基因工程 第七章 酵母基因表达体系55P

合集下载

酵母菌的基因工程

酵母菌的基因工程

酵母菌克隆表达质粒的构建
含有CEN的YCp质粒的构建
CEN为酵母菌染色体DNA上与染色体均匀分配有关的序列 将CEN DNA插入含ARS的质粒中,获得的新载体称为YCp YCp质粒具有较高的有丝分裂稳定性,但拷贝数只有1~5个
含有TEL的YAC质粒的构建
酵母菌克隆表达质粒的构建
含有酵母菌染色体DNA同源序列的YIp质粒的构建
转化质粒在酵母细胞中的命运
单双链DNA均可转化酵母菌,但单链的转化率是双链的10~30倍 含有复制子的单链质粒进入细胞后,能准确地转化为双链并复制
不含复制子的单链质粒进入细胞后,能高效地同源整合入染色体
这对于体内定点突变酵母基因组极为有利 克隆在YIp整合型质粒上的外源基因,如果含有受体细胞的染色体 DNA的同源序列,会发生高频同源整合,整合子占转化子总 数的50%~80%
酵母菌的转化程序
碱金属离子介导的酵母菌完整细胞的转化
酿酒酵母的完整细胞经碱金属离子(如Li+等)、PEG、热休克 处理后,也可高效吸收质粒DNA,而且具有下列特性: 吸收线型DNA的能力明显大于环状DNA,两者相差80倍 共转化现象极为罕见
酵母菌的转化程序
酵母菌电击转化法
酵母菌原生质体和完整细胞均可在电击条件下吸收质粒DNA, 但在此过程中应避免使用PEG,它对受电击的细胞具有较很大的负 作用。电击转化的优点是不依赖于受体细胞的遗传特征及培养条件 适用范围广,而且转化率可高达105 / mg DNA。
酵母菌的转化程序
酵母菌原生质体转化法
早期酵母菌的转化都采用在等渗缓冲液中稳定的原生质体转化 法,在Ca2+和PEG的存在下,转化细胞可达原生质体总数的1%~ 2%。但该程序操作周期长,而且转化效率受到原生质再生率的严重 制约。 原生质体转化法的一个显著特点是,一个受体细胞可同时接纳 多个质粒分子,而且这种共转化的原生质体占转化子总数的25%~ 33%。

酵母细胞的基因表达调控和代谢调节研究

酵母细胞的基因表达调控和代谢调节研究

酵母细胞的基因表达调控和代谢调节研究酵母细胞作为微生物中的重要代表,是一类单细胞真核生物,其广泛应用于生物学、发酵工艺和医学研究中。

酵母细胞的基因表达调控和代谢调节是酵母细胞研究的重要方向,也是生物学研究的重要领域,对理解生命过程以及人类疾病的发病机制有着重要的意义。

一、基因表达调控的研究酵母细胞具有很强的遗传可控性,基因表达调控的研究一直是酵母细胞研究的热点之一。

酵母细胞中基因表达调控主要包括转录前、转录后和调节因子等方面的研究。

1、转录前调控转录前调控主要是指通过转录因子对基因启动子的结合来调控基因的转录速率。

酵母细胞的转录因子主要包括激活转录因子和抑制转录因子两类。

激活转录因子通过结合启动子使得转录因子蛋白与RNA聚合酶共同形成转录复合物,从而促进基因的转录;抑制转录因子则通过结合启动子抑制转录复合物的形成,使得基因的转录过程被抑制。

2、转录后调控转录后调控主要是指转录后修饰以及mRNA剪接等方式对RNA的降解速率和转录的抑制作用。

酵母细胞中常见的转录后修饰有剪切、RNA编辑、加工等方式,这些修饰可以影响RNA的稳定性、翻译速率和结构功能等方面。

3、调节因子调节因子是指在DNA核苷酸序列中通过某种方式调节基因表达的核酸分子。

调节因子可以增强或者抑制某个基因的转录,也可以同时调控多个基因的转录。

酵母细胞中的调节因子主要有染色质重塑复合体、DNA甲基转移酶等。

二、代谢调节的研究代谢调节是指在代谢途径中通过调节酵素活性和代谢产物浓度等方式影响代谢反应的调节过程。

酵母细胞的代谢途径包括葡萄糖酵解、异养代谢、脂质代谢、氨基酸代谢等。

1、葡萄糖酵解葡萄糖酵解是指将葡萄糖分解为乳酸或乙醇代谢的过程。

酵母细胞的葡萄糖酵解主要受到两种调控方式的影响,一种是通过启动子上的转录因子对基因表达的调节,另一种是通过一些代谢产物对基因表达的反馈调控。

2、异养代谢异养代谢是指在缺少氧气或碳源时,酵母细胞通过吸收硫酸盐、氨、磷酸盐等原始无机物质方式进行代谢的过程。

植物素酵母菌表达系统在基因工程中的应用

植物素酵母菌表达系统在基因工程中的应用

植物素酵母菌表达系统在基因工程中的应用基因工程是一门综合了分子生物学、遗传学、生物化学等多个学科的交叉学科。

它以人为主导,利用现代生物技术手段对有机体的遗传物质进行改造,以期对生产、医疗和环境保护等领域产生积极作用。

如今,基因工程技术已被广泛应用于生产、生态和医疗领域,其中之一就是利用植物素酵母菌表达系统进行基因表达。

什么是植物素酵母菌表达系统?植物素酵母菌表达系统是一种利用酵母菌表达植物素来实现外源蛋白高效表达的方法。

它的原理是,利用酵母菌表达基因工程蛋白的同时,还表达植物素调控元件,使得目标基因可以在酵母菌体内高效表达。

借助这种表达系统,研究者可以将大量的外源蛋白表达出来,并进行具有特定性质的后续研究。

植物素酵母菌表达系统被广泛应用于基因工程中,参与了许多生产、生态和医疗领域的项目。

其中一些应用包括:1. 生产领域在生产领域,植物素酵母菌表达系统可用于大量表达产业所需的蛋白质,如酶和细胞因子等。

例如,在生产木糖醇和甘露醇等产品的过程中,黄色棒状杆菌所产生的甘露醇脱氢酶和木糖醇脱氢酶等酶,就可以通过植物素酵母菌表达系统高效地表达出来,从而提高了产品的产量和质量。

2. 生态领域在生态领域,植物素酵母菌表达系统也被广泛应用于研究生态系统中有意义的基因。

例如,科学家利用该系统表达了含有酸性磷酸酶基因的酵母菌,并将其释放到了土壤中,研究了酸性磷酸酶的环境效应,为生态系统制定了更加科学的保护措施。

3. 医疗领域在医疗领域,植物素酵母菌表达系统可以用于表达重要的蛋白质,如抗体、疫苗等。

例如,它可以表达用于治疗乳腺癌和皮肤癌的激素受体,制造出更加有效的抗肿瘤药物。

此外,它还可以表达疫苗中的病毒表面抗原,以制造出更安全、更有效的疫苗。

总结植物素酵母菌表达系统是基因工程中重要的表达方法。

它可以高效地表达大量外源蛋白质,应用范围广泛,包括生产、生态和医疗等领域。

这一技术将极大地推动基因工程技术的发展,为人类的生产、生态和健康等提供更多的可能。

第七章 酵母基因工程

第七章 酵母基因工程
第七章 酵母菌的基因工程
Dividing Saccharomyces cerevisiae (baker’s yeast) cells
一. 酵母克隆载体
① 能在E.coli中克隆和扩增。 Ori ②有大肠杆菌的选择标记 Ampr、Tetr。 ③ 有酵母的选择标记 Leu2+、His+、Ura3+、Trp1+;
如pYF92:
pBR322 2m 酵母his 3+
2m质粒: 酿酒酵母的内源质粒,长度是2m 。含有自主 复制起始区ori和STB序列(使质粒在供体中维 持稳定)。
特点:
①很高的转化活性(103-105转化子/微克 DNA). ②拷贝数多(25-100分子/细胞)。 ③比YRp稳定。
YEp24
亮氨酸lue2—β-异丙基苹果酸脱 氢酶
• 该酶是把丙酮酸转化成亮氨酸的代谢酶之 一.只要使用亮氨酸lue2突变的营养缺陷型 酵母作受体,载体上带有亮氨酸lue2基因就 能在不含亮氨酸的培养基上实现转化克隆 的筛选(书170页图).
四. 酵母表达系统的特点
(1)优点 ①对其遗传学和生理学的研究比较深入。 ②小量培养和大规模反应器中都能生长。 ③已经分离出很强的启动子。 ④有翻译后的加工。 ⑤本身自然分泌很少,便于胞外蛋白的纯 化。 ⑥安全性高(FDA确认的安全生物),不 需要宿主的安全性检验。
④不稳定,容易丢失。
(3)着丝粒质粒(YCp) 在YRp质粒中插入酵母染色体的着丝粒 区。 YRp质粒 酵母着丝粒 特点: ①行为像染色体,能稳定遗传。 ②单拷贝存在。
③不易从细胞中提取。
(4)附加体型载体(YEp) 由大肠杆菌质粒、2m质粒及酵母染色体 DNA选择标记构成。 大肠杆菌质粒 2m质粒 酵母选择标记

酵母基因工程培训课程(ppt 41页)

酵母基因工程培训课程(ppt 41页)

1. 酵母菌中的野生型质粒
(1)酿酒酵母中的2m环状质粒
几乎所有的酿酒酵母中都含有2m双链
环状质粒,拷贝数达50至100个。
IRs 反向重复序列,600 bp,重组 FLP 编码产物驱动IRs的同源重组 REP 编码产物控制质粒的稳定性 STB REP的结合位点
RAF STB
接合酵母属中的pSR1和pSB1,以及
第十五章 酵母基因工程
二、 酵母菌的宿主系统
1、广泛用于外源基因表达的酵母宿主菌 2、提高重组蛋白表达产率的突变宿主菌 3、抑制超糖基化作用的突变宿主菌 4、减少泛素依赖型蛋白降解作用的突变宿主菌
1、广泛用于外源基因表达的酵母宿主菌
目前已广泛用于外源基因表达和研究的酵母菌包括:
酵母属
如酿酒酵母(Saccharomyces cerevisiae)
单双链DNA均可转化酵母菌,但单链的转化率是双链的10-30倍 含有复制子的单链质粒进入细胞后,能准确地转化为双链并复制 不含复制子的单链质粒进入细胞后,能高效地同源整合入染色体
这对于体内定点突变酵母基因组极为有利 克隆在YIp整合型质粒上的外源基因,如果含有受体细胞的染色体
DNA的同源序列,会发生高频同源整合,整合子占转化子总 数的50-80%
GAL80
GAL4
UAS
GAL1
GAL7 GAL10
半乳糖诱导时,GAL4高效表达,GAL1、GAL1、GAL10超高效表

GAL1 Pr0omote r
GAL80
GAL4
UAS
GAL1
GAL7 GAL10
2、外源基因在酵母菌中表达的限制因素
外源基因稳态mRNA的浓度 外源基因mRNA的翻译活性 酵母菌对密码子的偏爱性

第7章原核细胞基因工程

第7章原核细胞基因工程
通过优化作物生长和发育相关基因的表达,提高作物的光合效率、养分利用效率和抗逆 性,从而提高作物产量。
农药降解酶基因工程菌构建
分离和克隆农药降解酶基因
01
从自然界中筛选能够降解农药的微生物,并分离和克
隆其降解酶基因。
构建基因工程菌
02 将农药降解酶基因导入合适的原核细胞表达系统中,
构建能够高效表达降解酶的基因工程菌。
培育多抗品种
将多个抗逆性相关基因进行组合,培育具有多种 抗逆性状的农作物品种,以适应复杂多变的自然 环境。
2023
PART 06
原核细胞基因工程在环保 领域应用
REPORTING
污水处理中微生物强化技术
微生物菌剂强化
通过投加具有特定功能的基因工程菌,提高污 水处理系统的处理效率。
微生物群落调控
利用基因工程技术调控微生物群落结构,优化 污水处理系统的运行。
诊断试剂开发与应用
01
基因工程抗体
通过原核细胞基因工程技术,制 备特异性强的基因工程抗体,用 于疾病的诊断和治疗。
诊断试剂盒
02
03
个性化诊断
利用基因工程抗体,开发快速、 灵敏、特异的诊断试剂盒,为疾 病的早期诊断提供有力工具。
根据患者的基因信息,利用原核 细胞基因工程技术制备个性化诊 断试剂,实现精准医疗。
进入21世纪,随着合成生物学、代谢工程等学科的兴起,原核细胞基因工程的研究和应用领域不断拓展 ,为生物医药、生物制造、生物能源等领域的发展提供了有力支持。
原核细胞基因工程应用领域
生物医药领域
利用原核细胞基因工程生产 重组蛋白质药物、抗体药物 、疫苗等,以及用于基因诊 断和基因治疗等。
生物制造领域
利用原核细胞基因工程生产 工业酶、生物塑料、生物燃 料等,以及用于生物催化、 生物转化等过程。

基因工程 第七章 酵母基因表达体系(55P)

基因工程 第七章 酵母基因表达体系(55P)

• 该质粒上共有4个基因:FLP、REP1、 REP2和D.其中FLP基因的编码产物催化 两个IRS序列之间的同源重组,使质粒在A 与B两种形态中转化,REP1、REP2和D基 因均为控制质粒稳定性的反式作用因子编 码基因.上述基因共转录出7种不同分子量 的mRNA分子。
• 2u质粒还含3个顺式作用元件.其中单一的 自主复制子结构(ARS)位于一个IRs的边界 上,REP3(STB)区域是REP1和REP2蛋白 因子的结合位点.对质粒在细胞有丝分裂 时的均匀分配起着重要作用,FRT存在于 两个IRs序列中,大小为50bP,是FLP蛋白 的识别位点。
缺陷在于:
1. 表达效率相对低 2. 酵母常有密码子偏性,真核基因在其中表达时需要人工 修正。
酵母菌的基因工程
酵母菌作为基因工程受体菌的特征 酵母菌表达外源基因的优势
全基因组测序,基因表达调控机理比较清楚,遗传操
作简便 具有原核细菌无法比拟的真核蛋白翻译后加工系统
大规模发酵历史悠久、技术成熟、工艺简单、成本低廉 能将外源基因表达产物分泌至培养基中 不含有特异性的病毒、不产内毒素,美国FDA认定为安全 基因工程受体系统(Generally Recognized As Safe
减少泛蛋白因子依赖型蛋白降解作用的突变宿主菌 泛素降解途径衰减的酿酒酵母 UBI4缺陷型: 在酿酒酵母菌中,泛素主要由UBI4基因表达,UBI4-突变 株正常生长,但细胞内游离泛素分子的浓度比野生株要 低的多,因此UBI4缺陷突变株是外源基因表达理想的受 体。 UBA1缺陷型: UBA1编码泛素激活酶E1,UBA1突变株式致死性的,但 其等位基因缺陷是非致死性的,而且也能削弱泛素介导 的蛋白降解。 Ubc4-ubc5双突变型: 七个泛素连接酶基因的突变对衰减蛋白降解作用同样有效。

酵母菌的基因工程课件

酵母菌的基因工程课件

拷贝数为50-100个,分别携带K1 K2两种能使多种酵母菌致死的毒
反向重复序列
pGKL1 8.9 kb
素蛋白编码基因(a b g),同时含有毒素蛋白抗性基因。
酵母菌克隆表达质粒的构建
含有ARS的YRp质粒的构建
ARS为酵母菌中的自主复制序列,0.8-1.5kb,染色体上每30-40kb 就有一个ARS元件。酵母菌自主复制型质粒的构建组成包括复制子、标 记基因、提供克隆位点的大肠杆菌质粒DNA。
原生质体转化法的一个显著特点是,一个受体细胞可同时接纳 多个质粒分子,而且这种共转化的原生质体占转化子总数的25%~ 33%。
酵母菌的转化程序
碱金属离子介导的酵母菌完整细胞的转化
7 酵母菌的基因工程
A 酵母菌作为基因工程受体菌的特征 酵母菌的分类学特征
酵母菌(Yeast)是一群以芽殖或裂殖方式进行无性繁殖的单细 胞真核生物,分属于子囊菌纲(子囊酵母菌)、担子菌纲(担子酵母 菌)、半知菌类(半知酵母菌),共由56个属和500多个种组成。如 果说大肠杆菌是外源基因最成熟的原核生物表达系统,则酵母菌是最 成熟的真核生物表达系统。
泛素降解途径衰减的酿酒酵母
UBI 4缺陷型: 在酿酒酵母菌中,泛素主要由UBI 4基因表达,UBI 4-突变株能 正常生长,但细胞内游离泛素分子的浓度比野生株要低得多, 因此UBI 4缺陷突变株是外源基因表达理想的受体
UBA 1缺陷型: UBA1编码泛素激活酶E1,UBA1突变株是致死性的,但其等位 基因缺陷是非致死性的,而且也能削弱泛素介导的蛋白降解
生物效应
改善重组蛋白分泌 提高重组蛋白表达 提高重组蛋白表达 提高重组蛋白表达 改善重组蛋白分泌 提高重组蛋白表达
作用位点
钙离子依赖型的ATP酶 转录后加工 转录水平 转录水平 羧肽酶Y 转录水平

酵母表达系统-PPT课件

酵母表达系统-PPT课件

2)基因剂量
外源基因表达存在基因剂量效应 筛选多拷贝整合子
载体引入G418/Zeocin抗性标记,整合子拷贝数 与抗性成正相关,采用高G418/Zeocin抗性转化子。
体外串联多个表达盒,直接获多拷贝整合子 采用YRp型载体稳定化技术获高拷贝整合子 构建高拷贝整合型表达载体
3)整合位点
外源基因表达盒整合于AOX/MOX或标记基因处,均 可高效表达
高拷贝整合元件: A、高度重复序列:rDNA 提供多个整合位点 B、缺陷型标记基因:Leu2d
提高选择压力
C、抗性标记;neo 提高选择压力
甲醇酵母系统胞内表达载体
需要带入ATG
表达载体类型
单位点
甲醇酵母系统胞内表达载体
需要带入ATG
多位点
表达载体类型
甲醇酵母系统分泌表达载体
信号肽:PHO1
甲醇酵母系统分泌表达载体
KM71:His+Muts
3’His4
3) 多基因插入事件(串联整合)
宿主株:GS115、KM71
可插入位点: 5’AOX1
3’AOX1
TT
转化子: GS115:His+Mut+ KM71:His+Muts
4) 基因取代(GS115,AOX1+)
转化子:His4+Muts
汉森酵母系统的高拷贝整合型表达载体
信号肽:MFα
甲醇酵母系统分泌表达载体
信号肽:MFα 标记:Kan
4、甲醇酵母系统高效表达影响因素与对策
载体稳定性 基因剂量
整合位点
甲醇利用表型 mRNA5’端 AT含量分泌信号 表达产物稳定性
1)载体稳定性
同拷贝数时,整合型的比自主复制型的表达水平高 YRp型载体的稳定化: 选择—非选择培养交替数十代可得稳定的整合子 ,但费时,整合位点不确定。 采用YIp型载体: 更易实现整合、整合位点清楚

基因工程-外源基因在酵母菌中的表达

基因工程-外源基因在酵母菌中的表达

基因工程刘夫锋2019.11.27基因工程5 2 3 4 1 6789重组DNA 技术与基因工程的基本概念重组DNA技术与基因工程的基本原理重组DNA技术所需的基本条件重组DNA技术的操作过程目的基因的克隆与基因文库的构建外源基因在大肠杆菌中的表达外源基因在酵母菌中的表达外源基因在哺乳动物细胞中的表达外源基因表达产物的分离纯化7.1酵母菌作为表达外源基因受体菌的特征7 外源基因在酵母菌中的表达酵母菌的分类学特征酵母菌(Yeast )是一群以芽殖或裂殖方式进行无性繁殖的单细胞真核生物,分属于子囊菌纲(子囊酵母菌)、担子菌纲(担子酵母菌)、半知菌类(半知酵母菌),共由56个属和500多个种组成。

如果说大肠杆菌是外源基因最成熟的原核生物表达系统,则酵母菌是最成熟的真核生物表达系统。

7.1 酵母菌作为表达外源基因受体菌的特征7 外源基因在酵母菌中的表达酵母菌表达外源基因的优势全基因组测序,基因表达调控机理比较清楚,遗传操作相对简单能将外源基因表达产物分泌至培养基中具有原核细菌无法比拟的真核蛋白翻译后加工系统大规模发酵历史悠久、技术成熟、工艺简单、成本低廉不含有特异性的病毒、不产内毒素,美国FDA 认定为安全的基因工程受体系统,食品工业有数百年历史酵母菌是最简单的真核模式生物7.2 酵母菌的宿主系统7 外源基因在酵母菌中的表达7.2.2提高重组蛋白表达产率的突变宿主菌7.2.3 抑制超糖基化作用的突变宿主菌7.2.4 减少泛素依赖型蛋白降解作用的突变宿主菌7.2.1 广泛用于外源基因表达的酵母宿主菌7.2.1 广泛用于外源基因表达的酵母宿主菌目前已广泛用于外源基因表达和研究的酵母菌包括:酵母属如酿酒酵母(Saccharomyces cerevisiae )克鲁维酵母属如乳酸克鲁维酵母(Kluyveromyces lactis )毕赤酵母属如巴斯德毕赤酵母(Pichia pastoris )裂殖酵母属如非洲酒裂殖酵母(Schizosaccharomyces pombe )汉逊酵母属如多态汉逊酵母(Hansenula polymorpha )裂殖酵母属如粟酒裂殖酵母(Schizosaccharomyces pombe )如解脂耶氏酵母(耶氏酵母属Yarrowia lipolytica )如腺嘌呤阿氏酵母(阿氏酵母属Arxula adeninivorans )其中芽殖型酿酒酵母的遗传学和分子生物学研究最为详尽。

酵母表达系统

酵母表达系统
通过适应性进化实验研究酵母在 不同环境下的适应机制,了解生 物进化的过程。
比较基因组学
通过比较不同物种之间的基因组 和转录组,分析生物进化的特征 和规律。
05 酵母表达系统的未来发展
提高表达产物的产量与质量
基因编辑技术
利用基因编辑技术,如CRISPR-Cas9,对酵母基因进行精确修饰, 以提高目标蛋白的表达量和纯度。
沉默子
沉默子是能够抑制基因表达的DNA序列,通过与转录因子结合来抑制基因的表达,在基因表达调控中具有重要作 用。
转录因子与基因表达调控
转录因子
转录因子是能够识别并结合DNA序列的蛋白质,通过与特定DNA序列的结合来调控基因的表达。
转录因子与基因表达调控
转录因子在基因表达调控中发挥关键作用,通过与启动子、增强子或沉默子等DNA序列的相互作用来 调节基因的表达。
蛋白质相互作用
通过酵母双杂交等技术研究蛋白质之间的相互作用,揭示基因调控 的分子机制。
基因突变分析
通过构建突变体分析基因突变对酵母生长、代谢等的影响,研究基因 的功能。
生物进化研究
物种进化
利用酵母表达系统研究物种之间 的进化关系,通过比较不同物种 之间基因表达的差异,揭示物种 进化的规律。
适应性进化
利用酵母表达系统生产食品添 加剂、酶制剂等,提高食品质 量和安全性。
农业领域
通过酵母表达系统改良农作物 ,提高抗逆性、产量和品质等

酵母表达系统的优缺点
优点
操作简便、周期短、成本低、可大规 模生产、安全性高。
缺点
表达水平相对较低、分泌蛋白的加工 和修饰能力有限、易受宿主菌遗传背 景的影响。
02 酵母表达系统的基本组成
对启动子、终止子等表达元件进行优化,提高其转 录和翻译效率,促进目标蛋白的表达。

《酵母基因工程》课件

《酵母基因工程》课件
药物
利用酵母细胞生产某些药物的活性成分或中间体,可降低生产成本和提高产量。
改良农作物和食品品质
农作物改良
通过基因工程技术将优良性状基因转入酵母细胞,再将其返回植物细胞,实现农作物的 遗传改良,提高产量和抗逆性。
食品品质
通过酵母基因工程改良食品加工过程中的菌种,提高食品的口感、营养价值和安全性。
基因治疗和基因组编辑
基因治疗
利用酵母基因工程技术将正常基因转入 病变细胞,替代或修复缺陷基因,从而 达到治疗遗传性疾病和恶性肿瘤的目的 。
VS
基因组编辑
通过酵母基因工程技术实现精准的基因组 编辑,如CRISPR-Cas9系统,可对人类 、动物和植物的基因进行精确的敲除、插 入和突变等操作,为遗传疾病治疗、农作 物改良等领域提供有力工具。
04
CATALOGUE
酵母基因工程面临的挑战和解决方案
基因表达调控的复杂性
总结词
酵母基因表达调控涉及多个层面,包括转录 、转录后和翻译后调控,具有高度复杂性。
详细描述
酵母基因表达调控涉及转录因子、顺式元件 和反式元件之间的相互作用,以及mRNA的 稳定性、翻译效率和蛋白修饰等。这些因素 共同决定了基因的表达水平和细胞命运。
02
CATALOGUE
酵母基因工程的工具和技术
基因克隆和鉴定技术 样本中分离出来,获得其DNA序 列的过程。
基因鉴定
利用分子生物学技术,如测序、 基因表达谱分析等,对克隆得到 的基因进行功能、结构和表达特 征的鉴定。
酵母转化技术
药物。
基因治疗
利用酵母作为载体,将 外源基因导入人体细胞 内,治疗遗传性疾病和
癌症。
生物能源
通过基因工程手段改良 酵母,提高其生物燃料
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
? 第一种方法是以分泌的形式表达重组异源蛋白,异 源蛋白在与泛蛋白因子形成共价结合物之前,迅速 被转移到分泌器中,即可有效避免降解作用 ;
? 第二种方法是将外源基因的表达置于一个可诱导的 启动子控制之下,由于异源蛋白质在短期内集中表 达,分子数占绝对优势的表达产物便能逃脱泛蛋白 因子的束缚,从而减少由降解效应带来的损失 ;
GRAS ) 酵母菌是最简单的真核模式生物
4
酵母基因组特征
与真核生物的基因组相比,啤酒酵母的基因组很小,仅有 16条染色体,含1.4X107 bp,编码约5000个蛋白质,是目 前已知真核生物中基因组最小的一个。酵母细胞既可以作 为单倍体存在,也可以作为二倍体存在。这就克服了在其 它真核生物中隐性基因控制的形状难以检测的缺陷。
优化,多数酵母菌可以取得较高的转化率; 4. 培养条件简单,容易进行高密度发酵; 5. 能将外源基因表达产物分泌到培养基中; 6. 有类似高等真核生物的蛋白质翻译后的修饰功能。
缺陷在于:
1. 表达效率相对低 2. 酵母常有密码子偏性,真核基因在其中表达时需要人工
修正。
3
酵母菌的基因工程
酵母菌作为基因工程受体菌的特征 酵母菌表达外源基因的优势
许多真核生物的蛋白质在其天门冬酰胺侧链上接有寡糖 基团,常常影响蛋白质的生物活性。整个糖单位由糖基核心 和外侧糖链两部分组成。
酵母菌普遍拥有完 突变类型
整的糖基化系统,但野
生物效应
生型酿酒酵母对异源蛋
白的糖基化反应很难控 mnn 甘露糖生物合成缺陷型
制,呈超糖基化倾向, alg 天门冬酰胺侧链糖基化缺陷
rgr l osel NDS
ss1l
rho
凝乳酶原
牛生长因子
3-10
凝乳酶原
牛生长因子
鼠α—淀粉酶
5-10
β—内啡肽
7-12
人血清蛋白
溶酶原活化剂抑制因子2型 10
α1 —抗胰蛋白酶P
人溶菌酶
10Leabharlann 人溶菌酶10人表皮因子
NDE
Ca2+-ATPase 转录后 转录后
转录后 转录后
转录
羧肽酶Y 转录
8
抑制超糖基化作用的突变宿主菌
毕赤酵母属 如巴斯德毕赤酵母
裂殖酵母属 如非洲酒裂殖酵母
汉逊酵母属 如多态汉逊酵母
其中酿酒酵母的遗传学和分子生物学研究最详尽,但巴斯 德毕赤酵母表达外源基因最理想
7
提高重组异源蛋白产率的诱变宿主菌
使啤酒酵母中异源蛋白产量提高和质量改善的突变
突变 产生的异源蛋白
增加产量(倍数)
作用位点
SSC1
SSC2
Ubc4-ubc5 双突变型:
七个泛素连接酶基因的突变对衰减蛋白降解作用同样有效。
13
酵母菌的载体系统
载体的一般结构
选择标记
复制子
表达盒
启动子
先导序列
终止子
有用的蛋白结构域
1酵母菌中的野生型质粒 2酵母菌克隆表达质粒的构建
14
酵母菌种的野生型质粒
酿酒酵母中的2μ环状质粒
几乎所有的酿酒酵母 都含有2μ双链环状质粒, 拷贝数维持50-100个。 Irs反向重复序列600bp, 重组FLP编码产物驱动Irs 的同源重组REP编码产物 控制质粒的稳定性STB REP的结合位点 接合酵母属中的pSRI、 pSR1、pSB2和pSR1以 及克鲁维酵母属中的 pKD1质粒等,均有类似 的结构。
5
酵母菌的宿主系统 1. 广泛用于外源基因表达的酵母宿主菌 2. 提高重组异源蛋白产率的诱变宿主菌 3. 抑制超糖基化作用的突变宿主菌 4. 减少泛蛋白因子依赖型蛋白降解作用的突变宿主菌
6
广泛用于外源基因表达的酵母宿主菌
目前已广泛用于外源基因表达的研究的酵母菌包括:
酵母属
如酿酒酵母
克鲁维酵母属 如乳酸克鲁维酵母
因此超糖基化缺陷菌株 och 外侧糖链添加缺陷型
非常重要。
9
减少泛蛋白因子依赖型蛋白降解作用的突变宿主菌
泛素介导的蛋白质降解作用
靶蛋白
LLyyss
靶蛋白
Lys
靶蛋白
Lys
Ubiquitin 76 aa Ubiquitin ligase E3
Ubiquitin ligase E3
蛋白酶体
10
? 如果外源基因表达产物在酵母菌中具有对泛蛋白依 赖型降解作用的敏感性,则可通过下列方法使这种 降解作用减少到最低程度:
4. 我国也在1983年首次用酵母菌表达了乙型肝炎 病毒表面抗原基因。
5. 1996年在全世界科学家的通力合作下,完成了 第一个真核生物——酿酒酵母全基因组的测序。
2
酵母菌是外源基因最成功的真核生物表达系统 优势在于:
1. 安全无毒,不致病; 2. 有较清楚的遗传背景,容易进行遗传操作; 3. 容易进行载体DNA的导入。DNA转化技术的不断发展
12
减少泛蛋白因子依赖型蛋白降解作用的突变宿主菌 泛素降解途径衰减的酿酒酵母
UBI4缺陷型:
在酿酒酵母菌中,泛素主要由 UBI4基因表达, UBI4-突变 株正常生长,但细胞内游离泛素分子的浓度比野生株要 低的多,因此 UBI4缺陷突变株是外源基因表达理想的 受体。
UBA1缺陷型:
UBA1编码泛素激活酶 E1,UBA1突变株式致死性的,但 其等位基因缺陷是非致死性的,而且也能削弱泛素介导 的蛋白降解。
? 第三种方法是使用泛蛋白因子生物合成缺陷的突变 株作为外源基因表达的受体细胞 ;
11
? 在酿酒酵母中,泛蛋白因子的主要来源是多聚泛 蛋白基因 UBI4 的表达, UBI4突变株能正常生长, 但其细胞内游离的泛蛋白因子浓度比野生型菌株 低得多,因此这种缺陷株是一个理想的外源基因 表达受体。
? 编码泛蛋白激活酶 E1的基因也可作为突变的靶基 因,含有该基因突变的哺乳动物细胞内几乎检测 不出泛蛋白 -外源蛋白的共价结合物。酿酒酵母编 码E1蛋白的基因 UBA1是一种看家基因, UBA1突 变株是致死性的,但编码 UBA1 蛋白等位突变株却 可减少泛蛋白因子依赖型异源蛋白的降解作用。 此外,上述 6个UBC基因的突变也是构建重组异源 蛋白稳定表达宿主系统的选择方案,
全基因组测序,基因表达调控机理比较清楚,遗传操
作简便 具有原核细菌无法比拟的真核蛋白翻译后加工系统
大规模发酵历史悠久、技术成熟、工艺简单、成本低廉 能将外源基因表达产物分泌至培养基中
不含有特异性的病毒、不产内毒素,美国 FDA 认定为安全
基因工程受体系统( Generally Recognized As Safe
酵母基因表达体系
1
发展历程
1. 1974年rlarck—walker和Miklos发现在大多数 酿酒酵母中存在质粒。
2. 1978年Hmnen将来自一株酿酒酵母的 leu 2基 因导入另一株酿酒酵母,弥补了后者的 Leu2缺 陷,标志着酵母表达系统的建立。
3. 1981年Hinnen等用酵母基因表达系统表达了人 干扰素。
相关文档
最新文档