华南理工大学2012概率论试题
概率论课后答案华南理工大学
设事件 A {取出的两个球都是白球} ,则事件 A 包含的样本点总数为 k C52 , 故
P( A)
k C52 0.357 n C82
例 4 一批产品工 200 个,其中有 6 个废品,求: (1)这批产品的废品率; (2) 任取 3 个恰有 1 个废品的概率; (3)任取 3 个全是废品的概率. 解
一个事件的概率为 0, 这个事件未必是不可能事件; 因此 C 项正确.反例如
下 : 随 机 地 向 [0,1] 区 间 内 投 点 , 令 x 表 示 点 的 坐 标 , 设
A { 0 x 1 / 2 B} , { 1 x /, 2则 A B 1{ }x 1 / 2, } 由 几 何 概 率可 知 ,
1 2k 2 1 2k 2 2k 2 Cn Cn 1 (C2 ) n22 k 2 Cn 1 2k 2k C2 n C2 n
率总是在区间(0,1)上的一个确定的常数 p 附近波动,并且稳定于 p ,则称 p 为 事件 A 的概率,记为 P( A) .即
P( A) p
14.古典概率定义 古典概率定义 在古典概型中,如果基本事件的总数 所包含的样本点个数为 r ( r n ) ,则定义事件 A 的概率 P( A) 为 r / n .即
第一种情况:不放回抽样
1 1 样 本 空 间 的 基 本 事 件 总 数 为 n C6 C5 30 . 事 件 A 的 基 本 事 件 数 为 1 1 1 1 k A C4 C3 4 3 12 .事件 B 基本事件数为 k B C2 C1 2 1 2 .
(1) (2)由于 P( B)
例 6 从 n 双不同型号的鞋子中任取 2k (2k n) 只,试求下列事件的概率: (1) (2) B ={恰有一对鞋子} . A ={没有成对的鞋子}; 解
华南理工大学《概率论与数理统计》试卷A卷参考试卷
,考试作弊将带来严重后果!华南理工大学期末考试《概率论与数理统计》试卷A 卷1. 考前请将密封线内各项信息填写清楚; 可使用计算器,解答就答在试卷上; .考试形式:闭卷;本试卷共八大题,满分100分。
考试时间120分钟。
5. 本试卷的七、八大题,有不同学分的要求,请小心阅题。
标准正态分布的分布函数值:99.0)33.2(=Φ(10分)甲、乙两人掷均匀硬币,其中甲掷n+1次,乙掷n 次。
求“甲掷出正面的次数大于乙掷出正面的次数”这一事件的概率。
(14分)两台机床加工同样的零件,第一台出现废品的概率为0.05,第二台出现废品的概率为0.02,加工的零件混放在一起,若第一台车床与第二台车床加工的零件数为5:4。
三、(试求:(1) a ;(2) P (X+Y<1);(3) E(XY)四、(15分)设的概率密度为⎩⎨⎧≤≤≤≤+=其他020,10)(),(y x y x A y x f求:(1) A ;(2) E(X), cov(X,Y),X 和Y 的相关系数;(3)(X,Y)落入区域},10{2x y x D ≥≤≤=的概率。
五、(12分)某学院有1000名学生,每人有80%的概率去大礼堂听讲座,问礼堂至少要有多少座位才能以99%的概率保证去听讲座的同学有座位?六、(10分)设随机变量ξ与η独立,并有相同的分布),(2σa N 。
试证:()[]πσηξ+=a E ,max七1、(2学分做)(12分)设X ,Y 是相互独立的随机变量,其概率密度分别为⎩⎨⎧>=⎩⎨⎧≤≤=-.,0)(.0,101)(其他其他y e y f x x f yY X已知X,Y 的函数⎩⎨⎧>≤==.0,1),(Y X Y X Y X g Z试求EZ ,DZ 。
八1、(2学分做)(12分)设随机变量),(ηξ在单位园(){}1|,22≤+=y x y x D 上服从均匀分布,求:⑴ ),(ηξ的联合概率密度),(y x ϕ; ⑵ 边际密度函数)(x ξϕ,)(y ηϕ; ⑶ ξ与η是否相关,是否独立?。
华南理工大学概率论与数理统计考试试卷及答案
二、(12分)在某种牌赛中,5张牌为一组,其大小与出现的概率有关。
一付52张的牌(四种花色:黑桃、红心、方块、梅花各13张,即2-10、J=11、Q=12、K=13、A=14),求(1)同花顺(5张同一花色连续数字构成)的概率;(2)3张带一对(3张数字相同、2张数字相同构成)的概率;(3)3张带2散牌(3张数字相同、2张数字不同构成)的概率。
三、(10分)某安检系统检查时,非危险人物过安检被误认为是危险人物的概率是0.02;而危险人物又被误认为非危险人物的概率是0.05。
假设过关人中有96%是非危险人物。
问:(1)在被检查后认为是非危险人物而确实是非危险人物的概率?(2)如果要求对危险人物的检出率超过0.999概率,至少需安设多少道这样的检查关卡?四、(8分)随机变量X 服从),(2σμN ,求)0( >=a a Y X 的密度函数五、(12分)设随机变量X、Y的联合分布律为:已知E(X+Y)=0,求:(1)a,b;(2)X的概率分布函数;(3)E(XY)。
六、(10分)某学校北区食堂为提高服务质量,要先对就餐率p进行调查。
决定在某天中午,随机地对用过午餐的同学进行抽样调查。
设调查了n个同学,其中在北区食堂用过餐的学生数为m,若要求以大于95%的概率保证调查所得的就餐频率与p之间的误差上下在10% 以内,问n应取多大?七、(10分)设二维随机变量(X,Y)在区域:{}b y a x <<<<0,0上服从均匀分布。
(1)求(X,Y)的联合概率密度及边缘概率密度;(2)已知36,12==DY DX ,求参数a 、b ;(3)判断随机变量X 与Y 是否相互独立?八、(8分)证明:对连续型随机变量ξ,如果c E =3||ξ存在,则0>∀t ,3)|(|t ct P ≤>ξ。
九、(12分)设(X ,Y )的密度函数为⎩⎨⎧<<<<=其他010,10,),(y x Axy y x f 求(1)常数A ;(2)P(X<0.4,Y<1.3);(3)sY tX Ee +;(4)EX ,DX ,Cov(X ,Y)。
华理概率论习题5答案-2012
ac cov( X , Y ) ac DX DY
XY
4. 设两个随机变量 , , E 2, E 4, D 4, D 9, 0.5 ,求
E (3 2 2 2 3) 。
解
E (3 2 2 2 3) 3E ( 2 ) 2 E ( ) E ( 2 ) 3 =3 D ( E ) 2 2cov( , ) EE D ( E ) 2 3 68
=max( , ) 的分布函数 F ( z ) 等于
A. max{F ( z ), F ( z )} B. F ( z ) F ( z )
( B )
1 C. [ F ( z ) F ( z )] 2 二. 填空:
已知 ~ N (0 ,1) ,
1 3
D. F ( z ) F ( z ) F ( z ) F ( z )
B. 独立的充分条件,但不是必要条件 D. 不相关的充分条件,但不是必要条件 )
3.
对于任意两个随机变量 X 和 Y ,若 E ( XY ) E ( X ) E (Y ) ,则 (B A) D( XY ) D( X ) D(Y ) C) X 和 Y 独立
B) D( X Y ) D( X ) D(Y ) D) X 和 Y 不独立0.25 0.15
0.15 0.2 0.15
1.05 E 0 .5 E 0.25 E max( , ) _______, 1.2 E ______, ____, sin ( ) _______, 2
0.36 Dmax( , ) _______ 。
三. 计算题: 1. 已知二维随机变量 ( , ) 的联合概率分布为
华南理工大学2012概率论试题
诚信应考,考试作弊将带来严重后果!华南理工大学期末考试《概率论与数理统计》试卷A 卷(2学分用)注意事项:1. 考前请将密封线内各项信息填写清楚; 2. 可使用计算器,解答就答在试卷上; 3.考试形式:闭卷;4. 本试卷共 十 大题,满分100分。
考试时间120分钟。
题 号 一 二 三 四 五 六 七 八 九 十 总分 得 分 评卷人一、(本题满分10分)两台机床加工同样的零件,第一台出现废品的概率为0.03,第二台出现废品的概率为0.02,已知第一台加工的零件比第二台加工的零件多一倍,加工出来的零件放在一起,求:任意取出的零件是合格品(A)的概率.二、(本题满分12分)甲乙两电影院在竞争1000名观众,假设每位观众在选择时随机的,且彼此相互独立,问甲至少应设多少个座位,才能使观众因无座位而离去的概率小于1%。
三、(本题满分13分)设随机变量X 的密度函数为()xf x A e -= ()x -∞<<+∞,求 (1)系数A, (2) {01}P x ≤≤ (3) 分布函数)(x F 。
四、(本题满分13分)某厂生产某产品1000件,其价格为2000P =元/件,其使用寿命X (单位:天)的分布密度为120000(365)120000365()0365x e x f x x --⎧≥⎪=⎨<⎪⎩现由某保险公司为其质量进行保险:厂方向保险公司交保费0P 元/件,若每件产品若寿命小于1095天(3年),则由保险公司按原价赔偿2000元/件. 试利用中心极限定理计算 (1) 若保费0100P =元/件, 保险公司亏本的概率? (2) 试确定保费0P ,使保险公司亏本的概率不超过1%._____________ ________姓名 学号学院 专业 座位号( 密 封 线 内 不 答 题 )………………………………………………密………………………………………………封………………………………………线………………………………)99.0)33.2(,946.0)61.1(,926.0)45.1(,96.0(0365.0=Φ=Φ=Φ≈-e五、(本题满分14分)箱中共有6个,其中红球、白球、黑球的个数分别为1、2、3,现从箱中随机地取出两个球,记X 为取出的红球个数,Y 为取出的白球个数, (Ⅰ)求二维随机变量(X,Y)的概率分布. (Ⅱ)求Cov(X,Y).六、(本题满分15分)设二维随机变量(ξ,η)的联合密度函数为()⎩⎨⎧<<<<--=其它,040,20,6),(y x y x k y x f求:(1)常数k ;(2)()1,3P ξη<<; (3) ()1.5P ξ<; (4) ()4P ξη+≤.七、(本题满分13分)设随机变量X 与Y 相互独立,X 的概率分布为{}()11,0,13P X i i ===-,Y 的概率密度为()1010Yy f y ≤≤⎧=⎨⎩其它,记Z X Y =+ (1)求102P Z X ⎧⎫≤=⎨⎬⎩⎭; (2)求Z 的概率密度.八、(本题满分10分)证明题:设随即变量X 的参数为2的指数分布,证明21X Y e -=-在区间(0,1)上服从均匀分布。
2012年考研数学概率论真题与答案--WORD版
2012年概率论考研真题与答案1. (2012年数学一)设随机变量X 与Y 相互独立,且分别服从参数为1与4的指数分布,则{}P X Y <=_________. 【A 】A .15 B. 13 C. 25 D. 45解:X 与Y 的概率密度函数分别为:,0()0,0x X e x f x x -⎧>=⎨≤⎩, 44,0()0,0y Y e y f y y -⎧>=⎨≤⎩ 因为X 与Y 相互独立,所以X 与Y 的联合密度函数为44,0,0(,)()()0,x y X Y e x y f x y f x f y --⎧>>=⋅=⎨⎩其他 {}40(,)4x y xx yP X Y f x y dxdy dx e dy +∞+∞--<∴<==⎰⎰⎰⎰450145xyx xe dx edy e dx +∞+∞+∞---===⎰⎰⎰2. (2012年数学一)将长度为1m 的木棒随机地截成两段,则两段长度的相关系数为______.A .1 B.12 C. 12- D. 1- 答案:D.解:设两段长度分别为X 和Y ,显然满足1X Y +=,即1Y X =-+,故两者是线性关系,且是负相关,所以相关系数为1-.3. (2012年数学三)设随机变量X 与Y 相互独立,且都服从区间(0,1)上的均匀分布,{}221P X Y +≤=_________. 【D 】A .14 B. 12 C. 8π D. 4π解:X 与Y 的概率密度函数分别为:1,01()0,X x f x <<⎧=⎨⎩其他, 1,01()0,Y y f y <<⎧=⎨⎩其他又X 与Y 相互独立,所以X 与Y 的联合密度函数为1,0,1(,)()()0,X Y x y f x y f x f y <<⎧=⋅=⎨⎩其他, 从而 {}222211(,)4D x y P X Y f x y dxdy S π+≤+≤===⎰⎰.4. (2012年数学三)设1234,,,X X X X 为来自总体2(1,)(0)N σσ>的简单随机样本,则统计量12342X X X X -+- 的分布为_________. 【B 】A. (0,1)NB. (1)tC.2(1)χ D. (1,1)F解:因为2(1,)i X N σ ,所以212(0,2)X X N σ-(0,1)N 234(2,2)X X N σ+(0,1)N ,22342(2)(1)2X X χσ+- . 因为1234,,,X X X X2342(2)2X X σ+-也相互独立, 从而1234(1)2X X t X X -=+-5. (2012年数学一、三)设,,A B C 是随机事件,A 与C 互不相容,11(),()23P AB P C ==,则()____P AB C =. 【34】解:由于A 与C 互不相容,所以AC φ=,则ABC φ=,从而()0P ABC =;10()()()32()14()()13P ABC P AB P ABC P AB C P C P C --====-6. (2012年数学一、三)设二维离散型随机变量(,)X Y 的概率分布为(1)求{}2P X Y =;(2)求(,)Cov X Y Y -.解:(1){}{}{}120,02,14P X Y P X Y P X Y ====+===.(2) 由(,)X Y 的概率分布可得,,X Y XY 的概率分布分别为,,所以 23EX =,1EY =,2522,,()333EY DY E XY ===(,)()0Cov X Y E XY EX EY =-⋅=故: 2(,)(,)3Cov X Y Y Cov X Y DY -=-=-7. (2012年数学一)设随机变量X 和Y 相互独立且分别服从正态分布2(,)N μσ和2(,2)N μσ,其中σ是未知参数且0σ>. 设Z X Y =-. (1)求Z 的概率密度2(,)f z σ;(2)设12,,,n Z Z Z 是来自总体Z 的简单随机样本,求2σ的最大似然估计量2σ;(3)证明 2σ是2σ的无偏估计量. 解:(1) 因为2(,)X N μσ ,2(,2)Y N μσ ,且X 和Y 相互独立,故2(0,3)Z X Y N σ=-2226(;),z f z z R σσ-∴=∈(2)似然函数为 2116221()(;)ni i nz i i L f z σσσ=-=∑==∏两边取对数,得222211l n ()l n 26nii nL n zσσσ==--∑关于2σ求导,得2222221ln ()1+26()nii d L n z d σσσσ=-=∑ 令22ln ()0,d L d σσ= 解得λ的最大似然估计值 22113n i i z n σ==∑ 因此,λ的最大似然估计量 22113n i i Z n σ==∑(3) 2221111()()()33n n i i i i E E Z E Z n n σ====∑∑2221111[()()]333n n i i i i E Z D Z n n σσ===+==∑∑ 故 2σ是2σ的无偏估计量. 8. (2012年数学三)设随机变量X 与Y 相互独立,且都服从参数为1的指数分布. 记{}max ,U X Y =,{}min ,V X Y =,则(1)求V 的概率密度()V f v ;(2)求()E U V +. 解:(1) X 与Y 的分布函数均为1,0()0,0x e x F x x -⎧-≥=⎨<⎩{}min ,V X Y =的分布函数为{}{}{}{}()min ,1min ,V F v P X Y v P X Y v =≤=-> {}21,1(1())P X v Y v F v =->>=--21,00,0v e v v -⎧-≥=⎨<⎩故V 的概率密度为22,0()()0,0v V V e v f v F v v -⎧>'==⎨≤⎩(2) min(,)max(,)U V X Y X Y X Y +=+=+()()()()2E U V E X Y E X E Y ∴+=+=+=.。
华南理工大学概率论
第九章9-1 ①提出假设010:32.05H μμ==.②找统计量.()~0,1X u N =.③求临界值.对给定的0.05α=,查表得0.025 1.96u =;对给定的0.01α=,查表 得0.005 2.575u =.④求观察值.31.13, 2.05X u ==-.⑤作出判断.当0.05α=时, 2.05 1.96u =>,所以拒绝0H ;当0.01α=时, u2.05 2.275=<,所以接受0H .9-2 ①提出假设00:5H μμ==.②找统计量.()~0,1X u N =.③求临界值.对给定的0.01α=,查表得0.005 2.575u =. ④求观察值. 5.32, 3.2X u ==.⑤作出判断.当0.01α=时, 3.2 2.275u =>,所以拒绝0H . 9-3 (1)①提出假设00:50H μμ==.②找统计量.()~0,1X u N =.③求临界值.对给定的0.05α=,查表得0.025 1.96u =. ④求观察值. 2.25u =.⑤作出判断.当0.05α=时, 2.25 1.96u =>,所以拒绝0H . (2)①提出假设00:50H μμ==. ②找统计量.()~1X t t n =-.③求临界值.对给定的0.05α=,查表得()0.0258 2.31t =. ④求观察值.48.5, 2.5, 1.8X S t ===-.⑤作出判断.当0.05α=时, 1.8 2.31t =<,所以接受0H .9-4 ①提出假设00: 2.7H μμ==.②找统计量.()~1X t t n =-.③求临界值.对给定的0.05α=,查表得()0.02529 2.04t =. ④求观察值.°0.18,301 2.05/29n S S t n ==-⨯. ⑤作出判断.当0.05α=时, 2.04t <,所以接受0H . 9-5 ①提出假设00:H μμ=.②找统计量.()~0,1X u N =.③求临界值.对给定的0.01α=,查表得0.005 2.575u =. ④求观察值. 1.5u =.⑤作出判断.当0.01α=, 1.5 2.575u =<,所以拒绝0H . 9-6 (1)①提出假设00:100H μμ==.②找统计量.()~0,1X u N =.③求临界值.对给定的0.05α=,查表得0.025 1.96u =. ④求观察值.99.9,0.25X u ==.⑤作出判断.当0.05α=时,0.25 1.96u =<,所以接受0H .(2)①提出假设22200: 1.2H σσ==.②找统计量. ()92222101()~ii Xn χμχσ==-∑.③求临界值.对给定的0.05α=,查表得()()220.0250.975919.0,9 2.7χχ==.④求观察值. 28.2χ=.⑤作出判断. 当0.05α=时,22.719.0χ<<,所以接受0H .9-7 ①提出假设2200:0.04H σσ==.②找统计量. ()2222101()~1nii XX n χχσ==--∑.③求临界值. 对给定的0.05α=,查表得()()220.0250.9751426.1,14 5.63χχ==. ④求观察值. 21.84χ=.⑤作出判断. 当0.05α=时,25.63χ<,所以拒绝0H ,有显著差异. 9-8 ①提出假设00:9H σσ==.②找统计量. ()2222101()~1nii XX n χχσ==--∑.③求临界值. 对给定的0.05α=,查表得()()220.0250.975919.0,9χχ==2.7.④求观察值. 2221162.9,(62.9)9nii X Xχ===-∑.⑤作出判断. 当0.05α=时, 22.719χ<<,所以接受0H ,即可认为溶化时间 的标准差为9.9-9 (1)①提出假设00:500H μμ==.②找统计量. ()~0,1X u N =.③求临界值. 对给定的0.05α=,查表得0.025 1.96u =. ④求观察值. 501.3,0.82X u ==.⑤作出判断. 当0.05α=时, 0.82 1.96u =<,所以接受0H ,即包装机工作 正常.(2)①提出假设00: 2.7H μμ==.②找统计量. ()~1X t t n =-.③求临界值. 对给定的0.05α=,查表得()0.0259 2.26t =. ④求观察值. 2501.3,31.57,0.73X S t ===. ⑤作出判断. 当0.05α=时, 2.26t <,所以接受0H .9-10 (1)①提出假设2200:25H σσ==.②找统计量. ()2222101()~ni i X X n χχσ==-∑. ③求临界值.对给定的0.05α=,查表得()()220.0250.9751020.5,10 3.25χχ==.④求观察值. 212χ=.⑤作出判断. 当0.05α=时, 23.2520.5χ<<,所以接受0H . (2)①提出假设00:5H σσ==. ②找统计量. ()2222101()~1nii XX n χχσ==--∑.③求临界值. 对给定的0.05α=,查表得()()220.0250.975919.0,9χχ==2.7. ④求观察值. 22501.3,31.57,11.37X S χ===. ⑤作出判断. 当0.05α=时, 22.719χ<<,所以接受0H .9-11 ①提出假设02:0H μμ-=.②找统计量.()~0,1X Y u N μμ---=.③求临界值. 对给定的0.05α=,查表得0.025 1.96u =. ④求观察值. u =. ⑤作出判断. 当0.05α=时, 1.96u >,所以拒绝0H .9-12 (1)①提出假设21022:1H σσ=.②找统计量. ()12211122121()1~1,11()1n i i n i i X X n F F n n Y Y n ==--=----∑∑.③求临界值.对给定的0.05α=,查表得()()0.0250.9755,57.15,5,50.14F F ==④求观察值. 222112221139.33,269,0.14655S S S F S =⨯=⨯==.⑤作出判断. 当0.05α=时, 0.147.15F <<,所以接受0H . (2)①提出假设012:0H μμ-=. ②找统计量.()12~2X Y t t n n μμ---=+-.③求临界值. 对给定的0.05α=,查表得()0.02510 2.23t =. ④求观察值. 0.14067,0.13883,0.57X Y t ===. ⑤作出判断. 当0.05α=时,0.57 2.23t =<,所以接受0H .9-13 (1)①提出假设21022:1H σσ=.②找统计量. ()12211122121()1~1,11()1n i i n i i X X n F F n n Y Y n ==--=----∑∑.③求临界值.对给定的0.01α=,查表得()()0.0050.9958,9 6.69,8,9F F ==17.34. ④求观察值. 2221122264,226,0.28S S S F S ====.⑤作出判断.当0.01α=时,16.697.34F <<,所以接受0H . (2)①提出假设02:0H μμ-=.②找统计量.()12~2X Y t t n n μμ---=+-.③求临界值. 对给定的0.01α=,查表得()0.00517 2.9t =. ④求观察值. 533,562,X Y t ===.⑤作出判断. 当0.01α=时, 2.9t >,所以拒绝0H .9-14 ①提出假设012:0H μμ-=.②找统计量.()12~2X Y t t n n ---=+-.③求临界值. 对给定的0.05α=,查表得()0.02511 2.20t =. ④求观察值. 17.681,17.630,X Y t ===⑤作出判断. 当0.05α=时, 2.2t <,所以接受0H .9-15 (1)①提出假设21022:1H σσ=.②找统计量. ()12211122121()1~1,11()1n i i n i i X X n F F n n Y Y n ==--=----∑∑.③求临界值.对给定的0.10α=,查表得()()0.050.9518,5 4.82,8,5 3.69F F ==. ④求观察值. 22211222113.69,19.2,0.1285S S S F S =⨯=⨯==.⑤作出判断. 当0.10α=时,13.69F <,所以拒绝0H . (2)①提出假设21022:1H σσ=.②找统计量. ()1221111222121()~,1()n i i n i i X n F F n n Y n μμ==-=-∑∑. ③求临界值.对给定的0.10α=,查表得()()0.050.9519,6 4.06,9,6 3.37F F == ④求观察值. 0.128F =. ⑤作出判断.当0.10α=时,13.37F <,所以拒绝0H . 9-16 ①提出假设02:0H μμ-=.②找统计量.()12~2X Y t t n n μμ---=+-.③求临界值.对给定的0.05α=,查表得()0.02513 2.16t =. ④求观察值. t =.⑤作出判断. 当0.05α=时, 2.16t <,所以接受0H .9-17 ①提出假设21022:1H σσ=.②找统计量. ()12211122121()1~1,11()1n i i n i i X X n F F n n Y Y n ==--=----∑∑. ③求临界值.对给定的0.05α=,查表得()()0.0250.97516,751.2,6,7 5.7F F ==. ④求观察值. 222112220.1048,0.0272, 3.85S S S F S ====.⑤作出判断.当0.10α=时,15.125.7F <<,所以接受0H . 9-18 根据题目要求,考虑假设检验()()()()0010:,:H F x F x H F x F x =≠.其中0F 服从泊松分布,其分布律为{}() 0,1,2,!kP X k e k k λλ-===Lλ的极大似然估计为样本均值X ,其观察值为()106544940.61200X =++++= 则统计量为()25210.7853i i i in np np χ=-==∑其中200n =,i p 是按0.61λ=的泊松分布律计算出的X 的取值为0,1,2,3,4 这五种情况的概率.查表得()220.0549.49χχ=>,故接受0H .9-19 根据题目要求,考虑假设检验()()00:H F x F x =,其中0F 服从等概率分布,其 分布律为{}()11,2,,66P X k e k λ-===L由观测数据得120,20i n np ==,则统计量为()()26211936102525 4.820i i i in np np χ=-==+++++=∑其中120n =.查表得()220.05511.1χχ=>,故接受0H .。
大学专业试卷华南理工大学 理工科专业 《概率论与数理统计》试卷及参考解答
件次品,乙箱中仅装有3件合格品.从甲箱中任取3件产品放入乙箱后,求: (1)乙箱中次品件数X 的数学期望; (2)从乙箱中任取一件产品是次品的概率.解 (1)X 的可能值为0,1,2,3,所以X 的概率分布为()()333360,1,2,3k kC C P X k k C -=== 即 X 0 1 2 3P120 920 920 120因此199130123202020202EX =⨯+⨯+⨯+⨯= (2)设A ={从乙箱中任取一件产品是次品},根据全概率公式有(){}{}30191921310202062062064k P A P X k P A X k =====⨯+⨯+⨯+⨯=∑三、(12)某保险公司对一种电视机进行保险,现有9000个用户,各购得此种电视机一台,在保险期内,这种电视机的损坏率为0.001,参加保险的客户每户交付保险费5元,电视机损坏时可向保险公司领取2000元,求保险公司在投保期内:(1)亏本的概率;(2)获利不少于10000元的概率。
解 101,2,,9000i i i i ξ⎧⎨⎩=第台电视机坏设=第台电视机正常9000900011{1}0.001{0}0.9990.0010.00099999i i i i iii i P P E D E D ξξξξξξ=========≈∑∑保险公司亏,则电视机坏的台数: >9000*5/2000=22.5900090009000122.51(4.5)0i i i i E P P ξξξ=⎧⎫⎛⎫⎪⎪- ⎪⎧⎫>=>=-Φ≈⎨⎬⎩⎭⎪⎭∑∑∑ 保险公司获利不少于10000元,则电视机坏的台数:<(9000*5-10000)/2000=17.5900090009000117.5(2.83)(3)(2)(2)(2.832)0.97720.021450.830.99532i i i i E P P ξξξ=⎧⎫⎛⎫⎪⎪- ⎪⎧⎫<=<=Φ⎨⎬⎩⎭⎪⎭Φ-Φ=Φ+-=+⨯=-∑∑∑四、(15分)设二维随机变量(),X Y 的概率分布为 YX -1 0 1-1 a 0 0.2 0 0.1 b 0.21 0 0.1 c其中a 、b 、c 为常数,且X 的数学期望0.2EX =- ,{}000.5P Y X ≤≤= ,记Z X Y =+.求: (1) a 、b 、c 的值; (2)Z 的概率分布律; (3){}P X Z =.解 (1)由概率分布的性质可知, 0.61a b c +++=,即0.4a b c ++=. 由0.2EX =-,可得0.1a c -+=-.再由{}{}{}0,00.1000.500.5P X Y a b P Y X P X a b ≤≤++≤≤===≤++,解得0.3a b +=.解以上关于a 、b 、c 的三个方程可得, 0.2,0.1,0.1a b c ===. (2)Z 的所有可能取值为-2,-1,0,1,2.则{}{}21,10.2P Z P X Y =-==-=-={}{}{}11,00,10.1P Z P X Y P X Y =-==-=+==-={}{}{}{}01,11,10,00.3P Z P X Y P X Y P X Y ===-=+==-+==={}{}{}11,00,10.3P Z P X Y P X Y ====+=== {}{}21,10.1P Z P X Y =====所以Z 的概率分布为Z -2 -1 0 1 2 P 0.2 0.1 0.3 0.3 0.1(3) {}{}000.10.10.10.2P X Z P Y b ====++=+=.五、(15分)设随机变量X 的概率密度为()110210 2 40 X x f x x ⎧-<<⎪⎪⎪=≤<⎨⎪⎪⎪⎩当当其他令2Y X =,(),F x y 为二维随机变量(),X Y 的分布函数.求:(1)Y 的密度函数()Y f y ; (2) ()cov ,X Y ; (3) 1,42F ⎛⎫- ⎪⎝⎭.解 (1)Y 的分布函数为(){}{}2Y F y P Y y P X y =≤=≤当0y ≤时, ()()0,0Y Y F y f y ==. 当01y <<时,(){{}{00Y F y P X P X P X =≤≤=≤<+≤≤=()Y f y =当14y ≤<时,(){}{11002Y F y P X P X =-≤<+≤≤=()Y f y =当4y ≥时,()()1,0Y Y F y f y ==. 所以Y 的概率密度为()01140 Y y f y y <<⎪=≤<⎪⎩当当其他(2) ()0210111244X EX xf x dx xdx xdx +∞-∞-==+=⎰⎰⎰()022211546X EY EX x f x dx x dx +∞-∞-====⎰⎰()023********248X EXY EX x f x dx x dx x dx +∞-∞-===+=⎰⎰⎰故 ()2cov ,3X Y EXY EX EY =-⋅=(3) 2111,4,4,4222F P X Y P X X ⎛⎫⎧⎫⎧⎫=≤-≤=≤-≤⎨⎬⎨⎬ ⎪⎝⎭⎩⎭⎩⎭1111,22212224P X X P X P X ⎧⎫⎧⎫⎧⎫=≤-≤≤=-≤≤-=-≤≤-=⎨⎬⎨⎬⎨⎬⎩⎭⎩⎭⎩⎭六、(2学分) (10分) 设随机变量X 与Y 独立,其中X 的概率分布为12~0.30.7X ⎛⎫ ⎪⎝⎭而Y 的概率密度为()f y ,求随机变量U X Y =+的概率密度()g u .解 设()F y 是Y 的分布函数,则由全概率公式可知,U X Y =+的分布函数为(){}G u P X Y u =+≤{}{}0.310.72P X Y u X P X Y u X =+≤=++≤={}{}0.3110.722P Y u X P Y u X =≤-=+≤-=由于X 与Y 独立,得(){}{}()()0.310.720.310.72G u P Y u P Y u F u F u =≤-+≤-=-+-因此,U 的概率密度为()()()()()()0.310.720.310.72g u G u F u F u f u f u '''===-+-=-+-七、(2学分)(10分)已知男子中有5%是色盲患者,女子中有0.25%是色盲患者,若从男女人数相等的人群中随机地挑选一人,恰好是色盲患者,问此人是男性的概率是多少?解 设A {{抽到一名男性};B {{抽到一名女性};C {{抽到一名色盲患者},由全概率公式得11()(|)()(|)()5%0.25% 2.625%22P C P C A P A P C B P B =+=⨯+⨯=1()()(|)5% 2.5%2P AC P A P C A ==⨯=由贝叶斯公式得()20(|)()21P AC P A C P C ==八、(2学分)(16分)(1)设()12,,, 2n X X X n ≥为独立同分布的随机变量,且均服从()0,1N ,记X =121n i i X n -=∑,() 1,2,,i i Y X X i n =-=. 求:{}10n P Y Y +≤.(2)袋中有a 只红球,b 只白球,c 只黑球。
华南理工大学概率论试卷4(含答案)
.
( B ) 2 F ( 2004 ) 1 ;
( D) 2[1 F ( 2004 )] .
2.
设二维随机变量 ( X , Y ) 服从 G 上的均匀分布, G 的区域由曲线 y x 2 与 y x 所围, .
1 96.04 4
故
n > [ 96.4 ]+1 = 97 人 .
x| 1 2 | x e dx 2 2 , 2
5. 解:
E( X 2 )
矩估计量 极大似然估计量 6.解:
1 n 2 Xi ; 2n i 1
1 n | Xi | . n i 1
五. 证明题 (6 分) 设 A , B , C 是不能同时发生但两两独立的随机事件,且 P ( A ) P ( B ) P (C ) , 证明 可取的最大值为 1/2. [ 附 正态分布、 t 分布、 2 分布数值表 ]
(1 .285 ) 0 .9, (1 .645 ) 0 .95 , (1 .96 ) 0 .975 , ( 2 .33 ) 0 .99
t 0.025 (5) 2.5706, t 0.025 (6) 2.4469, t 0.05 (5) 2.0150, t 0.05 (6) 1.9432
2 2 2 2 0.05 (5) 11.071, 0.05 (6) 12.592, 0.025 (5) 12.833, 0.025 (6) 14.449
解法二 设事件 B {两个中至少有一个是新球}, A {两个都是新球},则 A B ,
华南理工大学概率论与数理统计考试试卷及答案3
,考试作弊将带来严重后果!华南理工大学期末考试《概率论与数理统计》试卷(A )1. 考前请将密封线内填写清楚;允许使用计算器,所有答案请直接答在试卷上; .考试形式:闭卷;99.0)33.2(,975.0)96.1(,95.0)645.1(,9.0)285.1(=Φ=Φ=Φ=Φ(本大题10分)一个盒子中装有4个白球、6个红球,现投掷一枚均匀的骰子,骰子投掷出几点就从盒中无放回地取几个(1)所取的全是白球的概率;(2)如果已知取出的都是白球,那么骰子所掷的点数恰为3的概率是多少? A={取的全是白球},B j ={骰子投掷出j 点}1)6/1)(=j B P ,⎪⎩⎪⎨⎧>≤=4,04,)|(104j j C C B A P jjj∑=jj j B A P B P A P )|()()(=2/212))()|()()|(333A P B A P B P A B P ==7/60(本大题10分)设二维离散型随机变量(,)X Y 的分布列为(,)(1,0)(1,1)(2,0)(2,1)0.40.2X Y Pab且()0.8E XY =(1)求a 、b ;(2)求出X 的边缘分布列; (3)写出X 的分布函数。
解:(1)0.4+0.2+a+b=18.022.012022.0114.001=+=⨯⨯+⨯⨯+⨯⨯+⨯⨯=b b a EXY联立方程解得: 3.0,1.0==b a(3) X 的分布函数:⎪⎩⎪⎨⎧>≤<≤=2,121,6.01,0)(x x x x F三.(本大题10分)。
设X 服从(0,1)上均匀分布, (1)求X Y ln 1λ-=的密度函数;(2)⎪⎪⎭⎫⎝⎛4.035.025.0210~Z ,求一个)(X h ,使得)(X h Z =。
解:X 的密度函数:⎩⎨⎧>≤≤<=10,010,1)(x and x x x flnX<0(1)当0>λ,0≤y 时,()0=y F Y ,()()0==y F dydy f Y Y 当0>λ,0>y 时(){}y Y e X P y X P y F λλ->=⎭⎬⎫⎩⎨⎧<-=ln 1()y eee dx dx xf y y λλλ-+∞-===⎰⎰--11密度函数: ()()y Y Y e y F dydy f λλ-==当0<λ(不做也给分),0≤y 时(){}y Y e X P y X P y F λλ-<=⎭⎬⎫⎩⎨⎧<-=ln 1()y e e e dx dx x f yyλλλ-∞-===⎰⎰--0()()y Y Y e y F dydy f λλ--==当0<λ(不做也给分),0>y 时,()0=y F Y ,()()0==y F dydy f Y Y(2)⎪⎩⎪⎨⎧<≤<≤=xx x x h 6.0,26.025.0,125.0,0)(四.(本大题10分)。
华南理工大学概率论第二章
第二章2-1 (1)()()()()0.50.40.10.8;P A B P A P B P AB =+-=+-=(2)()0.1(|)0.25;()0.4P AB P A B P B === (3)()0.1(|)0.2;()0.5P AB P B A P A === (4)()()()0.50.12(|)0.66671()10.43()P AB P A P AB P A B P B P B --====≈--2-2 因为A B 、是独立事件,所以有()()(),()()(),()()()P AB P A P B P AB P A P B P AB P A P B ===(1)()()()(|)0.3;()()P AB P A P B P A B P B P B === (2)()1()1()()10.70.40.72;P A B P A B P A P B =-=-=-⨯= (3)()()()(|)0.4;()()P AB P A P B P B A P A P A === (4)()()()(|)0.7()()P AB P A P B P A B P B P B === 2-3 因为AB A A B ⊆⊆,所以()()()P AB P A P A B ≤≤又因为()()()()P A B P A P B P AB =+-,所以()()()()()P AB P A P A B P A P B ≤≤≤+当A B ⊂时,第一个不等式中的等号成立; 当B A ⊂时,第二个不等式中的等号成立; 当AB =∅时,第三个不等式中的等号成立. 2-4 证明 (())()()()()P A B C P ACBC P AC P BC P ACBC ==+-(()())()()()P A P B P C P AB P C =+-(()()())()P A P B P AB P C =+- ()()P AB PC =()()()()()()P ABC P A P B P C P AB P C ==(())()()()()P A B C P ABC P A P B P C -==()()()()P AB P C P A B P C ==-所以,A B A B AB -、、分别与C 独立2-5 设A ={射手击中目标},1A ={第一次击中目标},2A ={第二次击中目标},3A ={第三次击中目标}.有题意可知,0.6100k=,即60k =; 1112233()()()(|)()(|)()(|)P A P A P A P A A P A P A A P A P A A =+++6060600.60.40.410.832150150200⎛⎫=+⨯+⨯-⨯= ⎪⎝⎭2-6 设1A ={投掷两颗骰子的点数之和为偶数},设2A ={投掷两颗骰子的点数之和为奇数},1B ={点数和为8},2B ={点数和为6}(1)1166111111113333111665()5(|)()18C C P A B P B A C C C C P A C C ===+;(2)11662222111133332116662()12(|)()18C C P A B P B A C C C C P A C C ⨯===+;(3)116622222116662()12(|)21()21C C P A B P A B P B C C ⨯=== 2-7 设A ={此密码能被他们译出},则141421()0.6553534P A =+⨯+⨯⨯=2-8 1110101101()1(|),1()10C C P AB P B A P A C === 1110101110101()1(|)6()6C C P AB P A B P B C C === 2-9 设A ={第一次取得的全是黄球},B ={第二次取出黄球、白球各一半},则5552010155103025()0.1,(|)C C C P A P B A C C ===所以 5551015201052530()()(|)C C C P AB P A P B A C C == 2-10 设1A ={第一次取得的是黄球},2A ={第二次取得的是黄球},3A ={第三次取得的是白球},则1111213121112(),(|),(|)b b ca ab a bc a b cC C C P A P A A P A A A C C C ++++++=== 所以 123121312()()(|)(|)P A A A P A P A A P A A A =1111112b b ca ab a bc a b cC C C C C C ++++++= 2b b c aa b a b c a b c+=+++++2-11 设A ={这批货获得通过},B ={样本中恰有一台次品},A ={这批空调设备退货};D ={第一次抽的是合格品},E ={第二次抽的是合格品}(1)67661474()()(|);70691610P A P D P E D ==⨯= (2)673367134()()(|)()(|);706970691610P B P D P E D P D P E D =+=⨯+⨯= (3)136()1()1610P A P A =-=2-12 设A ={选出的产品是次品},1B ={产品是由 厂生产},B ={选出的产品是正品}(1)118241300042();3000C P A C +== (2)11811182418(|);42C P B A C +==(3)117821117821761782(|)2958C P B B C +==2-13 设A ={检验为次品},B ={实际为正品}(1)()5%90%95%1%0.0545P A =⨯+⨯=; (2)()(|)95%1%(|)0.1743()0.0545P B P A B P B A P A ⨯===2-14 设A ={这位学生选修了会计},B ={这位学生是女生}(1)()()(|)0.66%0.036P AB P B P A B ==⨯=;(2)()()(|)0.490%0.36P AB P B P A B ==⨯=;(3)((())()()P A P A B B P AB P AB =+=+)()(|)()(|)P B P A B P B P A B =+ 0.66%0.410%0.076=⨯+⨯=2-15 设A ={此人被诊断为患肺癌},B ={此人确实患肺癌}(1)()98%3%(|)0.7519;()98%3%97%1%P AB P B A P A ⨯===⨯+⨯ (2)()(|)3%2%(|)0.0001;2%3%97%99%()P B P A B P B A P A ⨯===⨯+⨯ (3)对于被检查者,若被查出患肺癌,可不必过于紧张,还有约25%的可能没有患肺癌,可积极准备再做一次检查.对地区医疗防病结构而言,若检查结果是未患肺癌,则被检查者基本上是没有患肺癌的. 2-16 设A ={收到信息为0},B ={发送信息为0},则有(0.7(10.02)0.30.010.689P A =⨯-+⨯=)(0.7(10.02)0.686P AB =⨯-=)所以 (0.686686(|()0.689689P AB P B A P A ==))=2-17 设1A ={这批计算机是畅销品},2A ={这批计算机销路一般},3A ={这批计算机是滞销品},B ={试销期内能卖出200台以上}.根据题意有123()0.5,()0.3,()0.2P A P A P A === 123(|)0.9,(|)0.5,(|)0.3P B A P B A P B A ===(1)1111112233()((|(|)()((|((|((|P A B P A P B A P A B P B P A P B A P A P B A P A P B A ==++))))))))0.50.90.726;0.50.90.30.50.20.1⨯==⨯+⨯+⨯(2)22()0.15(|)0.242;()0.62P A B P A B P B === (3)33()0.02(|)0.032;()0.62P A B P A B P B === (4)33(|)1(|)10.0320.968P A B P A B =-=-=2-18 设A ={硬币抛掷出现正面},i B ={硬币是第i 个硬币} (i =1,2,3,4,5),B ={抛掷又出现字面}(1)125()()()()P A P AB P AB P AB =+++112255()(|)()(|)()(|)P B P A B P B P A B P B P A B =+++11111311101;545254552=⨯+⨯+⨯+⨯+⨯= (2)11()(|)0()P AB P B A P A ==, 2211()145(|)1()102P AB P B A P A ⨯===,3311()125(|)1()52P AB P B A P A ⨯=== , 4431()345(|)1()102P AB P B A P A ⨯===,551()25(|)1()52P AB P B A P A === ;(3)1111332()0010.75104521045P B =⨯+⨯+⨯+⨯+⨯= 2-19 设1A ={一人击中},2A ={两人击中},3A ={三人击中},B ={飞机被击落}.根据题意有1()0.40.5(10.7)0.60.50.30.60.50.70.36,P A =⨯⨯-+⨯⨯+⨯⨯= 2()0.40.5(10.7)0.40.50.370.60.50.70.41,P A =⨯⨯-+⨯⨯+⨯⨯= 3()0.40.50.70.14,P A =⨯⨯=123(|)0.2,(|)0.6,(|)1P B A P B A P B A ===所以 112233()()(|)()(|)()(|)P B P A P B A P A P B A P A P B A =++0.360.20.410.60.1410.458=⨯+⨯+⨯=2-20 设A ={这批元件能出厂},则495()(4%0.0596%0.99)0.050.999999P A ⎛⎫=⨯+⨯+⨯+⨯+ ⎪⎝⎭4940.050.999898⎛⎫⨯+⨯ ⎪⎝⎭0.8639=2-21 (1)设A ={这批产品经检验为合格品},则1205124175()0.960.060.960.060.960.063252516162222P A ⎛⎫=⨯⨯+⨯+⨯+⨯+⨯+⨯ ⎪⎝⎭0.757=(2)设B ={产品真是合格品},则12012170.960.960.96()3251622(|)0.982()0.757P AB P B A P A ⎛⎫⨯⨯+⨯+⨯ ⎪⎝⎭===。
华南理工大学20122013学年第一学期《概率论与数理统计》期末试题A卷
1912)|(4204182==C C B A P 。
由全概率公式得20412()()(|)0.810.10.10.94519i i i P A P B P A B ===⨯+⨯+⨯=∑由贝叶斯公式000()(|)0.81(|)0.85()0.94P B P A B B A P A ⨯===三(12分)今有两口箱子,第一箱装有2个红球1个白球,第二箱装有3个红球2个白球。
现在从两箱中任取一箱,然后再从该箱中任取两球,每次取一个,不放回。
(1) 求第一次取到红球的概率;(2) 在第一次取到红球的条件下,求第二次取到红球的概率;解:记{}(){})2,1(箱取到第;2,1次取到红球第A ====j j B i i j i 533018)(,32)(,21)()(211121=====B A p B A p B p B p 4分 3019)()()()()(2211111=+=B p B A p B p B A p A p 6分(2)6019)()()()()(2221112121=+=B p B A A p B p B A A p A A p 10分21)()()(12112==A p A A p A A p 12分四(12分)设考生的外语成绩(百分制)X 服从正态分布,平均成绩(即参数μ之值)为72分,96分以上的人占考生总数的2、3%,今任取100个考生的成绩,以Y 表示成绩在60分至84分之间的人数,求(1)Y 的分布列、(2)EY 与DY 、解:)1( Y ~B(100,p ),其中p =--X P ⎪⎭⎫ ⎝⎛Φ=≤<σ72848460()11227260--⎪⎭⎫ ⎝⎛Φ=⎪⎭⎫ ⎝⎛Φσσ由0、023=)24(172961)96(σσΦ-=⎪⎭⎫⎝⎛-Φ-=>X p 4分得112224,997.024===⎪⎭⎫⎝⎛Φσσσ,故即 5分所以6826.011(2=Φ=-p ) 6分故Y 的分布列为k k kC k Y p -==100100)3174.0()6826.0()( 8分 (2),26.686826.0100=⨯=EY 6657.213174.026.68=⨯=DY 12分五(12分)设 X,Y 就是两个随机变量,其联合概率密度为⎪⎩⎪⎨⎧>>+=+-其他,00,0,)(21),()(y x e y x y x f y x求:(1)求X,Y 边缘密度函数;(2)判断X,Y 就是否相互独立,并求随机变量Z=X+Y 的概率密度函数。
华理概率论习题8答案-2012
H 0 : 54.46, H1 : 54.46 ,
考虑到总体服从正态分布 N (54, 0.752 ) ,故采用双侧 U 检验法,
ˆ 取检验统计量的测试值为 U
由水平 0.05 ,查表得 U
X 0 54.46 54 1.9395 , 0 n 0.75 10
1. 假设检验中分别用 H 0 和 H 1 表示原假设和备择假设,则犯第一类错误的概率 是指 ( C )。 B. P{接受H 0 | H 0不真} D. P{拒绝H 0 | H 0不真}
A. P {接受H 0 | H 0 为真 } C. P {拒绝H 0 | H 0 为真 }
2. 一个显著性的假设检验问题,检验的结果是拒绝原假设还是接受原假设,与之 有关的选项中, 正确的( D ) A. 与显著性水平有关 B. 与检验统计量的分布有关 C. 与样本数据有关 D. 与上述三项全有关 3. 一个显著性水平为ɑ的假设检验问题,如果原假设 H 0 被拒绝,则( A. 原假设 H 0 一定不真 B )
2 解:由样本观测值计算,得 X 2833.5, S n 1 1228.0556 ,
本问题相当于要检验 H 0 : 2 402 , H1 : 2 402 , 考虑到均值 未知,故采用双侧 2 检验法, 取检验统计量的测试值为 2 由水平 0.05 ,查表得
5) 根据分析结果,当 X=0 时, 预测变元 Y 的点估计为 __1.25___; 6) 回归方程中变元 X 系数的置信水平为 95%的置信区间是___[0.7355,
2.5145]__
二.
选择题:
1. 若要通过抽样了解其某个服从正态分布的质量指标的方差是否在允许的范围内,宜采用 的检验是( C )
华理概率论答案第一册
2.对飞机进行两次射击,每次射一弹,设事件 A = “恰有一弹击中飞机”, 事件 B = “至少有一弹击中飞机” ,事件 C =“两弹都击中飞机”, 事件 D = “两 弹都没击中飞机” ,又设随机变量 ξ 为击中飞机的次数,则下列事件中( C )不
1
表示 {ξ = 1} 。 A. 事件 A B. 事件 B − C C. 事件 B − C D. 事件 D − C
nk
放回方式摸球,则第 k 次摸球时,首次摸到 1 号球的概率为
1 。 n
二. 选择题: 1. 为了减少比赛场次,把 20 个球队任意分成两组(每组 10 队)进行比赛, 则 最强的两个队被分在不同组内的概率为( B )。 1 10 5 1 A. B. C. D. 19 19 10 2 2. 从一副扑克牌(52 张)中任取 4 张,4 张牌的花色各不相同的概率( C ) A.
1 . 4
2. 同时掷五颗骰子,求下列事件的概率: (1) A=“点数各不相同” ; (2) B=“至少出现两个 6 点 ” ; (3) C=“恰有两个点数相同” ; (4) D=“某两个点数相同,另三个同是另一个点数” ;
P65 解: (1) P ( A) = 5 ; 6
(2) P ( B ) = 1 −
华东理工大学
概率论与数理统计
作业簿(第一册)
学 学 院 号 ____________专 ____________姓 业 名 ____________班 级 ____________ ____________任课教师____________
第一次作业
一. 填空题:
⎧ 1 ⎧ 1 ⎫ 1.设 S = {x 0 ≤ x ≤ 2} , A = ⎨ x < x ≤ 1⎬ , B = ⎨ x ≤ x < ⎩ 2 ⎩ 4 ⎭ 3⎫ ⎬ 2 ⎭ ,具体写出下列
华理概率论答案第二册
概率论与数理统计
作业簿(第二册)
学 院 ____________专 业 ____________班 级 ____________ 学 号 ____________姓 名 ____________任课教师____________
第四次作业
一. 填空题: 1.设事件 A,B 相互独立,且 P( A) = 0.2, P(B) = 0.5 ,则 P(B A ∪ B) = 4/9
3.下列函数中,可作为某一随机变量的分布函数是( A )
(A)
F ( x)
=
1 2
+
1 π
arctan
x
(C)F (x)
=1+
1 x2
(B)
F
(
x)
=
⎧⎪ ⎨
1 2
(1
−
e−
x
),
x>0
⎪⎩ 0,
x≤0
∫ ∫ (D)
F(x) =
x
f (t)dt ,其中
+∞
f (t)dt = 1
−∞
−∞
4.设概率 P( X > x1 ) ≥ β ,P( X ≤ x2 ) ≥ α ,且 x1 < x2 ,则 P( x1 < X ≤ x2 ) ( C )
D={取出一球为白球},则
P( A) = 3 , P(B) = 1 , P(C) = 2
6
6
6
P(D | A) = 1 , P(D | B) = 2 , P(D | C) = 3
3
3
6
P(D) = 3 × 1 + 1 × 2 + 2 × 3 = 4 6363 66 9
【华南理工大学2012年考研专业课真题】应用数学基础(含概率论、常微分方程)2012
华南理工大学 2012 年攻读硕士学位研究生入学考试试卷
(请在答题纸上做答,试卷上做答无效,试后本卷必须与答题纸一同交回) 科目名称:应用数学基础(含概率论、常微分方程) 适用专业:系统分析与集成 本卷满分:150 分 一、 (20 分)按要求计算下列各题: (1) 0 至 9 这 10 个数中不放回地任取 4 个数排好, 从 求恰排成一个 4 位 (即 1000 以上)偶数的概率。 (2)某工厂的第 1、2、3 车间生产同一种产品,产量依次占 05.,0.25,0.25,而 次品率分别为 0.01, 0.01, 0.02。 现从这个厂的产品中任取出 1 件, A={取 求 到 1 件次品} 的概率。 二、 (15 分)设 (ξ ,η ) 的联合密度函数为
''
(1)求该方程的通解; (2)求 q ( x ) ; (3)求满足 lim y ( x ) = 0 的解。
x →+∞
八、 (20 分)对如下微分方程组
d ⎛ y1 ⎞ ⎛ −2 1 ⎞ ⎛ y1 ⎞ ⎛ e x ⎞ ⎜ ⎟=⎜ ⎟⎜ ⎟ + ⎜ ⎟ dx ⎝ y2 ⎠ ⎝ 0 −2 ⎠ ⎝ y2 ⎠ ⎝ e − x ⎠
( k = 0,1, 2,L ) ,求 ξ 的数学期望 E (ξ ) 和方差 D (ξ ) 。
四、 (20 分)设独立随机变量序列 {ξ n } 满足中心极限定理,试证 {ξ n } 满足大数 定律的充分必要条件是: lim
1 n →∞ n 2
∑ D (ξ ) = 0 。
k =1 nnFra bibliotek第1 页
五、 (21 分)求解如下微分方程: (1) (2 + y sin 2 x) dx − 2 y cos xdy = 0
华南理工大学2012-2013学年第二学期《概率论与数理统计》期末试题(A卷)
1 e ,其中 >0 是参数。样 2
| x|
ˆ ; (1) 求 的矩估计 M ˆ ; (2) 求 的最大似然估计 L ˆ 是 的无偏估计,且 ˆ 是 的相合估计(一致估计)。 (3) 证明 L L
解:(1) EX
1 xe dx 0 , 2 | x|
三、(10 分)玻璃杯成箱出售,每箱 20 只。已知任取一箱,箱中 0、1、2 只残次 品的概率相应为 0.8、0.1 和 0.1,某顾客欲购买一箱玻璃杯,在购买时,售货 员随意取一箱,而顾客随机地察看 4 只,若无残次品,则买下该箱玻璃杯,否则 退回。试求:(1)顾客买下该箱的概率 ;(2)在顾客买下的该箱中,没有残 次品的概率 。 解: 设事件 A 表示 “顾客买下该箱” ,Bi 表示 “箱中恰好有 i 件次品” ,i 0 , 1 , 2 。 则
EX k 10, DX k
20 2 =。再设供应站需供应 L 度电才能满足条件,则 12 L 1000 10 20 2 1000 12 ) 0.99
P{ X L} (
即
L 10000 100000 / 3
2.33 ,则 L=10425 度。
七、(10 分)化肥厂用自动打包机装化肥,某日测得 8 包化肥的重量(斤)如 下: 98.7 100.5 101.2 98.3 99.7 99.5
n
|x |
n
|x |
ln L n ln(2 )
1
x
i 1 n i 1
n
i
d ln L n 12 d n 1 令, ˆ ˆ 2
x
i
,
x
i 1
华南理工大学概率论和数理统计课后答案
第一章1-1(1)Ω={1,2,3,4,5,6};(2)Ω={(1,2,3),(1,2,4),(1,2,5),(1,3,4)(1,3,5),(1,4,5),(2,3,4),(2,3,5),(2,4,5),(3,4,5)};(3)Ω={3,4,5,6,7,8,9,10};(4)用数字1代表正品,数字0代表次品,则Ω={(0,0),(1,0,0),(0,1,0),(1,1,0,0),(0,1,1,0),(1,0,1,0),(1,1,1,0),(1,1,0,1),(1,0,1,1),(1,1,1,1)}.1-2 (1)A为随机事件;B为不可能事件;C为随机事件;D为必然事件;(2)、(3)、(4)、(5)均为随机事件.1-3 (1)A;(2)ABC;(3)A B C;(4)ABC;(5) .ABC ABC ABC1-4 (1)ABC;(2)ABC ABC ABC;(3)ABC;(4)或;(5)ABC ABC ABC ABC ABC ABC ABCABC A B CABC;(6)A B C ABC ABC ABC ABC ABC ABC ABC或或ABC.1-5 (1)买的是1985年以后出版的英文版物理书;(2)在“书店所有物理书都是1985年以后出版的且是英文版”这一条件下,ABC A=.1-6 (1)、(4)、(5)、(6)、(7)正确,其余均不正确.1-7 若需要测试7次,即前6次恰好取出2个次品,还有一个次品在第7次取出,故有246C C A次.而在10个中取出7个共有710A种取法.376设 A ={测试7次},故2463767101()8C C A P A A == 1-8 设 A ={能开门},从6把钥匙中任取2把共有 26C 种取法,故2611()15P A C == . 1-9 设 A ={拨号不超过3次就能接通电话},则191981()0.3101091098P A =+⨯+⨯⨯= 设 B ={若记得最后一位是奇数时,拨号不超过3次就能接通电话},则141431()0.6554543P B =+⨯+⨯⨯= 1-10 设 A ={恰有2人的生日在同一个月份},则21114121110455()12144C C C C P A == .1-11 将五个数字有放回地抽取,出现的结果有 35125= 种. 三个数字不同的取法有335360C A = 种,故 60()0.48125P A == ; 三个数字不含1或5,即每次只能在2、3、4中进行抽取,共有3327=种取法,故 27()0.216125P A == ; 三个数字5出现两次,即有 213412C C = 种取法,故12()0.096125P C == .1-12 设 A ={指定的3本书恰好放在一起},10本书的排列方法共有10!种,而指定的3本书的排列方法有3!种,剩下的7本书与指定的3本书这一整体的排列有8!种,故3!8!1()10!15P A == 1-13 (1)21134339()416C C C P A ==;(2)341()416P B == . 1-14 从10个人中任选3个人共有310C 种方法.(1)设 A ={最小号码是5},当最小号码是5时,在 610 之间还有地两个号码,即有 25C 种方法,故253101()12C P A C ==(2)设 B ={最大号码是5},当最大号码是5时,在14 之间还有两个号码,即有 24C 种方法,故243101()20C P B C ==1-15 (1)112211661()9C C P A C C == ;(2)1111244211664()9C C C C P B C C +== . 1-16 (1) 22261()15C P A C == ;(2)1124268()15C C P A C == .1-17 (1)设 A ={样品中有一套优质品、一套次品},则11844210056()825C C P A C ==; (2)设 B ={样品中有一套等级品、一套次品},则1112421008()825C C P B C == ;(3)设 C ={退货},则2112496412210076()825C C C C P C C ++==; (4)设D ={该批货被接受},则2118484122100749()825C C C PD C +==; (5)设E ={样品中有一套优质品},则1184162100224()825C C P E C ==. 1-18 (1)设 A ={恰有5张黑体,4张红心,3张方块,1张梅花},则5431131313131352()C C C C P A C = (2)设 B ={恰有大牌A,K,Q,J 各一张而其余为小牌},则111194444361352()C C C C C P B C = 1-19 设A ={至少有两张牌的花色相同},则 3112113441134354()0.562C C C C C P A C +==第二章2-1 (1)()()()()0.50.40.10.8;P A B P A P B P AB =+-=+-=(2)()0.1(|)0.25;()0.4P AB P A B P B === (3)()0.1(|)0.2;()0.5P AB P B A P A === (4)()()()0.50.12(|)0.66671()10.43()P AB P A P AB P A B P B P B --====≈--2-2 因为A B 、是独立事件,所以有()()(),()()(),()()()P AB P A P B P AB P A P B P AB P A P B ===(1)()()()(|)0.3;()()P AB P A P B P A B P B P B === (2)()1()1()()10.70.40.72;P A B P A B P A P B =-=-=-⨯=(3)()()()(|)0.4;()()P AB P A P B P B A P A P A === (4)()()()(|)0.7()()P AB P A P B P A B P B P B === 2-3 因为AB A A B ⊆⊆ ,所以()()()P AB P A P A B ≤≤又因为()()()()P A B P A P B P AB =+- ,所以()()()()()P AB P A P A B P A P B ≤≤≤+当A B ⊂时,第一个不等式中的等号成立; 当B A ⊂时,第二个不等式中的等号成立; 当AB =∅时,第三个不等式中的等号成立. 2-4 证明 (())()()()(P A B C P A CB CP A CP B C PA CBC ==+- (()())()()P A P B P C P A B P C=+- (()()())(P A P B P A B P C =+- ()()P A B P C= ()()()()()()P ABC P A P B P C P AB P C ==(())()()()()P A B C P ABC P A P B P C -==()()()()P A B P C P A B P C ==- 所以,A B A B AB - 、、分别与C 独立2-5 设A ={射手击中目标},1A ={第一次击中目标},2A ={第二次击中目标},3A ={第三次击中目标}.有题意可知,0.6100k=,即60k =; 1112233()()()(|)()(|)()(|)P A P A P A P A A P A P A A P A P A A =+++6060600.60.40.410.832150150200⎛⎫=+⨯+⨯-⨯= ⎪⎝⎭ 2-6 设1A ={投掷两颗骰子的点数之和为偶数},设2A ={投掷两颗骰子的点数之和为奇数},1B ={点数和为8},2B ={点数和为6}(1)1166111111113333111665()5(|)()18C C P A B P B A C C C C P A C C ===+;(2)11662222111133332116662()12(|)()18C C P A B P B A C C C C P A C C ⨯===+;(3)116622222116662()12(|)21()21C C P A B P A B P B C C ⨯=== 2-7 设A ={此密码能被他们译出},则141421()0.6553534P A =+⨯+⨯⨯= 2-8 1110101101()1(|),1()10C C P AB P B A P A C === 1110101110101()1(|)6()6C C P AB P A B P B C C === 2-9 设A ={第一次取得的全是黄球},B ={第二次取出黄球、白球各一半},则5552010155103025()0.1,(|)C C C P A P B A C C ===所以 5551015201052530()()(|)C C C P A B P A P B A C C ==2-10 设1A ={第一次取得的是黄球},2A ={第二次取得的是黄球},3A ={第三次取得的是白球},则1111213121112(),(|),(|)b b ca ab a bc a b cC C C P A P A A P A A A C C C ++++++===所以 12312131()()(|)(|)P A A A P A P A A P A A A= 1111112b b c a a b a b c a bcC C CC C C ++++++=2b b c aa b a b c a b c+=+++++2-11 设A ={这批货获得通过},B ={样本中恰有一台次品},A ={这批空调设备退货};D ={第一次抽的是合格品},E ={第二次抽的是合格品}(1)67661474()()(|);70691610P A P D P E D ==⨯= (2)673367134()()(|)()(|);706970691610P B P D P E D P D P E D =+=⨯+⨯=(3)136()1()1610P A P A =-=2-12 设A ={选出的产品是次品},1B ={产品是由 厂生产},B ={选出的产品是正品}(1)118241300042();3000C P A C +== (2)11811182418(|);42C P B A C +==(3)117821117821761782(|)2958C P B B C +==2-13 设A ={检验为次品},B ={实际为正品}(1)()5%90%95%1%0.0545P A =⨯+⨯=; (2)()(|)95%1%(|)0.1743()0.0545P B P A B P B A P A ⨯===2-14 设A ={这位学生选修了会计},B ={这位学生是女生} (1)()()(|)0.66%0.036P AB P B P A B ==⨯=;(2)()()(|)0.490%0.36P AB P B P A B ==⨯=; (3)((())()()P A P A B B P AB P AB =+=+)()(|)()(|)P B P A B P B P AB =+ 0.66%0.410%0.=⨯+⨯= 2-15 设A ={此人被诊断为患肺癌},B ={此人确实患肺癌}(1)()98%3%(|)0.7519;()98%3%97%1%P AB P B A P A ⨯===⨯+⨯(2)()(|)3%2%(|)0.0001;2%3%97%99%()P B P A B P B A P A ⨯===⨯+⨯ (3)对于被检查者,若被查出患肺癌,可不必过于紧张,还有约25%的可能没有患肺癌,可积极准备再做一次检查.对地区医疗防病结构而言,若检查结果是未患肺癌,则被检查者基本上是没有患肺癌的. 2-16 设A ={收到信息为0},B ={发送信息为0},则有(0.7(10.02)0.30.010.689P A =⨯-+⨯=)(0.7(10.02)0.686P AB =⨯-=)所以 (0.686686(|()0.689689P AB P B A P A ==))=2-17 设1A ={这批计算机是畅销品},2A ={这批计算机销路一般},3A ={这批计算机是滞销品},B ={试销期内能卖出200台以上}.根据题意有123()0.5,()0.3,()0.2P A P A P A === 123(|)0.9,(|)0.5,(|)0.3P B A P B A P B A ===(1)1111112233()((|(|)()((|((|((|P A B P A P B A P A B P B P A P B A P A P B A P A P B A ==++)))))))) 0.50.90.726;0.50.90.30.50.20.1⨯==⨯+⨯+⨯ (2)22()0.15(|)0.242;()0.62P A B P A B P B === (3)33()0.02(|)0.032;()0.62P A B P A B P B === (4)33(|)1(|)10.0320.968P A B P A B =-=-=2-18 设A ={硬币抛掷出现正面},i B ={硬币是第i 个硬币} (i =1,2,3,4,5),B ={抛掷又出现字面}(1)125()()()()P A P AB P AB P AB =+++112255()(|)()(|)()(|)P B P A B P B P A B P B P A B =+++ 11111311101;545254552=⨯+⨯+⨯+⨯+⨯= (2)11()(|)0()P AB P B A P A ==, 2211()145(|)1()102P AB P B A P A ⨯===, 3311()125(|)1()52P AB P B A P A ⨯=== , 4431()345(|)1()102P AB P B A P A ⨯===,551()25(|)1()52P AB P B A P A === ;(3)1111332()0010.75104521045P B =⨯+⨯+⨯+⨯+⨯=2-19 设1A ={一人击中},2A ={两人击中},3A ={三人击中},B ={飞机被击落}.根据题意有1()0.40.5(10.7)0.60.50.30.60.50.70.36,P A =⨯⨯-+⨯⨯+⨯⨯= 2()0.40.5(10.7)0.40.50.370.60.50.70.41,P A =⨯⨯-+⨯⨯+⨯⨯= 3()0.40.50.70.14,P A =⨯⨯=123(|)0.2,(|)0.6,(|)1P B A P B A P B A ===所以 112233()()(|)()(|)()(|)P B P A P B A P A P B A P A P B A =++ 0.360.20.410.60.141=⨯+⨯+⨯= 2-20 设A ={这批元件能出厂},则495()(4%0.0596%0.99)0.050.999999P A ⎛⎫=⨯+⨯+⨯+⨯+ ⎪⎝⎭4940.050.999898⎛⎫⨯+⨯ ⎪⎝⎭0.8639= 2-21 (1)设A ={这批产品经检验为合格品},则1205124175()0.960.060.960.060.960.063252516162222P A ⎛⎫=⨯⨯+⨯+⨯+⨯+⨯+⨯ ⎪⎝⎭0.757= (2)设B ={产品真是合格品},则12012170.960.960.96()3251622(|)0.982()0.757P AB P B A P A ⎛⎫⨯⨯+⨯+⨯ ⎪⎝⎭===第三章3-1 根据题意可知{}()1x a x aP X x F x a x b b ax b ≤⎧⎪-⎪<==<≤⎨-⎪>⎪⎩当当当3-2 根据题意可知00()1012x f x x ≤⎧⎪=⎨<≤⎪⎩当 当所以 001(){}1211x F x P X x x x x ≤⎧⎪⎪=<=<≤⎨⎪>⎪⎩当当0当3-3 根据题意可知011126(){}223313x x F x P X x x x ≤-⎧⎪⎪-<≤⎪=<=⎨⎪<≤⎪⎪>⎩当当当当3-4 设X ={取到的次品的个数}.(1)取出后放回:1144115516{0}25C C P X C C === ,1111144111558{1}25C C C C P X C C +=== 111111551{2}25C C P X C C === 因此,取得的次品数的分布列为X 0 1 2P 1625 825 125(2)取出后不放回:114311543{0}5C C P X C C ===, 1111144111542{1}5C C C C P X C C +===因此取得的次品数的分布列为 X 0 1P 35 253-5 当X k =时,说明前1k -次失败,第k 次成功,因而1{}(1)k P X k p p -==- (1,2,)k = 3-6 (1)放回袋中的情况:512161{0}243C P X C ⎛⎫=== ⎪⎝⎭, 111111422225111116666610{1}243C C C C C P X C C C C C C === ,111112442225111116666640{2}243C C C C C P X C C C C C C ===, 111113444225111116666680{3}243C C C C C P X C C C C C C === , 111114444425111116666680{4}243C C C C C P X C C C C C C ===, 111115444445111116666632{5}243C C C C C P X C C C C C C === . 因此红球个数的分布列为X 0 1 2 3 4 5P1243 10243 40243 80243 80243 32243(2)不放回袋中的情况:223524562{3}3C P P P X P ===, 114524561{4}3C P P P X P ===.因此红球个数的分布列为X 3 4P23 133-7 {1}0.9P X ==, {2}0.10.90.09P X ==⨯=,{3}0.10.10.90P X ==⨯⨯=,{4}0.10.10.10.90P X ==⨯⨯⨯=, {5}0.10.10.10.1P X ==⨯⨯⨯=因此,X 1 2 3 4 5P 0.9 0.09 0.009 0.0009 0.00013-8 由题意知,1~8000000,2000000X B ⎛⎫ ⎪⎝⎭,由于8000000n =较大,12000000p =很小,故二项分布可用4np λ==的泊松分布近似代替,则有44{}!k P X k e k -==3-9 设X ={废品的件数},1000,0.0063n p ==可用泊松近似公式( 6.3)np λ==得所求概率为6 6.36.3{6}0.166!P X e -==≈3-10 设X ={单位时间内纱线被扯断的次数},由题意可知,~(800,0.005)X B ,则(1)448004800{4}(0.005)(0.995)0.195367P X C -===;(2)108008000{10}(0.005)(0.995)0.997160i i i i P X C -=≤==∑.3-11 设X ={该单位患有这种疾病的人数},5000,0.001n p ==,可用泊松近似公式(5)np λ==得所求概率为5505{5}1{5}1!k k P X P X e k -=>=-≤=-∑10.00670.03370.08420.140=----- 0.38404=3-12 设X ={在同一时刻向总机要外线的分机数},则~(300,0.30)X B ,在同一时刻至少有13台分机向总机要外线的时候不能满足.可用泊松近似公式得所求概率为13909{13}0.92615!k k P X e k -=≤==∑3-13 这分布不是离散的,因为X 的分布函数不是阶梯型的,也不是连续的(在x =1处是跳跃的).3-14 由连续型随机变量概率密度分布的性质可知:2()111A x dx dx A x ϕπ+∞+∞-∞-∞==⇒=+⎰⎰因此 1A π=121111{11}[arctan1arctan(1)]0.51P X dx x ππ--<<==--=+⎰3-150002010211()()022411224x xx x xxe dxx F x x dx e dx dx x e dx dx x ϕ-∞-∞-∞-∞⎧≤⎪⎪⎪==+<≤⎨⎪⎪+>⎪⎩⎰⎰⎰⎰⎰⎰当当当化简得10211()022412xex F x x x x ⎧≤⎪⎪⎪=+<≤⎨⎪>⎪⎪⎩当当当3-16 (1)因为()F x 在(,)-∞+∞上的左连续性,所以(1)1F A == ,则200()0111x F x x x x ≤⎧⎪=<≤⎨⎪>⎩当当当(2)对分布函数求导得分布密度函数为201()()0x x x F x ϕ<<⎧'==⎨⎩当其他(3) 0.70.3{0.30.7}20.4P X xdx <<==⎰.3-17 (1)0.0151001.5{100}1{100}10.0150.223xP X P X edx e ---∞>=-≤=-==⎰(2)0.0150.015{}1{}10.0150.1xx x P X x P X x edx e ---∞>=-≤=-=<⎰因此ln 0.1153.50.015x >-=. 3-18 由题意可知1030()30x f x ⎧≤≤⎪=⎨⎪⎩当其他 10012{10}1{10}1303P X P X dx ≥=-<=-=⎰3-19 由题意可知212(1)01()0x x x x ϕ⎧-<<=⎨⎩当其他 120.8{0.8}12(1)0.0272P X x x dx >=-=⎰120.9{0.9}12(1)0.0037P X x x dx >=-=⎰3-20 (1){ 2.2}(2.2)0.9861P X φ<==; (2){ 1.76}1(1.76)0.0392P X φ>=-=;(3){0.78}1(0.78)0.2177P X φ<-=-=;(4){ 1.55}{1.55 1.55}2(1.55)10.8788P X P X φ<=-<<=-=; (5){ 2.5}{ 2.5}{ 2.5}22(2.5)0.0124P X P X P X φ>=<-+>=-=. 3-21 1,4μσ=-= .(1)()2.441{ 2.44}0.860.80514P Y φφ+⎛⎫<=== ⎪⎝⎭;(2)1{ 1.5}1{ 1.5}1(0.125)0.54988P Y P Y φφ⎛⎫>-=-≤-=--== ⎪⎝⎭;(3) 2.81{ 2.8}(0.45)1(0.45)0.32644P Y φφφ-+⎛⎫<-==-=-= ⎪⎝⎭;(4)4141{4}{44}44P Y P Y φφ+-+⎛⎫⎛⎫<=-<<=- ⎪ ⎪⎝⎭⎝⎭()()1.25(10.75)0.6678φφ=--=; (5)2151{52}44P Y φφ+-+⎛⎫⎛⎫-<<=- ⎪ ⎪⎝⎭⎝⎭()()0.75[11]0.6147φφ=--=;(6)2101{11}{2}{0}144P Y P Y P Y φφ++⎛⎫⎛⎫->=>+<=-+ ⎪ ⎪⎝⎭⎝⎭0.8253=.3-22 设A ={一次测量中误差的绝对值不超过30}.(1)由题意可知,2~(20,40)X N ,20,40μσ==,则(){30}{3030}(0.25)( 1.25)P A P XP X φφ=≤=-≤≤=-- (0.25)(1.25)10.φφ=+-= (2)设Y 表示3次独立重复测量中事件A 发生的次数,则~(3,0.4931)Y B{1}1{1}1{0}P Y P Y P Y ≥=-<=-=331(10.4931)0.87C =--=3-23 首先求出电子管的损坏概率为150150201001001()03P x dx dx x ϕ==+=⎰⎰设Y ={电子管损坏的个数},则1~(3,)3Y B .(1)0303118{0}13327P Y C ⎛⎫⎛⎫==-= ⎪ ⎪⎝⎭⎝⎭; (2)333111{3}13327P Y C ⎛⎫⎛⎫==-= ⎪ ⎪⎝⎭⎝⎭. 3-24 设A ={生产的零件合格},2~(50,0.75)X N ,50,0.75μσ==,则(){50 1.550 1.5}P A P X =-≤≤+501.55050501.550{}0.750.750.75X P ---+-=≤≤(2)(2)2(2)10.φφφ=--=-= 3-25 强度2~(200,18)X N .(1)18020010{180}1{180}10.8665189P X P X φφ-⎛⎫⎛⎫>=-≤=-== ⎪ ⎪⎝⎭⎝⎭(2)强度不低于150MPa 的概率为()150200{150}1{150}1 2.770.997218P X P X φφ-⎛⎫≥=-<=-== ⎪⎝⎭3-26 由题意可知X -3 -2 0 1 21X -- 2 1 -1 -2 -32X 9 4 0 1 4P18 14 18 13 16所以1X --的分布列为1X -- 2 1 -1 -2 -3 P 18 14 18 13 162X 的分布列为2X 0 1 4 9P18 13 512 183-27 由23(0,1)()0(0,1)xx x x ϕ⎧∈=⎨∉⎩当当知300()0111x F x x x x ≤⎧⎪=<<⎨⎪≥⎩当当当.(1)令21Y X =-+,Y 的分布函数为(){}{21}Y F x P Y x P X x =<=-+<1211()2xx P X x d x ϕ--∞-⎧⎫=>=-⎨⎬⎩⎭⎰ 当1012x -≤<时312201()1312xY x F x x dx --⎛⎫=-=- ⎪⎝⎭⎰, 所以 221131()32222Y x x f x --⎛⎫⎛⎫== ⎪ ⎪⎝⎭⎝⎭当102x-<时,12()0xx dx ϕ--∞=⎰,此时,1x >,()1Y F x =;当112x-≤时12()1xx dx ϕ--∞=⎰此时,1x ≤-,()0Y F x = .因此 3011()111211Y x x F x x x ≤-⎧⎪-⎪⎛⎫=--<≤⎨ ⎪⎝⎭⎪⎪>⎩当当当23111()220Y x x f x ⎧-⎛⎫-<≤⎪ ⎪=⎨⎝⎭⎪⎩当其他 (2)设2Y X = ,Y 的分布函数为2(){}{}()Y F x P Y x P X x x t d t=<=<=<1> ,即1x >时,()1Y F x =;当01<≤,即01x <≤时,23/2()3Y F x t dt x==,所以1/23()2Y f x x =;0=,即0x =时,()0Y F x =.因此 3/200()0111Y x F x xx x ≤⎧⎪=<≤⎨⎪>⎩当当当 1/2301()2Y xx f x ⎧<≤⎪=⎨⎪⎩当其他 3-28 当0x >时,(){}{}{ln }X Y F x P Y x P e x P X x =<=<=<2222l n l n()/2()/2xx t a t a dt e dt σσ-----∞-∞==⎰22(ln )/2()0()00x a Y Y dF x x x dx x σϕ--⎧=>⎪=⎨⎪≤⎩当当3-29 1/331/3(){}{}{}()x Y F x P Y x P X x P X x t dt ϕ-∞=<=<=<=⎰2/31/3()1()()3Y Y dF x x x x dx ϕϕ-==令()1x ϕ=代入上式可得2/3101()3Y xx x ϕ-⎧<≤⎪=⎨⎪⎩当其他 3-30 /2/2(){}{2ln }{}x e x t Y F x P Y x P X x P X e e dt λλ-=<=<=<=⎰因此/2/2/2/211()22x x x e x e Y f x e e e λλλλ--==()x -∞<<+∞第四章4-1X 1 2 3Y1 0 16 1122 16 16 163 112 164-2 4352410{,}i j i jC C C P X i Y j C --=== 4-3 由于11(,)14RAf x y dxdy Axydxdy A xdx ydy +∞+∞-∞-∞====⎰⎰⎰⎰⎰⎰, 故4A =,代入密度函数,得401,01(,)0xy x y f x y <<<<⎧=⎨⎩当其他所以 112300111{,}42336P X Y xdx ydy <<==⎰⎰4-4 (1)当0X >且0Y >时,()0(,)(1)(1)xyu v x y F x y du e dv e e -+--==--⎰⎰;当00x y <<或时,(,)0F x y =.所以 (1)(1)0,0(,)0x ye e x y F x y --⎧--<<+∞<<+∞=⎨⎩当其他(2)由于{(,):0,0,1}D x y x y x y =≥≥+≤,有11()10(,)(,)12xx y DP X Y f x y dxdy dx e dy e --+-===-⎰⎰⎰⎰4-5 由题意可知:14(,)111(,)220x y B f x y ⎧=∈⎪⎪⨯⨯=⎨⎪⎪⎩当其他当12x ≤-或0y ≤时,(,)0F x y =; 当102x -<≤且021y x <≤+时,102(,)42(21)x y y F x y dudv y x y -==--⎰⎰;当102x -<≤且21y x >+时,212102(,)42(21)x x F x y dudv x +-==+⎰⎰; 当0x >且01y <≤时,102(,)42(1)xyy F x y dudv y y -==-+⎰⎰;当0x >且1y >时,(,)1F x y =.因此 2100212(21)00212(,)12(21)02122(1)001101x y y x y x y x F x y x x y x y y x y x y ⎧≤-≤⎪⎪⎪-+-<≤<≤+⎪⎪=⎨⎪+-<≤>+⎪⎪-><≤⎪>>⎪⎩当或当且当且当且当且4-61{0}6P X ==, 7{0}12P Y ==, 5{1}12P X =-=,1{1}3P Y ==, 5{2}12P X ==, 11{}312P Y ==. 4-7 由于()(,)X f x f x v dv +∞-∞=⎰,得1(,)(,)0x y Df x y ∈⎧=⎨⎩当其他当[0,1]x ∈时,220()122xX f x dv x -==-⎰;当[0,1]x ∉时,()0X f x =.因此 2201()0X x x f x -<<⎧=⎨⎩当其他当[0,2]y ∈时,2201()1(2)2yY f y du y -==-⎰;当[0,2]y ∉时,()0Y f y =.因此 1102()2Y y y f y ⎧-≤≤⎪=⎨⎪⎩当其他 4-8 由于()(,)X f x f x v dv +∞-∞=⎰, ()(,)Y f y f u y du +∞-∞=⎰ 当0x >时,0()x v x X f x e dv e +∞---==⎰;当0y >时,0()u y y Y f y e du e +∞---==⎰.因此 0()00x X e x f x x -⎧>=⎨≤⎩当当, 0()00y Y e y f y y -⎧>=⎨≤⎩当当4-9 由题意可知1X 0 12X0 0.1 0.81 0.1 0 4-10 由于1X -1 0 12X-1 0 140 14 0 141 0140 4-11 (1)由于(34)(34)(,)112x y x yRAf x y dxdy Ae dxdy A dx e dy +∞+∞+∞+∞-+-+-∞-∞====⎰⎰⎰⎰⎰⎰, 故12A =.(2)当0x <或0y <时,(,)0F x y =; 当00x y <<且时,(34)340(,)12(1)(1)x yu v x y F x y e dudv e e -+--==--⎰⎰.故 34(1)(1)0,0(,)0x y e e x y F x y --⎧-->>=⎨⎩当其他(3)34(34)9160{03,04}12(1)(1)x y P X Y dx e dy e e -+--<≤<≤==--⎰⎰4-12 由题意可知1(,)(,)20x y D f x y ⎧∈⎪=⎨⎪⎩当其他当10x -≤<时,111()12x X x f x dv x +--==+⎰; 当01x ≤≤时,111()12x X x f x dv x -+-==-+⎰. 故 110()1010X x x f x x x +-≤<⎧⎪=-≤≤⎨⎪⎩当当其他 4-13 (1)11111111118812121216161616a ⎛⎫⎛⎫⎛⎫+++++++++=⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,故14a =. (2)1{}4P Xi ==(1,2,3,4i =, 25{1}48P Y ==,13{2}48P Y ==,27{3}48P Y ==,3{4}48P Y ==.(3)111125{}48121648P XY ==+++=. 4-14 由联合分布函数的性质可知 (1)(,)()()122F A B C ππ+∞+∞=++=,(,)()()022F A B C ππ-∞-∞=--=,(,)()(a r c t a n )023yF y A B C π-∞=-+=,(,)(a r c t a n )()022x F x A B C π-∞=+-=,故21A π=,2Bπ=,2C π=.(2)21(,)arctan arctan 2223x y F x y πππ⎛⎫⎛⎫=++ ⎪⎪⎝⎭⎝⎭, 2222(,)6(,)(4)(9)F x y f x y x y x y π∂==∂∂++. (3)222262()(4)(9)(4)X f x dy x y x ππ+∞-∞==+++⎰,222263()(4)(9)(9)Y f y dx x y y ππ+∞-∞==+++⎰4-15 (1)由于122002(,)()13f x y dxdy x Cxy dxdy C +∞+∞-∞-∞=+=+=⎰⎰⎰⎰,故13C=. (2)当00x y <<或时,(,)0F x y =; 当1,2x y >>时,(,)1F x y =;当01,02x y ≤≤≤≤时,232200111(,)()3312xyF x y du u uv dv x y x y =+=+⎰⎰;当01,2x y ≤≤>时,223200121(,)()333xF x y du u uv dv x x =+=+⎰⎰当1,02x y >≤≤时,12200111(,)()3312yF x y du u uv dv y y =+=+⎰⎰.故 3223220001101,0231221(,)01,233111,0231211,2x y x y x yx y F x y x x x y y y x y x y <<⎧⎪⎪+≤≤≤≤⎪⎪⎪=+≤≤>⎨⎪⎪+>≤≤⎪⎪>>⎪⎩当或当当当当(3)由于()(,)X f x f x v dv +∞-∞=⎰, ()(,)Y f y f u y du +∞-∞=⎰,当[0,1]x ∈时,222012()233X f x x xy dy x x ⎛⎫=+=+ ⎪⎝⎭⎰;当[0,1]x ∉时,()0X f x =.故 22201()3X x x x f x ⎧+≤≤⎪=⎨⎪⎩当其他当[0,2]y ∈时,120111()336Y f y x xy dx y ⎛⎫=+=+ ⎪⎝⎭⎰;当[0,2]y ∉时,()0Y f y =.故 1102()360Y y y f y ⎧+≤≤⎪=⎨⎪⎩当其他(4)由于|(,)(|)()X Y Y f x y f x y f y =, |(,)(|)()Y X X f x y f y x f x =,故 26201,02(|)20x xyx y f x y y ⎧+≤≤≤≤⎪=+⎨⎪⎩当其他故 301,02(|)62x yx y f y x x +⎧≤≤≤≤⎪=+⎨⎪⎩当其他 4-16 由于|(,)(|)()X Y Y f x y f x y f y =, |(,)(|)()Y X X f x y f y x f x =, (1)当0x >时,(2)20()22x y x X f x e dy e +∞-+-==⎰;当0y >时,(2)0()2x y y Y f y e dx e +∞-+-==⎰.故 2|20,0(|)0x X Y e x y f x y -⎧>>=⎨⎩当其他|0,0(|)0y Y X e x y f y x -⎧>>=⎨⎩当其他(2)21(2)0012{2,1}{2|1}{1}x y ydx e dyP X Y P XY P Y edy-+-≤≤≤≤==≤⎰⎰⎰14541111e e e e e -------+==--. 4-17 (1)由于()1X f x = (01)x <<|1(|)1Y X f y x x=- (01,1)x x y <<<<故 101,1(,)10x x y f x y x⎧<<<<⎪=-⎨⎪⎩当其他 (2)由于01()(,)l n (1)1yY f y f x y d x d x y x+∞-∞===---⎰⎰故l n (1)01()0Y y y f y --<<⎧=⎨⎩当其他 (3)11121{()1}l n 21yy P X Y d yd x x-+>==-⎰⎰ 4-18X Y 与相互独立的充要条件是ij i j p p p = (1,2;1,2,3)i j ==,因此有{1,3}{1}{3}P X Y P X P Y =====1111169181818B ⎛⎫⎛⎫=+++= ⎪ ⎪⎝⎭⎝⎭{2,3}{2}{3}P X Y P X P Y =====11318A B B B ⎛⎫⎛⎫=+++= ⎪⎪⎝⎭⎝⎭解得21,99A B ==. 4-19 (1)由0.5()0.5()(,)0.251x xu v x X F x f u v dvdu e dvdu e +∞+∞-+--∞-∞-∞-∞===-⎰⎰⎰⎰故 0.510()00x X e x F x x -⎧->=⎨≤⎩当当同理可得0.510()00y Y e y F y y -⎧->=⎨≤⎩当当(2)0.5()20.250,0(,)(,)0x y e x y F x y f x y x y -+⎧>>∂==⎨∂∂⎩当其他当0x >时,0.5()0.50()(,)0.250.5x v x X f x f x v dv e dv e +∞+∞-+--∞===⎰⎰;当0x ≤时,()0X f x =.故 0.50.50()00x X e x f x x -⎧>=⎨≤⎩当当同理可得0.50.50()00y Y e y f y y -⎧>=⎨≤⎩当当(3)由于(,)()()X Y f x y f x f y =,故X Y 、相互独立. (4)0.5()0.10.10.1{0.1,0.1}0.25x y P XY dy e dx e +∞+∞-+->>==⎰⎰.4-20 (1)由于1001(,)()12x f x y dxdy dx C x y dy C +∞+∞-∞-∞=+==⎰⎰⎰⎰,故2C=.(2)由于()(,)X f x f x v dv +∞-∞=⎰, ()(,)Y f y f u y du +∞-∞=⎰当[0,1]x ∈时,20()2()3x X f x x y dy x =+=⎰;当[0,1]x ∉时,()0X f x =.故 2301()0X x x f x ⎧≤≤=⎨⎩当其他当[0,1]y ∈时,12()2()123Y yf y x y dx y y =+=+-⎰;当[0,1]y ∉时,()0Y f y =.故 212301()0Y y y y f y ⎧+-≤≤=⎨⎩当其他(3)当01x y ≤≤≤时,有(,)2()f x y xy =+, 22()()3(123)X Y f x f y x y y =+-可见,(,)()()X Y f x y f x f y ≠,所以X Y 与并不相互独立. (4)11201{1}2()3y yP XY dy x y dx -+≤=+=⎰⎰.4-21 (1)由于X Y 与相互独立,故()0,0(,)()()0x y X Y e x y f x y f x f y -+⎧>>==⎨⎩当其他 (2)110{1|0}{1}1x P X Y P X e dx e --≤>=≤==-⎰.第五章5-1 (1)1111210(1)12666EX =⨯+⨯+⨯+-⨯=,222211117210(1)26663EX =⨯+⨯+⨯+-⨯=,11(21)(221)(211)(201)26E X -+=-⨯+⨯+-⨯+⨯+-⨯+⨯11(2(1)1)166+-⨯-+⨯=-; (2)224()3DX EX EX =-=,()X σ==.5-2 (1)00;kk k k qEX kpq pq q p∞∞=='⎛⎫=== ⎪⎝⎭∑∑(2)2222221000kk k k k k k k EXk pq pqk qpq q pq kq ∞∞∞∞--====''⎛⎫===+ ⎪⎝⎭∑∑∑∑200k k k k pq q pq q ∞∞=='''⎛⎫⎛⎫=+ ⎪ ⎪⎝⎭⎝⎭∑∑222q qp p=+2222222q q q q q DX p p p p p=+-=+5-3 (1)1()02xEX xf x dx x e dx +∞+∞--∞-∞===⎰⎰;(2)22201()2(3)22x DX EX EX x e dx +∞-=-==Γ=⎰. 5-4 (1)0(1)1EXp p p =⨯-+⨯=, 0(1)1EY p p p =⨯-+⨯=;(2)由于20(1)1EX p p p =⨯-+⨯=,20(1)1EY p p p =⨯-+⨯=;22()(1)DX EX EX p p =-=-,22()(1)DY EY EY p p =-=-;(3)由于00(1)11EXY p p p =⨯⨯-+⨯⨯=,故2cov(,)(1)X Y EXY EX EY p p p p =-⋅=-=-.5-5222()()2g t E X t EX tEX t =-=-+, ()220dg t t EX dt=-=, 因此,tEX =,即t EX =时,()g t 达到最小值为DX .5-6 当2Y X =时,022x EYxe dx +∞-==⎰;当3XYe-=时,3014x x EYe e dx +∞--==⎰. 5-7 222()/2(ln 2)/2xx u a EY a dx a eμσσ+∞---∞==⎰ 22()DY EY EY =-222222()/2(l n 2)/222l n 2l n2()()(1)xx u a u a a a e d x a ea e e μσσσσ+∞---∞=-=-⎰ 5-8 由于12102()23EX x x dx x dx ϕ+∞-∞===⎰⎰, (5)20()y EY y y dy ye dy ϕ+∞+∞---∞==⎰⎰6=,且X Y 与相互独立,所以有2643EXY EX EY =⋅=⨯=, 220(+)+633E X Y EX EY ==+=5-9 证明)0E Y E E X E X==-=22221()()1DY EY EY E E X EXDX=-==-=5-10 证明)XYρ===()()0E X E X Y E Y⇒--=()0E X Y Y E X X E Y E X E Y⇒-⋅-⋅+⋅=E X Y E X E Y⇒-⋅=()2c o v(,)D X Y D X D Y X Y D X D Y⇒+=++=+5-15 (1)由于2200(,)sin()x y dxdy A x y dxdyππϕ+∞+∞-∞-∞=+⎰⎰⎰⎰2c o s c o s2A x x d xππ⎡⎤⎛⎫=-+-⎪⎢⎥⎝⎭⎣⎦⎰21A==,故12A=.(2)22200011sin()cos cos2224 EX x x y dxdy x x x x dxπππππ⎡⎤⎛⎫=+=++=⎪⎢⎥⎝⎭⎣⎦⎰⎰⎰,由于X Y与相互对称,故有4EY EXπ==;2 222222200011sin()[sin cos]22282 EX x x y dxdy x x x x dxπππππ=+=+=+-⎰⎰⎰22222()22824162DX EX EXπππππ⎛⎫=-=+--=+-⎪⎝⎭由于X Y与相互对称,故有22162DYππ=+-.(3)222000112sin()sin cos222EXY xy x y dxdy x x x dxππππ-⎛⎫=+=+⎪⎝⎭⎰⎰⎰22π-=2cov(,)1162X Y EXY EX EY ππ=-⋅=-+-2211622162XYππρππ-+-==+- 5-12 二维随机变量(,)X Y 的联合分布函数为1(,)(,)0x y Af x y ∈⎧=⎨⎩当其他12(1)12(1)000012,33x x EX xdydx EY ydydx --====⎰⎰⎰⎰12(1)0016x EXY xydydx -==⎰⎰. 5-13 设抽到次品所需要次数为X ,则X 服从下列分布:X 1 2 3 k P2n 221n n n -⋅- 23212n n n n n --⋅⋅-- 2(2)(3)()(1)(2)(1)n n n k n n n n k ------- 即2{}1n k P Xk n n -==⋅-,因此 11112{}1n n k k n k EX k P X k k n n --==-=⋅==⋅⋅-∑∑1121121(2)3n n k k n kn k n n --==+⎛⎫=-= ⎪-⎝⎭∑∑122121n k n k EX k n n -=-=⋅⋅-∑11231121(1)(2)6n n k k k n k n n n n --==⎛⎫=-=+ ⎪-⎝⎭∑∑221()(1)(2)18DX EX EX n n =-=+- 5-15 (1)11005(2)12EX x x y dydx =--=⎰⎰, 512EY EX ==.1122001(2)4EX x x y dydx =--=⎰⎰, 2214EY EX == 2211()144DX DY EX EX ==-=11001(2)6EXY xy x y dydx =--=⎰⎰2151cov(,)612144X Y EXY EX EY ⎛⎫=-⋅=-=- ⎪⎝⎭5()2cov(,)36D X Y DX DY X Y +=++=(2)103()(2)2X f x x y dy x =--=-⎰, 103()(2)2Y f y x y dx y =--=-⎰可见,()()(,)X Y f x f y f x y ≠,所以两者不独立.111441111144XYρ-===-故两者相关. 5-16(5)5()22y X f x xedy x +∞--==⎰, 1(5)(5)0()2y y Y f y xe dx e ----==⎰可见,()()(,)X Y f x f y f x y =,故两者独立.1(5)054y EXY xye dydx +∞--==⎰⎰5-17 两台仪器无故障时间的密度分布为1511150()0x e x f x -⎧>=⎨⎩当其他, 2522250()0x e x f x -⎧>=⎨⎩当其他联合密度函数为125()121212250,0(,)()()0x x e x x f x x f x f x -+⎧>>==⎨⎩当其他设无故障工作时间为12y x x =+,则联合分布函数为1125()5512210(,)()2551y y x x x y y F x x F y e dx dx ye e --+--===--+⎰⎰5()()25y df y F y e y dy-==所以密度函数为5250()0y e y y f y -⎧>=⎨⎩当其他 2502255yEY y edy +∞-==⎰, 235062525y EY y e dy +∞-==⎰ 262225525DY ⎛⎫=-= ⎪⎝⎭5-18 根据题意有()EX P A =, ()EY P B =, ()EXY P AB ={1}()P XY P AB ==, {0}1()P XY P AB ==-已知0XYρ=,所以cov(,)0X Y =,即cov(,)()()()0X Y EXY EX EY P AB P A P B =-⋅=-=故()()()P AB P A P B =.事件A B 与相互独立,由事件的独立性定理可得:A ,A ,B ,B 两两相互独立,即{11}{1}{1}P X Y P X P Y =====, {10}{1}{0}P X Y P X P Y =====, {01}{0}{1}P X Y P X P Y =====, {00}{0}{0}P X Y P X P Y =====,因此,X Y 和相互独立.5-19 已知11~0,,~0,22X N Y N ⎛⎫⎛⎫⎪ ⎪⎝⎭⎝⎭,由正态分布的性质可知:()1D X Y DX DY -=+=, ()0E X Y -=故()()~0,1XY N -,令Z X Y=-,则()~0,1ZN .22()zE Z z e dz+∞--∞==⎰22222()()()()1D Z EZE Z DZ EZ E Zπ=-=+-=-⎡⎤⎡⎤⎣⎦⎣⎦第六章6-1 设11nn iiY Xn==∑,再对n Y利用契比雪夫不等式:{}1222222nii nnn nD XDY nP Y EYn nεεεε=→∞⎛⎫⎪⎝⎭-≥≤=≤−−−→∑故{}n X服从大数定理.6-2 设出现7的次数为X,则有()~10000,0.1,1000,900X B E X n p D X===由棣莫佛-拉普拉斯定理可得{}100096810001696810.14303015XP X P--⎧⎫⎛⎫<=<=-Φ=⎨⎬ ⎪⎩⎭⎝⎭6-311,212i iEX DX==由中心极限定理可知,10110iX-⨯∑,所以101011616110.136i ii iP X P X==⎧⎫⎧⎫>=-≤=-Φ=-Φ=⎨⎬⎨⎬⎩⎭⎩⎭∑∑6-4 设报各人数为X,则.100,100==DXEX.由棣莫佛-拉普拉斯定理可得()0228.021100100120}120{=Φ-=⎭⎬⎫⎩⎨⎧-≥-=≥DXEXXPXP。
大学专业试卷华南理工大学 理工科专业 《概率论与数理统计》2011-2012试卷A卷及参考解答
诚信应考, 考试作弊将带来严重后果!华南理工大学期末考试《概率论与数理统计》试卷A 卷注意事项:1. 考前请将密封线内各项信息填写清楚; 2. 可使用计算器; 3.考试形式:闭卷;4. 本试卷共八大题,满分100分。
考试时间120分钟。
5. 本试卷的六、七、八大题,有不同学分的要求,请小心阅题。
可能用到的分位点:5.20)10(19)9(25.3)10(7.2)9(2025.02025.02975.02975.0====χχχχ()()()()()812.11083.1923.21026.2931.2805.005.0025.0025.0025.0=====t t t t t(1)0.8413,(1.645)0.95,(1.96)0.975,(2)0.9772Φ=Φ=Φ=Φ= 一、(10分) 已知:0)( 161)()( 41)()()(======AC P BC P AB P C P B P A P 求:)(C B A P解:)()(C B A P C B A P ==1-)(C B A P =1-()()()()()()()(ABC P BC P AC P AB P C P B P A P +---++)=83(0)(,0)(==ABC P AC P )二、(15分) 袋中有15个球,10个红球,5个黄球。
不放回地分两次从袋中将球逐个取出,第一次取5个球,第二次取6个球。
求以下事件的概率: (1) 第二次6个球中的第5个是红球;(2) 第一次5个球中有2个黄球且第二次6个球中有4个红球; (3) 第一次5个球中有3个红球或第二次6个球中有2个黄球; 解: (1) 设A :第二次6个球中的第5个是红球321510)(==A P (2) 设A :第一次5个球中有2个黄球B :第二次6个球中有4个红球 原问题转换为求P(AB)①: Ω: 515CAB: 142625C C C ⋅⋅2.01001200)(515142625≈=⋅⋅=C C C C AB P ②:2.01001200)(*)()(610472351531025≈=⋅⋅⋅==C C C C C C A B P A P AB P (3) 设A :第一次5个球中有3个红球设B :第二次6个球中有2个黄球 原问题转换为求P(A ∪B)51514262551539266154102551531025)()(,)(CCC C AB P C C C C C C B P C C C A P ⋅⋅=⎪⎪⎭⎫ ⎝⎛⋅=⋅=⋅=P(A ∪B)= )()()(AB P B P A P -+=62.01001620≈三、(15分) 随机变量 ξ 服从N(0,4),η=2ξ。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2012 1
一、(本题满分10分)两台机床加工同样的零件,第一台出现废品的概率为0.03,第二台出现废品的概率为0.02,已知第一台加工的零件比第二台加工的零件多一倍,加工出来的零件放在一起,求:任意取出的零件是合格品(A)的概率.
二、(本题满分12分)甲乙两电影院在竞争1000名观众,假设每位观众在选择时随机的,且彼此相互独立,问甲至少应设多少个座位,才能使观众因无座位而离去的概率小于1%。
三、(本题满分13分)设随机变量X 的密度函数为
()x f x Ae -= ()x -∞<<+∞, 求 (1)系数A, (2) {01}P x ≤≤ (3) 分布函数)(x F 。
四、(本题满分13分)某厂生产某产品1000件,其价格为2000P
=元/件,其使用寿命X (单位:天)的分布密度为
120000(365)120000365()0365x e x f x x --⎧≥⎪=⎨<⎪⎩
现由某保险公司为其质量进行保险:厂方向保险公司交保费0P 元/件,若每件产品若寿命小于1095天(3年),则由保险公司按原价赔偿2000元/件. 试利用中心极限定理计算
(1) 若保费0100P =元/件, 保险公司亏本的概率?2试确定保费0P ,使保险公司亏本的概率不超过1%. )99.0)33.2(,946.0)61.1(,926.0)45.1(,96.0(0365.0=Φ=Φ=Φ≈-e
五、(本题满分14分)箱中共有6个,其中红球、白球、黑球的个数分别为1、2、3,现从箱中随机地取出两个球,记X 为取出的红球个数,Y 为取出的白球个数,
(Ⅰ)求二维随机变量(X,Y)的概率分布.
(Ⅱ)求Cov(X,Y).
六、(本题满分15分)设二维随机变量(ξ,η)的联合密度函数为
()⎩⎨⎧<<<<--=其它
,040,20,6),(y x y x k y x f 求:(1)常数k ;(2)()1,3P ξη<<; (3) ()1.5P ξ<; (4) ()4P ξη+≤.
七、(本题满分13分)设随机变量X 与Y 相互独立,X 的概率分布为{}()1
1,0,13P
X i i ===-,Y 的概率密度为()1010Y y f y ≤≤⎧=⎨⎩其它
,记Z X Y =+ (1)求102P Z X ⎧
⎫≤=⎨⎬⎩⎭
; (2)求Z 的概率密度. 八、(本题满分10分)证明题:设随即变量X 的参数为2的指数分布,证明21X Y
e -=-在区间(0,1)上服从均匀分布。