cos sin 5sin cos n n n nn n n n nn n C i i i C i i i C i C i iααααααααααααααααα--=--=⎡⎤=--⎣⎦⎡⎤=--⎣⎦=++=-+∑∑ (7) cos cos2cos n ααα+++L L 解:()()221cos cos 2cos ()()2(1)1(1)11(1)(1)1 21122(1cos )1 2i i in i i in i in i i in i i in i in i i i n e e e e e e e e e e e e e e e e e e e e ααααααααααααααααααααααα----------⎡⎤+++=+++++++⎣⎦⎡⎤--+--⎡⎤--⎢⎥=+=⎢⎥---⎢⎥⎣⎦⎣⎦+=L L L L L L (1)(1)22(1cos )12cos 22cos(1)2cos cos 1cos(1)cos 22(1cos )2(1cos )1sin()sin22 2sin2i i n i n in in e e e e n n n n n ααααααααααααααααα+-+-⎡⎤---++⎢⎥-⎣⎦⎡⎤--++--++==⎢⎥--⎣⎦+-=(8) sin sin 2sin n ααα+++L L 解:()()221sin sin 2sin ()()2(1)1(1)11(1)(1)1 21122(1cos )1 2i i in i i in i in i i in i i in i in i i i n e e e e e e i e e e e e e e e e e i e e i e i αααααααααααααααααααααα---------⎡⎤+++=+++-+++⎣⎦⎡⎤-----⎡⎤--⎢⎥=-=⎢⎥---⎢⎥⎣⎦⎣⎦=L L L L L L (1)(1)112(1cos )12sin 2sin(1)2sin sin sin(1)sin 22(1cos )2(1cos )1cos()cos22 2sin2i n in i i n in e e e e e i i n i n n n i n αααααααααααααααααα+--+-⎡⎤--+-++-⎢⎥-⎣⎦⎡⎤-++-++==⎢⎥--⎣⎦-++=1.2 复变函数1、试证明函数f (z )=Arg(z ) (-π<Arg(z) ≤π),在负实轴上(包括原点)不连续。
(完整版)《复变函数与积分变换》习题册(2)
第一章 复数与复变函数本章知识点和基本要求掌握复数的概念和它的各种表示方法及运算; 熟悉复平面、模与辐角的概念;熟练掌握乘积与商的模、隶莫弗公式、方根运算公式; 了解区域的概念;理解复变函数的概念; 理解复变函数的极限和连续的概念。
一、填空题1、若等式))(()75(i y i x i i -+=-成立,则=x ______, =y _______.2、设(12)(35)13i x i y i ++-=-,则x = ,y =3、若1231izi i,则z4、若(3)(25)2i i zi,则Re z5、若421iz i i+=-+,则z = 6、设(2)(2)z i i =+-+,则arg z =7复数1z i =-的三角表示式为 ,指数表示式为 。
8、复数i z 212--=的三角表示式为 _________________,指数表示式为_________________.9、设i z 21=,i z -=12,则)(21z z Arg = _ _____.10、设4i e 2z π=,则Rez=____________. Im()z = 。
z11、.方程0273=+z 的根为_________________________________.12、一曲线的复数方程是2z i -=,则此曲线的直角坐标方程为 。
13、方程3)Im(=-z i 表示的曲线是__________________________. 14、复变函数12+-=z z w 的实部=),(y x u _________,虚部=),(y x v _________. 15、不等式114z z -++<所表示的区域是曲线 的内部。
16二、判断题(正确打√,错误打⨯)1、复数7613i i +>+. ( )2、若z 为纯虚数,则z z ≠. ( )3、若 a 为实常数,则a a = ( )4、复数0的辐角为0.5、()f z u iv =+在000iy x z +=点连续的充分必要条件是(,),(,)u x y v x y 在00(,)x y 点连续。
复变函数及积分变换试题及答案
第一套第一套一、选择题(每小题3分,共21分)1. 若( ),则复函数()(,)(,)f z u x y iv x y =+是区域D 内的连续函数。
A. (,)u x y 、(,)v x y 在区域D 内连续; B. (,)u x y 在区域D 内连续; C. (,)u x y 、(,)v x y 至少有一个在区域D 内连续; D. 以上都不对。
2. 解析函数()f z 的实部为sin x u e y =,根据柯西-黎曼方程求出其虚部为( )。
A.cos x e y C -+; B cos x e y C -+; C sin x e y C -+; D cos x e y C +3.2|2|1(2)z dzz -==-⎰( )。
A. i π2; B. 0; C. i π4; D. 以上都不对. 4. 函数()f z 以0z 为中心的洛朗展开系数公式为( )。
A. 101()2()n n f d c iz ξξπξ+=-⎰ B. 0()!n n f z c n =C. 201()2n k f d c iz ξξπξ=-⎰D. 210!()2()n n k n f d c iz ξξπξ+=-⎰5. z=0是函数zz sin 2的( )。
A.本性奇点B.极点C. 连续点D.可去奇点6. 将点∞,0,1分别映射成点0,1,∞的分式线性映射是( )。
A.1z zw -=B. z 1z w -=C. zz 1w -= D. z11w -=7. sin kt =()L ( ),(()Re 0s >)。
A.22k s k +; B.22k s s +; C. k s -1; D. ks 1.二、填空题(每小题3分,共18分)1.23(1)i += [1] ;----------------------------------------装--------------------------------------订-------------------------------------线----------------------------------------------------2. 幂级数∑∞=1n nn z !收敛于 [2] ;3. 设0Z 为复函数)(z f 的可去奇点,则)(z f 在该点处的留数为 [3] . ;4. 通过分式线性映射z kz λωλ-=-(k 为待定复常数)可将 [4] 映射成单位圆内部1ω<;5. 一个一般形式的分式线性映射可由z b ω=+、az ω=、1zω=三种特殊形式的映射复合而成,分别将ω平面看成z 平面的平移映射、旋转与伸缩映射、 [5] ; 6. 求积分()i x e x dx ωδ∞--∞=⎰[6] ;三、判断题 (每小题2分,共10分)1. 平面点集D 称为一个区域,如果D 中任何两点都可以用完全属于D 的一条折线连接起来,这样的集合称为连通集。
工程数学复变函数第四版完整答案.pdf
!第一章复数与复变函数内容提要!一!复数及其代数运算和几何表示!"复数的概念定义!设!!"都是实数!我们把形如##!$$"的表达式称为复数%其中$称为虚数单位!且具有性质$&#’!!!和"分别称为复数#的实部和虚部!记为!#()"##!"#*+"##%"!#当!#,!"",时!##$"称为纯虚数%"&#当"#,时!##!$,$$视为实数!%"-#设#!#!!$$"!!#&#!&$$"&!则#!##&!当且仅当!!#!&!"!#"&%".#当!#"#,时!称##,%&"复数的运算"!#加"减#法两个复数的加"减#法!定义为实部与实部相加"减#及虚部与虚部相加"减#!即$!$!!复变函数同步辅导及习题全解"!!$$"!#/"!&$$"&##"!!/!&#$$""!/"&#%"&#乘法两个复数相乘按多项式乘法法则相乘并注意$&#’!!即"!!$$"!#$"!&$$"&##"!!!&’"!"&#$$"!!"&$!&"!#%"-#除法若#&",!将满足#&$###!的复数#定义为#!除以#&的商!记为###!#&!即#!#&#!!$$"!!&$$"&#!!!&$"!"&!&&$"&&$$!&"!’!!"&!&&$"&&%".#复数的共轭及性质设##!$$"!称!’$"为复数#的共轭复数!记为#或##!即##!’$"!它有如下性质%!#!/#&##!/#&!#!#&##!!#&!#!#"#&##!#&"#&",#&"###!###’()"##(&$’*+"##(&&#()"###!&"#$##!*+"###!&$"#’##%-"复数的几种表示方法"!#复数的坐标表示每一个复数##!$$"确定平面上一个坐标为"!!"#的点!反之亦然!这意味着复数集与平面上的点之间存在一一对应%由于这个特殊的一一对应存在!我们常把以!为实轴!"为虚轴的平面称之为复平面%"!!"#为复数##!$$"的坐标表示形式!称为点#%"&#复数的向量表示记复数##!$$"在平面上确定的点为&!原点为’%设复数#对应向量$%’&%这也是一个特别的一一对应%为此我们称向量$%’&为复数#的向量表示式%$"$第一章!复数与复变函数向量$%’&的长度称为复数#的模或绝对值!记为&#&!我们有结论%!!###&#&&#&#&&%当#",时!以正实轴为始边!向量$%’&为终边所确定的角!称为复数#的辐角!记为!!012##!%当##,时!辐角不确定%012#是一个多值函数%称满足条件’$’!($的!为幅角的主值!记为312#%从而有!!012##312#$&($!!"(#,!/!!/&!)#利用复数的向量表示法对任意复数#!!#&!三角不等式!!&#!$#&&(&#!&$&#&&的意义为三角形的一边不大于两边之和!不等式!!&#!’#&&)&&#!&’&#&&&表示三角形的一边不小于两边之差的绝对值% "-#复数的三角表示设#",!)是#的模!!是#的任意一个辐角%则##)"456!$$678!#%".#复数的指数表示在三角表式示中!利用欧拉公式%)$!#456!$$678!可得##))$!!称为复数#的指数表示式%以上复数的不同表示法仅是形式上的差异!它们各有其特点%复数及其运算的几何解释可以从向量表示法得到!复数运算中模与幅角的变化规律可以由三角或指数表示法得到%."复数的乘幂与方根"!#积与商设#!#)!)$!!!#&#)&)$!&则$#$!!复变函数同步辅导及习题全解#!#&#)!)&)$"!!$!&#!#!#&#)!)&)$"!!’!&#!")&",#%即!&#!#&&#&#!&&#&&!#!#&#&#!&&#&&!"#&",#&"012"#!#&##012#!$012#&!012#!#"##!’012#&%注意%"%#正确理解等式"的含义&"&#乘积与商的几何解释%"&#乘幂设##))$!!则#*#)*)7*!#)*"456*!$$678*!#%棣莫弗"9):;5$+1)#公式%"456!$$678!#*#456*!$$678*!及其应用%"-#方根设##))$!!则*!##*!))$!$&($*#*!)"456!$&($*$$678!$&($*#!"(#,!!!&!)!*’!#%注意%*!#的*值性及几何解释%二!复变函数及其极限与连续!%复变函数的概念复变函数是高等数学中一元实变函数概念的推广!二者定义的表述形式几乎完全一样!只要将定义中的*实数"或实数集#+换为*复数"或复数集#+就行了%但对下面几点应多加注意%"!#实变函数是单值函数!而复变函数有单值函数和多值函数之分%"&#复变函数,#-"##是从#平面上的点集.到,平面上的点集.#的一个映射!因此!它不但可以把#平面上的点映射"或变换#为,平面上的点!而且可以把#平面上的曲线或图形映射为,平面上的曲线或图形!实现两个不同复平面上的图形之间的有趣的变换!为简化或研究某些问题提$$$第一章!复数与复变函数供了可能%"-#由于一个复变函数,#-"##对应着两个二元实变函数%/#/"!!"#!!+#+"!!"#!所以!可以将对复变函数的研究转化为对两个二元实变函数的研究%这是研究复变函数的常用思想方式之一%&"平面点集"!##,的"’邻域%满足关系&#’#,&’"的点#的全体称为点#,的一个"’邻域!而满足,’&#’#,&’"的点#的全体称为点#,的一个去心"’邻域%"&#内点%设.是一平面点集!#,*.!若存在#,的某个邻域也包含于.!则称#,为.的内点%"-#开集%若.的每个点都是内点!则称.为开集%".#连通集%对.+!"即复平面#!.非空!若存在一对,中不交的开集.!!.&!满足.!-."#!.&-."#!且.+".!..&#则称.为连通集%"<#区域%连通的开集叫区域%应该注意的是!可以证明!对于开集!连通性等价于另一种更直观的属性!即道路连通!也即.内任意两点都可以用一条.中的折线连接%"=#边界%若#,点的任意一个邻域内既有区域.中的点!又有不属于.中的点!则#,称为区域.的一个边界点%由.的全体边界点组成的集合称为.的边界%">#闭区域%区域.及其边界一起构成闭区域!记为/.%"#简单闭曲线%设曲线0%###"1##!"1#$$""1#!2(1(3%当!"1#与""1#连续时!称0为连续曲线%对1!!1&*’2!3#!当1!"1&而有#"1!###"1&#时!点#"1!#称为曲线0的重点%没有重点的连续曲线0!称为简单"或@51A 38#曲线%如果简单曲线0的两个端点重合!则0称为简单闭曲线%由以上定义知!简单曲线自身不相交!简单闭曲线则只有起点与终点重合%"B #光滑曲线%曲线###"1##!"1#$$""1#!2(1(3!当!4"1#$%$!!复变函数同步辅导及习题全解与"4"1#连续且’!4"1#(&$’"4"1#(&",时!称为光滑曲线!由几条光滑曲线依次连接而成的曲线!称为按段光滑曲线%"!,#单连通域%若属于区域.的任何简单闭曲线0的内部也属于.!则称.为单连通域%否则称为多连通域%-"复变函数的极限与连续性"!#定义%设函数,#-"##在#,点的去心领域,’&#’#,&’$内有定义!若任给%0,!存在"0,",’"($#!当,’&#’#,&’"时!有&-"##’5&’%成立!则称常数5为-"##当#趋于#,时的极限!记为%C 7+#$#,-"###5%若-"##在#,点有定义!且-"#,##5!则称-"##在点#,连续%若-"##在区域.内每一点都连续!我们称-"##在.内连续%"&#设-"###/"!!"#$$+"!!"#!5#/,$$+,!#,#!,$$",!那么C 7+#$#,-"###51C 7+!$!,"$",/"!!"##/,C 7+!$!,"$",+"!!"##+234,!由此可见!复变函数极限的定义虽在形式上与一元实函数的极限定义相似!但实质上却相当于二元实函数的极限%这导致了第二章用极限定义的复变函数的导数的概念!较之一元实变函数的导数概念!其要求要苛刻得多%"-#如果C 7+#$#,-"###5!C 7+#$#,6"###7!那么C 7+#$#,’-"##/6"##(#5/7!C 7+#$#,’-"##$6"##(#57!C 7+#$#,-"##6"###57!"7",#%$&$第一章!复数与复变函数".#由定义及式!易得连续的充要条件%C 7+#$#,-"###-"#,#1C 7+!$!,"$",/"!!"##/"!,!",#C 7+!$!,"$",+"!!"##+"!,!",234#两个连续函数8#6"##!,#-"8#复合所得的函数,#-’6"##(仍是连续函数%典型例题与解题技巧"例!#!将复数##"!-$$#"&’&$#"!-’$#"&$&$#化为三角形式与指数形式%解题分析!将一个复数#化为三角形式与指数形式的关键在于求出该复数的模与辐角的主值%通常的方式是先将#化成代数形式##!$$"!再利用&#&#!&$"!&与反正切公式分别求出它的模与主辐角%本题中由于#的分子与分母互为共轭复数!而复数与其共轭复数的模相等!因此!容易利用复数商的模公式求出&#&%至于主辐角除可反正切公式求得外%也可以利用关于乘积与商的辐角公式来求%下面给出两种解法!便于读者比较%解题过程!将#的分子与分母同乘以"!-$$#"&’&$#!得##"!-$$#&&!-$$&&$"&’&$#&&&’&$&&#"!&$!-&$#"’$##!-&’!&$!所以&#&#!!312##314D 2"’!--##’$=%从而得到#的三角形式与指数形式%##456$=’$678$=#)’$=$%另一种解法是!由于分子与分母恰为一对共轭复数!故其模相同!于是$’$!!复变函数同步辅导及习题全解&#&#&"!-$$#"&’&$#&&"!-’$#"&’&$#&#!012##&’012"!-$7#$012"&’&$#(#’$=$&E $%"例&#!设#!!#&为复平面上任意两点!证明不等式!!&#!’#&&)&#!&’&#&&%分析!这个不等式的几何意义为以#!!#&!#!’#&为边的三角形!一边的长度"&#!’#&&#不小于两边的长度之差的绝对值"&&#!&’&#&&&#%证明这个不等式可利用书中已证的三角不等式%证明!&#!$#&&(&#!&$&#&&F &#!&#&#!’#&$#&&(&#!’#&&$&#&&G &#!&’&#&&(&#!’#&&!F &#&&#&#&’#!$#!&(&#&’#!&$&#!&G &#&&’&#!&(&#&’#!&#&#!’#&&"利用!与"得&#!’#&&)&&#!&’&#&&&%"例-#!设复数’满足&’&’!!试证#’&!’5&##!!当&#&#!’!!当&#&’!0!!当&#&0234!分析!比较复数#!#&的模#!#&与!的大小等价于比较#!#&&与!的大小!也相当于比较&#!&&与&#&&&的大小%此时常用公式#&###!#!/#&&##!&$#&&/&()"#!#&#以及三角不等式%证明!由等式#’&&##&$&&’&()"5&##!’5&#&#!$&&#&’&()"5&##可知#’&&’!’5&#&#"#&’!#"!’&&#$($第一章!复数与复变函数注意到&’!!便有#’&&’!’5&#&#,!当##!’,!当#’!0,!当#0234!从而#’&!’5&#&##’&&!’5&#&#!!当##!’!!当#’!0!!当#0234!由此即得要证明的结论%"例.#!函数,#!#$!将#平面上的下列曲线变成,平面上的什么曲线,"!#!&$"&#!&!"&#"#!$!&!"-#"#!%解题分析!解此题的要点是利用公式!#!&"#$##!!!"#!&$"#’##及题中映射!!,#!#$!!!##!,’!%解题过程!令,#/$$+"!#由!&$"&#!有!!!."#$##&’!."#’##&#!即!!###!!!!,"#’!!’"#’!#!!!"!’,#$"!’’#’’#!!!"!’,#"!’’##,’!!,$’#!$)$!!复变函数同步辅导及习题全解即!!/#!&即圆!&$"&#!映成了直线/#!&%"&#由"#!$!知!!!&$"#’###!&"#$##$!代入##!,’!得!&$!,’!,3467’#!&!,$!,"#’&$!两边乘以&7,,得,’,#$",$,#由前设,/#’7+知,’,#’&$+,$,#&/代入上式则有/#’+即直线"#!$!被映成了直线/#’+%"-#由"#!知!!!&$"#’###!!!#’##&$!!!,’!’!,"#’!#&$!!!,’!,#&$!!,’,#&7,,即!!&$"/&$+&##’&$+$*!$!!/&$+&$+#,所以直线"#!映成了圆/&$+&$+#,%"例<#!判断下列函数在给定点处的极限是否存在%若存在!试求出极限的值%"!#-"####()"###!!#$,&"&#-"###()"#&##&!!#$,&"-#-"####’$#"#&$!#!!#$$%解题分析!判断一个复变函数在给定点处的极限是否存在有三种方法%一是用函数极限的定义!类似于实变函数!定义多用于验证某函数的极限等式!本书对这处方法不作更多的要求%但是!读者应当会用极限定义来判定某函数的极限不存在&第二种方法是利用教材第&=页中的定理一!讨论函数的实部/#/"!!"#与+#+"!!"#的极限是否存在!这是判断极限是否存在的常用方法&第三种方法是利用教材中第&>页的定理二!直接利用极限的有理运算法则求函数的极限%与实变函数一样!应用时必须满足这些法则成立的条件%下面给出的解法都基于以上三种方法!其中有的小题给出了多种解法%解题过程!"!#由于-"####()"###(#!所以!对于任给的%0,!取9#%!则当,’&#&’9时!恒有!!-"##’,#-"##(#’%根据极限定义!当#$,时!-"##的极限存在!并且其值为,%"&#令##!$$"!则-"###!&’"&!&$"&!从而有/"!!"##!&’"&!&$"&!!+"!!"##,%$!!$令#沿直线"#(!趋于,!则C 7+"!!"#$",!,#/"!!"##C 7+"!$,!&’(&!&!&$(&!&#!’(&!$(&%由于它随(的不同而不同!因此!当"!!"#$",!,#时/"!!"#的极限不存在!故#$,时!-"##的极限不存在%"-#由于-"##的分子与分母中含有极限为零的因子!消去后得-"####’$#"#&$!##!#"#$$#"#"$#!所以C 7+#$7-"###C 7+#$7!#"#$$##’!&%历年考研真题评析!"题!#!把复数##!$678&$$456&!’$’&’’$&化为三角表示式与指数表示式!并求#的辐角的主值%"山东大学&,,<年#解题分析!本题主要考察复数的三角表示法和指数表示法!以及辐角和主值的求法%解题过程!##!$678&$$456&#!$456$&’"#&$$678$&’"#&#&456&$.’&"#&$$&678$.’&"#&456$.’&"#&#&456$.’&"#&456$.’&"#&$$678$.’&"#’(&所以’$’&’’$&!所以$&’$.’&&’-$.%因此456$.’&"#&’,故$"!$)#&#&#’&456$.’&"#&%由于!!’456$.’&"#Lj$$$.’&"#Lj<$.’&"#&!!!’678$.’&"#ʦ$$$.’&"#ʦ<$.’&"#&!从而得#的三角表示式%##’&456$.’&"#&456<$.’’"#&$$678<$.’&"#’(&!及指数表示式%##’&456$.’&"#&)$"<$.’&&#%注意!这里的辐角!#<$.’’&不是主值!因为-$&’<$.’&&’>.$!但它只能与主值相差一个&$的整数倍!从上式容易看出!如果不等式的每项各加"’&$#!得’$&’’-$.’&&’’$.%这个’-$.’&&就符合关于主值的要求了%因此312##’-$.$’"#&%如果!取主值!那么#的三角表示式与指数表示式分别为##’&456$.’&"#&456-$.$&"#&’$678-$.$&"#’(&!##’&456$.’&"#&)’$"-$.$&&#%"题&#!设*为自然数!证明等式!$678!$$456!!$678!’$456"#!*#456*$&’"#!$$678*$&’"#!%$#!$"北京大学&,,<年#分析!上面涉及到复数*次幂的等式!通常需要先将复数化为三角形式!然后再用9):5$H 1)公式"456($$678(#*#456*($$678*(证明%证明!令!#$&’(!可知!$678!$$456!!$678!’$456!#!$456($$678(!$456(’$678(#&456&(&$&$678(&456(&&456&(&’&$678(&456(Lj(&$$678(&456(&’$678(Lj(&$$678("#&Lj($$678(!故!!!$678!$$456!!$678!’$456"#!*#456*($$678*(#456*$&’"#!$$678*$&’"#!%"题-#!求满足关系式456!’)’-456!"’$&’!’$&#的点##)"456!$$678!#的集合.%若.为一区域!则指明它是单连通域还是多连通域%"中山大学&,,=年#解题分析!此题考察知识点*单连通域+和*多连通域+%解题过程!由##)"456!$$678!#!’$&’!’$&!可知)#!&$"!&!456!#!!&$"!&于是所给的关系式456!’)’-456!变为$$!$!!&$"!&’!&$"!&’-!!&$"!&或!’!&$"&’-!于是可见此区域是单连通的%"题.#!在映射’##&下!求下列平面点集在’平面上的象%"!#线段,’)’&!!#$.&"&#双曲线!&’"&#.&"-#扇形区域,’!’$.!,’)’&%"山东大学&,,<年#解题分析!此题是关于映射的复习%解题过程!"!#设##))$(!,#$)$(!则$#)&!(#&!!故线段,’)’&!!#$.映射为,’$’.!(#$&!也是线段’见图!’!"3#(%图!’!"3#"&#设##!$$"!,#/$$+!则#&#!&’"&$$&!"故/#!&’"&!+#&!"所以!&’"&#.1/#.!为平行于+轴的直线’见图!’!"I #(%"-#设##))$!!,#$)$(!则$#)&!(#&!$%!$图!’!"I#故扇形域,’!’$.!,’)’&映射为,’(’$&!,’$’.!也是扇形域’见图!’!"4#(%图!’!"4#"题<#!试证函数-"###!&$##’#"##当#$,时的极限不存在%"天津大学&,,<年#分析!这又是一道关于复变函数的极限问题%证明!-"###!&$$#&’#’&###"#$##"#’##&$#&#&()"##$&$*+"##&$#&#&()"##*+"###&令##!$$"!则有-"###&!"!&$"&%由此得/"!!"##&!"!&$"&!!+"!!"##,$&!$让#沿直线"#:!趋于零!我们有C 7+!$,"#:!$,/"!!"##C 7+!$,"#:!$,&!"!&$"&#C 7+!$,&:!&!&$:&!&#&:!$:&%可见沿不同斜率的直线!/"!!"#趋于不同的值!所以C 7+!$,"$,/"!!"#不存在%虽然C 7+!$,"$,+"!!"##,!但根据前述结论!C 7+!$#,-"##不存在%课后习题全解8!"求下列复数#的实部和虚部-共轭复数-模与辐角%!#!-$&$&&#!$’-$!’$&-#"-$.$#"&’<$#&$&.#$’.$&!$$%解!!#!-$&$#-’&$"-$&$#"-’&$##-’&$!-#-!-’&!-$()"###-!-&*+"###’&!-&##-!-$&!-$&&#&#-"#!-&$’&"#!-!&#!!!-&312##’314D 2&-&012##’314D 2&-$&($"(#,!/!!/&!)#%&#!$’-$!’$#’$’-$"!$$#"!’$#"!$$##’$’-$’-&#-&’<&$()"###-&&*+"###’<&&##-&$<&7&&#&#"#-&&$’<"#&!&#!-.&&312##’314D 2<-&012##’314D 2<-$&($"(#,!/!!/&!)#%-#"-$.$#"&’<$#&$#&=’>$&$#’>&’!-$$’!$()"###’>&&*+"###’!-&##’>&$!-$&&#&#’"#>&&$!-!&#<&!&B &312##314D 2&=>’$&012##314D 2&=>’$$&($"(#,!/!!/&!)#%.#$’.$&!$$#$.$.’.$.J <$!$$#!’.$$$#!’-$()"###!&*+"###’-&##!$-$&&#&#!&$"’-#!&#!!,&312##’314D 2-&012##’314D 2-$&($"(#,!/!!/&!)#%8&"当!!"等于什么实数时!等式!$!$$""’-#<$-$#!$$成立,解!由所给等式可得!$!$$""’-##"!$$#"<$-$##&$?$利用复数相等的概念!$!#&".’-#?9!#!"#!!.!即!#!!"#!!时等式成立%8-"证明虚单位$有这样的性质%’$#$’!#$%证明!因’$#’$$$$#’’$&$#!$#$’!!$#’$!所以’$#$’!#$%8."证明%!#&#&&###&&##!/#&##!/#&&-##!#&##!!#&&.##!#"#&##!#&!"#&",#&<####&=#()"###!&"#$##!*+"###!&$"#’##%证明!!#设##!$$"!则&#&&#!&$"&!###"!$$"#"!’$"##!&$"&!从而有&#&&###%$(!$&#设#!#!!$$"!!#&#!&$$"&!则#!/#&#"!!$$"!#/"!&$$"&##"!!/!&#$""!/"&#$#"!!/!&#’""!/"&#$#!/#&#"!!$$"!#/"!&$$"&##"!!’$"!#/"!&’$"&##"!!/!&#’""!/"&#$从而有!#!/#&##!/#&%-#设#!#!!$$"!!#&#!&$$"&!则#!#&#"!!$$"!#"!&$$"&##"!!!&’"!"&#$$"!!"&$!&"!##"!!!&’"!"&#’$"!!"&$!&"!##!!#&#!!$$"!!&$$"&#"!!’$"!#"!&’$"&##"!!!&’"!"&#’$"!!"&$!&"!#从而有!#!#&##!!#&%.#由#!#"#&#!!$$"!!&$$""#&#"!!!&$"!"&#$"!&"!’!!"&#$!&&$"&&#"!!!&$"!"&#’"!&"!’!!"&#$!&&$"&&#!#&#!!’$"!!&’$"&#"!!’$"!#"!&$$"&#!&&$"&&#"!!!&$"!"&#’"!&"!’!!"&#$!&&$"&&可知!#!#"#&##!#&!"#&",#%<#设##!$$"!则##!’$"!##"###!$$"##%即!###%=#设##!$$"!则##!’$"!从而!!&"#$###!&"!$$"$!’$"##!#()"##!!&$"#’###!&$"!$$"’!$$"##!&$"&$"##"#*+"##$)!$结论得证%:<"对任何#!#&#&#&&是否成立,如果是!就给出证明!如果不是!对哪些#值才成立,分析!考查复数性质%解!对于任何复数##!$$"!易知#&#!&’"&$&!"$!&#&&#!&$"&%于是!由#&#&#&&可得!&’"&$&!"$#!&$"&比较两边的实虚部!等价地有&!"#,!!&’"&#!&$"&9"&#,即"#,%故对任何虚数#!#&#&#&&不成立!只有当#为实数"虚部为零#时!等式#&#&#&&才成立%:="当&#&(!时!求&#*$2&的最大值!其中*为正整数!2为复数%分析!主要考查最大值问题%解!由三角不等式及&#&(!可知&#*$2&(&#&*$&2&(!$&2&而且当#,#)73)62*时!&#*,$2&#&)73)62$&2&)73)62&#!$&2&!故其最大值为!$&2&%:>"判定下列命题的真假%!#若;为实常数!则;#;&&#若#为纯虚数!则#"#&-#7/&7&.#零的辐角是零&<#仅存在一个数#!使得!##’#&=#&#!$#&&#&#!&$&#&&&>#!$##$#%分析!一些命题的真假!要求有比较好的掌握基础知识%解!!#真&&#真&-#假"复数不能比较大小#&.#假"复数零的辐角是$*"$不确定的#&<#假"由!##’#得#&#’!!从而#可取/$两个值#&=#一般不真"由三角不等式&#!$#&&(&#!&$&#&&!等号仅当312#!’312#&#&()"(#,!/!!/&!)#时成立#&>#真%8"将下列复数化为三角表示式和指数表示式%!#$&&#’!&-#!$$!-&.#!’456($$678(!",((($#&<#&$’!$$&=#"456<($$678<(#&"456-(’$678-(#-%解!!#$#456$&$$678$&!"三角表示式#$#)$$&!"指数表示式#&#’!#456$$$678$#)$$-#&!$$!-&#!$"!-#!&#&!312"!!$-$##314D 2!-!#$-!故!$$!-#&"456$-$$678$-#"三角表示式#!$$!-#&)$-$!"指数表示式#.#&!’456($$678(&#"!’456(#&$678&!(#&’&456!(#&678(&"注意,((($#!312"!’456($$678(##314D 2678(!’456(#314D 2&678(&456(&&678&(ĺD 2"45D (&##314D 2"D 2$’(&##$’(&!故!’456($$678(#&678(&"456$’(&$$678$’(&#!"三角表示$!"$式#!’456($$678(#&678(&)$$’(&!"指数表示式#<#&$’!$$#&$"’!’$#"’!$$#"’!’$##&’&$&#!’$!其模为!&!其辐角312&$’!$$#312"!’$##314D 2’!"#!#’$.!故&$’!$$!#&456"’$.#$$678"’$.’(#!&"456$.’$678$.#"三角表示式#!&$’!$$!#&)"’$.#$"指数表示式#=#"456<($$678<(#&"456-(’$678-(#-#")$<(#&")’-$(#-#)$!,()’$B (#)$!B ("指数式##456"!B (#$$678"!B (#!"三角式#8B"将下列坐标变换公式写成复数形式%!#平移公式%!#!!$2!!"#"!$3!.&&#旋转公式%!#!!456&’"!678&!"#!!678&$"!456&.%解!!#令##!$$"!#!#!!$$"!!;!#2!$$3!!则平移公式的复数形式为###!$;!%&#令##!$$"!#!#!!$$"!!;#456&$7678&!;又可写成;#)$’!从而旋转公式!#!!456&’"!678&"#!!678&$"!456.&可写成!!##"!!456&’"!678&#$$"!!678&$"!456&##"!!$$"!#"456&$7678&###!)$&8!,"一个复数乘以’7!它的模与辐角有何改变,解!由于复数##&#&)7312#!’7#)’$&7!所以复数#乘以’7为’7##$""$&#&)7312#%)’$&7#&#&)7"312#’$&#!即模不变!辐角减小$&%8!!"证明%&#!$#&&&$&#!’#&&&#&"&#!&&$&#&&&#!并说明其几何意义%证明!&#!$#&&&$&#!’#&&&#"#!$#&#"#!$#&#$"#!’#&#"#!’#&##"#!$#&#"#!$#&#$"#!’#&#"#!’#&##&#!&&$#!#&$#&#!$&#&&&!$&#!&&’#!#&’#&#!$&#&&&#&"&#!&&$&#&&&#几何意义为%以#!!#&为边构成的平行四边形的两条对角线长度的平方和等于四边长的平方和%;!&"证明下列各题%!#任何有理分式函数<"###&"##="##可以化为>$$?的形式!其中>与?为具有实系数的!与"的有理分式函数&&#如果<"##为!#中的有理函数!但具有实系数!那么<"###>’$?&-#如果复数2$$3是实系数方程2,#*$2!#*’!$)$2*’!#$2*#,的根!那么2’$3也是它的根%分析!要明确有理分式的形式%证明!!#设##!$$"!&"###&!"!!"#$$&&"!!"#!="###=!"!!"#$$=&"!!"#则&$"!!"#!=$"!!"#"$#!!&#是!!"的实多项式!而且<"###!=&!$=&&’"&!=!$&&=&#$$"’&!=&$&&=!#(令!!>#&!=!$&&=&=&!$=&&!?#’&!=&$&&=!=&!$=&&易知>与?都为具有实系数的!与"的有理分式函数!并$#"$且<"###>$$?%&#如果&"##!="##是实系数多项式!则有关系式&"###&"##!="###="##%事实上!对任一实系数多项式&"###2,#*$2!#*’!$)$2*’!#$2*"2,!2!!)!2*为实数!即2@#2@!"@#,!!!&!)!*##&"###2,#*$2!#*’!$)$2*’!#$2*#2,#*$2!#*’!$)$2*’!#$2*#2,#*$2!#*’!$)$2*’!#$2*#&"##从而<"###&"##="###&"##="###&"##="#"###">$$?##>’$?-#令&"###2,#*$2!#*’!$2!#*’!$)$2*’!#$2*!由&#中的事实有&"###&"##%如果2$$3是所给实系数方程的根!则&"2$$3##,%于是&"2’$3##&"2$$3##&"2$$3##,!这说明2’$3也是它的根%小结!有理分式函数可以化为复数形式!其中虚-实部全为实系数有理分式函数&实系数方程的根的共轭也是根%:!-"如果##)71!证明%!##*$!#*#&456*1&!!&##*’!#*#&$678*1%分析!复数的幂性质要掌握%证明!由##)$1易知#*#")$1#*#)$*1#456*1$$678*1!!#*#)’$*1#456*1’7678*1!所以!##*$!#*#456*1$7678*1$456*1’7678*1#&456*1&##*’!#*#456*1$$678*1’"456*1’$678*1##&$678*18!."求下列各式的值%!#"!-’$#<&&#"!$$#=&$$"$-#=!’!&.#"!’$#!-%解!!#"!-’$#<#&!-&’!&"#’($<#&456’$"#=$$678’$"#’(.0=<#&<456’<$=$$678’<$"#=#-&’!-&’!&"#$!#’!=-’!=$&#"!$$#=!#&456$.$$678$"#’(.=#?456-$&$$678-$"#&#’?$-#由’!#)$$#456$$$678$得=!’!#)$$&($=$#456$$&($=$$678$$&($=!"(#,!!!&!-!.!<#%即=个值分别为!-&$!&$!$!’!-&$!&$!’!-&’!&$!’$!!-&’!&$%.#由!’$!#&456’$"#.$$678’$"#’(.得"!’$#!-#=!&456’$.$&($-$$678’$.$&($3467-"(#,!!!&#即-个值分别为=!&456$!&’$678$"#!&!=!&456>!&$$$678>!&"#$!!=!&456<.$$$678<."#$%:!<"若"!$$#*#"!’$#*!试求*的值%分析!化为三角表示式计算%$%"$解!由"!$$#*#"!’$#*可得!&456$.$$678$"#’(.*!#&456’$.$$678’$"#’(.*&*&456*$.$$678*$"#.#&*&456*$.$$678’*$"#.即有!678*$.#678’*$.#’678*$.!9678*$.#,!*$.#($!*#.(!"(#,!/!!/&!)#%8!="!#求方程#-$?#,的所有根&&#求微分方程"*$?"#,的一般解%解!!#方程#-$?#,等价于#-#’?!其根为##-!’?#-!?"456$$&($-$$678$$&($-#!"(#,!!!&#即!#,!#!$-$!#!#’&!#-!#!’-$为所求的根%&#因微分方程"*$?"#,的特征方程为)-$?#,由!#得其特征值为’&!!!/-$!故方程的通解为"#0!)’&!$)!"0&!456-!$0-!678-!#其中0!!0&!0-为任意常数%:!>"在平面上任意选一点#!然后在复平面上画出下列各点的位置%’#!#!’#!!#!’!#分析!考查复数的基本知识%解!取##!’$得’##’!$$!##!$$!’##’!’$!!##!&$!&$!!##!&’!&$!’!##’!&$!&$各点位置如图!A &"3#所示%一般地!如图!A &"I #所示!’#与#关于原点对称&#与#关于$&"$图!!A &实轴对称&’#与#关于虚轴对称%又由!#######&#&&得!#与#的辐角相同!且!##!&#&!即!#与#是关于单位圆周的对称点%如图!A !"I #中!设&#&’!!则!#在单位圆外!且使,!#和!#共一条射线!而且&#&$!##!%’!#是!#关于原点的对称点%:!?"已知两点#!与#&"或已知三点#!!#&!#-#!问下列各点#位于何处,!###!&"#!$#&#&&###+#!$"!’+##&!其中+为实数&-###!-"#!$#&$#-#%分析!做好图!就能看出来%解!!#设#!#!!$$"!!#&#!&$$"&则##!&"#!$#&##!!$!&&$$"!$"&&位于#!与#&连线的中点%&###+#!$"!’+##&#’+!!$"!’+#!&($$’+"!$"!’+#$’"$"&(!当+为实数时!#位于#!与#&的连线上!其中+#&#’#&&&#!’#&&%特别地!若,(+(!!则#是在以#!!#&为端点的线段上的点%-#再设#-#!-$$"-!则当#!!#&!#-不共线时##!-"#!$#&$#-##!!$!&$!--$$"!$"&$"--位于三角形#!#&#-的重心&若#!!#&!#-共线时!则#在此直线上!物理意义仍是重心所在点%:!B "设#!!#&!#-三点适合条件%#!$#&$#-#,!&#!&#&#&&#&#-&#!%证明%#!!#&!#-是内接于单位圆周&#&#!的一个正三角形的顶点%分析!要掌握三角形的性质%证明!由!!题的结论及题设条件可知&#!$#&&&$&#!’#&&&#&"&#!&&$&#&&&##&"!$!##.&’#-&&$&#!’#&&&#.9&#!’#&&&#-!&#!’#&&!#-类似地&#&’#-&&#&"&#&&&$&#-&&#’&#&$#-&&#.’&’#!&&#-&#!’#-&&#&"&#!&&$&#-&&#’&#!$#-&&#.’&’#&&&#-即&#!’#&&#&#&’#-&#&#!’#-&!#-%#!!#&!#-是内接于单位圆周&#&#!的一个正三角形的顶点%;&,"如果复数#!!#&!#-满足等式#&’#!#-’#!##!’#-#&’#-!证明&#&’#!&#&#-’#!&#&#&’#-&!并说明这些等式的几何意义%分析!思维灵活!掌握各种三角形的性质%$("$。
工程数学-复变函数与积分变换-总复习
一. 点可导的充要条件
解 析 函 数
且满足柯西黎曼(Cauchy-Riemann )方程:
u v , x y
u v . (简称 C R 方程) y x
5
§2.2 解析函数的充要条件
§解析函数的充要条件
第 二 定理 函数 w f ( z ) u( x, y ) i v( x, y ) 在区域 D 内解析的 章 P42 定理二 充要条件是: u( x , y ) 和 v ( x , y ) 在区域 D 内可微,且 解 满足 C R 方程。 析 函 数 推论 若函数 u( x, y ) 和 v( x , y ) 的四个偏导数 u , u , v , v x y x y 在区域 D 内存在且连续,并满足 C R 方程,则函数
解析
判别 方法 C-R 方程
指数函数 对数函数 幂 函 数 (反)三角函数 (反)双曲函数
4
初等函数
§2.2 解析函数的充要条件
§解析函数的充要条件
第 二 定理 函数 w f ( z ) u( x, y ) i v( x, y ) 在点 z x i y 处可导 章 P41 的充要条件是: u( x, y ) 和 v( x , y ) 在点 ( x, y ) 处可微,
i(
i 2k πi ) 2
(
2k π ) 2 ,
解 析 例 求 1 2 的值。 函 数 解 1 2 e 2 Ln 1 e
2 [ 0 i ( 0 2 k )]
e2
2 k πi
cos ( 2 2 k π ) i sin ( 2 2 k π ) , (k 0, 1, 2,) .
2
例 求解方程 z 3 1 0 . 解 z 3 1 1 e
复变函数 积分变换——课后答案
ln 1 z 1
( )
+
b .lim lim 1 ,故z 0 为可去奇点。
z→0 z→0 1+
----------------------- Page 1-----------------------
习题五解答
1、下列函数有些什么奇点?如果是极点,指出它的级。
z − z −
( 1)( 1) z z
( −1)( +1)
∞ z n+1 ( ) ∞ n
1 z
(4 ) ; (5) ; (6)e − ;
n +1 z n +1
n 0 n 0
3 sin z
a. z 0 为sin z 为的一级零点;而z 0 为z 的三级零点。故z 0 为 的二级极点。
z z z z 2 z 1
(7)因e −1 z∑ z(1+ + +) ,故z 0 为z (e −1) 的三级零点,因而是 2 z
1
ln(z +1) z
(2k+1)π
1+z (k 0,±1,±2,) 1+e
(5)由1+z 0 得z ±i 为 的一级零点,由1+e 0得z 2k +1 i 为
( ) 2 2 ( )
z (z +1)
其奇点,z 0 为一级极点,而z ±i 为其二级极点。
3
z
n 0 (n +1) ! 2 3! z (e −1)
的三级极点,而z 2kπi,(k ±1,±2,) 均为一级极点。
1 sin z 1
(1) ; (2 ) ; (3) ;
[数学]工程数学复变函数 积分变换 场论
- 11 -
z ; 2 z 1
3)
1 ; 2 z ( z 1)
第五章 留数
第一节
留数
4) e
1 z 1
4) z 1 是函数 e
第五章 留数
1 z 1
的本性奇点,利用留数的定义
计算函数的留数,由于 1 1 n z ( 1) e z 1 n ! n 0 1 1 1 0 | z 1 | 2 z 1 2( z 1) 所以
第五章 留数
所以
1 d m 1 c 1 lim m 1 [( z z0 )m f ( z )] ( m 1)! z z0 dz
即 (5.2.6) 成立, 特别 m 1 时,就是 (5.1.5) 式。
吴新民
-8-
第一节
留数
Q( z ) , 其中 P ( z ), Q( z ) 在 z0 处解 规则III 设 f ( z ) P(z) 析, 且 P ( z0 ) 0, P ( z0 ) 0, Q( z0 ) 0, 则 Q ( z0 ) (5.1.7) Res[ f ( z ), z0 ] P ( z 0 )
Res[ f ( z ), z0 ] c1 1 从而有 Res[ f ( z ), z0 ] f ( z )dz 2 i C (5.1.2) (5.1.3)
内的洛朗级数中的
第五章 留数
( z z0 )1 的系数 c1 为函数 f ( z ) 在点 z0 处的留数,
其中 C 为 0 | z z0 | 内的环绕 z0 正向简单闭曲线。
- 17 -
第五章 留数
吴新民
第一节
留数
1 1 cos z Res[ ,0] 因此 6! z7 1 cos z dz , 我们又可用高阶导数公式 在计算积分 7 z | z | 1 1 cos z 2 i (6) dz (1 cos z ) 7 z 0 6! z | z | 1 2 i 2 i cos z z 0 6! 6!
复变函数与积分变换练习册参考答案
分析:显然原方程可化简为一个典型的二项方程。
⎛ 1+ z ⎞ 解:由直接验证可知原方程的根 z ≠ 1 。所以原方程可改写为 ⎜ ⎟ = 1。 ⎝ 1− z ⎠
令
5
ω=
1+ z , ……………(1) 1− z
2π i 5
则 ω = 1 , ……………………(2)
5
方程(2)的根为 ω = 1, e
(5) lim
z →1
zz + 2 z − z − 2 3 = 。 2 z2 −1 zz + 2 z − z − 2 ( z + 2)( z − 1) z +2 3 = lim = lim = 。 2 z →1 ( z − 1)( z + 1) z →1 z + 1 2 z −1
提示: lim
z →1
(1 − cos α ) 2 + sin 2 α = 4sin 2
α
2
= 2sin
α
2
;因为当 0 < α < π 时,
sin α > 0 , 1 − cos α > 0 ,则 arg z = arctan
= arctan(tan +i sin
π −α
2
)=
π −α
2 e
π −α i 2
sin α α = arctan(cot ) 1 − cos α 2
。
6、 ( 2)
=e
2 ln 2 − 2kπ
7、方程 sinh z = i 的解为 三、计算和证明 1、试证函数
1 在复平面上任何点都不解析。 z
利用 C-R 条件,即用解析的充要条件判别,即 u =
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第1次 复变函数(1)一、填空题。
1. 设(1)(2)(3)(3)(2)i i i z i i +--=++,则z =__________ 2.设z =, 3arg()4z i π-=,则z=________________ 3. 不等式522<++-z z 所表示的区域是曲线_______________的内部。
4. 复数i 31-的三角表达式为 二、请计算i +1的值。
三、已知21z z 和是两个复数,证明)Re(2212221221z z z z z z ++=+四、下列坐标变换公式写成复数形式;1) 平移公式:1111x x a y y b =+⎧⎨=+⎩,2)旋转公式:1111cos sin sin cos x x y y x y αααα=-⎧⎨=+⎩五、指出下列各题中点z 的轨迹或所在范围,并作图。
1)56z -=; 2)21z i +≥;3)314z z +++=。
4)312z z -≥-六、将下列方程(t 为实参数)给出的曲线用一个实直角坐标方程表出:1)(1)z t i =+; 2)t ib t a z sin cos += (b a ,为实常数)3)22i z t t=+。
4) it it z ae be -=+第2次 复变函数(2)一、填空题1. 241lim (12)z i z z →+++=________________ 2. 由映射2)(z z f =得到的两个二元实函数=),(y x u =),(y x v . 3. 函数zz z f =)( 在0→z 时极限为 4. 已知映射3z =ω, 则点i z =在该映射下在ω平面的象为 二、对于映射11()2w z z =+,求出圆周|z|=4的像。
三、函数1w z =把下列z 平面上的曲线映射成w 平面上怎样的曲线? 1)224x y +=; 2) y x =。
3) 1x =。
4) 22(1)1x y -+=.四、设函数()f z 在0z 连续且0()0f z ≠,那么可找到0z 的小邻域,在这邻域内()0f z ≠。
五、设1()(),(0)2z z f z z i z z=-≠. 试证当0z →时()f z 的极限不存在。
*六、设0lim ()z z f z A →=,证明函数()f z 在0z 的某一去心邻域内是有界的,即存在一个实常数0>M ,使在0z 的某一去心邻域内有()f z M ≤.第三次 解读函数(1)一、填空题1.设2.导函数在区域D 解读的充要条件为 3.设4. 已知函数52)2()(i z z f +=,则该函数的导数为二、讨论下面函数的可导性,如果可导,求出)(/z f .1) 22)(iy x z f +=2) )Im()(z z z f =三 如果是的解读函数,证明四、设为解读函数,试确定,,的值.五、证明柯西–黎曼方程的极坐标形式为.*六、设的解读函数,若记第四次 解读函数(2)一、填空题1) =212) i i 主值是.3) =->-ze z z 1lim 0 4) 函数)Re()Im()(z z z zf -=仅在点=z 处可导.5) 若函数)()(by x i ay x z f +++=在复平面上解读,则=a b =二、求出下列全部解;(1);(2).三.解方程四、证明:当∞→y 时,趋于无穷大.五、求)3(i Ln -,)43(i Ln +-和它们的主值.六. 求,exp [(1+)/4],和i i )1(+的值.第五次 复积分的概念、柯西-古萨定理一、填空题1) 设c 为沿原点0=z 到点i z +=1的直线段,则=⎰c dz z _2__________。
2)设c 是椭圆2214y x +=,则dz z z C ⎰+2sin 。
3)设c 是i z e θ=,θ从π-到π的一周,则Re()cz dz =⎰。
4)设c 为正向圆周3=z ,则dz z z z c ⎰+_=__________。
二、沿原点路线计算积分⎰+idz z 302(1) 自原点至3+i 的直线段;(2) 自原点沿实轴至3,再由3铅直向上至3+i ;(3) 自原点沿虚轴至i ,再由i 沿水平方向向右至3+i 。
三、求积分23C z dz ⎰的值,其中C 为:(1)从1i +到34i -的直线段;(2)圆周11z i --=的正向。
四、 试用观察法得出下列积分的值,并说明观察时所依据的是什么?C 是正向单位圆周1=z 。
(1)⎰++c z z dz 422(2)⎰-c z dz 21(3)dz ze c ⎰2(4)()⎰+⎪⎭⎫ ⎝⎛-c z i z dz 22五、证明2sin 2C z dz e z π≤⎰,其中C 是单位圆1z =的一周。
六、计算积分dz z z ⎰=--11211*七、设()f z 在原点的某邻域内连续,试证明200lim ()2(0)i r f re d f πθϕπ→=⎰第六次 复合闭路定理 原函数与不定积分柯西积分公式一、填空题:1 设c 为负向圆周4=z ,则=-⎰dz i z e cz5)(π__________。
2 设c 为正向圆周1z =,则2cos 2231C z dz z z π++⎰__________。
3 积分20cos i z z dz π⎰的值为。
4 积分32i z ie dz ππ-⎰=。
5 设c 为正向圆周5z =,则23123C z dz z z ---⎰的值为__________。
二、沿指定曲线的正向计算下列积各积分(1);:,22a a z c a z dz c =--⎰ (2) .1:,5=⎰z c dz z e c z(3) 2,:3;(1)c dz c z z z =-⎰ (4) 2sin ,:22;9czdz c z i z -=+⎰三、 计算下列函数沿正向圆周的积分(1),2314dz i z z c ⎰⎪⎭⎫⎝⎛+++其中c :4=z ;(2),122dz z i c ⎰+其中 61:=-z c四、 计算积分2sin 4,1c z dz z π-⎰其中C 分别为: 1(1)12z -=; 1(2)12z +=; (3) 2.z =五、 计算下列各题(1)⎰10;sin zdz z (2)21(2)i iz dz +⎰*六、求积分,1dz z e z z⎰=从而证明πθθπθ=⎰d e )cos(sin 0cos第七次 高阶导数公式 解读函数与调和函数的关系一 填空题1)、设)(z f =ξξξπξd z ⎰=-2)2sin(,其中,2≠z 则=)3('f __________。
2)、设C 为负向圆周4=z ,则=-⎰dz i z e c z5)(π__________。
3)、设C 为任意实常数,那么由调和函数22u x y =-确定的解读函数()f z u iv =+是。
4)、若函数32(,)u x y x axy =+为某一解读函数的虚部,则常数a =。
二 计算下列积分(1),cos 213dz z z c c c ⎰+=其中2:1=z c 为正向,3:2=z c 为负向;(2)2221,:2;(1)c z z dz c z z -+=-⎰(3)331,(1)(1)c dz z z -+⎰其中C 为复平面内不过1±的一条正向简单闭曲线。
三 下列各已知调和函数求解读函数()vi u z f +=(1) ()();422y xy x y x u ++-= (2) ();02,22=+=f yx y v四、证明2222,x u x y v x y =+=+都是调和函数,但是()f z u iv =+不是解读函数。
五、设,sin y ev px =求p 的值使v 为调和函数,并求出解读函数()iv u z f +=。
六、计算积分dz z C ⎰+21的值,并由此计算0cos 45cos 210=++⎰θθθπd第八次 复数项级数 幂级数一、填空题(1)若幂级数0()n nn c z i ∞=+∑在i z =处发散,那么该级数在2=z 处的敛散性为。
(2)幂级数210(2)n n n i z∞+=∑的收敛半径R =。
(3)极限2lim 1n n ni ni→∞+=-。
(4)幂级数0(1)n n n z∞=+∑的和函数为。
二、下列数列{}n a 是否收敛?如果收敛,求出它们的极限。
1)n n ia -+=)21(;2)1)1(++-=n i a n n ; 3)sin n i n a n =三、判别下列级数的绝对收敛性与收敛性。
1)∑∞=+08)56(n n n i ; 2)∑∞=02cos n n in3)02sin nn in ∞=∑;四、求下列幂级数的收敛半径。
1)∑∞=12)!(n n n z nn ; 2)∑∞=1/n n n i z e π ;3)1(1)n n n i z ∞=-∑; 4)21(34)n n n i z ∞=+∑五、把下列各函数展开成z 的幂函数,并指出它们的收敛半径。
1)311z +; 2)22)1(1z +;*六、求2(1)(2)n n n n i +∞-=-∑的值。
第九次 泰勒级数 洛朗级数一、填空题(1)函数z arctan 在0=z 处的泰勒展开式为(2)函数zz e e 1+在+∞<<||0z 内的洛朗展开式为 (3)函数sin z e 在0=z 处泰勒展开式的收敛半径为(4)设1(1),11(1)n n n a z z z z +∞=-∞=-->-∑,则3a -= (5)函数1()z z i -在1z i <-<+∞内的洛朗展开式是 二、求下列各函数在指定点0z 处的泰勒展开式,并指出它们的收敛半径: 1)1,110=+-z z z ; 2)2,)2)(1(0=++z z z z ;3)1,102-=z z ; 4)i z z +=-1,3410三、把下列各函数在指定的圆环域内展开成罗朗级数。
1)1,0||1;2|2|(1)(2)z z z z z <<<-<+∞--;2)21,1||323z z z <<--3)1|1|0;1||0,)1(12<-<<<-z z z z ;四、设C 为正向圆周3z =,利用洛朗级数展开式计算下列积分: 1)21(1)C dz z z +⎰; 2)(1)(2)C z dz z z ++⎰。
第十次 留数(1)一、填空题:1. 设0z =为函数22sin z z -的m 级零点,那么m =2. 如果0z 是()f z 的(1)m m >级零点,那么0z 是()f z '的级零点。