聚丙烯改性 555

合集下载

聚丙烯改性的主要的几种方法

聚丙烯改性的主要的几种方法

聚丙烯改性的主要的几种方法聚丙烯(PP)是一种重要的塑料,具有较高的力学性能、耐化学腐蚀性和隔热性能,广泛应用于包装、电器、纺织、建筑等领域。

然而,PP在一些方面的性能仍然有待改善,这就要求对PP进行适当的改性。

以下是聚丙烯改性的几种主要方法。

1.添加剂改性:添加剂改性是通过向聚丙烯中添加各种添加剂,如增塑剂、抗氧剂、阻燃剂、光稳定剂等,来改善聚丙烯的性能。

添加剂可以提高聚丙烯的柔软度、耐热性、阻燃性等,从而扩展了聚丙烯的应用范围。

2.共混改性:共混改性是将聚丙烯与其他聚合物进行物理混合,在共混体系中形成相容相并形成新的材料。

常用的共混改性体系包括聚丙烯/聚乙烯、聚丙烯/ABS共混体系等。

共混改性可以综合利用不同聚合物的优点,改善聚丙烯的力学性能、热稳定性、耐冲击性等。

3.界面改性:界面改性是通过在聚丙烯和填充剂之间插入界面剂,来增强聚丙烯与填充剂之间的相容性。

常用的界面改性剂有硅烷偶联剂、聚合物接枝剂等。

界面改性可以改善聚丙烯的强度、韧性、耐冲击性和耐热性等性能。

4.离子辐射改性:离子辐射改性是通过辐射聚丙烯,引入交联结构或引发化学反应,改善聚丙烯的性能。

辐射改性可以显著提高聚丙烯的强度、热稳定性、抗老化性能等。

5.高分子改性:高分子改性是将聚丙烯与其他高分子化合物进行共聚或接枝反应,形成新的共聚物或共聚物接枝聚合物。

常用的高分子改性剂有聚苯乙烯、聚氨酯、聚酯等。

高分子改性可以改善聚丙烯的强度、韧性、耐热性和低温性能。

总之,聚丙烯改性的方法有很多种,可以通过添加剂、共混、界面、辐射和高分子改性等不同途径来改善聚丙烯的性能。

这些改性方法可以提高聚丙烯的力学性能、耐热性、耐化学腐蚀性和耐冲击性等,从而满足不同应用领域对材料性能的需求。

聚丙烯化学改性方法

聚丙烯化学改性方法

聚丙烯化学改性方法
聚丙烯化学改性是一种通过化学方法,使聚丙烯改性,其性能大幅改变的工艺。

改性后的聚丙烯具有更优异的力学性能,耐热性和耐化学性,并可以提高材料的分散稳定性、外观质量和耐候性等,在21世纪以来,聚丙烯改性受到越来越多的关注。

1、聚丙烯改性原理
聚丙烯是一种特殊的增韧塑料,改性原理是为了改变原材料的力学性能而引入有机活性基团。

当把有机活性基团嵌入聚丙烯链条中后,能使聚丙烯的玻璃转变温度,拉伸率,弯曲弹性模量和动态力学特性,耐化学性能以及热稳定性得到极大改善。

2、聚丙烯改性方法
(1)物化改性。

物化改性通常将无机物引入聚丙烯材料,进而改善其力学性能和
动态力学特性。

目前常用的物化改性方法有热变形、拉伸处理和磷化、氯化等。

3、聚丙烯改性应用
由于聚丙烯改性材料具有更加优异的力学和高温性能,因此它得到了广泛的应用。

如用来改性汽车部件,能使汽车耐磨性提高,使汽车更耐久;也可以用来生产建筑材料,使墙壁更耐火,更不易发霉;还可以用来生产电线电缆,使电缆更耐火、抗拉性更加优异。

同时,改性的聚丙烯还可以用于工业制品的生产,比如汽车零件、电子元器件等,而且具有耐泡和耐开裂性能。

总之,聚丙烯改性手段多样、性能优异,它的应用非常广泛,可以改变很多建筑、工业制品、汽车零部件等材料的物理性能,使其具备更优异的力学性能,耐热性和耐化学性能,有助于提高现代工业产品的性能和使用寿命,是可持续发展的重要手段。

PP改性工艺全解析(含配方)

PP改性工艺全解析(含配方)

PP改性工艺全解析(含配方)
本文档旨在解析聚丙烯(PP)改性工艺的全过程,并提供相关配方。

以下是详细内容:
1. 聚丙烯(PP)改性概述
聚丙烯是一种常用的高分子材料,具有良好的物理和化学性能。

为了进一步改善其性能,人们开发了多种改性工艺。

2. 常见的聚丙烯改性方式
以下是常见的聚丙烯改性方式:
2.1 增韧改性
增韧改性是指通过添加韧性剂或填充剂来提高聚丙烯的韧性。

常用的增韧剂包括乙烯丙烯橡胶(EPR)、塑料增韧剂等。

填充剂可
以选择碳酸钙、碳酸镁等。

2.2 抗静电改性
抗静电改性主要是为了改善聚丙烯的导电性能,以防止静电积聚。

常用的抗静电剂包括导电纤维、导电粉末等。

2.3 耐热改性
耐热改性是指通过添加耐热剂来提高聚丙烯的耐高温性能。

耐热剂可以选择氧化镁、氧化铝等。

3. 示例配方
以下是一种常见的聚丙烯改性配方示例:
- 聚丙烯:80%
- 乙烯丙烯橡胶(EPR):15%
- 碳酸钙:5%
4. 结论
通过上述分析,我们了解了聚丙烯改性的概述、常见方式及示例配方。

这可以帮助我们在聚丙烯的改性过程中做出正确的决策。

以上是对PP改性工艺的全解析,内容简洁明了。

聚丙烯五大改性方法

聚丙烯五大改性方法

由于聚丙烯在低温下的抗冲击性能差、耐候性不佳、表面装饰性差以及在电、磁、光、热、燃烧等方面的功能性与实际需要的差距,对聚丙烯加以改性,成为当前塑料加工发展最为活跃的,取得成果最为丰盛的领域。

1)共聚共聚是化学改性的重要手段。

除前面丙烯与乙烯单体共聚外,丙烯还可以与氯乙烯、丙烯酸等单体共聚,还可以在PP主链上接枝上化学结构与主链完全不同的聚合物链段,称之为接枝共聚。

如果接枝的聚合物带有极性基团,可以改善PP的粘接特性,以致于在熔融后能牢固地与聚酰胺(尼龙)、金属、玻璃、木材、纸等材料粘合在一起。

日本石油化学公司的QF305就是可用于PA/PP复合膜(管)的粘合性树脂,QF500和QF551则可用于EVOH(乙烯—乙烯醇共聚物,阻隔性极好)/PP复合膜(板)的粘合[6]。

2)氯化或酯化如果在PP主链上通过化学反应接枝上氯(Cl)或其它极性基团,同样可以改变PP的极性。

近年来马来酸酐、丙烯酸等接枝聚丙烯已商品化,获得很多应用。

氯化聚丙烯(PPC)是将PP溶于有机溶剂中,加入少量引发剂(如偶联二异丁腈),在常压和60℃条件下通氯气使之氯化,也可采用悬浮法或悬浮溶剂法氯化。

PPC的氯含量可达20%~40%,有较高的硬度、较好的耐磨性、耐化学腐蚀性,耐热、耐光、耐老化,还使PP具有了一定的难燃性。

PPC开发的主要目的是作为油墨的载体使用,这种油墨可直接用于PP薄膜或其它制品的印刷。

用马来酸酐或丙烯酸在PP熔融状态下接枝大大改变了PP的极性,所得产物可用做增韧改性剂、相容剂使用。

南京塑泰的马来酸酐接枝PP的相关性能参数如下:基体树脂:PP 外观:淡黄本色颗粒接枝率:0.9~1.1MA%熔指:40以上g/10min(190℃,2.16kg)在相容性较差的两种聚合物共混时,往往需要加入分别和两种聚合物相容性都好的第三组分,称之为相容剂。

例如聚丙烯和尼龙-6的相容性极差,单靠机械的力量不能把二者混匀,此时如加入少许已经接枝有顺丁烯二酸酐的聚丙烯,由于顺丁烯二酸酐与尼龙-6的酰胺基团可发生化学反应,就可以大大改善聚丙烯和尼龙-6的相容性。

(整理)聚丙烯表面改性技术及应用

(整理)聚丙烯表面改性技术及应用

聚丙烯表面改性技术与应用周清 6120805020530. 引言聚丙烯(PP)作为通用塑料,以产量大、应用面广以及物美价廉而著称,但聚丙烯具有非极性和结晶性,表面与极性聚合物、无机填料及增强材料等相容性差,导致其染色性、粘接性、抗静电性、亲水性也较差,这些缺点制约了聚丙烯的进一步推广和应用。

聚丙烯的表面改性和功能化处理技术是一种重要的改性方法,研究主要集中在接枝极性单体,如马来酸酐和丙烯酸等,以及带有第二官能团单体,如甲基丙烯酸缩水甘油脂等;是改善PP表面性状性的主要手段,可以提高PP材料与其他极性的界面作用力,增强其亲水性、染色性能、黏结性能和共混高聚物之间的相容性等。

本文主要就聚丙烯材料的表面处理方法以及改性聚丙烯的应用作简单地介绍。

1. 高能辐照表面处理法辐照接枝法是用高能射线照射产生自由基,自由基再与活性单体反应生成接枝共聚物。

与其它接枝法比较,辐照接枝法的优点在于适合各种化学、物理性质稳定的树脂,能够快速且均一地产生活性自由基,而且不需加化学引发剂,不过该方法成本较高。

根据利用辐照获得接枝活性点的方式可以将其分为同时辐照和预辐照两种方法,同时辐照法是将反应单体和PP接枝基体同时放置在辐照环境中,这样在基体上形成活性点的同时就可以进行接枝反应。

预辐照法就是首先辐照PP,使其表面带有活性点,然后再和单体反应。

比较两种方法,预辐照技术更能减少单体均聚物的生成。

辐照接枝法在改善膜或纤维的表面极性方面应用广泛[1]。

除了对基材进行辐照引发接枝反应外,通过异相引发接枝[2]还有学者研究出利用预辐照对聚乙烯进行处理,再使用经过辐照处理的聚乙烯作为聚丙烯的熔融接枝反应的引发剂来引发聚丙烯接枝丙烯酸,经反应挤出制备出高性能的聚丙烯接枝丙烯酸共聚物。

这种异相引发接枝反应很好的控制了聚丙烯在熔融接枝中的降解副反应,极大的保存了基材优异的力学性能。

1.1 γ-射线辐照接枝法γ-射线辐照属于高能物理法,利用60Co-γ射线对原纤维基材进行处理,进而与单体进行接枝反应得到所需要的接枝产物。

聚丙烯塑料的改性及应用

聚丙烯塑料的改性及应用

聚丙烯塑料的改性及应用
聚丙烯塑料是一种常见的塑料,它的主要优点包括稳定性高、机械性能好、成本低廉等。

然而,在实际应用中,聚丙烯塑料的一些性能可能无法满足特定需求,因此需要进行改性。

聚丙烯塑料的改性方法有很多种,其中较为常见的包括共混改性、填充改性、交联改性等。

共混改性指的是将聚丙烯与其他树脂混合在一起,以获取其它树脂的特性,从而改善聚丙烯的性能。

填充改性则是在聚丙烯中添加一些填充物,例如纤维素、碳酸钙等,以改善聚丙烯的强度等性能。

交联改性则是通过交联聚丙烯来获得更好的热稳定性和机械强度等性能。

通过改性,聚丙烯塑料可以应用于更广泛的领域。

例如,通过共混改性和填充改性,可以将聚丙烯用于汽车零部件、管道、建筑材料等领域。

交联改性后,聚丙烯可以用于电线电缆、自行车轮胎和医疗器械等领域。

除了改性,聚丙烯塑料也可以通过添加一些辅助剂,如抗氧化剂、紫外线吸收剂、阻燃剂等来增强其性能。

例如,聚丙烯建筑材料中添加阻燃剂可以提高其耐火性。

在实际应用中,聚丙烯塑料也存在一些局限性。

例如,由于聚丙烯的低表面能,它的附着力和耐腐蚀性有限。

为了改善这些问题,可以采用表面处理等方法来提高其表面能。

总之,改性可以使聚丙烯塑料的性能得到大幅提升,使其在更为广泛的领域中得到应用。

未来,如果能够开发出更高性能的聚丙烯塑料,那么它将在更多领域展现其应用潜力。

聚丙烯及其改性材料简介

聚丙烯及其改性材料简介

目录一聚丙烯........................................... 错误!未定义书签。

聚丙烯的性能................................... 错误!未定义书签。

(1)优点.................................... 错误!未定义书签。

(2)缺点.................................... 错误!未定义书签。

聚丙烯链的立体结构............................. 错误!未定义书签。

聚丙烯的晶体结构............................... 错误!未定义书签。

二聚丙烯改性....................................... 错误!未定义书签。

三聚丙烯填充与增强改性新材料....................... 错误!未定义书签。

聚丙烯填充改性性能特点及发展趋势............... 错误!未定义书签。

常用填充材料................................... 错误!未定义书签。

1、碳酸钙.................................... 错误!未定义书签。

2、滑石粉.................................... 错误!未定义书签。

3、高岭土.................................... 错误!未定义书签。

聚丙烯的增强改性............................... 错误!未定义书签。

聚丙烯填充与增强改性新材料..................... 错误!未定义书签。

1、碳酸钙与滑石粉填充改性聚丙烯.............. 错误!未定义书签。

2、玻璃微珠改性聚丙烯新材料.................. 错误!未定义书签。

聚丙烯的改性

聚丙烯的改性

聚丙烯管材
早期,聚丙烯管材主 要用作农用输水管,但是 由于早期产品性能还存在 一些问题(抗冲击强度、 耐老化性能较差),市场 未能打开。据报道,目前 韩国开发出一种耐高压给 水管用无规共聚聚丙烯 PP-R 112新牌号,使用该 牌号生产的管材可在20℃ 和11.2MPa的超高压状态 下使用50年。
聚丙烯及聚丙烯的改性
郭萍
一、聚丙烯简介
聚丙烯是由丙烯聚合而制得的一种热塑性 树脂。聚丙烯由于其力学性能优异,耐热性好, 耐应力开裂性和刚性优异,且易于加工成型,具 有广泛的应用价值,但是其韧性较差,尤其是在 低温下易脆断,对缺口敏感,因此应对聚丙烯进 行改性 。 聚丙烯作为通用热塑性塑料中增长最快的品 种,在经济建设和人民生活中的地位日益重要, 在汽车工业、家用电器、电子、包装及建材、家 具等方面具有广泛的应用。
相容技术:相容剂技术是塑料合金开发 研究的核心。由于赋予聚丙烯以极性, 所以 能够与更多极性聚合物共混制成实用合金。 几乎所有常见的大品种树脂与聚丙烯皆不相 容, 因此适用于制备聚丙烯合金的界面相容 剂的开发是聚丙烯高性能化的重要途径。
四、改性技术新进展
反应挤出共混技术:将高分子化学反应与各 组分的共混挤出工艺有机地结合在一起的连续过 程即是反应挤出技术。反应挤出技术可使聚丙烯 这种非极性聚合物获得极性。 各种改性技术的复合化:单纯使用单元技术 也有局限性, 往往是提高单项性能如冲击韧性的 同时, 使其它性能如刚性大幅度下降。为此, 聚丙 烯改性正进入这些单项技术配合起来运用的复合 化阶段。
3.3接枝改性
聚丙烯树脂中加入接枝单体,在引发剂 作用下,加热熔融混炼而进行接枝反应。接 枝反应机理大致为:首先是引发剂在加热时, 分解生成活性游离基与接枝单体接触时,使 之不稳定链打开,生成聚丙烯游离基再进行 链转移反应而终止。 在聚烯烃大分子上利用化学方法接枝马 来酸酐,其目的是在非极性的大分子骨架上 引入极性基团,称为聚烯烃的官能化。

聚丙烯的改性方法 毕业论文

聚丙烯的改性方法  毕业论文

聚丙烯的改性方法前言聚丙烯(PP)是五大通用塑料之一,具有密度小、刚性好、强度高、耐挠曲、耐化学腐蚀、绝缘性好等优等。

不足之处是低温冲击性能较差、易老化、成型收缩率大。

PP 用途相当广泛,可用于包括农业和三大支柱产业(汽车工业、建筑材料、机械电子) 在内的诸多领域。

开拓PP在重大产业领域的市场,取代其他塑料,所凭借的因素一是PP 物美价廉、二是PP改性的进展。

尽管PP 生产工艺和催化剂历经几代更新,取得了很大的成就,但要用反应器产品直接作为某些目标产品(包括注塑级、纤维级、薄膜级等) 的原料或专用料,有的还需提高它的综合性能。

即对反应器后产品作一定的改性。

反过来说,PP改性也扩大了自身的应用领域,通过改性,人们可以得到性能好和价廉的PP原料。

按照参加聚合的单体组成,PP可分为均聚物和共聚物两种。

均聚物由单一丙烯单体聚合而成,因而具有较高的结晶度、机械强度和耐热性。

PP共聚物是聚合时加入少量乙烯单体共聚而成,具有较高的冲击强度。

广义上讲,相对于均聚物,共聚物可以说是一种改性产品。

目前国内石化厂生产PP以均聚物为主,品种单一,提供PP均聚物的改性方法无疑是有现实意义的。

聚丙烯的改性方法聚丙烯的改性方法§1章PP聚合物的改性综述化学改性聚丙烯的化学改性是指通过化学方法改变聚丙烯分子链上的原子或原子团的种类及组合方式的改性方法。

经化学改性后的聚丙烯, 其分子链结构发生变化, 从而对材料的聚集态结构或织态结构产生影响, 改变材料性能, 因此, 通过化学改性可以得到具有不同应用性能的新材料。

聚丙烯的共聚改性以丙烯单体为主的共聚改性可在一定程度上增进均聚PP的冲击性能、透明性和加工流动性,它是提高PP 韧性, 尤其是低温韧性的最有效的手段之一。

将丙烯、乙烯混合在一起聚合, 其聚合物主链中无规则地分布着丙烯和乙烯链段,乙烯则起着阻止聚合物结晶的作用, 当乙烯质量分数达到20%时结晶便很困难, 当质量分数为30%时就完全无定形, 成为无规共聚物, 其特点是结晶度低、透明性好、冲击强度增大等。

聚丙烯(PP)改性的主要的几种方法

聚丙烯(PP)改性的主要的几种方法

聚丙烯(PP)改性的主要的几种方法我们都知道,普通塑料往往有自己的特点和缺陷,当需要克服其缺陷时,我们往往是通过改性来予以克的。

聚丙烯(PP)最然具有耐热、耐腐蚀,制品可用蒸汽消毒密度小、是最轻的通用塑料等突出优点。

但其也有耐低温冲击性差,较易老化等缺陷。

而克服聚丙烯(PP)这些些缺陷,我们也是通过改性的方式来改变聚丙烯(PP)塑料的性能,以达到生产应用的要求。

通过改性的聚丙烯(PP)得到的塑料我们称之为聚丙烯(PP)改性塑料。

聚丙烯(PP)改性塑料,顾名思义是基于聚丙烯原料对其性能和其他方面的一些改进,如增强聚丙烯材料的冲击,拉伸强度,弹性等。

聚丙烯塑料原料的具体改性可分为以下几类。

接枝改性接枝改性是美国20世纪90年代初提出的,现已开发出相关产品。

采用固相接枝法对等规pp进行改性得到mpp,然后对mpp进行氯化即可获得mcpp固体粉状树脂。

氯化改性后的树脂附着力强,接伸模量提高,易于与其他树脂共混;而且由于改性使pp的结晶受到破坏,极性增加,从而可溶于某些溶剂,制得不同浓度的mcpp溶液。

mpp的用途主要有四个方面。

一、是提高工程塑料的耐冲击性能。

用mpp作相容剂,制得的pp与其他塑料的共混物冲击强度提高2~3倍,可用作抗冲击壳体材料;二、是exfer塑料公司开发的dexpro合金,即为聚酰胺和pp在相容剂存在下的合金,现已商品化;三、是用作热塑料粉末涂料,用于金属底材表面,起到防腐和抵抗化学药品的作用。

日本nozagl-giz牌号产品就是pp与尼龙的合金材料,具有较高的耐化学药品和耐油性能,尤其是具有极佳的耐氯化钾性能三是提高pp填料的粘合性。

mpp的引入可提高填料与pp的相容性,改善复合材料的性能,提高材料的整体热稳定性和局部抗热能力;四、是mpp也应用于自由基活性废料的固化。

此外,mpp还可用于提高pp纤维的可染色性和塑料制品的可装饰,制造可蒸煮的包装材料等。

mcpp的用途主要有:一、是用于制备塑料制品用底漆和塑料表面装饰涂料的附着力促进剂,特别是轿车保险杠、轮毂盖、电视机机壳等民用与工业用塑料器具的涂装;二、是大量用作塑料表面印刷油墨树脂;三、是用作防腐涂料树脂,用于钢屠、铝材等材料重防腐领域。

聚丙烯塑料的改性及应用

聚丙烯塑料的改性及应用

聚丙烯塑料的改性及应用概述聚丙烯(Polypropylene,简称PP)是一种常见的塑料材料,具有良好的加工性能、强度和耐化学腐蚀性。

然而,聚丙烯在某些方面的性能还有待改善。

改性聚丙烯通过添加不同的添加剂、改变配方比例或改变加工工艺等方式,改善了聚丙烯的某些性能,扩展了其应用范围。

本文将介绍聚丙烯塑料的改性方法及其在各个领域中的应用。

聚丙烯塑料的改性方法1. 添加剂改性添加剂改性是最常见的一种聚丙烯塑料改性方法。

通过向聚丙烯中添加不同的添加剂,可以改变聚丙烯的物理、化学性能,提高其加工性能和耐候性。

常见的添加剂包括: - 填充剂:如碳酸钙、滑石粉等,可以提高聚丙烯的刚性和抗冲击性; - 阻燃剂:如氯化磷、硫酸铵等,可以提高聚丙烯的阻燃性能; - 稳定剂:如抗氧剂、紫外线吸收剂等,可以提高聚丙烯的耐氧化和耐候性; - 助剂:如流动剂、增韧剂等,可以改善聚丙烯的加工性能。

2. 共混改性通过与其他聚合物进行混合,可以改善聚丙烯的性能。

常见的共混改性方法有物理共混和化学共混两种。

•物理共混:将聚丙烯与其他聚合物机械混合,形成共混体系。

物理共混可以改善聚丙烯的强度、韧性和耐热性。

•化学共混:通过共聚反应或交联反应,将聚丙烯与其他聚合物进行化学结合。

化学共混可以显著改善聚丙烯的力学性能、热性能和耐化学性。

3. 改变配方比例通过改变聚丙烯的配方比例,如增加共聚单体的含量、调节分子量分布等方式,可以改变聚丙烯的结晶度、熔体流动性和力学性能。

•增加共聚单体含量:在聚丙烯的聚合过程中,加入适量的共聚单体,如丙烯酸、丙烯酸酯等,可以改善聚丙烯的柔韧性、降低结晶度。

•调节分子量分布:通过控制聚合反应条件,可以得到不同分子量分布的聚丙烯,从而改善聚丙烯的加工性能和力学性能。

聚丙烯塑料的应用领域聚丙烯的优良性能使其在各个领域都有广泛的应用。

1. 包装行业聚丙烯具有较高的刚性和抗冲击性,被广泛用于包装行业。

聚丙烯制成的塑料包装材料可以应用于食品包装、医药包装、化妆品包装等领域。

聚丙烯的改性方法及应用

聚丙烯的改性方法及应用

聚丙烯的改性方法及应用-CAL-FENGHAI.-(YICAI)-Company One1聚丙烯的改性方法及应用聚丙烯具有比重小、刚性好、强度高、耐挠曲,以及有高于100℃的耐热温度和良好的耐化学腐蚀性等优点。

通过改性,其耐低温性﹑耐冲击性和耐老化性等有所提高,广泛应用于家电、汽车等领域。

根据产品的要求和用途,聚丙烯可以用共混、填充、增强、添加助剂,以及共聚、共混、交联等方法加以改性。

例如可以添加碳酸钙、滑石粉、矿物质等以提高硬度、耐热性、尺寸稳定性,添加玻璃纤维、石棉纤维、云母、玻璃微珠等以提高拉伸强度、改善低温抗冲击性、耐蠕变性,添加橡胶、弹性体、和其它柔性聚合物等以提高冲击性能、透明性,添加各种特殊助剂可赋予聚丙烯诸如耐候性、抗静电性、阻燃性、导电性、可电镀性、成核性、抗铜害性等等。

改性聚丙烯在家电领域的应用易涂装改聚丙烯材料:直接通过共混改性,引入极性官能团,使其与聚丙烯树脂形成共结晶,规避析出,避免弱界面层的形成,从而整体提升表面张力。

满足无人看守电器要求阻燃改性聚丙烯材料:满足国际电工委员会(IEC)提出的长期无人看管电器用改性PP材料要求:IEC60335标准要求750℃灼热丝接触被测材料或制品30秒内不起火或者燃烧时间≤5秒(即GWIT≥750℃)和漏电起痕指数(CTI)≥250V。

感温变色聚丙烯材料:在聚丙烯材料中通过加入感温变色颜料实现颜色转变,感温变色颜料是由电子转移型有机化合物进行制备,在特定温度下因电子转移使该有机物的分子结构发生变化从而使颜色发生转变,从而在直观上辨别温度。

防蟑螂、防鼠咬材料:通过针对对蟑螂和老鼠的味觉和嗅觉的刺激从而达到防治其对电器的危害。

主要应用于电磁炉等电器。

抗染色聚丙烯材料:内胆材料直接与果汁、食物残渣、食品调料等接触后受到污染引起材料表面颜色的变化,当颜色变化到一定程度后就会显脏,甚至作为污染源污染下一批食物,降低产品的使用品质。

使用抗染色聚丙烯材料可以解决这些问题。

改性聚丙烯是什么

改性聚丙烯是什么

改性聚丙烯是一种经过改性处理的聚丙烯材料,它具有优异的性能和广泛的应用领域。

改性聚丙烯通过引入不同的功能单体或添加剂,改变了其原有的物理、化学和热学性质,使其满足特定的工程要求。

首先,改性聚丙烯具有良好的机械性能。

相比于传统聚丙烯,改性聚丙烯在强度、韧性和耐磨性等方面表现出更高的水平。

它可以承受更大的外力和应变,具有较高的抗拉强度和抗冲击性能,因此在工程结构、汽车零部件和机械制造等领域得到广泛应用。

其次,改性聚丙烯具有良好的耐化学性能。

由于改性处理,其材料表面引入了新的官能团或活性基团,这使得改性聚丙烯具有更强的耐酸、耐碱、耐溶剂等性能。

它可以在酸性或碱性环境中稳定运行,并且可以承受各种化学药品的腐蚀,因此在化工、医药和食品行业中被广泛应用。

此外,改性聚丙烯还具有较高的耐热性和隔热性能。

改性处理可以提高聚丙烯材料的热稳定性和热变形温度,使其能够在高温环境下长时间稳定运行。

同时,改性聚丙烯具有低热导率和良好的绝缘性能,可以作为隔热材料使用,广泛应用于建筑、电子和电力行业中。

除了上述基本性能外,改性聚丙烯还可以根据具体需求引入其他功能单体或添加剂,以赋予其更多的特性。

例如,可以引入导电单体使其具有导电性能,可以添加阻燃剂提高其阻燃性能,可以引入抗菌剂赋予其抗菌性能等。

这使得改性聚丙烯在不同的应用领域具有更广阔的应用前景。

综上所述,改性聚丙烯作为一种经过改性处理的材料,具有优异的性能和广泛的应用领域。

它在工程结构、化工、医药、食品、建筑、电子和电力等领域都有重要的应用价值。

随着科技的不断进步和应用需求的不断增加,相信改性聚丙烯在未来会有更广阔的发展空间,并为社会带来更多的创新和进步。

2024年改性聚丙烯市场前景分析

2024年改性聚丙烯市场前景分析

2024年改性聚丙烯市场前景分析1. 引言改性聚丙烯是一种经过特殊处理的聚丙烯,具有一系列优异的性能和应用特点。

随着全球经济的发展和工业化进程的加速,改性聚丙烯市场持续扩大。

本文将对改性聚丙烯市场前景进行深入分析。

2. 市场现状2.1 市场规模目前,改性聚丙烯市场规模不断扩大。

在工业制造、建筑材料、汽车制造等领域,改性聚丙烯得到广泛应用。

根据市场调研机构的数据显示,预计未来几年改性聚丙烯市场的年均复合增长率将保持在5%以上。

2.2 市场竞争改性聚丙烯市场竞争激烈,主要的竞争因素包括产品质量、性能和价格。

目前,市场上存在多家知名的改性聚丙烯制造商,如ABC公司、XYZ公司等。

这些企业通过技术创新和质量管理来提高竞争力,争夺更多的市场份额。

3. 市场驱动因素3.1 工业制造需求增长随着全球工业制造业的发展,对改性聚丙烯的需求也在不断增长。

改性聚丙烯作为一种优秀的工程塑料,在工业制造过程中广泛用于制造轻量化零部件、耐磨件等。

随着工业制造技术的不断进步,对改性聚丙烯的需求将持续增长。

3.2 建筑材料市场增长建筑材料市场是改性聚丙烯的重要应用领域之一。

改性聚丙烯可以用于制造隔热材料、保温材料等,具有良好的防水性能和耐候性。

随着全球城市化进程的加速,对建筑材料的需求将持续增长,为改性聚丙烯市场提供了良好的发展机会。

3.3 汽车制造市场增长改性聚丙烯在汽车制造业中的应用越来越广泛。

改性聚丙烯可以用于制造汽车内饰件、外观件等,具有较低的密度、优异的耐磨性和抗冲击性能。

随着全球汽车市场的增长,对改性聚丙烯的需求也将大幅增加。

4. 市场挑战与机遇4.1 环境保护要求增加随着全球环境保护意识的增强,对改性聚丙烯的环境友好型要求也在不断提高。

制造商需要开发出更加环保的改性聚丙烯产品,提高回收和再利用率。

这为企业带来了挑战,但也为技术创新和产品升级提供了机遇。

4.2 原材料价格波动改性聚丙烯的主要原材料之一是丙烯,其价格波动对改性聚丙烯市场产生较大影响。

再生聚丙烯(PP)塑料的改性利用

再生聚丙烯(PP)塑料的改性利用

增强改性回收PP的拉伸强度较低,一般制品在18~25MPa左右,用短玻璃纤维(SGF)增强后,其拉伸强度可达30~35MPa左右。

为了改进纤维与树脂的界面性能,常用偶联剂如KH550、KH560、 KH570等,偶联剂的用量一般是纤维含量的0.2%一1.5%,对不同情况有必要试验确定。

聚丙烯的氯化回收PP也可像回收PE一样进行氯化,氯化产物具有广泛的应用。

如APP经氯化可得到氯化APP(CAPP),它具有优良的粘结性能,可制造粘结剂,用于粘结PE、PVC、PA、金属等材料,如用作包装复合膜、双层PP膜、PP膜—纸、PP膜—铝箔等的粘合剂。

此外,CAPP也可以用作涂料、印刷油墨及极性树脂的加工助剂等。

聚丙烯的接枝改性聚丙烯的化学改性还有接枝、嵌段等共聚改性。

聚丙烯接枝改性的目的是为了提高聚丙烯与金属、极性塑料、无机填料的粘结性或增溶性。

所用的接枝单体一般是丙烯酸及其酯类、马来酸酐及其酯类、马来酰亚胺类等。

接枝的方法有:①溶液法,在溶剂中加入过氧化物引发剂进行共聚;②辐射法,在高能射线下接枝;③熔融混炼法,在过氧化物存在下,于熔融状态下混炼,进行接枝,常常在双螺杆挤出机中进行。

接枝改性的高分子材料的性能与接枝物的物化性能有关,也与接枝物的含量、接枝链的长度等有关,其基本性能与聚丙烯相似,但与极性高分子材料、无机材料、橡胶等的相容性可大大提高,接枝PP的结晶度和熔点随接枝物含量的提高而下降,透明性和低温热封性却提高。

南京塑泰专业生产马来酸酐接枝PP.回收聚丙烯的交联改性回收聚丙烯也可像聚乙烯一样进行交联改性,改性的机理同前面介绍的聚乙烯交联相近。

聚丙烯的催化裂解和热裂解聚丙烯在380~C左右裂解,可进行热裂解和催化裂解。

用硅/铝粉末(Si02/Al:03)作催化剂,催化剂可与裂解产物的气相和液相接触。

研究表明,用液相接触催化剂方法,可得到69%的液体产物,具有沸点30~270℃的,2〃C6到n-C1s石蜡油;气相接触催化,可获得54%(质量分数)液体产物,而且得到产物的速度要低得多。

聚丙烯材料的制备和改性研究

聚丙烯材料的制备和改性研究

258作者简介:高红艳(1983— ),男,汉族,新疆克拉玛依人。

主要研究方向:石油化工。

聚丙烯综合性能优良,原料来源丰富,价格低廉,加工和应用易于普及,已成为塑料行业的主力之一。

聚丙烯材料的可热塑性特点,通过共聚、共混、填充、增强、阻燃等改性途径使聚丙烯产品的综合性能更加多样化,功能更加强大。

一、聚丙烯材料的制备辐射交联聚丙烯的制备方法。

把聚丙烯粉末加入含交联助剂的溶液中,经烘干、脱除溶剂和热处理后,加入抗氧剂,混炼,挤出或者模压成型,将成型后的聚丙烯进行辐照。

借助易挥发溶剂混匀原料和助剂,缩短混炼时间,提高交联效率,其耐热性和熔体强度均有所提高,该法辐射交联不使用化学交联剂,交联均匀程度易于控制,环保、能耗低、产率高,电子辐照后的聚丙烯泡沫其耐环境老化性能和耐温性能显著提高。

使用新型催化剂BCZ-208的制备方法。

BCZ-208 催化剂比DQC-401 催化剂的催化活性提高约50%,催化剂平均单耗为0.016 kg/t;采用氢调法生产均聚PP 粉料,使用BCZ-208 催化剂有利于生产高熔体流动指数PP 产品,氢调敏感性好. 使用BCZ-208 催化剂比DQC-401 催化剂生产的PP 产品等规度提高约1%,相对分子质量分布较窄,灰分含量降低,PP 粉料平均粒径小,细粉少,PP粒料拉伸屈服应力较高,所生产的PP 产品均达到优级品质量指标。

二、聚丙烯的改性(一)聚丙烯的增韧改性微孔膜是一种应用广泛的塑料薄膜,主要应用在海水淡化、污水处理、电池隔膜、包装、医疗器械等领域。

微孔膜的制备方法主要有相分离法、中空纤维法、化学发泡法和单向或双向拉伸等。

不同的淬火方式及不同温度下等温结晶制备的热历史α-聚丙烯,其熔融行为和结晶形态差异较大。

淬火样品结晶度和熔融温度最低,球晶最小。

随着等温结晶温度的升高,样品的结晶度和熔融温度逐渐升高,球晶尺寸逐渐增大。

淬火样品球晶强度较低,双拉后材料没有产生微孔,等温结晶样品晶体强度较高、球晶界面较弱,双拉后产生了大量微孔,其孔径尺寸随等温结晶温度的升高逐渐增大,孔径分布均匀性优异。

改性聚丙烯(PP)应用大全

改性聚丙烯(PP)应用大全
抗菌、防霉 抗菌、防霉 抗静电、高光泽 件 永久抗静电、韧性好 抗染色、高流动 洗碗机部件 抗染色、高流动、高冲击 UL94-V0 级、无卤阻燃、GWIT750℃、 家电、汽车用阻燃制件 GWFI850℃ UL94-V0 级、环保、无卤阻燃、10% 玻纤增强 电子电器、有阻燃要求的部 电子元件包装材料 冰箱内部件 洗衣机部件 家电外壳、工业、日用品部
户外用品 室外空调机部件 户外用品 户外地板 户外用品
微波炉、压力锅、电饭锅等 UL94-V0、溴系阻燃、高流动 电子电器有阻燃要求的部件 UL94-V0、环保阻燃、耐温性优异
FRPP410-G15 UL94-V0、溴系阻燃、15%玻纤增强 FRPP410-G30 UL94-V0、溴系阻燃、30%玻纤增强 UL94-V2、低密度、高光泽、低卤阻 FRPP412 UL94-V2 阻燃 PP 燃 取暖器、 电饭煲外壳等 FRPP412-T10 UL94-V2、低密度、高强度 FRPP412-T20 UL94-V2、高强度、高刚性 PPH-N 非填充 PP PPH02 材料 PPH08 PP KC8120 高光泽、耐冲击、质轻 透明、耐热 耐低温、刚性佳、抗弹性形变 耐长期热老化、高光泽、质轻 普通级 医疗级 运动器材 家用电器级
改性聚丙烯(PP)应用一览表:
类 型 PP257 PP212 PP237 高光泽 PP PP258
典型牌 特性 号 高光泽、高流动、高耐热 高光泽、高流动、耐刮擦 料 高光泽、高耐热 高光泽、高耐热、尺寸稳定性好 家用电器外壳 PP212A PP3682 PP3684 PPHS210 PPHS40 PPH40 PPHS40M 高光泽、高耐热、尺寸稳定性好 耐刮擦、高光泽、易清洁 卫浴、洗脚盆 耐刮擦、高光泽 高光泽、高流动、耐刮擦 耐热、高流动性 高耐热、尺寸稳定性好 耐热、高刚性 高耐热、高刚性 高耐热、高流动性 耐水蒸气、符合食品卫生要求 高耐热、高刚性、尺寸稳定 电饭煲蒸笼、饭勺 微波炉门框 电饭煲内盖、中环 卫浴用品、马桶盖 方煲内件 电饭煲面盖 小家电外壳 方形电饭煲面盖、外壳专用 应用

聚丙烯(PP)化学改性和物理改性技术特点

聚丙烯(PP)化学改性和物理改性技术特点

聚丙烯(PP)化学改性和物理改性技术特点1.PP化学改性通过共聚改性、交联改性、接技改性、添加成核剂等使PP高分子组分与大分子结构或晶体构型发生改变而提高其机械性能、耐热性、耐老化性等性能,提升其综合性能、扩大其应用领域。

(1) 共聚改性共聚改性是采用茂金属等催化剂在丙烯单体合成阶段进行的改性。

当单体聚合时,加入的烯烃类单体与之进行共聚,聚合得到无规共聚物、嵌段共聚物和交替共聚物等,均聚PP的机械性能、透明性和加工流动性都得以提升。

茂金属催化剂形成的络合物是以不规则形状受到一定限制的过渡状态作为单一活性中心,达到精确控制相对分子质量及其分布、共聚单体含量、主链上的分布和高聚物晶型结构。

(2) 接枝改性PP树脂分子呈非极性结晶型线型结构,表面活性低,无极性。

存在表面印刷性不良;涂布粘接不良;与极性高聚物难以共混;与极性增强纤维、填料难以相容的缺点。

接枝改性是向其大分子链上引入极性基团,实现改善PP的共混性、相容性和粘结性,达到克服难共混、难相容与难粘接的缺点。

在引发剂作用下,熔融混炼时接枝单体进行接技反应,引发剂在加热熔融受热时分解产生活性游离基。

当活性游离基遇到不饱和羧酸单体时,促使不饱和羧酸单体不稳定键打开后与PP活性游离基反应形成接枝游离基,随后通过分子链转移反应而终止。

PP常见的接枝改性方法有:熔融法、溶液法、固相法、悬浮法等。

接枝改性后的PP分子链中氢原子被取代而呈现较强极性,这些极性基团使得PP相容性增强,耐热性、机械性能大幅提升。

(3) 交联改性交联改性主要是把线型或者是枝状的聚合物通过交联的方法改性成为网状结构的聚合物。

PP交联改性可以使其力学性能、耐热性以及形态稳定性得到改善,成型周期缩短。

聚丙烯交联改性主要方法有化学交联改性、辐射交联改性,它们主要区别在于交联机理不同、活性源不同;化学交联改性是通过添加交联助剂来实现聚丙烯改性,辐射交联改性主要是通过强辐射或强光来实现,由于辐射交联改性对PP厚度要求使得该法普及困难。

聚丙烯塑料的改性及应用

聚丙烯塑料的改性及应用

1.1聚丙烯塑料的改性及应用中国塑料加工工业协会改性塑料专业委员会副理事长兼秘书长教授级高级工程师刘英俊1聚丙烯在合成树脂生产中占据重要地位,发展极为迅速聚丙烯是五大通用合成树脂中的一个重要品种,在国内外的发展均十分迅速。

在全球塑料用五大合成树脂中,聚丙烯的产量占有1/4左右的份额,预计2006年世界五大通用合成树脂的总产能将达到1亿9千万吨,其中聚丙烯4878万吨,占总产能的25.6%[1]。

而我国2004年聚丙烯树脂产量为474.88万吨,进口291.4万吨,出口1.53万吨,其表观消费量为764.7万吨,占当年全国五大通用树脂表观消费量总和2954万吨的25.9%。

预计到2010年我国聚丙烯树脂的表观消费量将增加至1080万吨,较2004年增长40%以上。

表1列出近期投产和正在建设的聚丙烯装置的地点和产能。

在已宣布的新增产能中,中石化253万吨/年,中石油135万吨/年,而且大多数项目的产能都在30万吨以上,达到世界级规模。

这些装置全部投产后,中石化的聚丙烯产能将超过巴赛尔公司,跃居全球榜首,中石油也将列位前五名之列,届时中国将成为生产聚丙烯树脂全球产能最大的国家。

另据报道,我国聚丙烯树脂的产量1995年仅为107.35万吨,到2005年达到522.95万吨,平均年递增38.7%,同期表观消费量也从212.92万吨增至823万吨,平均年递增28.7%,成为全球聚丙烯消费增长最快的国家[2]。

2聚丙烯基本知识2.1树脂与塑料的定义和分类树脂(Resin):高分子材料亦称高分子聚合物,分为天然高分子材料和合成高分子材料。

在合成高分子材料中按塑料、橡胶、纤维三大用途分为合成树脂、合成橡胶和合成纤维三大类,其中用于塑料的合成树脂所占的比例最大,约占合成材料总量的2/3以上。

塑料(Plastics):以合成树脂为主要成分,添加有适量的填料、助剂、颜料,而且在加工过程中能流动成型的材料。

热塑性塑料(ThermoPlastics):能在特定温度范围内反复软化和冷却硬化的塑料。

改性聚丙烯(PP)应用大全

改性聚丙烯(PP)应用大全

UL94-V0 级、环保、无卤阻燃、 PP PP310--2 PP310J-1A PP310J-2D FRPP410+ FRPP410-3 环保阻燃 FRPP410-NP PP
抗紫外、抗热氧老化 抗紫外、抗热氧老化 耐候性优异、高流动性 耐候性、高冲击、高强度 耐候性、耐低温冲击 UL94-V0、溴系阻燃、高韧性
耐热 PP
PP263 PP263GM PP555 PPT30

PPT20 PP35A PPTF266 PP757-KL
高流动性、高刚性 耐热、尺寸稳定
洗碗机部件 家用电器内部件
耐热、高刚性、高尺寸稳定性 低收缩、抗低温冲击、符合食品卫 冰箱部件 生 高抗冲、高流动 高抗冲、低收缩 抗低温冲击、低密度 高刚性、高耐热、10%玻纤增强 高刚性、高耐热、20%玻纤增强 高强度、高刚性、30%玻纤增强、高 周转箱 座椅 容器 电子电器、日常用品结构件 家电结构件 风扇叶、家电结构件 耐热、低翘曲 结构件、划桨叶、吸尘器部
户外用品 室外空调机部件 户外用品 户外地板 户外用品
微波炉、压力锅、电饭锅等 UL94-V0、溴系阻燃、高流动 电子电器有阻燃要求的部件 UL94-V0、环保阻燃、耐温性优异
FRPP410-G15 UL94-V0、溴系阻燃、15%玻纤增强 FRPP410-G30 UL94-V0、溴系阻燃、30%玻纤增强 UL94-V2、低密度、高光泽、低卤阻 FRPP412 UL94-V2 阻燃 PP 燃 取暖器、 电饭煲外壳等 FRPP412-T10 UL94-V2、低密度、高强度 FRPP412-T20 UL94-V2、高强度、高刚性 PPH-N 非填充 PP PPH02 材料 PPH08 PP KC8120 高光泽、耐冲击、质轻 透明、耐热 耐低温、刚性佳、抗弹性形变 耐长期热老化、高光泽、质轻 普通级 医疗级 运动器材 家用电器级
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

聚丙烯改性【摘要】聚丙烯是一种综合性能良好的通用塑料,在日常用品,包装材料,家用电器,汽车工业,建筑施工等行业得到广泛应用,是目前增长速度最快的通用型热塑性塑料。

但聚丙烯树脂仍存在许多缺点,克服这些缺点的方法就是对其进行改性。

本文主要通过POE对聚丙烯改性以提高其韧性和硬度,以及通过氢氧化镁改性聚丙烯提高其阻燃性能。

【关键词】聚丙烯共混改性增韧阻燃前言聚丙烯(PP)是五大通用塑料之一,具有密度小、刚性好、强度高、耐挠曲、耐化学腐蚀、绝缘性好等优点,但聚丙烯熔点较低,热变形温度低,低温脆性,抗冲击强度较低等缺点,很大程度上限制了其在工程中的应用。

本实验是对聚丙烯进行改性,提高阻燃性和韧性。

聚丙烯是一种性能优良的塑料,它的耐腐蚀性、耐折叠性和电绝缘性好,耐热性和机械强度优于聚乙烯,而且价格低廉,容易加工,故应用较广。

但是聚丙烯的抗冲击强度不够高,低温下发脆。

为了提高它的韧性,常常将聚丙烯和POE共混改善它的韧性。

增韧剂POE是茂金属催化的乙烯-辛烯共聚物,其特点是相对分子质量分布窄,密度低,各项性能均衡,易加工,赋予制品高韧、高透明性和高流动性。

特别是对聚丙烯的增韧改性效果更加明显,对传统增韧剂EPDM、EPR构成了有力竟争。

近几年国内李蕴能、张金柱等陆续发表了POE具有较高剪切敏感性,加工时与PP相容性好,其表观切变粘度对温度的依赖性更接近PP,与P共混时更容易得到较小的弱性体料径和较窄的粒径分布,因而增韧效果更好。

无论是对普通PP、共聚PP还是高流动性PP,POE的增韧效果都优于EPDM或EPR。

由于POE不仅具有橡胶的弹性,同时又具有塑料的刚性,因此在增韧PP的同时还能保持较高的模量、拉伸强度及良好的加工流动性。

另外,POE不含不饱和双键,耐候性也优于EPDM、EPR、SBS等。

同其它塑料一样,聚丙烯容易燃烧,对其进行阻燃改性最常用的方法是把无机阻燃剂填充到聚合物基体中赋予聚合物以阻燃性。

无机阻燃剂,氢氧化镁在高温下通过分解吸收大量热量,生成的水蒸气可以稀释空气中氧的浓度,从而延缓聚合物的热降解速度,减慢或抑制火对聚合物的燃烧,促进炭化、抑制烟雾的形成。

用氢氧化镁等阻燃优点是环保性好,不释放烟雾,不产生有害和有争议的气体,成本低廉。

近年来氢氧化镁类阻燃剂受到广泛关注,朱磊等研究了用不同表面活性剂改性氢氧化镁(Mg(OH)2)阻燃剂的用量对复合材料阻燃性能和力学性能的影响。

结果明,硅烷偶联剂表面改性后Mg(OH)2能更好改善复合材料的力学性能,显著提高聚丙烯的阻燃性能,在用量为65%,氧指数达到32.4%。

1.实验部分1.1实验原料及仪器1.1.1实验原料:聚丙烯,氢氧化镁,抗氧剂1010,POE,活化碳酸钙等。

1.1.2实验仪器:GRH-10D型高速混合机, SHJ-30型同向双螺杆挤出机,JPH-80四缸全液压注射机,XHR-150型塑料硬度计,JC-25D电子式悬简组合冲击试验机,XC-2型氧指数测定仪。

1.2配方设计及标准样条的制备1.2.1 配方设计表1.2-1 聚丙烯增韧配方(质量分数)空白A1 B1 C1 A2 B2 C2回收PP 100 100 100 100 100 100 100 POE 无10 15 20 25 30 30抗氧剂0.1 0.1 0.1 0.1 0.1 0.1 0.11010活化碳酸无无无无无无20 钙表1.2-2 聚丙烯阻燃配方(质量分数)空白A3 B3 C3 回收PP 100 100 100 100抗氧剂1010 0.1 0.1 0.1 0.1活化Mg(OH)2无30 40 50 我们组对应实验是B1、B2、B3,按照实验前确定的配方进行称量,总重量约700g,计算各组分质量如下表:表1.2-3 B组对应配方各组分质量(质量/g)B1 B2 B3 PP 610 540 500POE 90 160 0 抗氧剂1010 0.608 0.538 0.500活化Mg(OH)20 0 2001.2.2标准样条的制备⑴按照实验确定的配方进行称量,待用。

⑵按照配方设计的工艺条件开机升温高速混合机、双螺杆挤出机、和注射机。

⑶利用高速混合机混合均匀。

⑷混合好的物料加入双螺杆挤出机中挤出造粒。

⑸粒料干燥后采用注射机注射标准样条,待测。

1.3聚丙烯标准样条的性能测试1.3.1硬度测试采用厚度均匀、表面光滑、平整、无气泡、无机械损伤及杂质的样条,厚度不小于4mm,试样大小应保证每个测量点的中心与试样边缘距离不小于10mm,各测量点之间的距离不小于10mm。

利用XHR-150型塑料硬度计测定其硬度值,具体数据见表1.3-1。

表1.3-1 各组配方硬度数据配方各点硬度硬度a/MPa 硬度b/MPa 硬度c/MPa 平均值/MPa空白1 77.0 78.0 77.077.02 77.5 75.0 77.53 78.0 76.0 77.0A1 1 64.8 64.0 65.366.12 66.5 65.8 67.23 67.1 66.9 67.2B1 1 60.5 58.0 61.560.02 58.0 60.0 58.53 61.0 58.0 61.5C1 1 50.7 53.3 52.953.12 53.5 50.7 54.63 55.1 54.1 52.6A2 1 59.1 59.6 57.756.82 57.8 58.3 56.83 55.7 54.1 51.8B2 1 46.0 49.0 48.050.02 48.0 47.5 47.53 53.0 54.5 53.0C2148.2 53.4 46.248.92 48.8 47.5 47.3 3 49.9 49.0 49.8 A3172.0 61.2 69.0 68.4 2 69.0 64.9 70.0 3 68.2 69.0 72.5 B3157.5 57.0 59.0 64.6 2 64.5 66.0 65.5 3 68.0 73.0 71.0 C3173.1 65.2 68.6 66.9 2 67.0 64.0 62.3 368.769.164.5将上述数据做折线图如下:图1.3-1 硬度折线图1.3.2冲击测试采用试样表面应平整、无气泡、裂纹、分层和明显杂质。

缺口试样缺口处应无毛刺。

利用JC-25D 电子式悬简组合冲击试验机。

测量每个试样宽度b 和缺口试样缺口处剩余厚度度d ,精确到0.02mm 。

根据试样破坏时所需的能量选择摆锤,使消耗的能量在摆锤总能量的10%至90%范围内。

抬起并锁住摆锤,并把试样放在两支撑块中,试样支撑面紧贴在支撑块上,使冲击刀刃对准试样中心,缺口试样刀刃对准缺口背向的中心位置。

平稳释放摆锤,记录试样所吸收的冲击能。

具体数据见表1.3-2。

表1.3-2 各组配方冲击强度配方 1 2 3 4 5 6 7 8 9 10 空白0.286 0.304 0.273 0.290 0.277 0.286 0.293 0.312 0.308 0.308 A10.293 0.294 0.266 0.274 0.302 0.301 0.300 2.047 0.836B1 0.476 0.398 0.411 0.341 0.350 0.350 0.271 0.331 0.418 0.300 C1 0.402 0.414 0.396 0.484 0.421 0.473 2.156 2.443 2.434 2.100 A2 0.703 0.701 0.707 2.042 4.141 4.238 4.132 4.538 7.201 7.221 B2 0.191 0.189 0.185 0.196 0.190 0.193 0.186 0.197 0.191C2 1.976 2.512 1.508 1.740 1.660 1.656 1.581 1.644 1.931 1.868 A3 0.405 0.487 0.446 0.385 0.447 0.424 0.419 0.427 0.440 0.374 B3 0.404 0.373 0.160 0.106 0.132 0.128 0.134 0.134 0.145 0.139 C3 0.477 0.364 0.380 0.425 0.403 0.389 0.452将上述数据作折线图如下:图1.3-2 冲击强度折线图1.3.3氧指数测定氧指数测定塑料燃烧性是指在规定的试验条件下(23±2℃),在氧氮混合气流中,测定刚好维持试样燃烧所需的最低氧浓度,并用氧含量的体积百分数表示。

将试样放入XC-2型氧指数测定仪中进行实验,在试样上端的顶表面使用点火器引发燃烧,使火焰的最低可见部分解除试样顶端并覆盖整个顶表面,勿使火焰碰到试样的棱边和侧表面。

在确认试样顶端全部着火后,立即移去点火器,开始计时,观察试样燃烧掉的长度。

若30秒内不能点燃试样,则应增大氧浓度,再次点燃,直至30秒内点燃为止。

在试样50mm 处做标记,应在3分钟内燃烧至标记处。

分别调节氧气和氮气的流量阀,使流入燃烧筒内的杨丹混合气体达到预计氧浓度,并保证燃烧筒中的气体的流速为(4±1)cm/s 。

试样燃烧时间超过3分钟或火焰步伐超过标线时,就降低氧浓度,若不是则增加氧浓度,如此反复,直到所得氧浓度之差小于0.5%,即可按该时的氧浓度计算材料的氧指数。

具体数据见表1.3-3。

表1.3-3 各组氧指数数据氧过量L/Min氧不足L/Min 氮气流量L/Min 平均氧流量 L/Min 氧指数(%)空白 1.50 1.42 7.0 1.46 17.3 A3 1.60 1.59 7.0 1.60 18.6 B31.701.657.0 1.68 19.4 C3 1.83 1.767.01.8020.5将上述数据做折线图如下:图1.3-3氧指数折线图2.实验结果与讨论从聚丙烯的配方设计到注射标准试样再到性能测试,我们都是按照配方分小组依次进行实验,所以,实验过程中难免会出现一些问题,所得实验结果存在一定差异性,但总体看实验数据能说明情况。

随着加入的POE的量的增加,PP回收料的成型收缩率呈下降趋势,这是因为POE的加入降低了PP的结晶能力,且加入的越多,作用越明显;随着氢氧化镁及氧化锑的量不断增加,PP的成型收缩率不断提高,这是因为氢氧化镁有诱导PP结晶的作用,且加入的越多,作用越明显。

增韧剂添加越多,冲击强度增加的越多,说明PP与POE共混后起到了增韧作用;阻燃剂添加的越多,冲击强度越大。

说明无卤阻燃剂也起到部分增韧作用。

随着增韧剂添加量的增加,硬度呈下降趋势。

由此说明,增韧剂的加入会使PP的硬度下降;阻燃剂添加的越多,冲击强度越大。

说明无卤阻燃剂也起到部分增韧作用。

相关文档
最新文档