广西高考文科数学试题及答案解析word版
2019年广西高考数学试卷(文科)(全国新课标Ⅲ)
![2019年广西高考数学试卷(文科)(全国新课标Ⅲ)](https://img.taocdn.com/s3/m/45b539ee284ac850ad0242c4.png)
2019年广西高考数学试卷(文科)(全国新课标Ⅲ)副标题一、选择题(本大题共12小题,共60.0分)1.已知集合A={-1,0,1,2},B={x︱x2≤1},则A∩B=( )A. {-1,0,1}B. {0,1}C. {-1,1}D. {0,1,2}2.若z(1+i)=2i,则z=( )A. -1-iB. -1+iC. 1-iD. 1+i3.两位男同学和两位女同学随机排成一列,则两位女同学相邻的概率是( )A. B. C. D.4.《西游记》《三国演义》《水浒传》和《红楼梦》是中国古典文学瑰宝,并称为中国古典小说四大名著.某中学为了解本校学生阅读四大名著的情况,随机调查了100学生,其中阅读过《西游记》或《红楼梦》的学生共有90位,阅读过《红楼梦》的学生共有80位,阅读过《西游记》且阅读过《红楼梦》的学生共有60位,则该校阅读过《西游记》的学生人数与该校学生总数比值的估计值为()A. 0.5B. 0.6C. 0.7D. 0.85.函数f(x)=2sin x-sin2x在[0,2π]的零点个数为()A. 2B. 3C. 4D. 56.已知各项均为正数的等比数列{a n}的前4项为和为15,且a5=3a3+4a1,则a3=A. 16B. 8C. 4D. 27.已知曲线在点(1,ae)处的切线方程为y=2x+b,则A. a=e,b=-1B. a=e,b=1C. a=e-1,b=1D. a=e-1,8.如图,点N为正方形ABCD的中点,△ECD为正三角形,平面ECD⊥平面ABCD,M是线段ED的中点,则()A. BM=EN,且直线BM,EN是相交直线B. BM≠EN,且直线BM,EN是相交直线C. BM=EN,且直线BM,EN是异面直线D. BM≠EN,且直线BM,EN是异面直线9.执行如图的程序框图,如果输入的ɛ为0.01,则输出s的值等于()A. 2-B. 2-C. 2-D. 2-10.已知F是双曲线C:的一个焦点,点P在C上,O为坐标原点.若,则△OPF的面积为( )A. B. C. D.11.记不等式组表示的平面区域为D.命题p:∃(x,y)∈D,2x+y≥9;命题q:∀(x,y)∈D,2x+y≤12.下面给出了四个命题①p∨q②¬p∨q③p∧¬q④¬p∧¬q , 这四个命题中,所有真命题的编号是()A. B. C. D.12.设f(x)是定义域为R的偶函数,且在(0,+∞)单调递减,则()A. f(log3)>f()>f()B. f(log3)>f()>f()C. f()>f()>f(log3)D. f()>f()>f(log3)二、填空题(本大题共4小题,共20.0分)13.已知向量=(2,2),=(-8,6),则cos<,>=______.14.记S n为等差数列{a n}的前n项和.若a3=5,a7=13,则S10=______.15.设F1,F2为椭圆的两个焦点,M为C上一点且在第一象限.若△MF1F2为等腰三角形,则M的坐标为________________16.学生到工厂劳动实践,利用3D打印技术制作模型.如图,该模型为长方体ABCD-A1B1C1D1挖去四棱锥O-EFGH后所得的几何体,其中O为长方体的中心,E,F,G,H分别为所在棱的中点,AB=BC=6cm,AA1=4cm.3D打印所用原料密度为0.9g/cm3.不考虑打印损耗,制作该模型所需原料的质量为_____________g.三、解答题(本大题共7小题,共82.0分)17.为了解甲、乙两种离子在小鼠体内的残留程度,进行如下试验:将200只小鼠随机分成A、B两组,每组100只,其中A组小鼠给服甲离子溶液,B组小鼠给服乙离子溶液,每组小鼠给服的溶液体积相同、摩尔浓度相同.经过一段时间后用某种科学方法测算出残留在小鼠体内离子的百分比.根据试验数据分别得到如下直方图;记C为事件:“乙离子残留在体内的百分比不低于5.5”,根据直方图得到P(C)的估计值为0.70.(1)求乙离子残留百分比直方图中a,b的值;(2)分别估计甲、乙离子残留百分比的平均值(同一组中的数据用该组区间的中点值为代表).18.△ABC的内角A、B、C的对边分别为a、b、c,已知.(1)求B;(2)若△ABC为锐角三角形,且c=1,求△ABC面积的取值范围.19.图1是由矩形ADEB,Rt△ABC和菱形BFGC组成的一个平面图形,其中AB=1,BE=BF=2,∠FBC=60°.将其沿AB,BC折起使得BE与BF重合,连接DG,如图2.(1)证明:图2中的A,C,G,D四点共面,且平面ABC⊥平面BCGE;(2)求图2中的四边形ACGD的面积.20.已知函数.(1)讨论的单调性;(2)当0<a<3时,记在区间[0,1]的最大值为M,最小值为m,求的取值范围21.已知曲线C:,为直线上的动点,过作C的两条切线,切点分别为A,B.(1)证明:直线AB过定点;(2)若以为圆心的圆与直线AB相切,且切点为线段AB的中点,求该圆的方程.22.如图,在极坐标系Ox中,A(2,0),B(,),C(,),D(2,π),弧,,所在圆的圆心分别是(1,0),(1,),(1,π),曲线M1是弧,曲线M2是弧,曲线M3是弧.(1)分别写出M1,M2,M3的极坐标方程;(2)曲线M由M1,M2,M3构成,若点P在M上,且|OP|=,求P的极坐标.23.设x,y,z∈R,且x+y+z=1.(1)求(x-1)2+(y+1)2+(z+1)2的最小值;(2)若(x-2)2+(y-1)2+(z-a)2≥成立,证明:a≤-3或a≥-1.答案和解析1.【答案】A【解析】【分析】解求出B中的不等式,找出A与B的交集即可.本题考查了两个集合的交集和一元二次不等式的解法,属基础题.【解答】解:因为A={-1,0,1,2},B={x|x2≤1}={x|-1≤x≤1},所以A∩B={-1,0,1},故选A.2.【答案】D【解析】【分析】本题主要考查两个复数代数形式的乘法和除法法则,虚数单位i的幂运算性质,属于基础题.利用复数的运算法则求解即可.【解答】解:由z(1+i)=2i,得z==1+i.故选:D.3.【答案】D【解析】解:用捆绑法将两女生捆绑在一起作为一个人排列,有A33A22=12种排法,再所有的4个人全排列有:A44=24种排法,利用古典概型求概率原理得:p==,故选:D.利用古典概型求概率原理,首先用捆绑法将两女生捆绑在一起作为一个人排列找出分子,再全部排列找到分母,可得到答案.本题考查排列组合的综合应用.考查古典概型的计算.4.【答案】C【解析】【分析】本题考查该学校阅读过《西游记》的学生人数与该学校学生总数比值的估计值的求法,考查维恩图的性质等基础知识,考查推理能力与计算能力,属于基础题.作出维恩图,得到该学校阅读过《西游记》的学生人数为70人,由此能求出该学校阅读过《西游记》的学生人数与该学校学生总数比值的估计值.【解答】解:某中学为了了解本校学生阅读四大名著的情况,随机调查了100位学生,其中阅读过《西游记》或《红楼梦》的学生共有90位,阅读过《红楼梦》的学生共有80位,阅读过《西游记》且阅读过《红楼梦》的学生共有60位,作出维恩图,得:∴该学校阅读过《西游记》的学生人数为70人,则该学校阅读过《西游记》的学生人数与该学校学生总数比值的估计值为:=0.7.故选C.5.【答案】B【解析】【分析】本题考查了函数的零点与方程的根的关系应用,考查数形结合法,属基础题.解函数f(x)=2sinx-sin2x=0,在[0,2π]的解,即2sinx=sin2x令左右为新函数h(x)和g(x),作图求两函数在区间的交点即可.【解答】解:函数f(x)=2sinx-sin2x在[0,2π]的零点个数,即:2sinx-sin2x=0在区间[0,2π]的根个数,即2sinx=sin2x,令左右为新函数h(x)和g(x),h(x)=2sinx和g(x)=sin2x,作图求两函数在区间[0,2π]的图象可知:h(x)=2sinx和g(x)=sin2x,在区间[0,2π]的图象的交点个数为3个.故选B.6.【答案】C【解析】【分析】设等比数列{a n}的公比为q(q>0),根据条件可得,解方程即可.本题考查了等差数列的性质和前n项和公式,考查了方程思想,属基础题.【解答】解:设等比数列{a n}的公比为q(q>0),则由前4项和为15,且a5=3a3+4a1,有,∴,∴,故选C.7.【答案】D【解析】【分析】本题考查导数的运用:求切线的斜率,考查直线方程的运用,考查方程思想和运算能力,属于基础题.求得函数y的导数,可得切线的斜率,由切线方程,可得ae+1+0=2,可得a,进而得到切点,代入切线方程可得b的值.【解答】解:y=ae x+xlnx的导数为y′=ae x+lnx+1,由在点(1,ae)处的切线方程为y=2x+b,可得ae+0+1=2,解得a=e-1,又切点为(1,1),可得1=2+b,即b=-1,故选D.8.【答案】B【解析】【分析】本题考查两直线的位置关系的判断,考查空间中线线、线面、面面间的位置关系等基础知识,考查推理能力与计算能力,属中档题.推导出BM是△BDE中DE边上的中线,EN是△BDE中BD边上的中线,从而直线BM,EN是相交直线,设DE=a,则BD=,BE==,从而BM≠EN.【解答】解:∵点N为正方形ABCD的中心,△ECD为正三角形,平面ECD⊥平面ABCD,M是线段ED的中点,∴BM⊂平面BDE,EN⊂平面BDE,∵BM是△BDE中DE边上的中线,EN是△BDE中BD边上的中线,∴直线BM,EN是相交直线,设DE=a,则BD=,BE==,∴BM=a,EN==a,∴BM≠EN,故选B.9.【答案】C【解析】【分析】本题考查的知识点是程序框图,当循环的次数不多,或有规律时,常采用模拟循环的方法解答,属一般题.由已知中的程序框图可知:该程序的功能是利用循环结构计算并输出变量s的值,模拟程序的运行过程,分析循环中各变量值的变化情况,可得答案.【解答】解:第一次执行循环体后,s=1,x=,不满足退出循环的条件x<0.01;再次执行循环体后,s=1+,x=,不满足退出循环的条件x<0.01;再次执行循环体后,s=1++,x=,不满足退出循环的条件x<0.01;…由于>0.01,而<0.01,可得:当s=1++++…,x=,此时,满足退出循环的条件x<0.01,输出s=1+++…=2-.故选C.10.【答案】B【解析】【分析】本题考查双曲线的简单性质,考查数形结合的解题思想方法,是中档题.由题意画出图形,不妨设F为双曲线C:-=1的右焦点,P为第一象限点,求出P点坐标,得到sin∠POF,再由三角形面积公式求解.【解答】解:如图,不妨设F为双曲线C:-=1的右焦点,P为第一象限点.由双曲线方程可得,a2=4,b2=5,则,则以O为圆心,以3为半径的圆的方程为x2+y2=9.联立,解得,.∴sin∠POF=.则.故选B.11.【答案】A【解析】【分析】本题考查了简易逻辑的有关判定、线性规划问题,考查了推理能力与计算能力,属于基础题.由不等式组画出平面区域为D.在由或且非逻辑连词连接的命题判断真假即可.【解答】解:作出等式组的平面区域为D.在图形可行域范围内可知:命题p:∃(x,y)∈D,2x+y≥9;是真命题,则¬p假命题;命题q:∀(x,y)∈D,2x+y≤12.是假命题,则¬q真命题;所以:由或且非逻辑连词连接的命题判断真假有:①p∨q真;②¬p∨q假;③p∧¬q真;④¬p∧¬q假;故答案①③真,正确.故选:A.12.【答案】C【解析】【分析】本题考查了函数的奇偶性和单调性,关键是指对数函数单调性的灵活应用,属基础题.根据log34>log33=1,,结合f(x)的奇偶和单调性即可判断.【解答】解:∵f(x)是定义域为R的偶函数,∴,∵log34>log33=1,,∴0,又f(x)在(0,+∞)上单调递减,∴>>,故选C.13.【答案】-【解析】【分析】本题考查数量积的定义和坐标运算,考查计算能力,属较易题.数量积的定义结合坐标运算可得结果【解答】解:=2×(-8)+2×6=-4,||==2,||==10,cos<,>==-.故答案为-.14.【答案】100【解析】【分析】本题考查等差数列的通项公式与前n项和,是基础的计算题,属基础题. 由已知求得首项与公差,代入等差数列的前n项和公式求解.【解答】解:在等差数列{a n}中,由a3=5,a7=13,得d=,∴a1=a3-2d=5-4=1.则.故答案为100.15.【答案】(3,)【解析】【分析】本题考查椭圆的方程和性质,考查分类讨论思想方法,以及椭圆焦半径公式的运用,考查方程思想和运算能力,属于中档题.设M(m,n),m,n>0,求得椭圆的a,b,c,e,由于M为C上一点且在第一象限,可得|MF1|>|MF2|,△MF1F2为等腰三角形,可能|MF1|=2c或|MF2|=2c,运用椭圆的焦半径公式,可得所求点的坐标.【解答】解:设M(m,n),m,n>0,椭圆C:+=1的a=6,b=2,c=4,e==,由于M为C上一点且在第一象限,可得|MF1|>|MF2|,△MF1F2为等腰三角形,可能|MF1|=2c或|MF2|=2c,即有6+m=8,即m=3,n=;6-m=8,即m=-3<0,舍去.可得M(3,).故答案为(3,).16.【答案】118.8【解析】解:该模型为长方体ABCD-A1B1C1D1,挖去四棱锥O-EFGH后所得的几何体,其中O为长方体的中心,E,F,G,H,分别为所在棱的中点,AB=BC=6cm,AA1=4cm,∴该模型体积为:-VO-EFGH=6×6×4-=144-12=132(cm3),∵3D打印所用原料密度为0.9g/cm3,不考虑打印损耗,∴制作该模型所需原料的质量为:132×0.9=118.8(g).故答案为:118.8.该模型体积为-V O-EFGH=6×6×4-=132(cm3),再由3D打印所用原料密度为0.9g/cm3,不考虑打印损耗,能求出制作该模型所需原料的质量.本题考查制作该模型所需原料的质量的求法,考查长方体、四棱锥的体积等基础知识,考查推理能力与计算能力,考查数形结合思想,属于中档题.17.【答案】解:(1)C为事件:“乙离子残留在体内的百分比不低于5.5”,根据直方图得到P(C)的估计值为0.70.则由频率分布直方图得:,解得乙离子残留百分比直方图中a=0.35,b=0.10.(2)估计甲离子残留百分比的平均值为:=2×0.15+3×0.20+4×0.30+5×0.20+6×0.10+7×0.05=4.05.乙离子残留百分比的平均值为:=3×0.05+4×0.1+5×0.15+6×0.35+7×0.2+8×0.15=6.【解析】本题考查频率、平均值的求法,考查频率分布直方图的性质等基础知识,考查推理能力与计算能力,属于基础题.(1)由频率分布直方图的性质列出方程组,能求出乙离子残留百分比直方图中a,b.(2)利用频率分布直方图能估计甲离子残留百分比的平均值和乙离子残留百分比的平均值.18.【答案】解:(1)a sin=b sin A,即为a sin=a cos=b sin A,可得sin A cos=sin B sin A=2sin cos sin A,∵sin A>0,∴cos=2sin cos,若cos=0,可得B=(2k+1)π,k∈Z不成立,∴sin=,由0<B<π,可得B=;(2)若△ABC为锐角三角形,且c=1,由余弦定理可得b==,由三角形ABC为锐角三角形,可得a2+a2-a+1>1且1+a2-a+1>a2,解得<a<2,可得△ABC面积S=a•sin=a∈(,).【解析】本题考查三角形的正弦定理和余弦定理、面积公式的运用,考查三角函数的恒等变换,以及化简运算能力,属于中档题.(1)运用三角函数的诱导公式和二倍角公式,以及正弦定理,计算可得所求角;(2)运用余弦定理可得b,由三角形ABC为锐角三角形,可得a2+a2-a+1>1且1+a2-a+1>a2,求得a的范围,由三角形的面积公式,可得所求范围.19.【答案】(1)证明:由已知可得AD∥BE,CG∥BE,即有AD∥CG,则AD,CG确定一个平面,从而A,C,G,D四点共面;由四边形ABED为矩形,可得AB⊥BE,由△ABC为直角三角形,可得AB⊥BC,又BC∩BE=E,可得AB⊥平面BCGE,AB⊂平面ABC,可得平面ABC⊥平面BCGE;(2)解:连接BG,AG,由AB⊥平面BCGE,可得AB⊥BG,在△BCG中,BC=CG=2,∠BCG=120°,可得BG=2BC sin60°=2,可得AG==,在△ACG中,AC=,CG=2,AG=,可得cos∠ACG==-,即有sin∠ACG=,则平行四边形ACGD的面积为2××=4.【解析】本题考查空间线线、线面和面面的位置关系,考查平行和垂直的判断和性质,注意运用平面几何的性质,考查推理能力,属于中档题.(1)运用空间线线平行的公理和确定平面的条件,以及线面垂直的判断和面面垂直的判定定理,即可得证;(2)连接BG,AG,由线面垂直的性质和三角形的余弦定理和勾股定理,结合三角形的面积公式,可得所求值.20.【答案】解:(1)f′(x)=6x2-2ax=2x(3x-a),令f′(x)=0,得x=0或x=.若a>0,则当x∈(-∞,0)∪()时,f′(x)>0;当x∈(0,)时,f′(x)<0.故f(x)在(-∞,0),()上单调递增,在(0,)上单调递减;若a=0,f(x)在(-∞,+∞)上单调递增;若a<0,则当x∈(-∞,)∪(0,+∞)时,f′(x)>0;当x∈(,0)时,f′(x)<0.故f(x)在(-∞,),(0,+∞)上单调递增,在(,0)上单调递减;(2)当0<a<3时,由(1)知,f(x)在(0,)上单调递减,在(,1)上单调递增,∴f(x)在区间[0,1]的最小值为,最大值为f(0)=2或f(1)=4-a.于是,m=,M=.∴M-m=.当0<a<2时,可知2-a+单调递减,∴M-m的取值范围是();当2≤a<3时,单调递增,∴M-m的取值范围是[,1).综上,M-m的取值范围[,2).【解析】(1)求出原函数的导函数,得到导函数的零点,对a分类讨论原函数的单调性;(2)当0<a<3时,由(1)知,f(x)在(0,)上单调递减,在(,1)上单调递增,求得f(x)在区间[0,1]的最小值为,最大值为f(0)=2或f(1)=4-a.得到M-m=,分类求得函数值域,可得M-m的取值范围.本题主要考查导数的运算,运用导数研究函数的性质等知识和方法,考查函数思想和转化思想,考查分类讨论的数学思想方法,属难题.21.【答案】(1)证明:设D(t,-),A(x1,y1),则,由于y′=x,∴切线DA的斜率为x1,故,整理得:.设B(x2,y2),同理可得2tx2-2y2+1=0.故直线AB的方程为2tx-2y+1=0.∴直线AB过定点(0,);(2)解:由(1)得直线AB的方程y=tx+.由,可得x2-2tx-1=0.于是.设M为线段AB的中点,则M(t,),由于,而,与向量(1,t)平行,∴t+(t2-2)t=0,解得t=0或t=±1.当t=0时,||=2,所求圆的方程为;当t=±1时,||=,所求圆的方程为.故该圆的方程为或.【解析】本题考查抛物线的简单性质,考查直线与抛物线位置关系的应用,考查计算能力,是中档题.(1)设D(t,-),A(x1,y1),则,利用导数求斜率及两点求斜率可得2tx1-2y1+1=0,设B(x2,y2),同理可得2tx2-2y2+1=0,得到直线AB的方程为2tx-2y+1=0,再由直线系方程求直线AB过的定点;(2)由(1)得直线AB的方程y=tx+,与抛物线方程联立,利用中点坐标公式及根与系数的关系求得线段AB的中点M(t,),再由,可得关于t的方程,求得t=0或t=±1.然后分类求得||=2及所求圆的方程.22.【答案】解:(1)由题设得,弧,,所在圆的极坐标方程分别为ρ=2cosθ,ρ=2sinθ,ρ=-2cosθ,则M1的极坐标方程为ρ=2cosθ,(0≤θ≤),M2的极坐标方程为ρ=2sinθ,(≤θ≤),M3的极坐标方程为ρ=-2cosθ,(≤θ≤π),(2)设P(ρ,θ),由题设及(1)值,若0≤θ≤,由2cosθ=得cosθ=,得θ=,若≤θ≤,由2sinθ=得sinθ=,得θ=或,若≤θ≤π,由-2cosθ=得cosθ=-,得θ=,综上P的极坐标为(,)或(,)或(,)或(,).【解析】(1)根据弧,,所在圆的圆心分别是(1,0),(1,),(1,π),结合极坐标方程进行求解即可;(2)讨论角的范围,由极坐标过程|OP|=,进行求解即可得P的极坐标;本题主要考查极坐标方程的应用,结合极坐标过程公式求出对应点的极坐标方程是解决本题的关键.23.【答案】解:(1)x,y,z∈R,且x+y+z=1,由柯西不等式可得(12+12+12)[(x-1)2+(y+1)2+(z+1)2]≥(x-1+y+1+z+1)2=4,可得(x-1)2+(y+1)2+(z+1)2≥,即有(x-1)2+(y+1)2+(z+1)2的最小值为;(2)证明:由x+y+z=1,柯西不等式可得(12+12+12)[(x-2)2+(y-1)2+(z-a)2]≥(x-2+y-1+z-a)2=(a+2)2,可得(x-2)2+(y-1)2+(z-a)2≥,即有(x-2)2+(y-1)2+(z-a)2的最小值为,由题意可得≥,解得a≥-1或a≤-3.【解析】本题考查柯西不等式的运用:求最值,考查化简运算能力和推理能力,属于基础题.(1)运用柯西不等式可得(12+12+12)[(x-1)2+(y+1)2+(z+1)2]≥(x-1+y+1+z+1)2=4,可得所求最小值;(2)运用柯西不等式求得(x-2)2+(y-1)2+(z-a)2的最小值,由题意可得不大于最小值,解不等式可得所求范围.。
2024年广西高考数学试卷(新高考Ⅱ)正式版含答案解析
![2024年广西高考数学试卷(新高考Ⅱ)正式版含答案解析](https://img.taocdn.com/s3/m/b9575757854769eae009581b6bd97f192279bfb1.png)
绝密★启用前2024年广西高考数学试卷(新高考Ⅱ)学校:___________姓名:___________班级:___________考号:___________注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡对应题目的答案标号涂黑;如需改动,用橡皮擦干净后,再选涂其他答案标号。
回答非选择题时,将答案写在答题卡上,写在试卷上无效。
3.考试结束后,本试卷和答题卡一并交回。
第I卷(选择题)一、单选题:本题共8小题,每小题5分,共40分。
在每小题给出的选项中,只有一项是符合题目要求的。
1.已知z=−1−i,则|z|=( )A. 0B. 1C. √ 2D. 22.已知命题p:∀x∈R,|x+1|>1,命题q:∃x>0,x3=x,则( )A. p和q都是真命题B. ¬p和q都是真命题C. p和¬q都是真命题D. ¬p和¬q都是真命题3.已知向量a⃗,b⃗⃗满足:|a⃗|=1,|a⃗⃗+2b⃗⃗|=2,且(b⃗⃗−2a⃗⃗)⊥b⃗⃗,则|b⃗⃗|=( )A. 12B. √ 22C. √ 32D. 14.某农业研究部门在面积相等的100块稻田上种植一种新型水稻,得到各块稻田的亩产量(单位:kg)并部分整理下表:据表中数据,结论中正确的是( )A. 100块稻田亩产量中位数小于1050kgB. 100块稻田中的亩产量低于1100kg的稻田所占比例超过80%C. 100块稻田亩产量的极差介于200kg至300kg之间D. 100块稻田亩产量的平均值介于900kg至1000kg之间5.已知曲线C:x2+y2=16(y>0),从C上任意一点P向x轴作垂线PP′,P′为垂足,则线段PP′的中点M的轨迹方程为( )A. x 216+y24=1(y>0) B. x216+y28=1(y>0)C. y 216+x24=1(y>0) D. y216+x28=1(y>0)6.设函数f(x)=a(x+1)2−1,g(x)=cosx+2ax(a为常数),当x∈(−1,1)时,曲线y=f(x)与y=g(x)恰有一个交点,则a=( )A. −1B. 12C. 1D. 27.已知正三棱台ABC−A1B1C1的体积为523,AB=6,A1B1=2,则A1A与平面ABC所成角的正切值为( )A. 12B. 1C. 2D. 38.设函数f(x)=(x+a)ln(x+b),若f(x)≥0,则a2+b2的最小值为( )A. 18B. 14C. 12D. 1二、多选题:本题共3小题,共18分。
2023年广西文科数学高考试题及答案(完整版)
![2023年广西文科数学高考试题及答案(完整版)](https://img.taocdn.com/s3/m/8dc1521f2e60ddccda38376baf1ffc4ffe47e29d.png)
2023年广西文科数学高考试题及答案(完整版)高中数学成绩下降是什么原因1.被动学习.许多同学进入高中后,还像初中那样,有很强的依赖心理:跟随老师惯性运作。
没有掌握学习的主动权.其表现有:不定计划,坐等上课,课前不预习,对老师要上课的内容不了解,上课忙于记笔记,没听到“门道”.一切的一切造成没能真正理解所学内容的无奈表态。
2.学不得法.老师上课一般都要讲述知识的来龙去脉,剖析概念的内涵,分析重点难点,突出思想方法.而一部分同学上课不能做到专心听讲,对要点听不清或听不全。
于是笔记记了一大本,问题留了一大堆。
而课后呢,又不能及时巩固、总结,找不到知识间的联系,只是一味地赶做作业,乱套题型。
对概念、法则、公式、定理一知半解,死记硬背的结果是一味地“机械模仿”。
也有的晚上加班加点,白天无精打采,或是上课根本不听,自己另搞一套。
最终是事倍功半,收效甚微.3.不重视基础.一些“自我感觉良好”的同学,常轻视基本知识、基本技能和基本方法的学习与训练,一贯做法是只求知道怎么做,不去认真演算书写。
其心理诱因是仅对难题感兴趣,以示自己的“水平”高。
这种好高鹜远,重“量”轻“质”的做法导致的结果是陷入题海,不自拔.而到正规作业或考试中却是演算出错或中途“卡壳”.4.不具备进一步学习条件.高中数学与初中数学相比,知识的广度、深度更进一程,能力要求更进一步.这就要求必须掌握基础知识与基本技能,为进一步学习作好充分准备.高中数学很多地方难度大、方法新、分析能力要求高.如:二次函数在闭区间上的最值问题,函数值域的求法问题,实根分布与参变量方程,三角公式的变形与灵活运用,空间概念的形成,排列组合的应用和实际应用问题解答等.客观上,这些问题的能力要求就是数学学习的分化点,更何况有的数学知识点还是高、初中教材都不讲的脱节内容,如不采取补救措施,查缺补漏,分化是不可避免的.高中数学期末考试怎么复习1、回归课本、明确复习范围及重点范围本学期我们高一学习了必修1、必修4两本教材。
2021年广西高考文科数学真题及参考答案
![2021年广西高考文科数学真题及参考答案](https://img.taocdn.com/s3/m/ac5ae16af11dc281e53a580216fc700abb6852ef.png)
2021年广西高考文科数学真题及参考答案一、选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.设集合{}9,7,5,3,1=M ,{}72>=x x N ,则=⋂N M ()A .{}9,7B .{}9,7,5 C.{}9,7,53,D .{}9,7,53,1,2.为了解某地农村经济情况,对该地农户家庭年收入进行抽样调查,将农户家庭年收入的调查数据整理得到如下频率分布直方图:根据此频率分布直方图,下面结论中不正确的是()A .该地农户家庭年收入低于4.5万元的农户比率估计为6%B .该地农户家庭年收入不低于10.5万元的农户比率估计为10%C .估计该地农户家庭年收入的平均值不超过6.5万元D .估计该地有一半以上的农户,其家庭年收入介于4.5万元至8.5万元之间3.己知()i z i 2312+=-,则=z ()A .i 231--B .i 231+-C .i +-23D .i --234.下列函数中时增函数的为()A .()xx f -=B .()xx f ⎪⎭⎫⎝⎛=32C .()2xx f =D .()3xx f =5.点()0,3到双曲线191622=-y x 的一条渐近线的距离为()A .59B .58C .56D .546.青少年视力是社会普遍关注的问题,视力情况可借助视力表测量.通常用五分记录法和小数记录法记录视力数据,五分记录法的数据L 和小数记录法的数据V 满足V L lg 5+=.已知某同学视力的五分记录法的数据为4.9,则其视力的小数记录法的数据约为()259.11010≈()A .5.1B .2.1C .8.0D .6.07.在一个正方体中,过顶点A 的三条棱的中点分别为G F E ,,.该正方体截去三棱锥EFG A -后,所得多面体的三视图中,正视图如右图所示,则相应的侧视图是()A .B .C .D .8.在ABC ∆中,已知︒=120B ,19=AC ,2=AB ,则=BC ()A .1B .2C .5D .39.记n S 为等比数列{}n a 的前n 项和,若42=S ,64=S ,则=6S ()A .7B .8C .9D .1010.将3个1和2个0随机排成一行,则2个0不相邻的概率为()A .3.0B .5.0C .6.0D .8.011.若⎪⎭⎫ ⎝⎛∈20πα,,αααsin 2cos 2tan -=,则=αtan ()A .1515B .55C .35D .31512.设()x f 是定义域为R 的奇函数,且()()x f x f -=+1.若3131=⎪⎭⎫ ⎝⎛-f ,则=⎪⎭⎫⎝⎛35f ()A .35-B .31-C .31D .35二、填空题:本题共4小题,每小题5分,共20分。
2023年广西高考数学文科试题+答案(全国甲卷)
![2023年广西高考数学文科试题+答案(全国甲卷)](https://img.taocdn.com/s3/m/2ffa8d24c381e53a580216fc700abb68a982adb4.png)
2023年广西高考数学文科试题+答案(全国甲卷)2023年广西高考数学文科试题+答案(全国甲卷)小编整理了2023年广西高考数学文科试题+答案,数学是一门研究数量、结构、变化、空间以及信息等概念的学科。
数学其英语源自于古希腊语,有学习,学问和科学的意思。
下面是小编为大家整理的2023年广西高考数学文科试题+答案,希望能帮助到大家!2023年广西高考数学文科试题+答案高考数学答题技巧1.调整好状态,控制好自我(1)保持清醒。
数学的考试时间在下午,建议同学们中午最好休息半个小时或1个小时,其间尽量放松自己,从心理上暗示自己:只有静心休息才能确保考试时清醒。
(2)按时到位。
但发卷时间应在开考前5-10分钟内,建议同学们提前15-20分钟到达考场。
2.通览试卷,树立自信刚拿到试卷,一般心情比较紧张,此时不易匆忙作答,应从头到尾、通览全卷,哪些是一定会做的题要心中有数,先易后难,稳定情绪。
答题时,见到简单题,要细心,莫忘乎所以。
面对偏难的题,要耐心,不能急。
3.提高解选择题的速度、填空题的准确度数学选择题要求知识灵活运用,解题要求是只要结果、不要过程。
因此,逆代法、估算法、特例法、排除法、数形结合法……尽显威力。
12个选择题,若能把握得好,容易的一分钟一题,难题也不超过五分钟。
由于选择题的特殊性,由此提出解选择题要求“快、准、巧”,忌讳“小题大做”。
填空题也是只要结果、不要过程,因此要力求“完整、严密”。
高中数学几何体知识点总结1、柱、锥、台、球的结构特征(1)棱柱:定义:有两个面互相平行,其余各面都是四边形,且每相邻两个四边形的公共边都互相平行,由这些面所围成的几何体。
分类:以底面多边形的边数作为分类的标准分为三棱柱、四棱柱、五棱柱等。
表示:用各顶点字母,如五棱柱或用对角线的端点字母,如五棱柱。
几何特征:两底面是对应边平行的全等多边形;侧面、对角面都是平行四边形;侧棱平行且相等;平行于底面的截面是与底面全等的多边形。
2023高考数学真题含答案(广西文科)
![2023高考数学真题含答案(广西文科)](https://img.taocdn.com/s3/m/b8dfaf59dcccda38376baf1ffc4ffe473268fd67.png)
2023高考数学真题含答案(广西文科)2023高考数学真题试卷含答案(广西文科)温馨提示:查看更多2023年高考试卷真题,可以微信搜索公众号【得道AI 填报】,关注后在对话框回复【高考真题】即可免费获取。
广西2023年高考各科分数安排广西高考考科目为语文、数学(分文、理)、外语3门科目,加上“文科综合”或“理科综合”。
其中“文科综合”包括政治、历史、地理3门科目;“理科综合”内含物理、化学、生物3门科目。
广西普通高考全国统考各科目均采用教育部命制的试题,各科考试时长及赋分均与往年一样,没有变化。
2023广西高考采用全国甲卷。
全国统考科目设置为“3+小综合”。
语文考试时长150分钟,卷面满分150分;数学(文、理)、英语(含听力)、外语其他语种(含听力)考试时长120分钟,卷面满分150分;文科综合、理科综合考试时长150分钟,卷面满分300分。
2023年广西高考志愿填报时间6月8日17时,随着外语科目考试结束,全区46万余名考生完成了“人生大考”,我区2023年高考圆满结束。
从总体情况来看,全区做到了考务组织规范、考风考纪良好、试题试卷安全、疫情防控精准、服务措施到位,实现了“平安高考”目标。
自治区领导高度重视今年高考工作,对高考工作专门作出指示批示,多次召开专题会议部署高考安全工作,并调研检查今年高考准备工作和高考组考工作。
各级各有关部门全面贯彻落实国家和自治区有关高考工作的部署要求,紧紧围绕今年高考“三无三稳三确保”的总目标,从严从实从细从紧抓好高考各环节各方面工作,全力为高考保驾护航,确保高考安全平稳顺利。
6月24日起广西考生可陆续填报志愿今年高考招生计划正在编制审核中,《2023年高考指南——招生计划篇》一书预计在录取最低控制分数线确定前向社会公布。
6月24日至7月2日,自治区招生考试院将开通志愿填报系统,届时考生可以陆续填报志愿。
考生应提前了解我区今年普通高校招生录取的相关规定、志愿填报和投档录取相关规则、流程,为志愿填报做好充分准备。
2023年广西高考数学(文)真题及答案
![2023年广西高考数学(文)真题及答案](https://img.taocdn.com/s3/m/456a754af342336c1eb91a37f111f18583d00c2a.png)
2023年广西高考数学(文)真题及答案注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上.2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其他答案标号.回答非选择题时,将答案写在答题卡上.写在本试卷上无效.3.考试结束后,将本试卷和答题卡一并交回.一、选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.设全集{}1,2,3,4,5U =,集合{}{}1,4,2,5M N ==,则U N M =ð()A.{}2,3,5 B.{}1,3,4 C.{}1,2,4,5 D.{}2,3,4,52.()()()351i 2i 2i +=+-()A.1- B.1C.1i- D.1i+3.已知向量()()3,1,2,2a b ==,则cos ,a b a b +-= ()A.117B.1717C.5D.54.某校文艺部有4名学生,其中高一、高二年级各2名.从这4名学生中随机选2名组织校文艺汇演,则这2名学生来自不同年级的概率为()A.16B.13C.12D.235.记n S 为等差数列{}n a 的前n 项和.若264810,45a a a a +==,则5S =()A.25B.22C.20D.156.执行下边的程序框图,则输出的B =()A.21B.34C.55D.897.设12,F F 为椭圆22:15x C y +=的两个焦点,点P 在C 上,若120PF PF ⋅= ,则12PF PF ⋅=()A.1B.2C.4D.58.曲线e 1=+xy x 在点e 1,2⎛⎫ ⎪⎝⎭处的切线方程为()A.e 4y x =B.e 2y x =C.e e 44y x =+ D.e 3e24y x =+9.已知双曲线22221(0,0)x y a b a b-=>>522(2)(3)1x y -+-=交于A ,B 两点,则||AB =()A.55B.255C.355D.45510.在三棱锥-P ABC 中,ABC 是边长为2的等边三角形,2,6PA PB PC ===,则该棱锥的体积为()A.1B.3C.2D.311.已知函数()2(1)e x f x --=.记236,,222a f b f c f ⎛⎫⎛⎫⎛⎫=== ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,则()A.b c a>> B.b a c>> C.c b a>> D.c a b>>12.函数()y f x =的图象由cos 26y x π⎛⎫=+⎪⎝⎭的图象向左平移6π个单位长度得到,则()y f x =的图象与直线1122y x =-的交点个数为()A.1B.2C.3D.4二、填空题:本大题共4小题,每小题5分,共20分.13.记n S 为等比数列{}n a 的前n 项和.若6387S S =,则{}n a 的公比为________.14.若()2π(1)sin 2f x x ax x ⎛⎫=-+++⎪⎝⎭为偶函数,则=a ________.15.若x ,y 满足约束条件323,2331,x y x y x y -≤⎧⎪-+≤⎨⎪+≥⎩,则32z x y =+的最大值为________.16.在正方体1111ABCD A B C D -中,4,AB O =为1AC 的中点,若该正方体的棱与球O 的球面有公共点,则球O 的半径的取值范围是________.三、解答题:共70分.解答应写出文字说明、证明过程或演算步骤.第17~21题为必考题,每个试题考生都必须作答.第22、23题为选考题,考生根据要求作答.(一)必考题:共60分.17.记ABC 的内角,,A B C 的对边分别为,,a b c ,已知2222cos b c aA+-=.(1)求bc ;(2)若cos cos 1cos cos a B b A ba Bb A c--=+,求ABC 面积.18.如图,在三棱柱111ABC A B C -中,1A C ⊥平面,90ABC ACB ∠=︒.(1)证明:平面11ACC A ⊥平面11BB C C ;(2)设11,2AB A B AA ==,求四棱锥111A BB C C -的高.19.一项试验旨在研究臭氧效应,试验方案如下:选40只小白鼠,随机地将其中20只分配到试验组,另外20只分配到对照组,试验组的小白鼠饲养在高浓度臭氧环境,对照组的小白鼠饲养在正常环境,一段时间后统计每只小白鼠体重的增加量(单位:g).试验结果如下:对照组的小白鼠体重的增加量从小到大排序为15.218.820.221.322.523.225.826.527.530.132.634.334.835.635.635.836.237.340.543.2试验组的小白鼠体重的增加量从小到大排序为7.89.211.412.413.215.516.518.018.819.219.820.221.622.823.623.925.128.232.336.5(1)计算试验组的样本平均数;(2)(ⅰ)求40只小白鼠体重的增加量的中位数m ,再分别统计两样本中小于m 与不小于m 的数据的个数,完成如下列联表m<m≥对照组试验组(ⅱ)根据(i)中的列联表,能否有95%的把握认为小白鼠在高浓度臭氧环境中与在正常环境中体重的增加量有差异?附:()()()()22()n ad bc K a b c d a c b d -=++++,()2P K k ≥0.1000.0500.010k2.7063.8416.63520.已知函数()2sin π,0,cos 2x f x ax x x ⎛⎫=-∈ ⎪⎝⎭.(1)当1a =时,讨论()f x 的单调性;(2)若()sin 0f x x +<,求a 的取值范围.21.已知直线210x y -+=与抛物线2:2(0)C y px p =>交于,A B 两点,AB =.(1)求p ;(2)设F 为C 的焦点,,M N 为C 上两点,且0FM FN ⋅=,求MFN △面积的最小值.(二)选考题:共10分.请考生在第22、23题中任选一题作答.如果多做,则按所做的第一题计分.[选修4-4:坐标系与参数方程](10分)22.已知点()2,1P ,直线2cos ,:1sin x t l y t αα=+⎧⎨=+⎩(t 为参数),α为l 的倾斜角,l 与x 轴正半轴、y 轴正半轴分别交于,A B ,且4PA PB ⋅=.(1)求α;(2)以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,求l 的极坐标方程.[选修4-5:不等式选讲](10分)23.已知()2||, 0 f x x a a a =-->.(1)求不等式()f x x <的解集;(2)若曲线()y f x =与x 轴所围成的图形的面积为2,求a .解析及参考答案注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上.2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其他答案标号.回答非选择题时,将答案写在答题卡上.写在本试卷上无效.3.考试结束后,将本试卷和答题卡一并交回.一、选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.设全集{}1,2,3,4,5U =,集合{}{}1,4,2,5M N ==,则U N M =ð()A.{}2,3,5 B.{}1,3,4 C.{}1,2,4,5 D.{}2,3,4,5【答案】A 【解析】【分析】利用集合的交并补运算即可得解.【详解】因为全集{1,2,3,4,5}U =,集合{1,4}M =,所以{}2,3,5U M =ð,又{2,5}N =,所以{2,3,5}U N M = ð,故选:A.2.()()()351i 2i 2i +=+-()A.1- B.1C.1i- D.1i+【答案】C 【解析】【分析】利用复数的四则运算求解即可.【详解】()()351i 51i 1i(2i)(2i)5+-==-+-故选:C.3.已知向量()()3,1,2,2a b ==,则cos ,a b a b +-= ()A.117B.1717C.D.【答案】B 【解析】【分析】利用平面向量模与数量积的坐标表示分别求得()(),,a b a b a b a b +-+⋅-,从而利用平面向量余弦的运算公式即可得解.【详解】因为(3,1),(2,2)a b ==,所以()()5,3,1,1a b a b +=-=- ,则a b a b +==-== ()()()51312a b a b +⋅-=⨯+⨯-= ,所以()()17cos ,17a b a b a b a b a b a b+⋅-+-==+-.故选:B.4.某校文艺部有4名学生,其中高一、高二年级各2名.从这4名学生中随机选2名组织校文艺汇演,则这2名学生来自不同年级的概率为()A.16B.13C.12D.23【答案】D 【解析】【分析】利用古典概率的概率公式,结合组合的知识即可得解.【详解】依题意,从这4名学生中随机选2名组织校文艺汇演,总的基本事件有24C 6=件,其中这2名学生来自不同年级的基本事件有1122C C 4=,所以这2名学生来自不同年级的概率为4263=.故选:D.5.记n S 为等差数列{}n a 的前n 项和.若264810,45a a a a +==,则5S =()A.25B.22C.20D.15【答案】C 【解析】【分析】方法一:根据题意直接求出等差数列{}n a 的公差和首项,再根据前n 项和公式即可解出;方法二:根据等差数列的性质求出等差数列{}n a 的公差,再根据前n 项和公式的性质即可解出.【详解】方法一:设等差数列{}n a 的公差为d ,首项为1a ,依题意可得,2611510a a a d a d +=+++=,即135a d +=,又()()48113745a a a d a d =++=,解得:11,2d a ==,所以515455210202S a d ⨯=+⨯=⨯+=.故选:C.方法二:264210a a a +==,4845a a =,所以45a =,89a =,从而84184a a d -==-,于是34514a a d =-=-=,所以53520S a ==.故选:C.6.执行下边的程序框图,则输出的B =()A .21B.34C.55D.89【答案】B【解析】【分析】根据程序框图模拟运行即可解出.【详解】当1k =时,判断框条件满足,第一次执行循环体,123A =+=,325B =+=,112k =+=;当2k =时,判断框条件满足,第二次执行循环体,358A =+=,8513B =+=,213k =+=;当3k =时,判断框条件满足,第三次执行循环体,81321A =+=,211334B =+=,314k =+=;当4k =时,判断框条件不满足,跳出循环体,输出34B =.故选:B.7.设12,F F 为椭圆22:15x C y +=的两个焦点,点P 在C 上,若120PF PF ⋅= ,则12PF PF ⋅=()A.1B.2C.4D.5【答案】B 【解析】【分析】方法一:根据焦点三角形面积公式求出12PF F △的面积,即可解出;方法二:根据椭圆的定义以及勾股定理即可解出.【详解】方法一:因为120PF PF ⋅= ,所以1290FPF ∠=,从而122121tan 4512FP F S b PF PF ===⨯⋅,所以122PF PF ⋅=.故选:B.方法二:因为120PF PF ⋅= ,所以1290FPF ∠=,由椭圆方程可知,25142c c =-=⇒=,所以22221212416PF PF F F +===,又122PF PF a +==22121212216220PF PF PF PF PF PF ++=+=,所以122PF PF ⋅=.故选:B.8.曲线e 1=+xy x 在点e 1,2⎛⎫ ⎪⎝⎭处的切线方程为()A.e 4y x =B.e 2y x =C.e e 44y x =+ D.e 3e 24y x =+【答案】C 【解析】【分析】先由切点设切线方程,再求函数的导数,把切点的横坐标代入导数得到切线的斜率,代入所设方程即可求解.【详解】设曲线e 1xy x =+在点e 1,2⎛⎫ ⎪⎝⎭处的切线方程为()e 12y k x -=-,因为e 1xy x =+,所以()()()22e 1e e 11x xxx x y x x +-'==++,所以1e|4x k y ='==所以()e e124y x -=-所以曲线e 1xy x =+在点e 1,2⎛⎫ ⎪⎝⎭处的切线方程为e e 44y x =+.故选:C9.已知双曲线22221(0,0)x y a b a b-=>>22(2)(3)1x y -+-=交于A ,B 两点,则||AB =() A.55B.255C.355D.455【答案】D 【解析】【分析】根据离心率得出双曲线渐近线方程,再由圆心到直线的距离及圆半径可求弦长.【详解】由e =,则222222215c a b b a a a+==+=,解得2ba=,所以双曲线的一条渐近线不妨取2y x =,则圆心(2,3)到渐近线的距离55d ==,所以弦长45||5AB ===.故选:D10.在三棱锥-P ABC 中,ABC 是边长为2的等边三角形,2,PA PB PC ===,则该棱锥的体积为()A.1B.C.2D.3【答案】A 【解析】【分析】证明AB ⊥平面PEC ,分割三棱锥为共底面两个小三棱锥,其高之和为AB 得解.【详解】取AB 中点E ,连接,PE CE ,如图,ABC 是边长为2的等边三角形,2PA PB ==,,PE AB CE AB ∴⊥⊥,又,PE CE ⊂平面PEC ,PE CE E = ,AB ∴⊥平面PEC ,又322PE CE ==⨯=,PC =故222PC PE CE =+,即PE CE ⊥,所以11121332B PEC A PEC PEC V V V S AB --=+=⋅=⨯⨯=△,故选:A11.已知函数()2(1)e x f x --=.记,,222a f b f c f ⎛⎫⎛⎫⎛⎫=== ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,则()A.b c a>> B.b a c>> C.c b a>> D.c a b>>【答案】A 【解析】【分析】利用作差法比较自变量的大小,再根据指数函数的单调性及二次函数的性质判断即可.【详解】令2()(1)g x x =--,则()g x 开口向下,对称轴为1x =,因为4112222⎛⎫---= ⎪ ⎪⎝⎭,而22491670-=+-=->,所以636341102222⎛⎫---=-> ⎪ ⎪⎝⎭,即631122->-由二次函数性质知63)22g g <,因为4112222⎛⎫---=- ⎪ ⎪⎝⎭,而22481682)0+-=+==<,即621122-<-,所以62)22g g >,综上,263222g g g <<,又e x y =为增函数,故a c b <<,即b c a >>.故选:A.12.函数()y f x =的图象由cos 26y x π⎛⎫=+⎪⎝⎭的图象向左平移6π个单位长度得到,则()y f x =的图象与直线1122y x =-的交点个数为()A.1 B.2C.3D.4【答案】C 【解析】【分析】先利用三角函数平移的性质求得()sin 2f x x =-,再作出()f x 与1122y x =-的部分大致图像,考虑特殊点处()f x 与1122y x =-的大小关系,从而精确图像,由此得解.【详解】因为πcos 26y x ⎛⎫=+⎪⎝⎭向左平移π6个单位所得函数为πππcos 2cos 2sin 2662y x x x ⎡⎤⎛⎫⎛⎫=++=+=- ⎪ ⎢⎥⎝⎭⎝⎭⎣⎦,所以()sin 2f x x =-,而1122y x =-显然过10,2⎛⎫- ⎪⎝⎭与()1,0两点,作出()f x 与1122y x =-的部分大致图像如下,考虑3π3π7π2,2,2222x x x =-==,即3π3π7π,,444x x x =-==处()f x 与1122y x =-的大小关系,当3π4x =-时,3π3πsin 142f ⎛⎫⎛⎫-=--=- ⎪ ⎪⎝⎭⎝⎭,13π1π4284312y +⎛⎫=⨯--=-<- ⎪⎝⎭;当3π4x =时,3π3πsin 142f ⎛⎫=-= ⎪⎝⎭,13π13π412428y -=⨯-=<;当7π4x =时,7π7πsin 142f ⎛⎫=-= ⎪⎝⎭,17π17π412428y -=⨯-=>;所以由图可知,()f x 与1122y x =-的交点个数为3.故选:C.二、填空题:本大题共4小题,每小题5分,共20分.13.记n S 为等比数列{}n a 的前n 项和.若6387S S =,则{}n a 的公比为________.【答案】12-【解析】【分析】先分析1q ≠,再由等比数列的前n 项和公式和平方差公式化简即可求出公比q .【详解】若1q =,则由6387S S =得118673a a ⋅=⋅,则10a =,不合题意.所以1q ≠.当1q ≠时,因为6387S S =,所以()()6311118711a q a q qq--⋅=⋅--,即()()638171q q ⋅-=⋅-,即()()()33381171q q q ⋅+-=⋅-,即()3817q ⋅+=,解得12q =-.故答案为:12-14.若()2π(1)sin 2f x x ax x ⎛⎫=-+++ ⎪⎝⎭为偶函数,则=a ________.【答案】2【解析】【分析】根据常见函数的奇偶性直接求解即可.【详解】()()()222π1sin 1cos (2)1cos 2f x x ax x x ax x x a x x ⎛⎫=-+++=-++=+-++ ⎪⎝⎭ ,且函数为偶函数,20a ∴-=,解得2a =,故答案为:215.若x ,y 满足约束条件323,2331,x y x y x y -≤⎧⎪-+≤⎨⎪+≥⎩,则32z x y =+的最大值为________.【答案】15【解析】【分析】由约束条件作出可行域,根据线性规划求最值即可.【详解】作出可行域,如图,由图可知,当目标函数322zy x =-+过点A 时,z 有最大值,由233323x y x y -+=⎧⎨-=⎩可得33x y =⎧⎨=⎩,即(3,3)A ,所以max 332315z =⨯+⨯=.故答案为:1516.在正方体1111ABCD A B C D -中,4,AB O =为1AC 的中点,若该正方体的棱与球O 的球面有公共点,则球O 的半径的取值范围是________.【答案】[22,23]【解析】【分析】当球是正方体的外接球时半径最大,当边长为4的正方形是球的大圆的内接正方形时半径达到最小.【详解】设球的半径为R .当球是正方体的外接球时,恰好经过正方体的每个顶点,所求的球的半径最大,若半径变得更大,球会包含正方体,导致球面和棱没有交点,正方体的外接球直径2R '为体对角线长22214443AC =++,即23,3R R ''==,故max 3R =;分别取侧棱1111,,,AA BB CC DD 的中点,,,M H G N ,显然四边形MNGH 是边长为4的正方形,且O 为正方形MNGH 的对角线交点,连接MG ,则42MG =MNGH 的外接圆,球的半径达到最小,即R 的最小值为22.综上,[22,3]R ∈.故答案为:[22,23]三、解答题:共70分.解答应写出文字说明、证明过程或演算步骤.第17~21题为必考题,每个试题考生都必须作答.第22、23题为选考题,考生根据要求作答.(一)必考题:共60分.17.记ABC 的内角,,A B C 的对边分别为,,a b c ,已知2222cos b c aA+-=.(1)求bc ;(2)若cos cos 1cos cos a B b A ba Bb A c--=+,求ABC 面积.【答案】(1)1(2)34【解析】【分析】(1)根据余弦定理即可解出;(2)由(1)可知,只需求出sin A 即可得到三角形面积,对等式恒等变换,即可解出.【小问1详解】因为2222cos a b c bc A =+-,所以2222cos 22cos cos b c a bc A bc A A+-===,解得:1bc =.【小问2详解】由正弦定理可得cos cos sin cos sin cos sin cos cos sin cos sin cos sin a B b A b A B B A B a B b A c A B B A C---=-++()()()()()sin sin sin sin 1sin sin sin A B A B B B A B A B A B ---=-==+++,变形可得:()()sin sin sin A B A B B --+=,即2cos sin sin A B B -=,而0sin 1B <≤,所以1cos 2A =-,又0πA <<,所以3sin 2A =,故ABC 的面积为1133sin 12224ABC S bc A ==⨯⨯=△.18.如图,在三棱柱111ABC A B C -中,1A C ⊥平面,90ABC ACB ∠=︒.(1)证明:平面11ACC A ⊥平面11BB C C ;(2)设11,2AB A B AA ==,求四棱锥111A BB C C -的高.【答案】(1)证明见解析.(2)1【解析】【分析】(1)由1A C ⊥平面ABC 得1A C BC ⊥,又因为ACBC ⊥,可证BC ⊥平面11ACC A ,从而证得平面11ACC A ⊥平面11BCC B ;(2)过点1A 作11A O CC ⊥,可证四棱锥的高为1AO ,由三角形全等可证1A C AC =,从而证得O 为1CC 中点,设1A C AC x ==,由勾股定理可求出x ,再由勾股定理即可求1AO .【小问1详解】证明:因为1A C ⊥平面ABC ,BC ⊂平面ABC ,所以1A C BC ⊥,又因为90ACB ∠= ,即ACBC ⊥,1,A C AC ⊂平面11ACC A ,1AC AC C ⋂=,所以BC ⊥平面11ACC A ,又因为BC ⊂平面11BCC B ,所以平面11ACC A ⊥平面11BCC B .【小问2详解】如图,过点1A 作11A O CC ⊥,垂足为O .因为平面11ACC A ⊥平面11BCC B ,平面11ACC A 平面111BCC B CC =,1A O ⊂平面11ACC A ,所以1A O ⊥平面11BCC B ,所以四棱锥111A BB C C -的高为1AO .因为1A C ⊥平面ABC ,,AC BC ⊂平面ABC ,所以1A C BC ⊥,1A C AC ⊥,又因为1A B AB =,BC 为公共边,所以ABC 与1A BC 全等,所以1A C AC =.设1A C AC x ==,则11A C x =,所以O 为1CC 中点,11112OC AA ==,又因为1A C AC ⊥,所以22211A C AC AA +=,即2222x x +=,解得x =,所以11A O ==,所以四棱锥111A BB C C -的高为1.19.一项试验旨在研究臭氧效应,试验方案如下:选40只小白鼠,随机地将其中20只分配到试验组,另外20只分配到对照组,试验组的小白鼠饲养在高浓度臭氧环境,对照组的小白鼠饲养在正常环境,一段时间后统计每只小白鼠体重的增加量(单位:g).试验结果如下:对照组的小白鼠体重的增加量从小到大排序为15.218.820.221.322.523.225.826.527.530.132.634.334.835.635.635.836.237.340.543.2试验组的小白鼠体重的增加量从小到大排序为7.89.211.412.413.215.516.518.018.819.219.820.221.622.823.623.925.128.232.336.5(1)计算试验组的样本平均数;(2)(ⅰ)求40只小白鼠体重的增加量的中位数m ,再分别统计两样本中小于m 与不小于m 的数据的个数,完成如下列联表m<m≥对照组试验组(ⅱ)根据(i)中的列联表,能否有95%的把握认为小白鼠在高浓度臭氧环境中与在正常环境中体重的增加量有差异?附:()()()()22()n ad bc K a b c d a c b d -=++++,()2P K k ≥0.1000.0500.010k2.7063.8416.635【答案】(1)19.8(2)(i)23.4m =;列联表见解析,(ii)能【解析】【分析】(1)直接根据均值定义求解;(2)(i)根据中位数的定义即可求得23.4m =,从而求得列联表;(ii)利用独立性检验的卡方计算进行检验,即可得解.【小问1详解】试验组样本平均数为:1(7.89.211.412.413.215.516.518.018.819.219.820.220+++++++++++39621.622.823.623.925.128.232.336.5)19.820++++++++==【小问2详解】(i)依题意,可知这40只小鼠体重的中位数是将两组数据合在一起,从小到大排后第20位与第21位数据的平均数,由原数据可得第11位数据为18.8,后续依次为19.2,19.8,20.2,20.2,21.3,21.6,22.5,22.8,23.2,23.6, ,故第20位为23.2,第21位数据为23.6,所以23.223.623.42m +==,故列联表为:m<m≥合计对照组61420试验组14620合计202040(ii)由(i)可得,2240(661414) 6.400 3.84120202020K ⨯⨯-⨯==>⨯⨯⨯,所以能有95%的把握认为小白鼠在高浓度臭氧环境中与在正常环境中体重的增加量有差异.20.已知函数()2sin π,0,cos 2x f x ax x x ⎛⎫=-∈ ⎪⎝⎭.(1)当1a =时,讨论()f x 的单调性;(2)若()sin 0f x x +<,求a 的取值范围.【答案】(1)()f x 在π0,2⎛⎫⎪⎝⎭上单调递减(2)0a ≤【解析】【分析】(1)代入1a =后,再对()f x 求导,同时利用三角函数的平方关系化简()f x ',再利用换元法判断得其分子与分母的正负情况,从而得解;(2)法一:构造函数()()sin g x f x x =+,从而得到()0g x <,注意到()00g =,从而得到()00g '≤,进而得到0a ≤,再分类讨论0a =与a<0两种情况即可得解;法二:先化简并判断得2sin sin 0cos xx x-<恒成立,再分类讨论0a =,a<0与0a >三种情况,利用零点存在定理与隐零点的知识判断得0a >时不满足题意,从而得解.【小问1详解】因为1a =,所以()2sin π,0,cos 2x f x x x x ⎛⎫=-∈ ⎪⎝⎭,则()()22432cos cos 2cos sin sin cos 2sin 11cos cos x x x x xx x f x xx--+'=-=-()3333222cos cos 21cos coscos 2cos cos x x xx x xx---+-==,令cos t x =,由于π0,2x ⎛⎫∈ ⎪⎝⎭,所以()cos 0,1t x =∈,所以()()()23233222cos cos 22221211x x t t t t t t t t t +-=+-=-+-=-++-()()2221t t t =++-,因为()2222110t t t ++=++>,10t -<,33cos 0x t =>,所以()233cos cos 20cos x x f x x +-'=<在π0,2⎛⎫ ⎪⎝⎭上恒成立,所以()f x 在π0,2⎛⎫⎪⎝⎭上单调递减.【小问2详解】法一:构建()()2sin πsin sin 0cos 2x g x f x x ax x x x ⎛⎫=+=-+<< ⎪⎝⎭,则()231sin πcos 0cos 2x g x a x x x +⎛⎫'=-+<< ⎪⎝⎭,若()()sin 0g x f x x =+<,且()()00sin 00g f =+=,则()0110g a a '=-+=≤,解得0a ≤,当0a =时,因为22sin 1sin sin 1cos cos x x x x x ⎛⎫-=- ⎪⎝⎭,又π0,2x ⎛⎫∈ ⎪⎝⎭,所以0sin 1x <<,0cos 1x <<,则211cos x>,所以()2sin sin sin 0cos xf x x x x+=-<,满足题意;当a<0时,由于π02x <<,显然0ax <,所以()22sin sin sin sin sin 0cos cos x xf x x ax x x x x+=-+<-<,满足题意;综上所述:若()sin 0f x x +<,等价于0a ≤,所以a 的取值范围为(],0-∞.法二:因为()2232222sin cos 1sin sin cos sin sin sin cos cos cos cos x x x x x x x x x x x x ---===-,因为π0,2x ⎛⎫∈ ⎪⎝⎭,所以0sin 1x <<,0cos 1x <<,故2sin sin 0cos x x x-<在π0,2⎛⎫ ⎪⎝⎭上恒成立,所以当0a =时,()2sin sin sin 0cos x f x x x x +=-<,满足题意;当a<0时,由于π02x <<,显然0ax <,所以()22sin sin sin sin sin 0cos cos x x f x x ax x x x x+=-+<-<,满足题意;当0a >时,因为()322sin sin sin sin cos cos x x f x x ax x ax x x+=-+=-,令()32sin π0cos 2x g x ax x x ⎛⎫=-<< ⎪⎝⎭,则()22433sin cos 2sin cos x x x g x a x+'=-,注意到()22433sin 0cos 02sin 000cos 0g a a +'=-=>,若π02x ∀<<,()0g x '>,则()g x 在π0,2⎛⎫ ⎪⎝⎭上单调递增,注意到()00g =,所以()()00g x g >=,即()sin 0f x x +>,不满足题意;若0π02x ∃<<,()00g x '<,则()()000g g x ''<,所以在π0,2⎛⎫ ⎪⎝⎭上最靠近0x =处必存在零点1π20,x ⎛⎫∈ ⎪⎝⎭,使得()10g x '=,此时()g x '在()10,x 上有()0g x '>,所以()g x 在()10,x 上单调递增,则在()10,x 上有()()00g x g >=,即()sin 0f x x +>,不满足题意;综上:0a ≤.【点睛】关键点睛:本题方法二第2小问讨论0a >这种情况的关键是,注意到()00g '>,从而分类讨论()g x '在π0,2⎛⎫ ⎪⎝⎭上的正负情况,得到总存在靠近0x =处的一个区间,使得()0g x '>,从而推得存在()()00g x g >=,由此得解.21.已知直线210x y -+=与抛物线2:2(0)C y px p =>交于,A B 两点,AB =.(1)求p ;(2)设F 为C 的焦点,,M N 为C 上两点,且0FM FN ⋅= ,求MFN △面积的最小值.【答案】(1)2p =(2)12-【解析】【分析】(1)利用直线与抛物线的位置关系,联立直线和抛物线方程求出弦长即可得出p ;(2)设直线MN :x my n =+,()()1122,,,,M x y N x y 利用0MF NF ⋅= ,找到,m n 的关系,以及MNF 的面积表达式,再结合函数的性质即可求出其最小值.【小问1详解】设()(),,,A A B B A x y B x y ,由22102x y y px -+=⎧⎨=⎩可得,2420y py p -+=,所以4,2A B A B y y p y y p +==,所以A B AB y y ==-==即2260p p --=,因为0p >,解得:2p =.【小问2详解】因为()1,0F ,显然直线MN 的斜率不可能为零,设直线MN :x my n =+,()()1122,,,M x y N x y ,由24y x x my n⎧=⎨=+⎩可得,2440y my n --=,所以,12124,4y y m y y n +==-,22161600m n m n ∆=+>⇒+>,因为0MF NF ⋅= ,所以()()1212110x x y y --+=,即()()1212110my n my n y y +-+-+=,亦即()()()()2212121110m y y m n y y n ++-++-=,将12124,4y y m y y n +==-代入得,22461m n n =-+,()()22410m n n +=->,所以1n ≠,且2610n n -+≥,解得3n ≥+或3n ≤-.设点F 到直线MN 的距离为d,所以d =12MN y y ==-=1==-,所以MNF的面积()2111122S MN d n =⨯⨯=-=-,而3n ≥+或3n≤-,所以,当3n =-时,MNF的面积(2min 212S =-=-【点睛】本题解题关键是根据向量的数量积为零找到,m n 的关系,一是为了减元,二是通过相互的制约关系找到各自的范围,为得到的三角形面积公式提供定义域支持,从而求出面积的最小值.(二)选考题:共10分.请考生在第22、23题中任选一题作答.如果多做,则按所做的第一题计分.[选修4-4:坐标系与参数方程](10分)22.已知点()2,1P ,直线2cos ,:1sin x t l y t αα=+⎧⎨=+⎩(t 为参数),α为l 的倾斜角,l 与x 轴正半轴、y 轴正半轴分别交于,A B ,且4PA PB ⋅=.(1)求α;(2)以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,求l 的极坐标方程.【答案】(1)3π4(2)cos sin 30ραρα+-=【解析】【分析】(1)根据t 的几何意义即可解出;(2)求出直线l 的普通方程,再根据直角坐标和极坐标互化公式即可解出.【小问1详解】因为l 与x 轴,y 轴正半轴交于,A B 两点,所以ππ2α<<,令0x =,12cos t α=-,令0y =,21sin t α=-,所以21244sin cos sin 2PA PB t t ααα====,所以sin 21α=±,即π2π2k α=+,解得π1π,42k k α=+∈Z ,因为ππ2α<<,所以3π4α=.【小问2详解】由(1)可知,直线l 的斜率为tan 1α=-,且过点()2,1,所以直线l 的普通方程为:()12y x -=--,即30x y +-=,由cos ,sin x y ραρα==可得直线l 的极坐标方程为cos sin 30ραρα+-=.[选修4-5:不等式选讲](10分)23.已知()2||, 0 f x x a a a =-->.(1)求不等式()f x x <的解集;(2)若曲线()y f x =与x 轴所围成的图形的面积为2,求a .【答案】(1),33a a ⎛⎫ ⎪⎝⎭(2)263【解析】【分析】(1)分x a ≤和x a >讨论即可;(2)写出分段函数,画出草图,表达面积解方程即可.【小问1详解】若x a ≤,则()22f x a x a x =--<,即3x a >,解得3a x >,即3a x a <≤,若x a >,则()22f x x a a x =--<,解得3x a <,即3a x a <<,综上,不等式的解集为,33a a ⎛⎫⎪⎝⎭.【小问2详解】2,()23,x a x a f x x a x a -+≤⎧=⎨->⎩.画出()f x 的草图,则()f x 与坐标轴围成ADO △与ABCABC 的高为3,(0,),,0,,022a a a D a A B ⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭,所以||=AB a 所以21132224OAD ABC S S OA a AB a a +=⋅+⋅== ,解得263a =。
广西桂林市(新版)2024高考数学人教版考试(综合卷)完整试卷
![广西桂林市(新版)2024高考数学人教版考试(综合卷)完整试卷](https://img.taocdn.com/s3/m/7735ad6d5b8102d276a20029bd64783e09127de0.png)
广西桂林市(新版)2024高考数学人教版考试(综合卷)完整试卷一、单选题:本题共8小题,每小题5分,共40分 (共8题)第(1)题若焦点在轴上的椭圆的离心率为,则()A.5B.4C.3D.2第(2)题设命题:,,则为()A.,B.,C.,D.,第(3)题函数的图象大致是()A.B.C.D.第(4)题已知是定义在上的函数,且为偶函数,是奇函数,当时,,则等于()A.B.C.D.1第(5)题与圆及圆都外切的圆的圆心在()A.一个圆上B.一个椭圆上C.一条抛物线上D.双曲线的一支上第(6)题已知圆,点在线段()上,过点作圆的两条切线,切点分别为,,以为直径作圆,则圆的面积的最大值为().A.B.C.D.第(7)题如图程序框图的算法思路源于我国古代数学名著《九章算术》中“更相减损术”.执行该程序框图,若输入的a,b分别为35、28,则输出的a=()A.1B.14C.7D.28第(8)题设a,b是两条不同的直线,,是两个不同的平面,若,,,则“”是“”的().A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件二、多选题:本题共3小题,每小题6分,共18分 (共3题)第(1)题在三棱锥中,,,且,则()A.当为等边三角形时,,B.当,时,平面平面C.的周长等于的周长D.三棱锥体积最大为第(2)题在棱长为2的正方体中,点分别是棱的中点,,,过点的平面截正方体所得图形为,则()A.,使得B.,使得为四边形C.三棱锥体积的取值范围是D.的面积的取值范围是第(3)题某灯具配件厂生产了一种塑胶配件,该厂质检人员某日随机抽取了100个该配件的质量指标值(单位:分)作为一个样本,得到如下所示的频率分布直方图,则(同一组中的数据用该组区间的中点值作代表)()A.B.样本质量指标值的平均数为75C.样本质量指标值的众数小于其平均数D.样本质量指标值的第75百分位数为85三、填空题:本题共3小题,每小题5分,共15分 (共3题)第(1)题若将函数表示成,则a 3的值等于__第(2)题已知平面向量,满足,,,则______.第(3)题已知抛物线的焦点为,第一象限的、两点在抛物线上,且满足,.若线段中点的纵坐标为4,则抛物线的方程为________.四、解答题:本题共5小题,每小题15分,最后一题17分,共77分 (共5题)第(1)题已知的内角的对边分别为.(1)求;(2)若为线段上一点,且,求的长.第(2)题已知椭圆C:()和圆O:.C的焦距为,过C的右顶点作圆O的切线,切线长为.(1)求椭圆C的方程;(2)设圆O的切线l与椭圆C交于A,B两点,求面积的最大值.第(3)题当前移动网络已融入社会生活的方方面面,深刻改变了人们的沟通、交流乃至整个生活方式.4G网络虽然解决了人与人随时随地通信的问题,但随着移动互联网快速发展,其已难以满足未来移动数据流量暴涨的需求,而5G作为一种新型移动通信网络,不但可以解决人与人的通信问题,而且还可以为用户提供增强现实、虚拟现实、超高清(3D)视频等更加身临其境的极致业务体验,更重要的是还可以解决人与物、物与物的通信问题,从而满足移动医疗、车联网、智能家居、工业控制、环境监测等物联网应用需求,为更好的满足消费者对5G网络的需求,中国电信在某地区推出了六款不同价位的流量套餐,每款套餐的月资费x(单位:元)与购买人数y(单位:万人)的数据如下表:套餐A B C D E F月资费x(元)384858687888购买人数y(万人)16.818.820.722.424.025.5对数据作初步的处理,相关统计量的值如下表:75.324.618.3101.4其中,且绘图发现,散点集中在一条直线附近.(1)根据所给数据,求出关于的回归方程;(2)已知流量套餐受关注度通过指标来测定,当时相应的流量套餐受大众的欢迎程度更高,被指定为“主打套餐”.现有一家四口从这六款套餐中,购买不同的四款各自使用.记四人中使用“主打套督”的人数为,求随机变量的分布列和期望.附:对于一组数据,其回归方程的斜率和截距的最小二乘估计值分别为.第(4)题函数 .(1)当时,讨论的单调性;(2)若函数有两个极值点,且,证明: .第(5)题如图,在三棱柱中,底面是等腰三角形,且,又侧棱,面对角线,点分别是棱的中点,.(1)证明:平面;(2)求二面角的正切值.。
(完整版)高考文科--高考(全国卷)文科数学试题及答案(广西大纲版),推荐文档
![(完整版)高考文科--高考(全国卷)文科数学试题及答案(广西大纲版),推荐文档](https://img.taocdn.com/s3/m/329ffa0aad51f01dc381f1c8.png)
(A) -1,1
(B) -2, 2
(C)-1, 0 0,1
-2,0 0,2
(D)
【答案】D
【解析】| x2 2 | 2 2 x2 2 2 0 x2 4 0 | x | 2 2 x 0或0 x 2 ,故选 D.(也可用排除法)
5. x 28 的展开式中x6 系数是
(A) 28
两点,若 MAMB 0 ,则 k
1
(A)
2
(B) 2 2
(C) 2
(D) 2
【答案】D
【解析】设直线 AB 方程为 y k (x 2或,代入 y2 8x 得 k 2 x2 (4k 2 8)x 4k 2 0
设 A(x1, y1), B(x2 , y2 ) ,则 x1 x2
4k 2 k
弦值等于
2
(A)
3
【答案】A
(B) 3 3
(C) 2 3
(D) 1 3
【解析】如图,在正四棱锥 ABCD A1B1C1D1中,连结 AC、BD 记交点为O ,连结OC1,过
C 作 CH⊥ OC1 于点 H,∵BD⊥AC,BD⊥ AA1,∴BD⊥平面 ACC1 A1∵CH 平面
ACC1 A1
∴CH⊥BD,∴CH⊥平面C1BD ∴∠CDH 为 CD 与平面 BDC1 所成的角.
【答案】B
T 【解析】由题中图象可知 x0 4 x0 2 ,∴ T 2
2 ∴ ∴ 4 ,故选 B
2
10、已知曲线 y x4 ax2 1在点,-1处切a 线2的 斜率为,
8 a=
(A) 9
【答案】D
(B) 6 (C)-9 (D)-6
【解析】由题意知 y |x1 (4x3 2ax) |x1 4 2a 8 ,则 a 6 .故选 D 11、已知正四棱锥 ABCD A1B1C1D1 中, AA1 2 AB, 则CD 与平面 BDC1 所成的角的正
2023广西高考数学文科真题(附答案解析)
![2023广西高考数学文科真题(附答案解析)](https://img.taocdn.com/s3/m/6935ebff9fc3d5bbfd0a79563c1ec5da50e2d63b.png)
2023广西高考数学文科真题(附答案解析)2023广西高考数学文科真题(附答案解析)小编整理了2023广西高考数学文科真题附答案解析,数学被应用在很多不同的领域上,包括科学、工程、医学和经济学等。
下面是小编为大家整理的2023广西高考数学文科真题附答案解析,希望能帮助到大家!2023广西高考数学文科真题附答案解析2023广西考生高考志愿填报的方法高考志愿填报是关乎未来发展的重要环节,下面是正确的填报姿势:提前准备:在高三阶段就应该开始了解院校和专业情况,包括学校排名、专业设置、录取分数线等信息,以便提前了解自己所感兴趣的学校和专业。
全面评估自己:认真评估自己的兴趣、特长、优势和目标,辨明自己适合的专业方向,不盲目追求热门专业或他人期望的选择。
按优先级填报:将最理想的学校和专业作为第一志愿,并根据个人的兴趣、实力和预估分数,按照优先级设定其他志愿。
同时合理安排备选目标,以备不时之需。
多角度了解学校:收集学校的信息不仅限于排名和声誉,还要考虑地理位置、校园环境、专业实力和就业资源等因素,综合考虑自己的适应性和发展潜力。
切勿虚填虚报:填报志愿时务必实事求是,避免虚填虚报。
对于无意愿的学校和专业不要随便填报,以免浪费录取机会和学习资源。
注意文科与理科限报:根据考生自己的文科或理科类别,注意选择对应限报类别的院校和专业。
确保有资格被录取。
高考志愿填报指南1、登录指定网页网上填报志愿要在省招办指定的网上进行,登录指定网页,打开浏览器,输入网报网址。
指定网页一般会印制在准考证上面,或者打省招办电话咨询。
2、输入用户名和密码用户名是考生准考证上的14位报名号数字,第一次登录网上报名系统的初始密码是身份证号码,输入用户名和密码后即可登录网上报名系统。
考生仔细阅读网上填报志愿的流程和注意事项,了解操作流程和相关要求以后再进行下一步的操作。
填写住址、电话等重要信息。
3、首次登录后必须修改密码考生在第一次登录网上填报志愿系统时,一定要修改初始密码,如果不修改,就会自动返回到上一步,无法继续往下操作。
广西高考文科数学试题及答案解析word版
![广西高考文科数学试题及答案解析word版](https://img.taocdn.com/s3/m/f476af0ca32d7375a4178094.png)
绝密★启用前2013年普通高等学校招生全国统一考试数学(文科)一、选择题:本大题共12小题,每小题5分.在每小题给出的四个选项中,只有一项是符合题目要求的.(1)设集合{}{}1,2,3,4,5,1,2,u U A A ===集合则ð(A ){}1,2 (B ){}3,4,5 (C ){}1,2,3,4,5 (D )∅(2)已知a 是第二象限角,5sin ,cos 13a a ==则 (A )1213- (B )513- (C )513 (D )1213(3)已知向量()()()()1,1,2,2,,=m n m n m n λλλ=+=++⊥-若则(A )4- (B )3- (C )-2 (D )-1(4)不等式222x -<的解集是(A )()-1,1 (B )()-2,2 (C )()()-1,00,1 (D )()()-2,00,2(5)()862x x +的展开式中的系数是(A )28 (B )56 (C )112 (D )224(6)函数()()()-121log 10=f x x f x x ⎛⎫=+> ⎪⎝⎭的反函数 (A )()1021x x >- (B )()1021xx ≠- (C )()21x x R -∈ (D )()210xx ->(7)已知数列{}n a 满足{}12430,,103n n n a a a a ++==-则的前项和等于 (A )()-10-61-3 (B )()-1011-39(C )()-1031-3 (D )()-1031+3(8)已知()()1221,0,1,0,F F C F x -是椭圆的两个焦点过且垂直于轴的直线交于 A B 、两点,且3AB =,则C 的方程为 (A )2212x y += (B )22132x y += (C )22143x y += (D )22154x y +=(9)若函数()()sin 0=y x ωϕωω=+>的部分图像如图,则 (A )5 (B )4 (C )3 (D )2(10)已知曲线()421-128=y x ax a a =+++在点,处切线的斜率为,(A )9 (B )6 (C )-9 (D )-6(11)已知正四棱锥1111112,ABCD A B C D AA AB CD BDC -=中,则与平面所成角的正弦值等于(A )23 (B (C (D )13(12)已知抛物线()2:82,2,C C y x M k C =-与点过的焦点,且斜率为的直线与交于,0,A B MA MB k ==两点,若则(A )12(B (C (D )2二、填空题:本大题共4小题,每小题5分.(13)设()[)()21,3=f x x f x ∈是以为周期的函数,且当时, .(14)从进入决赛的6名选手中决出1名一等奖,2名二等奖,3名三等奖,则可能的决赛结果共有 种.(用数字作答)(15)若x y 、满足约束条件0,34,34,x x y x y ≥⎧⎪+≥⎨⎪+≤⎩则z x y =-+的最小值为.(16)已知圆O 和圆K 是球O 的大圆和小圆,其公共弦长等于球O 的半径,3602OK O K =,且圆与圆所在的平面所成角为,则球O 的表面积等于.三、解答题:解答应写出文字说明、证明过程或演算步骤.17.(本小题满分10分)等差数列{}n a 中,71994,2,a a a ==(I )求{}n a 的通项公式;(II )设{}1,.n n n nb b n S na =求数列的前项和18.(本小题满分12分)设()(),,,,,.ABC A B C a b c a b c a b c ac ∆++-+=的内角的对边分别为(I )求;B(II )若sin sin C.A C =求19.(本小题满分12分)如图,四棱锥902,P ABCD ABC BAD BC AD PAB PAD -∠=∠==∆∆中,,与都是边长为2的等边三角形.(I )证明:;PB CD ⊥(II )求点.A PCD 到平面的距离20.(本小题满分12分)甲、乙、丙三人进行羽毛球练习赛,其中两人比赛,另一人当裁判,每局比赛结束时,负的一方在下一局当裁判,设各局中双方获胜的概率均为1,2各局比赛的结果都相互独立,第1局甲当裁判.(I )求第4局甲当裁判的概率; (II )求前4局中乙恰好当1次裁判概率.21.(本小题满分12分)已知函数()32=33 1.f x x ax x +++(I )求()f ;a x =的单调性;(II )若[)()2,0,.x f x a ∈+∞≥时,求的取值范围22.(本小题满分12分) 已知双曲线()221222:10,0x y C a b F F a b-=>>的左、右焦点分别为,,离心率为3,直线2y C =与(I )求,;a b ;(II )2F l C A B 设过的直线与的左、右两支分别相交于、两点,且 11,AF BF -证明:22.AF AB BF 、、成等比数列。
2017年广西高考数学试卷与解析word(文科)(全国新课标Ⅲ)
![2017年广西高考数学试卷与解析word(文科)(全国新课标Ⅲ)](https://img.taocdn.com/s3/m/8c9e51522e3f5727a5e962c3.png)
2017年广西高考数学试卷(文科)(全国新课标Ⅲ)一、选择题:本大题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.(5分)已知集合A={1,2,3,4},B={2,4,6,8},则A∩B中元素的个数为()A.1 B.2 C.3 D.42.(5分)复平面内表示复数z=i(﹣2+i)的点位于()A.第一象限B.第二象限C.第三象限D.第四象限3.(5分)某城市为了解游客人数的变化规律,提高旅游服务质量,收集并整理了2014年1月至2016年12月期间月接待游客量(单位:万人)的数据,绘制了下面的折线图.根据该折线图,下列结论错误的是()A.月接待游客量逐月增加B.年接待游客量逐年增加C.各年的月接待游客量高峰期大致在7,8月D.各年1月至6月的月接待游客量相对于7月至12月,波动性更小,变化比较平稳4.(5分)已知sinα﹣cosα=,则sin2α=()A.﹣ B.﹣ C.D.5.(5分)设x,y满足约束条件则z=x﹣y的取值范围是()A.[﹣3,0]B.[﹣3,2]C.[0,2]D.[0,3]6.(5分)函数f(x)=sin(x+)+cos(x﹣)的最大值为()A.B.1 C.D.7.(5分)函数y=1+x+的部分图象大致为()A.B.C.D.8.(5分)执行如图的程序框图,为使输出S的值小于91,则输入的正整数N 的最小值为()A.5 B.4 C.3 D.29.(5分)已知圆柱的高为1,它的两个底面的圆周在直径为2的同一个球的球面上,则该圆柱的体积为()A.πB. C.D.10.(5分)在正方体ABCD﹣A1B1C1D1中,E为棱CD的中点,则()A.A1E⊥DC1B.A1E⊥BD C.A1E⊥BC1D.A1E⊥AC11.(5分)已知椭圆C:=1(a>b>0)的左、右顶点分别为A1,A2,且以线段A1A2为直径的圆与直线bx﹣ay+2ab=0相切,则C的离心率为()A.B.C.D.12.(5分)已知函数f(x)=x2﹣2x+a(e x﹣1+e﹣x+1)有唯一零点,则a=()A.﹣ B.C.D.1二、填空题13.(5分)已知向量=(﹣2,3),=(3,m),且,则m=.14.(5分)双曲线(a>0)的一条渐近线方程为y=x,则a=.15.(5分)△ABC的内角A,B,C的对边分别为a,b,c,已知C=60°,b=,c=3,则A=.16.(5分)设函数f(x)=,则满足f(x)+f(x﹣)>1的x的取值范围是.三、解答题17.(12分)设数列{a n}满足a1+3a2+…+(2n﹣1)a n=2n.(1)求{a n}的通项公式;(2)求数列{}的前n项和.18.(12分)某超市计划按月订购一种酸奶,每天进货量相同,进货成本每瓶4元,售价每瓶6元,未售出的酸奶降价处理,以每瓶2元的价格当天全部处理完.根据往年销售经验,每天需求量与当天最高气温(单位:℃)有关.如果最高气温不低于25,需求量为500瓶;如果最高气温位于区间[20,25),需求量为300瓶;如果最高气温低于20,需求量为200瓶.为了确定六月份的订购计划,统计了前三年六月份各天的最高气温数据,得下面的频数分布表:以最高气温位于各区间的频率估计最高气温位于该区间的概率.(1)求六月份这种酸奶一天的需求量不超过300瓶的概率;(2)设六月份一天销售这种酸奶的利润为Y(单位:元),当六月份这种酸奶一天的进货量为450瓶时,写出Y的所有可能值,并估计Y大于零的概率.19.(12分)如图四面体ABCD中,△ABC是正三角形,AD=CD.(1)证明:AC⊥BD;(2)已知△ACD是直角三角形,AB=BD,若E为棱BD上与D不重合的点,且AE⊥EC,求四面体ABCE与四面体ACDE的体积比.20.(12分)在直角坐标系xOy中,曲线y=x2+mx﹣2与x轴交于A、B两点,点C的坐标为(0,1),当m变化时,解答下列问题:(1)能否出现AC⊥BC的情况?说明理由;(2)证明过A、B、C三点的圆在y轴上截得的弦长为定值.21.(12分)已知函数f(x)=lnx+ax2+(2a+1)x.(1)讨论f(x)的单调性;(2)当a<0时,证明f(x)≤﹣﹣2.[选修4-4:坐标系与参数方程]22.(10分)在直角坐标系xOy中,直线l1的参数方程为,(t为参数),直线l2的参数方程为,(m为参数).设l1与l2的交点为P,当k变化时,P的轨迹为曲线C.(1)写出C的普通方程;(2)以坐标原点为极点,x轴正半轴为极轴建立极坐标系,设l3:ρ(cosθ+sinθ)﹣=0,M为l3与C的交点,求M的极径.[选修4-5:不等式选讲]23.已知函数f(x)=|x+1|﹣|x﹣2|.(1)求不等式f(x)≥1的解集;(2)若不等式f(x)≥x2﹣x+m的解集非空,求m的取值范围.2017年广西高考数学试卷(文科)(全国新课标Ⅲ)参考答案与试题解析一、选择题:本大题共12小题,每小题5分,共60分。
2023年广西文科数学高考试卷及解析
![2023年广西文科数学高考试卷及解析](https://img.taocdn.com/s3/m/18f11ed0e109581b6bd97f19227916888486b9a0.png)
2023年广西文科数学高考试卷及解析2023年广西文科数学高考试卷及解析高考数学导数知识点有哪些(一)导数第一定义设函数y=f(x)在点x0的某个领域内有定义,当自变量x在x0处有增量△x(x0+△x也在该邻域内)时,相应地函数取得增量△y=f(x0+△x)—f(x0);如果△y与△x之比当△x→0时极限存在,则称函数y=f(x)在点x0处可导,并称这个极限值为函数y=f(x)在点x0处的导数记为f(x0),即导数第一定义(二)导数第二定义设函数y=f(x)在点x0的某个领域内有定义,当自变量x在x0处有变化△x(x—x0也在该邻域内)时,相应地函数变化△y=f(x)—f(x0);如果△y与△x之比当△x→0时极限存在,则称函数y=f(x)在点x0处可导,并称这个极限值为函数y=f(x)在点x0处的导数记为f(x0),即导数第二定义(三)导函数与导数如果函数y=f(x)在开区间I内每一点都可导,就称函数f(x)在区间I内可导。
这时函数y=f(x)对于区间I内的每一个确定的x值,都对应着一个确定的导数,这就构成一个新的函数,称这个函数为原来函数y=f(x)的导函数,记作y,f(x),dy/dx,df(x)/dx。
导函数简称导数。
(四)单调性及其应用1、利用导数研究多项式函数单调性的一般步骤(1)求f(x)(2)确定f(x)在(a,b)内符号(3)若f(x)0在(a,b)上恒成立,则f(x)在(a,b)上是增函数;若f(x)0在(a,b)上恒成立,则f(x)在(a,b)上是减函数2、用导数求多项式函数单调区间的一般步骤(1)求f(x)(2)f(x)0的解集与定义域的交集的对应区间为增区间;f(x)0的解集与定义域的交集的对应区间为减区间。
高中数学基础知识点总结一、自变量x和因变量y有如下关系:y=kx+b则此时称y是x的一次函数。
特别地,当b=0时,y是x的正比例函数。
即:y=kx(k为常数,k≠0)二、一次函数的性质:1、y的变化值与对应的x的变化值成正比例,比值为k即:y=kx+b(k为任意不为零的实数b取任何实数)2、当x=0时,b为函数在y轴上的截距。
2023广西高考文科数学试卷+答案
![2023广西高考文科数学试卷+答案](https://img.taocdn.com/s3/m/3dc513d60875f46527d3240c844769eae009a3da.png)
2023广西高考文科数学试卷+答案2023广西高考文科数学试卷+答案高中数学知识点总结一、平面的基本性质与推论1、平面的基本性质:公理1如果一条直线的两点在一个平面内,那么这条直线在这个平面内;公理2过不在一条直线上的三点,有且只有一个平面;公理3如果两个不重合的平面有一个公共点,那么它们有且只有一条过该点的公共直线。
2、空间点、直线、平面之间的位置关系:直线与直线—平行、相交、异面;直线与平面—平行、相交、直线属于该平面(线在面内,最易忽视);平面与平面—平行、相交。
3、异面直线:平面外一点A与平面一点B的连线和平面内不经过点B的直线是异面直线(判定);所成的角范围(0,90)度(平移法,作平行线相交得到夹角或其补角);两条直线不是异面直线,则两条直线平行或相交(反证);异面直线不同在任何一个平面内;求异面直线所成的角:平移法,把异面问题转化为相交直线的夹角。
二、空间中的平行关系1、直线与平面平行(核心)定义:直线和平面没有公共点。
判定:不在一个平面内的一条直线和平面内的一条直线平行,则该直线平行于此平面(由线线平行得出)。
性质:一条直线和一个平面平行,经过这条直线的平面和这个平面相交,则这条直线就和两平面的交线平行。
2、平面与平面平行定义:两个平面没有公共点。
判定:一个平面内有两条相交直线平行于另一个平面,则这两个平面平行。
性质:两个平面平行,则其中一个平面内的直线平行于另一个平面;如果两个平行平面同时与第三个平面相交,那么它们的交线平行。
3、常利用三角形中位线、平行四边形对边、已知直线作一平面找其交线。
三、空间中的垂直关系1、直线与平面垂直定义:直线与平面内任意一条直线都垂直。
判定:如果一条直线与一个平面内的两条相交的直线都垂直,则该直线与此平面垂直。
性质:垂直于同一直线的两平面平行。
推论:如果在两条平行直线中,有一条垂直于一个平面,那么另一条也垂直于这个平面。
直线和平面所成的角:【0,90】度,平面内的一条斜线和它在平面内的射影说成的锐角,特别规定垂直90度,在平面内或者平行0度。
2024年广西高考数学试题(含答案)
![2024年广西高考数学试题(含答案)](https://img.taocdn.com/s3/m/f907454215791711cc7931b765ce05087632753b.png)
2024年广西高考数学试题及答案本试卷共10页,19小题,满分150分.注意事项:1.答题前,先将自己的姓名、准考证号、考场号、座位号填写在试卷和答题卡上,并将准考证号条形码粘贴在答题卡上的指定位置.2.选择题的作答:每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑.写在试卷、草稿纸和答题卡上的非答题区域均无效.3.填空题和解答题的作答:用黑色签字笔直接答在答题卡上对应的答题区域内.写在试卷、草稿纸和答题卡上的非答题区域均无效.4.考试结束后,请将本试卷和答题卡一并上交.一、单项选择题:本大题共 8 小题,每小题 5 分,共 40 分. 在每小题给出的四个选项中,只有一个选项是正确的.请把正确的选项填涂在答题卡相应的位置上.1.已知1i z =--,则z =( )A .0B .1C D .22.已知命题p :x ∀∈R ,|1|1x +>;命题q :0x ∃>,3x x =,则( )A .p 和q 都是真命题B .p ⌝和q 都是真命题C .p 和q ⌝都是真命题D .p ⌝和q ⌝都是真命题3.已知向量,a b满足1,22a a b =+= ,且()2b a b -⊥ ,则b = ( )A .12B C D .14.某农业研究部门在面积相等的100块稻田上种植一种新型水稻,得到各块稻田的亩产量(单位:kg )并部分整理下表亩产量[900,950)[950,1000)[1000,1050)[1100,1150)[1150,1200)频数612182410据表中数据,结论中正确的是( )A .100块稻田亩产量的中位数小于1050kgB .100块稻田中亩产量低于1100kg 的稻田所占比例超过80%C .100块稻田亩产量的极差介于200kg 至300kg 之间D .100块稻田亩产量的平均值介于900kg 至1000kg 之间5.已知曲线C :2216x y +=(0y >),从C 上任意一点P 向x 轴作垂线段PP ',P '为垂足,则线段PP '的中点M 的轨迹方程为( )A .221164x y +=(0y >)B .221168x y +=(0y >)C .221164y x +=(0y >)D .221168y x +=(0y >)6.设函数2()(1)1f x a x =+-,()cos 2g x x ax =+,当(1,1)x ∈-时,曲线()y f x =与()y g x =恰有一个交点,则=a ( )A .1-B .12C .1D .27.已知正三棱台111ABC A B C -的体积为523,6AB =,112A B =,则1A A 与平面ABC 所成角的正切值为( )A .12B .1C .2D .38.设函数()()ln()f x x a x b =++,若()0f x ≥,则22a b +的最小值为( )A .18B .14C .12D .1二、多项选择题:本大题共 3 小题,每小题 6 分,共 18 分. 在每小题给出的四个选项中,有多项符合题目要求. 全部选对得 6 分,选对但不全的得部分分,有选错的得0分.9.对于函数()sin 2f x x =和π()sin(2)4g x x =-,下列正确的有( )A .()f x 与()g x 有相同零点B .()f x 与()g x 有相同最大值C .()f x 与()g x 有相同的最小正周期D .()f x 与()g x 的图像有相同的对称轴10.抛物线C :24y x =的准线为l ,P 为C 上的动点,过P 作22:(4)1A x y +-=⊙的一条切线,Q 为切点,过P 作l 的垂线,垂足为B ,则( )A .l 与A 相切B .当P ,A ,B 三点共线时,||PQ =C .当||2PB =时,PA AB⊥D .满足||||PA PB =的点P 有且仅有2个11.设函数32()231f x x ax =-+,则( )A .当1a >时,()f x 有三个零点B .当0a <时,0x =是()f x 的极大值点C .存在a ,b ,使得x b =为曲线()y f x =的对称轴D .存在a ,使得点()()1,1f 为曲线()y f x =的对称中心三、填空题:本大题共 3 小题,每小题 5 分,共 15 分.12.记n S 为等差数列{}n a 的前n 项和,若347a a +=,2535a a +=,则10S = .13.已知α为第一象限角,β为第三象限角,tan tan 4αβ+=,tan tan 1αβ=,则sin()αβ+= .14.在如图的4×4方格表中选4个方格,要求每行和每列均恰有一个方格被选中,则共有 种选法,在所有符合上述要求的选法中,选中方格中的4个数之和的最大值是 .四、解答题:本题共 5 小题,共 77 分. 解答应写出文字说明、证明过程或演算步骤.15.记ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,已知sin 2A A =.(1)求A .(2)若2a =sin sin 2C c B =,求ABC 的周长.16.已知函数3()e x f x ax a =--.(1)当1a =时,求曲线()y f x =在点()1,(1)f 处的切线方程;(2)若()f x 有极小值,且极小值小于0,求a 的取值范围.17.如图,平面四边形ABCD 中,8AB =,3CD =,AD =90ADC ︒∠=,30BAD ︒∠=,点E ,F 满足25AE AD = ,12AF AB =,将AEF △沿EF 对折至PEF !,使得PC =(1)证明:EF PD ⊥;(2)求面PCD 与面PBF 所成的二面角的正弦值.18.某投篮比赛分为两个阶段,每个参赛队由两名队员组成,比赛具体规则如下:第一阶段由参赛队中一名队员投篮3次,若3次都未投中,则该队被淘汰,比赛成员为0分;若至少投中一次,则该队进入第二阶段,由该队的另一名队员投篮3次,每次投中得5分,未投中得0分.该队的比赛成绩为第二阶段的得分总和.某参赛队由甲、乙两名队员组成,设甲每次投中的概率为p ,乙每次投中的概率为q ,各次投中与否相互独立.(1)若0.4p =,0.5q =,甲参加第一阶段比赛,求甲、乙所在队的比赛成绩不少于5分的概率.(2)假设0p q <<,(i )为使得甲、乙所在队的比赛成绩为15分的概率最大,应该由谁参加第一阶段比赛?(ii )为使得甲、乙,所在队的比赛成绩的数学期望最大,应该由谁参加第一阶段比赛?19.已知双曲线()22:0C x y m m -=>,点()15,4P 在C 上,k 为常数,01k <<.按照如下方式依次构造点()2,3,...n P n =,过1n P -作斜率为k 的直线与C 的左支交于点1n Q -,令n P 为1n Q -关于y 轴的对称点,记n P 的坐标为(),n n x y .(1)若12k =,求22,x y ;(2)证明:数列{}n n x y -是公比为11kk+-的等比数列;(3)设n S 为12n n n P P P ++ 的面积,证明:对任意的正整数n ,1n n S S +=.1.C【分析】由复数模的计算公式直接计算即可.【详解】若1i z =--=故选:C.2.B【分析】对于两个命题而言,可分别取=1x -、1x =,再结合命题及其否定的真假性相反即可得解.【详解】对于p 而言,取=1x -,则有101x +=<,故p 是假命题,p ⌝是真命题,对于q 而言,取1x =,则有3311x x ===,故q 是真命题,q ⌝是假命题,综上,p ⌝和q 都是真命题.故选:B.3.B【分析】由()2b a b -⊥ 得22b a b =⋅,结合1,22a a b =+= ,得22144164a b b b +⋅+=+= ,由此即可得解.【详解】因为()2b a b -⊥ ,所以()20b a b -⋅= ,即22b a b =⋅,又因为1,22a a b =+=,所以22144164a b b b +⋅+=+= ,故选:B.4.C【分析】计算出前三段频数即可判断A ;计算出低于1100kg 的频数,再计算比例即可判断B ;根据极差计算方法即可判断C ;根据平均值计算公式即可判断D.【详解】对于 A, 根据频数分布表可知, 612183650++=<,所以亩产量的中位数不小于 1050kg , 故 A 错误;对于B ,亩产量不低于1100kg 的频数为341024=+,所以低于1100kg 的稻田占比为1003466%100-=,故B 错误;对于C ,稻田亩产量的极差最大为1200900300-=,最小为1150950200-=,故C 正确;对于D ,由频数分布表可得,亩产量在[1050,1100)的频数为100(612182410)30-++++=,所以平均值为1(692512975181025301075241125101175)1067100⨯⨯+⨯+⨯+⨯+⨯+⨯=,故D 错误.故选;C.5.A【分析】设点(,)M x y ,由题意,根据中点的坐标表示可得(,2)P x y ,代入圆的方程即可求解.【详解】设点(,)M x y ,则0(,),(,0)P x y P x ',因为M 为PP '的中点,所以02y y =,即(,2)P x y ,又P 在圆2216(0)x y y +=>上,所以22416(0)x y y +=>,即221(0)164x y y +=>,即点M 的轨迹方程为221(0)164x y y +=>.故选:A 6.D【分析】解法一:令()()21,cos a x F x ax G x =-=+,分析可知曲线()y F x =与()y G x =恰有一个交点,结合偶函数的对称性可知该交点只能在y 轴上,即可得2a =,并代入检验即可;解法二:令()()()(),1,1h x f x g x x =-∈-,可知()h x 为偶函数,根据偶函数的对称性可知()h x 的零点只能为0,即可得2a =,并代入检验即可.【详解】解法一:令()()f x g x =,即2(1)1cos 2a x x ax +-=+,可得21cos a x ax -=+,令()()21,cos a x F x ax G x =-=+,原题意等价于当(1,1)x ∈-时,曲线()y F x =与()y G x =恰有一个交点,注意到()(),F x G x 均为偶函数,可知该交点只能在y 轴上,可得()()00F G =,即11a -=,解得2a =,若2a =,令()()F x G x =,可得221cos 0x x +-=因为()1,1x ∈-,则220,1cos 0x x ≥-≥,当且仅当0x =时,等号成立,可得221cos 0x x +-≥,当且仅当0x =时,等号成立,则方程221cos 0x x +-=有且仅有一个实根0,即曲线()y F x =与()y G x =恰有一个交点,所以2a =符合题意;综上所述:2a =.解法二:令()()()2()1cos ,1,1h x f x g x ax a x x =-=+--∈-,原题意等价于()h x 有且仅有一个零点,因为()()()()221cos 1cos h x a x a x ax a x h x -=-+---=+--=,则()h x 为偶函数,根据偶函数的对称性可知()h x 的零点只能为0,即()020h a =-=,解得2a =,若2a =,则()()221cos ,1,1h x x x x =+-∈-,又因为220,1cos 0x x ≥-≥当且仅当0x =时,等号成立,可得()0h x ≥,当且仅当0x =时,等号成立,即()h x 有且仅有一个零点0,所以2a =符合题意;故选:D.7.B【分析】解法一:根据台体的体积公式可得三棱台的高h =的结构特征求得AM =111ABC A B C -补成正三棱锥-P ABC ,1A A 与平面ABC 所成角即为PA 与平面ABC 所成角,根据比例关系可得18P ABC V -=,进而可求正三棱锥-P ABC 的高,即可得结果.【详解】解法一:分别取11,BC B C 的中点1,D D ,则11AD A D =可知1111166222ABC A B C S S =⨯⨯==⨯= 设正三棱台111ABC A B C -的为h ,则(11115233ABC A B C V h -==,解得h =如图,分别过11,A D 作底面垂线,垂足为,M N ,设AM x =,则1AADN AD AM MN x=--=,可得1DD==结合等腰梯形11BCC B可得22211622BB DD-⎛⎫=+⎪⎝⎭,即()221616433x x+=-++,解得x=所以1A A与平面ABC所成角的正切值为11tan1A MA ADAMÐ==;解法二:将正三棱台111ABC A B C-补成正三棱锥-P ABC,则1A A与平面ABC所成角即为PA与平面ABC所成角,因为11113PA A BPA AB==,则111127P A B CP ABCVV--=,可知1112652273ABC A B C P ABCV V--==,则18P ABCV-=,设正三棱锥-P ABC的高为d,则11661832P ABCV d-=⨯⨯⨯=,解得d=,取底面ABC的中心为O,则PO⊥底面ABC,且AO=所以PA与平面ABC所成角的正切值tan1POPAOAO∠==.故选:B.8.C【分析】解法一:由题意可知:()f x的定义域为(),b-+∞,分类讨论a-与,1b b--的大小关系,结合符号分析判断,即可得1b a =+,代入可得最值;解法二:根据对数函数的性质分析ln()x b +的符号,进而可得x a +的符号,即可得1b a =+,代入可得最值.【详解】解法一:由题意可知:()f x 的定义域为(),b -+∞,令0x a +=解得x a =-;令ln()0x b +=解得1x b =-;若-≤-a b ,当(),1x b b ∈--时,可知()0,ln 0x a x b +>+<,此时()0f x <,不合题意;若1b a b -<-<-,当(),1x a b ∈--时,可知()0,ln 0x a x b +>+<,此时()0f x <,不合题意;若1a b -=-,当(),1x b b ∈--时,可知()0,ln 0x a x b +<+<,此时()0f x >;当[)1,x b ∈-+∞时,可知()0,ln 0x a x b +≥+≥,此时()0f x ≥;可知若1a b -=-,符合题意;若1a b ->-,当()1,x b a ∈--时,可知()0,ln 0x a x b +<+>,此时()0f x <,不合题意;综上所述:1a b -=-,即1b a =+,则()2222211112222a b a a a ⎛⎫=++=++≥ ⎪⎝⎭+,当且仅当11,22a b =-=时,等号成立,所以22a b +的最小值为12;解法二:由题意可知:()f x 的定义域为(),b -+∞,令0x a +=解得x a =-;令ln()0x b +=解得1x b =-;则当(),1x b b ∈--时,()ln 0x b +<,故0x a +≤,所以10b a -+≤;()1,x b ∈-+∞时,()ln 0x b +>,故0x a +≥,所以10b a -+≥;故10b a -+=, 则()2222211112222a b a a a ⎛⎫=++=++≥ ⎪⎝⎭+,当且仅当11,22a b =-=时,等号成立,所以22a b +的最小值为12.故选:C.【点睛】关键点点睛:分别求0x a +=、ln()0x b +=的根,以根和函数定义域为临界,比较大小分类讨论,结合符号性分析判断.9.BC【分析】根据正弦函数的零点,最值,周期公式,对称轴方程逐一分析每个选项即可.【详解】A 选项,令()sin 20f x x ==,解得π,2k x k =∈Z ,即为()f x 零点,令π()sin(2)04g x x =-=,解得ππ,28k x k =+∈Z ,即为()g x 零点,显然(),()f x g x 零点不同,A 选项错误;B 选项,显然max max ()()1f x g x ==,B 选项正确;C 选项,根据周期公式,(),()f x g x 的周期均为2ππ2=,C 选项正确;D 选项,根据正弦函数的性质()f x 的对称轴满足πππ2π,224k x k x k =+⇔=+∈Z ,()g x 的对称轴满足πππ3π2π,4228k x k x k -=+⇔=+∈Z ,显然(),()f x g x 图像的对称轴不同,D 选项错误.故选:BC 10.ABD【分析】A 选项,抛物线准线为=1x -,根据圆心到准线的距离来判断;B 选项,,,P A B 三点共线时,先求出P 的坐标,进而得出切线长;C 选项,根据2PB =先算出P 的坐标,然后验证1PA AB k k =-是否成立;D 选项,根据抛物线的定义,PB PF =,于是问题转化成PA PF =的P 点的存在性问题,此时考察AF 的中垂线和抛物线的交点个数即可,亦可直接设P 点坐标进行求解.【详解】A 选项,抛物线24y x =的准线为=1x -,A 的圆心(0,4)到直线=1x -的距离显然是1,等于圆的半径,故准线l 和A 相切,A 选项正确;B 选项,,,P A B 三点共线时,即PA l ⊥,则P 的纵坐标4P y =,由24P P y x =,得到4P x =,故(4,4)P ,此时切线长PQ ===,B 选项正确;C 选项,当2PB =时,1P x =,此时244P P y x ==,故(1,2)P 或(1,2)P -,当(1,2)P 时,(0,4),(1,2)A B -,42201PA k -==--,4220(1)AB k -==--,不满足1PA AB k k =-;当(1,2)P -时,(0,4),(1,2)A B -,4(2)601PA k --==--,4(2)60(1)AB k --==--,不满足1PA AB k k =-;于是PA AB ⊥不成立,C 选项错误;D 选项,方法一:利用抛物线定义转化根据抛物线的定义,PB PF =,这里(1,0)F ,于是PA PB =时P 点的存在性问题转化成PA PF =时P 点的存在性问题,(0,4),(1,0)A F ,AF 中点1,22⎛⎫ ⎪⎝⎭,AF 中垂线的斜率为114AF k -=,于是AF 的中垂线方程为:2158x y +=,与抛物线24y x =联立可得216300y y -+=,2164301360∆=-⨯=>,即AF 的中垂线和抛物线有两个交点,即存在两个P 点,使得PA PF =,D 选项正确.方法二:(设点直接求解)设2,4t P t ⎛⎫⎪⎝⎭,由PB l ⊥可得()1,B t -,又(0,4)A ,又PA PB =,214t =+,整理得216300t t -+=,2164301360∆=-⨯=>,则关于t 的方程有两个解,即存在两个这样的P 点,D 选项正确.故选:ABD11.AD【分析】A 选项,先分析出函数的极值点为0,x x a ==,根据零点存在定理和极值的符号判断出()f x 在(1,0),(0,),(,2)a a a -上各有一个零点;B 选项,根据极值和导函数符号的关系进行分析;C 选项,假设存在这样的,a b ,使得x b =为()f x 的对称轴,则()(2)f x f b x =-为恒等式,据此计算判断;D 选项,若存在这样的a ,使得(1,33)a -为()f x 的对称中心,则()(2)66f x f x a +-=-,据此进行计算判断,亦可利用拐点结论直接求解.【详解】A 选项,2()666()f x x ax x x a '=-=-,由于1a >,故()(),0,x a ∞∞∈-⋃+时()0f x '>,故()f x 在()(),0,,a ∞∞-+上单调递增,(0,)x a ∈时,()0f x '<,()f x 单调递减,则()f x 在0x =处取到极大值,在x a =处取到极小值,由(0)10=>f ,3()10f a a =-<,则(0)()0f f a <,根据零点存在定理()f x 在(0,)a 上有一个零点,又(1)130f a -=--<,3(2)410f a a =+>,则(1)(0)0,()(2)0f f f a f a -<<,则()f x 在(1,0),(,2)a a -上各有一个零点,于是1a >时,()f x 有三个零点,A 选项正确;B 选项,()6()f x x x a '=-,a<0时,(,0),()0x a f x '∈<,()f x 单调递减,,()0x ∈+∞时()0f x '>,()f x 单调递增,此时()f x 在0x =处取到极小值,B 选项错误;C 选项,假设存在这样的,a b ,使得x b =为()f x 的对称轴,即存在这样的,a b 使得()(2)f x f b x =-,即32322312(2)3(2)1x ax b x a b x -+=---+,根据二项式定理,等式右边3(2)b x -展开式含有3x 的项为303332C (2)()2b x x -=-,于是等式左右两边3x 的系数都不相等,原等式不可能恒成立,于是不存在这样的,a b ,使得x b =为()f x 的对称轴,C 选项错误;D 选项,方法一:利用对称中心的表达式化简(1)33f a =-,若存在这样的a ,使得(1,33)a -为()f x 的对称中心,则()(2)66f x f x a +-=-,事实上,32322()(2)2312(2)3(2)1(126)(1224)1812f x f x x ax x a x a x a x a +-=-++---+=-+-+-,于是266(126)(1224)1812a a x a x a-=-+-+-即126012240181266a a a a -=⎧⎪-=⎨⎪-=-⎩,解得2a =,即存在2a =使得(1,(1))f 是()f x 的对称中心,D 选项正确.方法二:直接利用拐点结论任何三次函数都有对称中心,对称中心的横坐标是二阶导数的零点,32()231f x x ax =-+,2()66f x x ax '=-,()126f x x a ''=-,由()02af x x ''=⇔=,于是该三次函数的对称中心为,22a a f ⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭,由题意(1,(1))f 也是对称中心,故122aa =⇔=,即存在2a =使得(1,(1))f 是()f x 的对称中心,D 选项正确.故选:AD【点睛】结论点睛:(1)()f x 的对称轴为()(2)x b f x f b x =⇔=-;(2)()f x 关于(,)a b 对称()(2)2f x f a x b ⇔+-=;(3)任何三次函数32()f x ax bx cx d =+++都有对称中心,对称中心是三次函数的拐点,对称中心的横坐标是()0f x ''=的解,即,33b b f a a ⎛⎫⎛⎫-- ⎪ ⎪⎝⎭⎝⎭是三次函数的对称中心12.95【分析】利用等差数列通项公式得到方程组,解出1,a d ,再利用等差数列的求和公式节即可得到答案.【详解】因为数列n a 为等差数列,则由题意得()1111237345a d a d a d a d +++=⎧⎨+++=⎩,解得143a d =-⎧⎨=⎩,则()10110910104453952S a d ⨯=+=⨯-+⨯=.故答案为:95.13.【分析】法一:根据两角和与差的正切公式得()tan αβ+=-αβ+的范围,最后结合同角的平方和关系即可得到答案;法二:利用弦化切的方法即可得到答案.【详解】法一:由题意得()tan tan tan 1tan tan αβαβαβ++===--因为π3π2π,2π,2ππ,2π22k k m m αβ⎛⎫⎛⎫∈+∈++ ⎪ ⎪⎝⎭⎝⎭,,Z k m ∈,则()()()22ππ,22π2πm k m k αβ+∈++++,,Z k m ∈,又因为()tan 0αβ+=-<,则()()3π22π,22π2π2m k m k αβ⎛⎫+∈++++ ⎪⎝⎭,,Z k m ∈,则()sin 0αβ+<,则()()sin cos αβαβ+=-+ ()()22sin cos 1αβαβ+++=,解得()sin αβ+=法二: 因为α为第一象限角,β为第三象限角,则cos 0,cos 0αβ><,cos α==,cos β=则sin()sin cos cos sin cos cos (tan tan )αβαβαβαβαβ+=+=+4cos cos αβ=====故答案为:14. 24 112【分析】由题意可知第一、二、三、四列分别有4、3、2、1个方格可选;利用列举法写出所有的可能结果,即可求解.【详解】由题意知,选4个方格,每行和每列均恰有一个方格被选中,则第一列有4个方格可选,第二列有3个方格可选,第三列有2个方格可选,第四列有1个方格可选,所以共有432124⨯⨯⨯=种选法;每种选法可标记为(,,,)a b c d ,a b c d ,,,分别表示第一、二、三、四列的数字,则所有的可能结果为:(11,22,33,44),(11,22,34,43),(11,22,33,44),(11,22,34,42),(11,24,33,43),(11,24,33,42),(12,21,33,44),(12,21,34,43),(12,22,31,44),(12,22,34,40),(12,24,31,43),(12,24,33,40),(13,21,33,44),(13,21,34,42),(13,22,31,44),(13,22,34,40),(13,24,31,42),(13,24,33,40),(15,21,33,43),(15,21,33,42),(15,22,31,43),(15,22,33,40),(15,22,31,42),(15,22,33,40),所以选中的方格中,(15,21,33,43)的4个数之和最大,为152********+++=.故答案为:24;112【点睛】关键点点睛:解决本题的关键是确定第一、二、三、四列分别有4、3、2、1个方格可选,利用列举法写出所有的可能结果.15.(1)π6A =(2)2+【分析】(1)根据辅助角公式对条件sin 2A A =进行化简处理即可求解,常规方法还可利用同角三角函数的关系解方程组,亦可利用导数,向量数量积公式,万能公式解决;(2)先根据正弦定理边角互化算出B ,然后根据正弦定理算出,b c 即可得出周长.【详解】(1)方法一:常规方法(辅助角公式)由sin 2A A =可得1sin 12A A =,即sin()1π3A +=,由于ππ4π(0,π)(,)333A A ∈⇒+∈,故ππ32A +=,解得π6A =方法二:常规方法(同角三角函数的基本关系)由sin 2A A =,又22sin cos 1A A +=,消去sin A 得到:224cos 30(2cos 0A A A -+=⇔=,解得cos A =又(0,π)A ∈,故π6A =方法三:利用极值点求解设()sin (0π)f x x x x =<<,则π()2sin (0π)3f x x x ⎛⎫=+<< ⎪⎝⎭,显然π6x =时,max ()2f x =,注意到π()sin 22sin(3f A A A A =+==+,max ()()f x f A =,在开区间(0,π)上取到最大值,于是x A =必定是极值点,即()0cos f A A A '==,即tan A =又(0,π)A ∈,故π6A =方法四:利用向量数量积公式(柯西不等式)设(sin ,cos )a b A A ==,由题意,sin 2a b A A ⋅==,根据向量的数量积公式,cos ,2cos ,a b a b a b a b ⋅== ,则2cos ,2cos ,1a b a b =⇔= ,此时,0a b =,即,a b 同向共线,根据向量共线条件,1cos sin tan A A A ⋅=⇔又(0,π)A ∈,故π6A =方法五:利用万能公式求解设tan 2A t =,根据万能公式,22sin 21t A A t ==+整理可得,2222(2(20((2t t t -+==-,解得tan22A t ==22tan 1t A t ==-,又(0,π)A ∈,故π6A =(2)由题设条件和正弦定理sin sin 2sin 2sin sin cos C c B B C C B B =⇔=,又,(0,π)B C ∈,则sin sin 0B C ≠,进而cos B =π4B =,于是7ππ12C A B =--=,sin sin(π)sin()sin cos sin cos C A B A B A B B A =--=+=+=由正弦定理可得,sin sin sin a b cA B C==,即2ππ7πsin sin sin 6412b c==,解得b c ==故ABC 的周长为216.(1)()e 110x y ---=(2)()1,+∞【分析】(1)求导,结合导数的几何意义求切线方程;(2)解法一:求导,分析0a ≤和0a >两种情况,利用导数判断单调性和极值,分析可得2ln 10a a +->,构建函数解不等式即可;解法二:求导,可知()e '=-xf x a 有零点,可得0a >,进而利用导数求()f x 的单调性和极值,分析可得2ln 10a a +->,构建函数解不等式即可.【详解】(1)当1a =时,则()e 1x f x x =--,()e 1x f x '=-,可得(1)e 2f =-,(1)e 1f '=-,即切点坐标为()1,e 2-,切线斜率e 1k =-,所以切线方程为()()()e 2e 11y x --=--,即()e 110x y ---=.(2)解法一:因为()f x 的定义域为R ,且()e '=-x f x a ,若0a ≤,则()0f x '≥对任意x ∈R 恒成立,可知()f x 在R 上单调递增,无极值,不合题意;若0a >,令()0f x '>,解得ln x a >;令()0f x '<,解得ln x a <;可知()f x 在(),ln a -∞内单调递减,在()ln ,a +∞内单调递增,则()f x 有极小值()3ln ln f a a a a a =--,无极大值,由题意可得:()3ln ln 0f a a a a a =--<,即2ln 10a a +->,构建()2ln 1,0g a a a a =+->,则()120g a a a'=+>,可知()g a 在()0,∞+内单调递增,且()10g =,不等式2ln 10a a +->等价于()()1g a g >,解得1a >,所以a 的取值范围为()1,+∞;解法二:因为()f x 的定义域为R ,且()e '=-x f x a ,若()f x 有极小值,则()e '=-x f x a 有零点,令()e 0x f x a '=-=,可得e x a =,可知e x y =与y a =有交点,则0a >,若0a >,令()0f x '>,解得ln x a >;令()0f x '<,解得ln x a <;可知()f x 在(),ln a -∞内单调递减,在()ln ,a +∞内单调递增,则()f x 有极小值()3ln ln f a a a a a =--,无极大值,符合题意,由题意可得:()3ln ln 0f a a a a a =--<,即2ln 10a a +->,构建()2ln 1,0g a a a a =+->,因为则2,ln 1y a y a ==-在()0,∞+内单调递增,可知()g a 在()0,∞+内单调递增,且()10g =,不等式2ln 10a a +->等价于()()1g a g >,解得1a >,所以a 的取值范围为()1,+∞.17.(1)证明见解析【分析】(1)由题意,根据余弦定理求得2EF =,利用勾股定理的逆定理可证得EF AD ⊥,则,EF PE EF DE ⊥⊥,结合线面垂直的判定定理与性质即可证明;(2)由(1),根据线面垂直的判定定理与性质可证明PE ED ⊥,建立如图空间直角坐标系E xyz -,利用空间向量法求解面面角即可.【详解】(1)由218,,52AB AD AE AD AF AB ====,得4AE AF ==,又30BAD ︒∠=,在AEF △中,由余弦定理得2EF ,所以222AE EF AF +=,则AE EF ⊥,即EF AD ⊥,所以,EF PE EF DE ⊥⊥,又,PE DE E PE DE =⊂ 、平面PDE ,所以EF ⊥平面PDE ,又PD ⊂平面PDE ,故EF ⊥PD ;(2)连接CE,由90,3ADC ED CD ︒∠===,则22236CE ED CD =+=,在PEC中,6PC PE EC ===,得222EC PE PC +=,所以PE EC ⊥,由(1)知PE EF ⊥,又,EC EF E EC EF =⊂ 、平面ABCD ,所以PE ⊥平面ABCD ,又ED ⊂平面ABCD ,所以PE ED ⊥,则,,PE EF ED 两两垂直,建立如图空间直角坐标系E xyz -,则(0,0,0),(0,0,(2,0,0),(0,E P D C F A -,由F 是AB的中点,得(4,B ,所以(4,(2,0,PC PD PB PF =-=-=-=-,设平面PCD 和平面PBF 的一个法向量分别为111222(,,),(,,)n x y z m x y z == ,则11111300n PC x n PD ⎧⋅=+-=⎪⎨⋅=-=⎪⎩,222224020m PB x m PF x ⎧⋅=+-=⎪⎨⋅=-=⎪⎩ ,令122,y x ==,得11220,3,1,1x z y z ===-=,所以(0,2,3),1,1)n m ==-,所以cos ,m nm n m n ⋅===设平面PCD 和平面PBF 所成角为θ,则sin θ==,即平面PCD 和平面PBF.18.(1)0.686(2)(i )由甲参加第一阶段比赛;(i )由甲参加第一阶段比赛;【分析】(1)根据对立事件的求法和独立事件的乘法公式即可得到答案;(2)(i )首先各自计算出331(1)P p q ⎡⎤=--⎣⎦甲,331(1)Pq p ⎡⎤=--⋅⎣⎦乙,再作差因式分解即可判断;(ii)首先得到X 和Y 的所有可能取值,再按步骤列出分布列,计算出各自期望,再次作差比较大小即可.【详解】(1)甲、乙所在队的比赛成绩不少于5分,则甲第一阶段至少投中1次,乙第二阶段也至少投中1次,∴比赛成绩不少于5分的概率()()3310.610.50.686P =--=.(2)(i )若甲先参加第一阶段比赛,则甲、乙所在队的比赛成绩为15分的概率为331(1)P p q ⎡⎤=--⎣⎦甲,若乙先参加第一阶段比赛,则甲、乙所在队的比赛成绩为15分的概率为331(1)P q p ⎡⎤=--⋅⎣⎦乙,0p q << ,3333()()P P q q pq p p pq ∴-=---+-甲乙()2222()()()()()()q p q pq p p q p pq q pq p pq q pq ⎡⎤=-+++-⋅-+-+--⎣⎦()2222()333p q p q p q pq =---3()()3()[(1)(1)1]0pq p q pq p q pq p q p q =---=---->,P P ∴>甲乙,应该由甲参加第一阶段比赛.(ii)若甲先参加第一阶段比赛,数学成绩X 的所有可能取值为0,5,10,15,333(0)(1)1(1)(1)P X p p q ⎡⎤==-+--⋅-⎣⎦,32123(5)1(1)C (1)P X p q q ⎡⎤==--⋅-⎣⎦,3223(10)1(1)C (1)P X p q q ⎡⎤==--⋅-⎣⎦,33(15)1(1)P X p q ⎡⎤==--⋅⎣⎦,()332()151(1)1533E X p q p p p q⎡⎤∴=--=-+⋅⎣⎦记乙先参加第一阶段比赛,数学成绩Y 的所有可能取值为0,5,10,15,同理()32()1533E Y q q q p=-+⋅()()15[()()3()]E X E Y pq p q p q pq p q ∴-=+---15()(3)p q pq p q =-+-,因为0p q <<,则0p q -<,31130p q +-<+-<,则()(3)0p q pq p q -+->,∴应该由甲参加第一阶段比赛.【点睛】关键点点睛:本题第二问的关键是计算出相关概率和期望,采用作差法并因式分解从而比较出大小关系,最后得到结论.19.(1)23x =,20y =(2)证明见解析(3)证明见解析【分析】(1)直接根据题目中的构造方式计算出2P 的坐标即可;(2)根据等比数列的定义即可验证结论;(3)思路一:使用平面向量数量积和等比数列工具,证明n S 的取值为与n 无关的定值即可.思路二:使用等差数列工具,证明n S 的取值为与n 无关的定值即可.【详解】(1)由已知有22549m =-=,故C 的方程为229x y -=.当12k =时,过()15,4P 且斜率为12的直线为32x y +=,与229x y -=联立得到22392x x +⎛⎫-= ⎪⎝⎭.解得3x =-或5x =,所以该直线与C 的不同于1P 的交点为()13,0Q -,该点显然在C 的左支上.故()23,0P ,从而23x =,20y =.(2)由于过(),n n n P x y 且斜率为k 的直线为()n n y k x x y =-+,与229x y -=联立,得到方程()()229n n x k x x y --+=.展开即得()()()2221290n n n n k x k y kx x y kx ------=,由于(),n n n P x y 已经是直线()n n y k x x y =-+和229x y -=的公共点,故方程必有一根n x x =.从而根据韦达定理,另一根()2222211n n n n nn k y kx ky x k x x x k k ---=-=--,相应的()2221n n nn n y k y kx y k x x y k +-=-+=-.所以该直线与C 的不同于n P 的交点为222222,11n n n n n nn ky x k x y k y kx Q k k ⎛⎫--+- ⎪--⎝⎭,而注意到n Q 的横坐标亦可通过韦达定理表示为()()2291n n ny kx k x----,故n Q 一定在C 的左支上.所以2212222,11n n n n n nn x k x ky y k y kx P k k +⎛⎫+-+- ⎪--⎝⎭.这就得到21221n n n n x k x ky x k ++-=-,21221n n nn y k y kx y k ++-=-.所以2211222211n n n n n nn n x k x ky y k y kx x y k k +++-+--=---()()222222*********n n n n n n n nn n x k x kx y k y ky k k kx y x y k k k k+++++++=-=-=-----.再由22119x y -=,就知道110x y -≠,所以数列{}n n x y -是公比为11k k +-的等比数列.(3)方法一:先证明一个结论:对平面上三个点,,U V W ,若(),UV a b = ,(),UW c d =,则12UVW S ad bc =- .(若,,U V W 在同一条直线上,约定0UVW S = )证明:1sin ,2UVW S UV UW UV UW =⋅=12UV UW =⋅===12ad bc ===-.证毕,回到原题.由于上一小问已经得到21221n n n n x k x ky x k ++-=-,21221n n nn y k y kx y k ++-=-,故()()22211222221211111n n n n n n n n n n n n x k x ky y k y kx k k kx y x y x y k k k k+++-+-+--+=+=+=+---+.再由22119x y -=,就知道110x y +≠,所以数列{}n n x y +是公比为11kk-+的等比数列.所以对任意的正整数m ,都有n n m n n m x y y x ++-()()()()()()1122n n m n n m n n m n n m n n m n n m n n m n n m x x y y x y y x x x y y x y y x ++++++++=-+-----()()()()1122n n n m n m n n n m n m x y x y x y x y ++++=-+-+-()()()()11112121mmn n n n n n n n k k x y x y x y x y k k -+⎛⎫⎛⎫=-+-+- ⎪ ⎪+-⎝⎭⎝⎭()22111211mmn n k k x y k k ⎛⎫-+⎛⎫⎛⎫=-- ⎪ ⎪ ⎪ ⎪+-⎝⎭⎝⎭⎝⎭911211mmk k k k ⎛⎫-+⎛⎫⎛⎫=- ⎪ ⎪ ⎪ ⎪+-⎝⎭⎝⎭⎝⎭.而又有()()()111,n n n n n n P P x x y y +++=---- ,()122121,n n n n n n P P x x y y ++++++=--,故利用前面已经证明的结论即得()()()()1212112112n n n n P P P n n n n n n n n S S x x y y y y x x ++++++++==---+-- ()()()()12112112n n n n n n n n x x y y y y x x ++++++=-----()()()1212112212n n n n n n n n n n n n x y y x x y y x x y y x ++++++++=-+---2219119119112211211211k k k k k k k k k k k k ⎛⎫-+-+-+⎛⎫⎛⎫⎛⎫⎛⎫=-+--- ⎪ ⎪ ⎪ ⎪ ⎪ ⎪+-+-+-⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭.这就表明n S 的取值是与n 无关的定值,所以1n n S S +=.方法二:由于上一小问已经得到21221n n n n x k x ky x k ++-=-,21221n n n n y k y kx y k ++-=-,故()()22211222221211111n n n n n n n n n nn n x k x ky y k y kx k k kx y x y x y k k k k+++-+-+--+=+=+=+---+.再由22119x y -=,就知道110x y +≠,所以数列{}n n x y +是公比为11kk-+的等比数列.所以对任意的正整数m ,都有n n m n n m x y y x ++-()()()()()()1122n n m n n m n n m n n m n n m n n m n n m n n m x x y y x y y x x x y y x y y x ++++++++=-+-----()()()()1122n n n m n m n n n m n m x y x y x y x y ++++=-+-+-()()()()11112121mmn n n n n n n n k k x y x y x y x y k k -+⎛⎫⎛⎫=-+-+- ⎪ ⎪+-⎝⎭⎝⎭()22111211mmn n k k x y k k ⎛⎫-+⎛⎫⎛⎫=-- ⎪ ⎪ ⎪ ⎪+-⎝⎭⎝⎭⎝⎭911211mmk k k k ⎛⎫-+⎛⎫⎛⎫=- ⎪ ⎪ ⎪ ⎪+-⎝⎭⎝⎭⎝⎭.这就得到232311911211n n n n n n n n k k x y y x x y y x k k ++++++-+⎛⎫-=-=- ⎪+-⎝⎭,以及22131322911211n n n n n n n n k k x y y x x y y x k k ++++++⎛⎫-+⎛⎫⎛⎫-=-=- ⎪ ⎪ ⎪ ⎪+-⎝⎭⎝⎭⎝⎭.两式相减,即得()()()()232313131122n n n n n n n n n n n n n n n n x y y x x y y x x y y x x y y x ++++++++++++---=---.移项得到232131232131n n n n n n n n n n n n n n n n x y y x x y y x y x x y y x x y ++++++++++++--+=--+.故()()()()321213n n n n n n n n y y x x y y x x ++++++--=--.而()333,n n n n n n P P x x y y +++=-- ,()122121,n n n n n n P P x x y y ++++++=--.所以3n n P P + 和12n n P P ++ 平行,这就得到12123n n n n n n P P P P P P S S +++++= ,即1n n S S +=.【点睛】关键点点睛:本题的关键在于将解析几何和数列知识的结合,需要综合运用多方面知识方可得解.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
绝密★启用前
2013年普通高等学校招生全国统一考试
数学(文科)
一、选择题:本大题共12小题,每小题5分.在每小题给出的四个选项中,只有一项是符合题目要求的.
(1)设集合{}{}1,2,3,4,5,1,2,u U A A ===集合则
(A ){}1,2 (B ){}3,4,5 (C ){}1,2,3,4,5 (D )∅
(2)已知a 是第二象限角,5
sin ,cos 13
a a =
=则 (A )1213- (B )513- (C )513 (D )12
13
(3)已知向量()()()()1,1,2,2,,=m n m n m n λλλ=+=++⊥-若则
(A )4- (B )3- (C )-2 (D )-1
(4)不等式222x -<的解集是
(A )()-1,1 (B )()-2,2 (C )()
()-1,00,1 (D )()()-2,00,2
(5)()8
62x x +的展开式中的系数是
(A )28 (B )56 (C )112 (D )224
(6)函数()()()-1
21log 10=f x x f x x ⎛⎫=+
> ⎪⎝⎭
的反函数 (A )
()1021x x >- (B )()1021
x
x ≠- (C )()21x x R -∈ (D )()210x
x ->
(7)已知数列{}n a 满足{}124
30,,103
n n n a a a a ++==-
则的前项和等于 (A )()
-10-61-3 (B )
()-101
1-39
(C )()-1031-3 (D )()-1031+3
(8)已知()()1221,0,1,0,F F C F x -是椭圆的两个焦点过且垂直于轴的直线交于 A B 、两点,
且3AB =,则C 的方程为 (A )22
12x y += (B )22132x y += (C )22143x y += (D )22154
x y +=
(9)若函数()()sin 0=y x ωϕωω=+>的部分图像如图,则 (A )5 (B )4 (C )3 (D )2
(10)已知曲线()4
2
1-128=y x ax a a =+++在点,处切线的斜率为,
(A )9 (B )6 (C )-9 (D )-6
(11)已知正四棱锥1111112,ABCD A B C D AA AB CD BDC -=中,则与平面所成角的正弦值等于
(A )
23 (B 3 (C 2 (D )1
3
(12)已知抛物线()2
:82,2,C C y x M k C =-与点过的焦点,且斜率为的直线与交于
,0,A B MA MB k ==两点,若则
(A )
1
2
(B 2 (C 2 (D )2
二、填空题:本大题共4小题,每小题5分.
(13)设()[)()21,3=f x x f x ∈是以为周期的函数,且当时, .
(14)从进入决赛的6名选手中决出1名一等奖,2名二等奖,3名三等奖,则可能的决赛结果共有 种.(用数字作答)
(15)若x y 、满足约束条件0,34,34,x x y x y ≥⎧⎪
+≥⎨⎪+≤⎩
则z x y =-+
的最小值为
.
(16)已知圆O 和圆K 是球O 的大圆和小圆,其公共弦长等于球O 的半径,
3
602
OK O K =,且圆与圆所在的平面所成角为,
则球O 的表面积等于 .
三、解答题:解答应写出文字说明、证明过程或演算步骤.
17.(本小题满分10分)
等差数列{}n a 中,71994,2,a a a ==
(I )求{}n a 的通项公式;
(II )设{}1
,.n n n n
b b n S na =
求数列的前项和
18.(本小题满分12分)
设
()(),,,,,.
ABC A B C a b c a b c a b c ac ∆++-+=的内角的对边分别为
(I )求;B
(II )若
31
sin sin , C.4A C -=
求
19.(本小题满分12分)
如图,四棱锥902,P ABCD ABC BAD BC AD PAB PAD -∠=∠==∆∆中,,与都是边长为2的等边三角形.
(I )证明:;PB CD ⊥
(II )求点.A PCD 到平面的距离
20.(本小题满分12分)
甲、乙、丙三人进行羽毛球练习赛,其中两人比赛,另一人当裁判,每局比
赛结束时,负的一方在下一局当裁判,设各局中双方获胜的概率均为1
,
2
各局比赛的
结果都相互独立,第1局甲当裁判.
(I)求第4局甲当裁判的概率;
(II)求前4局中乙恰好当1次裁判概率.
21.(本小题满分12分)
已知函数()32=33 1.f x x ax x +++
(I )求()2f ;a x =时,讨论的单调性;
(II )若[)()2,0,.x f x a ∈+∞≥时,求的取值范围
22.(本小题满分12分) 已知双曲线()221222:10,0x y C a b F F a b
-=>>的左、右焦点分别为,,离心率为3,直线2 6.y C =与的两个交点间的距离为
(I )求,;a b ;
(II )2F l C A B 设过的直线与的左、右两支分别相交于、两点,且 11,AF BF -证明:22.AF AB BF 、、成等比数列。