第2课时 实数的运算

合集下载

八年级数学上册第4章实数4-3实数第2课时实数的运算习题课件新版苏科版

八年级数学上册第4章实数4-3实数第2课时实数的运算习题课件新版苏科版

.

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16

9. 计算:
(1)-14+|1- |-(π-3.14)0;
解:(1)原式=-1+( -1)-1=-1+ -1-1
= -3.
)2-12×
(2)[2023益阳]| -1|-(-



(2)原式= -1-3+4= .
1
2
大小关系是(
C
)
A. b > a > c
B. a > c > b
C. a > b > c
D. b > c > a
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
±
5. [2024无锡惠山区月考]若| x |= ,则 x =
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
.
6. 【母题教材P112复习题T10】用计算器比较下列各组数的
倒数, x 的绝对值为 ,求代数式( a + b + cd ) x +

+ - 的值.
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
解:∵ a , b 互为相反数,∴ a + b =0.
∵ c , d 互为倒数,∴ cd =1.

八年级数学上册 3.3 实数 第2课时 实数的运算和大小比较课件 (新版)湘教版.pptx

八年级数学上册 3.3 实数 第2课时 实数的运算和大小比较课件 (新版)湘教版.pptx

(b+c)a = ba + ca (乘法对于加法的分配律) ;
(9)实数的减法运算规定为 a -b = a + (-b)

(10)实数的除法运算(除数b≠ a ÷ b = a·
0)1,规定为 b

(11)实数有一条重要性质:如果a≠0,b≠0,那么
ab

0.
4
小提示
实数也可以比较大小:对于实数a,b,如果a-b>0, 则a大于b(或者b小于a),记作a>b(或b<a);
3.
9
2 5(精确到小数点6, 精确到小数点后面第二位得:3.16.
10
用正方形比较
不用计算器,估计 5 与2哪个大.
解: 5 ,2 分别是5,4的正方形的边长. 容易说明,面积大的正方形,它的边长也大. 因此, 5 > 2 .
5
2
11
小提示
在实数运算中,如果遇到无理数,并且要 求出结果的近似值时,可按要求的精确度用相 应的近似有限小数代替无理数,再进行计算.
12
练习
计算(精确到小数点后面第二位).
(1) 2 + 3; (2) 5 -1 ; (3) 5 .
≈1.414+1.732≈3.15.
≈2.236-1≈1.24. ≈2.236×3.14≈7.02.
同样地,如果a-b<0,则a<b.还可以得出:正实数大 于一切负实数;两个负实数,绝对值大的数反而小.
从而数轴上右边的点表示的实数比左边的点表示的 实数大.
负实数
原点
正实数
0
<
5
结论
每个正实数有且只有两个平方根,它们互 为相反数;

七年级数学下册:第六章实数6.3实数第2课时实数的运算教学课件(新版新人教版)

七年级数学下册:第六章实数6.3实数第2课时实数的运算教学课件(新版新人教版)
18、只要愿意学习,就一定能够学会。——列宁 19、如果学生在学校里学习的结果是使自己什么也不会创造,那他的一生永远是模仿和抄袭。——列夫·托尔斯泰
20、对所学知识内容的兴趣可能成为学习动机。——赞科夫 21、游手好闲地学习,并不比学习游手好闲好。——约翰·贝勒斯 22、读史使人明智,读诗使人灵秀,数学使人周密,自然哲学使人精邃,伦理学使人庄重,逻辑学使人善辩。——培根 23、我们在我们的劳动过程中学习思考,劳动的结果,我们认识了世界的奥妙,于是我们就真正来改变生活了。——高尔基 24、我们要振作精神,下苦功学习。下苦功,三个字,一个叫下,一个叫苦,一个叫功,一定要振作精神,下苦功。——毛泽东 25、我学习了一生,现在我还在学习,而将来,只要我还有精力,我还要学习下去。——别林斯基、学习外语并不难,学习外语就像交朋友一样,朋友是越交越熟的,天天见面,朋友之间就亲密无间了。——高士其 2、对世界上的一切学问与知识的掌握也并非难事,只要持之以恒地学习,努力掌握规律,达到熟悉的境地,就能融会贯通,运用自如了。——高士其 3、学和行本来是有联系着的,学了必须要想,想通了就要行,要在行的当中才能看出自己是否真正学到了手。否则读书虽多,只是成为一座死书库。——谢觉哉、你的假装努力,欺骗的只有你自己,永远不要用战术上的勤奋,来掩饰战略上的懒惰。 11、时间只是过客,自己才是主人,人生的路无需苛求,只要你迈步,路就在你的脚下延伸,只要你扬帆,便会有八面来风,启程了,人的生命才真正开始。 12、不管做什么都不要急于回报,因为播种和收获不在同一个季节,中间隔着的一段时间,我们叫它为坚持。 13、你想过普通的生活,就会遇到普通的挫折。你想过最好的生活,就一定会遇上最强的伤害。这个世界很公平,想要最好,就一定会给你最痛。
D. 8
11.计算: (1)3 3-5 3; (2)1- 2+ 3- 2; (3)2 3+3 2-5 3-3 2; (4)| 3-2|+| 3-1|.

2022年人教版七年级下册数学同步培优第六章实数第3节 第2课时实数的运算

2022年人教版七年级下册数学同步培优第六章实数第3节 第2课时实数的运算

能力提升
拓展突破
(2)如图所示,当点C在点B左侧时,则6-x=3(-4-x),
解得x=-9;
当点C在点B右侧时,则6-x=3(x+4),
解得x=-1.5.
综上所述,x的值为-9或-1.5.
-14-
第2课时 实数的运算
基础巩固
能力提升
拓展突破
16.如图,正方形ABCD的边AB在数轴上,数轴上点A表示的数
解:由题意,得 a-4=8,解得 a=12.
∵3< 13<4,∴b=3,
∴a-b=12-3=9,∴a-b 的平方根是±3.
基础巩固
第2课时 实数的运算
能力提升
拓展突破
10.如图,实数-3,x,3,y在数轴上的对应点分别为M,N,P,Q,这
四个数中绝对值最小的数对应的点是( B )
A.M
B.N
C.P
4
点 E,F 所表示的数互为相反数,请求出 t 的值.
第2课时 实数的运算
基础巩固
能力提升
拓展突破
-17-
解:(2)t的值为4.
理由:当正方形ABCD沿数轴负方向运动时,点E,F表示的数均为
负数,不可能互为相反数,不符合题意.
当正方形ABCD沿数轴正方向运动时.
1
1
2
2
1
1
1
1
4
4
2
2
因为 AE= ′= ×2t=t,点 A 表示-1,所以点 E 表示的数为-1+t.
能力提升
拓展突破
-4-
第2课时 实数的运算
基础巩固
8.用计算器计算(结果保留小数点后两位):
(1) 11+2.33-π;

第2课时 实数的运算与大小比较(教材P106~107练习)

第2课时 实数的运算与大小比较(教材P106~107练习)

◉答案

解:(1)阴影正方形的面积是16-4× ×3×1=10,它的边


是 .
(2)估计阴影正方形的边长在哪两个整数之间.
◉答案
解:(2)因为 < < ,即3< <4,所以阴影正方形的边长
在3与4之间.
(3)把阴影正方形的边长对应的点在数轴上表示出来.
◉答案 解:(3)略
◉答案
解:由数轴可知 a < b <0< c ,所以 a <0, a - b <0, c - a >0, b - a

0.所以原式=- a +( a - b )+ c - a + b - a = c -2 a .
15. 如图,每个小正方形的边长均为1.
(1)图中阴影正方形的面积是多少?它的边长是多少?
第四章 实 数
6
第 2 课时


实数的运算与大小比较
(教材 P106 ~ 107 练习)
知识点一:实数的运算
1. (包头中考)计算- -|-3|的结果是( B )
A. -1
2.
B. -5

计算|- |-

A. 1
B.

的结果是(



C. 1
D. 5
C )
C. 0
D. -1
3. 计算.
(1)|-6|- -(-1)2
A. |-3|
B. -2
C. 0
5. (多选)下列实数比较大小错误的是(
A. - >-
B. |- -1|<- +1
C. 3 >2
D. 2- <0
ABD )
ABD
D. π

6. [数形结合思想](宁夏中考)已知实数 a , b 在数轴上的位置如图所示,则

实数的运算(41张PPT)数学

实数的运算(41张PPT)数学
13
14
15
16
17
答案
解析
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
答案
解析
解析 由题意知b2-10=0,2a+b2=0,
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
2b
解析 由数轴知b<0<a,且|b|>|a|,则a-b>0,所以原式=a-(a-b)+b=a-a+b+b=2b.故答案为2b.
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
②原式=|-4|=4,符合题意;③原式=-3,不符合题意;④原式=-0.8,不符合题意;⑤原式=3,符合题意;⑥原式=3,不符合题意.故选C.
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
5.以下是小明的计算过程,请你仔细观察,错误的步骤是( )
解析 若围成长方形,设长为20厘米,则宽为10厘米,长方形面积为200平方厘米;若围成正方形,正方形边长为60÷4=15(厘米),面积为225平方厘米;
1
2
3
4
5
6
7
8
9
10
11
12
13
14

人教版七年级下册《6.3第2课时实数的运算》同步练习(含答案)

人教版七年级下册《6.3第2课时实数的运算》同步练习(含答案)

第2课时实数的运算关键问答①本题用到的运算律是什么?1.-5的绝对值是( )A .-15B .-5C. 5 D .5 2.①计算:3 2-2+2=________.3.计算:327+16-14.命题点 1 实数的大小比较 [热度:90%]4.比较大小:|3-2|________|3|+|-2|.5.数轴上表示-3.14的点在表示-π的点的________边.6.实数a 在数轴上对应的点的位置如图6-3-6所示,试确定a ,-a ,1a,a 2的大小关系.图6-3-6命题点 2 实数的性质 [热度:93%]7.4的倒数是( )A .-2 B.12C .2 D .±128.下列实数中绝对值最小的是( )A .-4B .-2C .1D .39.②实数2-1的相反数是( )A.2-1B.2+1 C .1-2D .-2-1方法点拨②a 的相反数是-a .若两个数的和为0,则这两个数互为相反数.10.计算|3-2|的结果是( ) A .2-3B.3-2 C .-2-3D .2+ 311.③观察下列各式:①a 2;②|a |+1;③-a ;④23a .取一个适当的实数作为a 的值代入求值后,不可能互为相反数的式子序号为( )A .②④B .①②C .①③D .③④解题突破③两个数的符号不同才有可能互为相反数(0除外).12.④如果一个实数的绝对值为11-5,那么这个实数为______________.易错警示 ④本题容易丢掉11-5这种情况.13.若无理数a 使得|a -4|=4-a ,则a 的一个值可以是________.14.若(x +3)2+|y -2|=0,则|x +y |=________.15.若a 是15的整数部分,b 是15的小数部分,则a -b -ab =____________.16.已知7+5=x +y ,其中x 是整数,且0<y <1,求x -y +5的相反数.17.⑤在数轴上点A 表示的数是 5.(1)若把点A 向左平移2个单位长度得到点B ,求点B 表示的数;(2)若点C 和(1)中的点B 所表示的数互为相反数,求点C 表示的数;(3)在(1)(2)的条件下,求线段OA ,OB ,OC 的长度之和.解题突破⑤求线段OA ,OB ,OC 的长度之和,即求A ,B ,C 三个点所表示的数的绝对值之和. 命题点 3 实数的运算 [热度:98%]18.若等式2□2=2 2成立,则□内的运算符号为( )A .+B .-C .×D .÷19.计算|3-4|-3-22的结果是( )A .23-8B .0C .-23D .-820.定义新运算“☆”:a ☆b =ab +1,则2☆(3☆5)=__________. 21.⑥有四个实数分别是|-9|,22,-38,2 2.请你计算其中有理数的积与无理数的积的差,结果是__________.解题突破⑥(1)先确定四个数中的有理数和无理数;(2)再分别计算它们的积;(3)最后求两个积 的差.22.⑦已知数轴上有A ,B 两点,且这两点之间的距离为4 2.若点A 在数轴上表示的数为3 2,则点B 在数轴上表示的数为____________.解题突破⑦点B 在点A 的左边还是右边?23.计算: (1)19+32627-1+|3-2|-(-2)2+2 3;(2)(-1)3+||3-2+2÷23- 4.24.⑧我们知道,任意一个正整数n 都可以进行这样的分解:n =p ×q (p ,q 是正整数,且p ≤q ),在n 的所有这种分解中,如果p ,q 两因数之差的绝对值最小,我们就称p ×q 是n 的最佳分解.并规定:F (n )=p q.例如12可以分解成1×12,2×6或3×4,因为12-1>6-2>4-3,所以3×4是12的最佳分解,所以F (12)=34. (1)如果一个正整数a 是另外一个正整数b 的平方,那么我们称正整数a 是完全平方数,求证:对任意一个完全平方数m ,总有F (m )=1;(2)如果一个两位正整数t ,t =10x +y (1≤x ≤y ≤9,x ,y 为自然数),交换其个位上的数字与十位上的数字得到的新数减去原来的两位正整数所得的差为18,那么我们称t 为“吉祥数”,求所有“吉祥数”中,F (t )的最大值.解题突破⑧(1)读懂新定义的条件:一个正整数分解成两个正整数的积,且取两因数之差的绝对值最小的情况.(2)在列举的所有情况中,找出满足条件的情况.典题讲评与答案详析1.C 2.22+23.解:原式=3+4-12=132. 4.< [解析]∵|3-2|=3-2,|3|+|-2|=3+2,∴3-2<3+ 2.故填“<”.5.右 [解析] 因为3.14<π,所以-3.14>-π,所以数轴上表示-3.14的点在表示-π的点的右边.6.解:∵-1<a <0,不妨令a =-12,∴-a =12,1a =-2,a 2=14. ∵-2<-12<14<12,∴1a<a <a 2<-a . 7.B [解析] 因为4=2,所以4的倒数是12. 8.C [解析] -4的绝对值是4,-2的绝对值是2,1的绝对值是1,3的绝对值是3.因为4>3>2>1,所以这些实数中绝对值最小的是1.9.C [解析] 实数2-1的相反数是-(2-1)=1- 2.10.A [解析] 因为3<2,所以3-2<0,所以|3-2|=-(3-2)=2- 3.11.B [解析]∵a 2≥0,|a |+1≥1,∴①和②不可能互为相反数.12.11-5或5-11[解析] 因为|11-5|=11-5,|5-11|=11-5,所以这个实数为11-5或5-11.13.2(答案不唯一) [解析] 答案不唯一,只要a 是小于4的无理数即可.14.3-2 [解析] 由题意,得x =-3,y =2,所以|x +y |=|-3+2|=-(-3+2)=3- 2.15.15-415 [解析] 因为3<15<4,所以a =3,b =15-3,所以a -b -ab = 3-(15-3)-3×(15-3)=3-15+3-315+9=15-415.16.解:∵4<5<9,∴2<5<3.又∵7+5=x +y ,其中x 是整数,且0<y <1,∴x =9,y =5-2,∴x -y +5=9-(5-2)+5=11,∴x -y +5的相反数是-11.17.解:(1)点B 表示的数是5-2.(2)点C 表示的数是2- 5.(3)由题意,得点A 表示5,点B 表示5-2,点C 表示2-5,∴OA =5,OB =5-2,OC =|2-5|=5-2,∴OA +OB +OC =5+5-2+5-2=3 5-4.18.A [解析] 因为2+2=2 2,2-2=0,2×2=2,2÷2=1,所以选A.19.C [解析] 原式=4-3-3-4=-2 3.故选C. 20.3 [解析] 2☆(3☆5)=2☆(3×5+1)=2☆4=2×4+1=3.21.-20 [解析] 有理数为|-9|,-38,它们的积为|-9|×(-38)=-18.无理数为22, 2 2,它们的积为22×2 2=2.有理数与无理数积的差为-18-2=-20. 22.-2或7 2[解析] 本题要分两种情况进行分析:①当点B 在点A 的左边时, 则3 2-4 2=-2,故点B 表示的数是-2;②当点B 在点A 的右边时, 则4 2+3 2=7 2,故点B 表示的数是7 2.综上,点B 在数轴上表示的数为-2或7 2.23.解:(1)原式=13-13+2-3-4+2 3=3-2. (2)原式=-1+2-3+2×32-2=-1. 24.解:(1)证明:对任意一个完全平方数m ,设m =n 2(n 为正整数).∵|n -n |=0,∴n ×n 是m 的最佳分解,∴对任意一个完全平方数m ,总有F (m )=n n=1. (2)设交换t 的个位上的数字与十位上的数字得到的新数为t ′,则t ′=10y +x . ∵t 为“吉祥数”,∴t ′-t =(10y +x )-(10x +y )=9(y -x )=18,∴y =x +2.∵1≤x ≤y ≤9,x ,y 为自然数,∴“吉祥数”有13,24,35,46,57,68,79.∵F (13)=113,F (24)=46=23,F (35)=57, F (46)=223,F (57)=319,F (68)=417, F (79)=179, 又∵57>23>417>319>223>113>179, ∴所有“吉祥数”中,F (t )的最大值是57. 【关键问答】①乘法分配律的逆用.。

6.3 第2课时 实数的运算

6.3  第2课时 实数的运算

关键能力突破
核心素养应用
16.计算: (1) 25+3 -64+ (-2)2; (2)[2020 秋·岳麓区校级月考]-12 020+ (-2)2-3 27+|2- 3|. 解:(1)原式=5-4+2=3; (2)原式=-1+2-3+2- 3=- 3.
全效学习 课时提优
返回
基本知识必备
关键能力突破
核心素养应用
17.计算下列各式的值: (1)| 6-2|+| 2-1|+|1- 2|-|3- 6|;
(2)- 0.25÷124× (-1)12+214+3.75× 6-(3 343+3 -1)× 6. 解:(1)原式= 6-2+ 2-1+ 2-1-(3- 6)=2 6+2 2-7; (2)原式=- 14÷116×1+214+334× 6-[7+(-1)]× 6=-12×16×1+6× 6- 6× 6=-8+6 6-6 6=-8.
(3)计算:
[ 1×2]+[ 2×3]+[ 3×4]+…+[ 2 020×2 021]
1 010
.
全效学习 课时提优
返回
基本知识必备
关键能力突破
核心素养应用
解:(1)∵ 1=1, 4=2, 9=3,
∴当[ 1]≤[ x]<[ 4]时,[ x]=1;
当[ 4]≤[ x]<[ 9]时,[ x]=2,
∴[ 1]+[ 2]+[ 3]+…+[ 6]=1+1+1+2+2+2=9;
020=12×2
020×(1+2 1 010
020) =2
021.
返回
全效学习 课时提优
(2)原式=5×15-6×16-(-0.3)=0.3.
全效学习 课时提优
返回
基本知识必备
关键能力突破

数学六年级下册第六章-实数(2)-课件与答案

数学六年级下册第六章-实数(2)-课件与答案

数学
七年级 下册
配RJ版
第六章
6.3
2.实数的运算:实数之间可以进行加、减、乘、除(除数不为
0)、乘方运算,而且正数和0可以进行开平方运算,任意一个
实数都可以进行开立方运算.
3.实数的运算律:实数进行运算时,有理数的运算法则及运算
律在实数范围内同样适用.
数学
基础过关
1.下列说法正确的是
A.0没有平方根
为相反数”成立.
6.3
数学
七年级 下册
配RJ版


(2)∵ − 和 − 互为相反数,
∴ −+


− =0,
解得y=-3.
∵x+5的平方根是它本身,
∴x+5=0,
∴x=-5,
∴x+y=-3-5=-8,
∴x+y的立方根是-2.
∴8-y+2y-5=0,
第六章
6.3
A. -1
B.1-
C.2-
D. -2
数学
七年级 下册
配RJ版
第六章
6.3
9.如图,大长方形内有两个相邻的正方形,面积分别为9和6.
(1)小正方形边长的值在哪两个连续的整数之间?与哪个整
数较接近?
(2)求图中阴影部分的面积.
(3)若小正方形边长的值的整数部分为x,
小数部分为y,求(y- )x的值.

(2)若 =m,c= ,求b-4d+m的值.
6.3
数学
七年级 下册
(1)解:∵a,b互为相反数, ∴a+b=0.
∵c,d互为倒数,
∵|m|=2 且m<0,
∴m=-2.

七年级-人教版-数学-下册-第2课时-实数的运算

七年级-人教版-数学-下册-第2课时-实数的运算

问题 1.(1)分别写出- 6,π-3.14 的相反数;
(2)指出- 5,1- 3 3 分别是什么数的相反数;
解:(1)因为-(- 6 )= 6,-(π-3.14)=3.14-π, 所以,- 6 ,π-3.14 的相反数分别是 6 ,3.14-π. (2)因为-( 5)=- 5,-(3 3 -1)=1- 3 3 , 所以,- 5,1- 3 3 分别是 5 ,3 3 -1的相反数.
第2课时 实数的运算
有理数关于相反数和绝对值的定义是什么?
只有符号不同的两个数,叫做互为相反数. 一般地,数轴上表示数 a 的点与原点的距离叫做数 a 的绝对值, 记作 |a|.
思考 (1) 2 的相反数是____2_,-π 的相反数是__π___,0 的相反数
是__0__; (2)| 2 |=___2_,|-π|=__π__,|0|=__0__.
有理数关于相反数和绝对值的意义同样适合于实数.
归纳
数 a 的相反数是-a,这里 a 源自示任意一个实数. 一个正实数的绝对值是它本身;一个负实数的绝对值是它的 相反数;0 的绝对值是 0.即设 a 表示一个实数,则
a,当a 0时; | a | 0,当a 0时;
a,当a 0时.
实数的相反数与绝对值的意义 (1)实数 a 的相反数记作-a,两个实数互为相反数 是指这两个实数的绝对值相等,但符号相反. (2)若实数 a,b 互为相反数,则 a+b=0,反之亦 成立. (3)实数的绝对值是指实数在数轴上对应的点到原点 的距离.
问题 1.(3)求 3 64 的绝对值;
(4)已知一个数的绝对值是 3,求这个数.
解:(3)因为 3 64 = 3 64=-4, 所以 | 3 64 |=| 4 |=4. (4)因为 | 3 |= 3 ,| 3 | = 3 , 所以绝对值为 3的数是 3 或 3.

第二课时实数的性质及运算-七年级数学下册同步精品课件(人教版)

第二课时实数的性质及运算-七年级数学下册同步精品课件(人教版)
1
A.3与
3
B.2与(-2)2
3
C. ( − 1)2与 −1
D.5与/-5/
课堂练习
3.判断:
(1)

−=5
(× )
的绝对值是 −

×

(3) − 的相反数是


(2)
课堂练习
4.下列各组数中互为相反数的一组是( C )
A.3



C.
(−)
B.2与(-2)2

(2)指出 5 , 1 3 3 分别是什么数的相反数;

(3)求 −的绝对值
(4)已知一个数的绝对值是 3 ,求这个数.
解: (1)因为 ( 6) 6, (π 3.14) 3.14 π ,
所以 6, π 3.14 的相反数分别为 6, 3.14 π ;
(2)因为 ( 5) 5, ( 3 3 1) 1 3 3 ,

巩固练习
3.- 是 的相反数; - 的相反数
.
4.| -3|- |2- |的值是( C )
A.5
B.-1
C.5-2

D.2 -5
新知探究
实数的运算
ห้องสมุดไป่ตู้
判断下列等式是否成立.如果成立,这些等式用了什么运算律?这些运
算律在实数范围内能使用吗?
加法交换律
3 + 2= 2+ 3
乘法交换律

巩固练习
5.计算(-

)-

(-
【解析】原式=

)+


(-

(-

中考数学复习课件2-3实数的运算+整式

中考数学复习课件2-3实数的运算+整式

【解析】因为每一个循环节可以看作是ABCDCB,共6个数,∴数到 12时所对应的字母是B,又201- ×6+3=603, ∴2n+1-1 ×6+3=6n+3.
【点悟】寻找题目的变化规律,要善于从简单的数与字母位置对应关 系入手,从一系列运动的过程中寻觅变化周期,发现规律,并运用它 解决实际问题.
类型之四 乘法公式 [2011·预测题]已知x+y=-5,xy=6,求x2+y2的值. 【解析】将x2+y2配成完全平方式. 解:原式=(x+y)2-2xy=(-5) -2×6=13. 预测理由 已知两数和与两数积求两数平方和等一系列问题,在根与 系数关系、完全平方公式的有关变形中应用广泛,应用整体和对称的 数学思想进行变形,是中考中必不可少的内容.
【解析】理解题意,求出小张、小赵一年个人所
得收益是判断他们是否需办理自行纳税申报的标准. 解:小张需办理自行纳税申报,小赵不需要办理自行纳税申报.理由 如下:
设小张股票转让总收益为x万元, 小赵股票转让总收益为y万元, 小张个人年所得为W1万元, 小赵个人年所得为W2万元. 则x=8+1.5-5=4.5,y=-2+2-6+1+4=-1<0. ∴W1=8+4.5=12.5(万元),W2=9+0=9(万元). ∵W1=12.5万元>12万元,W2=9万元<12万元, ∴根据规定小张需要办理自行纳税申报,小赵不需要申报. 【点悟】实际生活中的问题,常转化为有理数的加减来解决.理解题 目中着重注意的词语的含义是解此类题的关键.
第2课时实数的运算
复习指南
本课时复习主要解决下列问题.
1.实数的加、减、乘、除、乘方、开方运算及简单的混合运算 此内容为本课时的重点.为此设计了[归类探究]中的例1;[限时集 训]中的第1,2,3,4,6,7,9,10,15,16,17,18题.

喜德县第一中学七年级数学下册第六章实数6.3实数第2课时实数的运算法则教案新版新人教版7

喜德县第一中学七年级数学下册第六章实数6.3实数第2课时实数的运算法则教案新版新人教版7

第2课时实数的运算法则实数的运算法则.重点掌握实数的运算法则.难点实数运算法则的正确应用.一、创设情境,引入新课师:有理数的运算法则是什么?生:先算高级运算,同级运算从左至右,遇有括号的先算括号内.二、讲授新课师:很好.有理数运算法则仍适用于实数,请大家看几个题目:展示课件:【例1】计算下列各式的值:(1)(3+2)-2;(2)33+2 3.学生活动:尝试独立完成,两名学生上黑板板演,其余学生在位上做.教师活动:巡视、指导.师生共同完成:(1)(3+2)-2=3+(2-2)(加法结合律)=3+0= 3(2)33+2 3=(3+2) 3 分配律=5 3师:在实数运算中,当遇到无理数并且需要求出结果的近似值时,可以按照所要求的精确度用相应的近似有限小数去代替无理数,再进行计算.【例2】计算(结果保留小数点后两位):(1)5+π;(2)3· 2.学生尝试独立计算,一学生上黑板板演.教师巡视、纠正.师生共同完成:(1)5+π≈2.236+3.142≈5.38(2)3· 2≈1.732×1.414≈2.45三、随堂练习课本第56页第4题,第57页第4、5、6题.四、课堂小结通过本节课的学习,你有哪些收获?首先通过课本引例问题,旨在使学生通过自己的探究活动,经过老师的引导,感受并经历实数的运算、化简;让学生根据实例进行探索,通过学生互相交流合作,得出两个化简的公式,培养他们的合作精神和探索能力,也让他们获得成功的体验,充分调动、发挥学生主动性的多样化学习方式,促进学生在老师指导下主动地、富有个性地学习.典型例题:平行线的特征例1 两条直线被第三条直线所截,则( )A .同位角必相等B .内错角必相等C .同旁内角必互补D .同位角不一定相等例2 解答下列问题:①如果一个角的两边分别平行于另一角的两边,则这两个角( )A .相等B .互补C .相等或互补D .这两个角无数量关系②已知:(如图所示),则不正确的是:( )A .21∠=∠ ,∴43∠=∠B .52∠=∠ ,∴76∠=∠C .︒=∠+∠18085 ,∴21∠=∠D .︒=∠+∠18043 ,∴21∠=∠例3 如图,︒=∠︒=∠70,60,//BAE C CD AB ,求x ∠的度数.例4 如图:︒=∠651,//,//3221l l l l ,求2∠的度数.例5 如图,已知直线b a //,直线︒=∠1051,//d c ,求32∠∠、的度数.例6 试说明平行于同一条直线的两条直线平行.例7 如图,AD ABC ADC ,18021,︒=∠+∠∠=∠为FDB ∠的平分线,试说明BC 为DBE ∠的平分线.例8 潜望镜中的两个镜子MN 和PQ 是互相平行(如图)放置的,光线AB 经镜面反射时,43,21∠=∠∠=∠,试说明,进入的光线AB 与射出的光线CD 平行吗?为什么?参考答案例1 分析:这题是考查学生审题是否仔细,概念是否清楚,可举例说明.如图,直线A.b 被直线c 所截,显然同位角21∠≠∠,内错角32∠≠∠,同旁内角︒≠∠+∠18042,故A.B.C 均不正确.只有两平行直线被第三条直线所截,才有同位角必相等,内错角必相等,同旁内角必互补.故选D .例2 解析:①应选C (如图所示)②选D .A .21∠=∠ ,∴b a //,∴43∠=∠正确B .52∠=∠ ,∴b a //,∴76∠=∠正确C .︒=∠+∠18085 ,∴b a //,∴21∠=∠D .不正确,不能推出21∠=∠例3 分析:由CD AB //,可得︒=∠+∠180BAC C ,从而求出x ∠的度数.解:因为CD AB //,所以︒=∠+∠180BAC C ,即1806070=++x所以50=x ,答:x ∠等于50°.说明:平行线的特征必须是在两条直线平行的前提下,才存在后面的结论,所以在应用两条直线平行的特征时,必须先找到平行这个条件.例4 分析:由21//l l ,可得32∠=∠,由32//l l 可得31∠=∠,所以有21∠=∠,故求出2∠.解:因为21//l l ,所以32∠=∠;又因为32//l l ,所以13∠=∠;所以︒=∠=∠=∠65132.答:2∠是65°.说明:这是应用两条直线平行,内错角相等这一结论,在应用时应注意找出结论存在的条件.例5 分析:这里要利用平行线的条件弄清321∠∠∠、、与直线d 之间的关系才能解决问题.解:b a // (已知),∴12∠=∠(两直线平行,内错角相等).︒=∠1051 (已知),∴︒=∠1052(等量代换).d c // (已知),∴23∠=∠(两直线平行,同位角相等).∴︒=∠1053(等量代换).例6 分析:如图,3231//,//l l l l ,画直线a 截321,,l l l ,得3,2,1∠∠∠,则有32,31∠=∠∠=∠,所以21∠=∠,所以21//l l .解:作3231//,//l l l l ,直线a 截321,,l l l ,得3,2,1∠∠∠. 因为3231//,//l l l l ,所以32,31∠=∠∠=∠,所以21∠=∠,所以21//l l .即平行于同一直线的两条直线平行.说明:(1)这类通过单纯文字给出的题,我们在说明时应先根据题意画出图形;(2)该题既用到了平行线的特征,也用到了两直线平行的条件;在应用时我们要注意二者的区别.例7 解:︒=∠+∠18021 (已知),而︒=∠+∠18032(补角意义),∴31∠=∠(同角的补角相等).∴CF AE //(同位角相等,两直线平行).∴︒=∠+∠180C ABC (两直线平行,同旁内角互补).又ABC ADC ∠=∠(已知),∴︒=∠+∠180C ADC (等量代换).∴BC AD //(同旁内角互补,两直线平行).∴65,4∠=∠∠=∠A (两直线平行,同位角、内错角相等).又CF AE // (已证),∴7∠=∠A (两直线平行,内错角相等).∴74∠=∠(等量代换).又AD 为FDB ∠的平分线(已知),∴76∠=∠(角平分线的意义).∴54∠=∠(等量代换).∴BC 为DBE ∠的平分线.例8 解析:光线CD AB //,PQ MN // (已知)∴32∠=∠(两直线平行,内错角相等)又43,21∠=∠∠=∠ (已知)∴4321∠+∠=∠+∠∴65∠=∠(平角定义)∴CD AB //(内错角相等,两直线平行)【知识与技能】1.了解等式的两条性质.2.会用等式的性质解简单的(用等式的一条性质)一元一次方程.【过程与方法】1.渗透“化归”的思想.2.培养学生观察、分析、概括及逻辑思维能力.【情感态度】培养言必有据的思维能力和良好的思维品质.【教学重点】理解和应用等式的性质.【教学难点】应用等式的性质把简单的一元一次方程化成“x=a”.一、情境导入,初步认识用估算的方法我们可以求出简单的一元一次方程的解.你能用这种方法求出下列方程的解吗?(1)3x-5=22;(2)0.28-0.13y=0.27y+1.【教学说明】第(1)题要求学生给出解答,第(2)题较复杂,估算比较困难,此时教师提出:我们必须学习解一元一次方程的其他方法.二、思考探究,获取新知1.实验演示:教师先提出实验的要求:请同学们仔细观察实验的过程,思考能否从中发现规律,再用自己的语言叙述你发现的规律,然后按教科书第81页图3.1-1的方法演示实验.教师可以进行两次不同物体的实验.2.归纳:请几名学生回答前面的问题.在学生叙述发现的规律后,教师进一步引导:等式就像平衡的天平,它具有与上面的事实同样的性质.比如“8=8”,我们在两边都加上6,就有“8+6=8+6”;两边都减去11,就有“8-11=8-11”.3.表示:问题1你能用文字来叙述等式的这个性质吗?在学生回答的基础上,教师必须说明:等式两边加上的可以是同一个数,也可以是同一个式子.问题2等式一般可以用a=b来表示.等式的性质1怎样用式子的形式来表示?在学生观察图3.1-2时,必须注意图上两个方向的箭头所表示的含义.观察后再请一名学生用实验验证.然后让学生用两种语言表示等式的性质2.问题3你能再举几个运用等式性质的例子吗?如:用5元钱可以买一支钢笔,用2元钱可以买一本笔记本,那么用7元钱就可以买一支钢笔和一本笔记本,15元钱就可以买3支钢笔.相当于:“5元=买1支钢笔的钱;2元=买1本笔记本的钱.5元+2元=买1支钢笔的钱+买1本笔记本的钱.3×5元=3×买1支钢笔的钱.”问题4方程是含有未知数的等式,我们怎样运用上面等式的性质来解方程呢?我们来看一下教科书第82页例2中的第(1)、(2)题.通过分析,我们知道所谓“解方程”,就是要求出方程的解“x=?”因此我们需要把方程转化为“x=a(a为常数)”的形式.设问1:怎样才能把方程x+7=26转化为x=a的形式?学生回答,教师板书:解:两边减7,得:x+7-7=26-7,x=19.设问2:式子“-5x”表示什么?我们把其中的-5叫做这个式子的系数.你能运用等式的性质把方程-5x=20转化为x=a的形式吗?用同样的方法给出方程的解.小结:请你归纳一下解一元一次方程的依据和步骤.【归纳结论】由上面的问题我们可以看出,利用等式的性质解简单的一元一次方程的步骤一般分为两步:一是在方程两边同时加或减同一个数或式子,使一元一次方程左边是未知项,右边是常数;二是方程左右两边同时乘未知数的系数的倒数,使未知项系数化为1,从而求出方程的解.如:(1)x+a=b,解法:方程两边同时减去a,得x=b-a. (2)ax=b(a≠0),解法:方程两边同时除以a,得x=b/a.(3)ax+b=c(a≠0),解法:方程两边同时减去b,再同时除以a,得x=c ba.【教学说明】归纳结论过程中,教师可向学生阐述以下两点:(1)方程是含有未知数的等式,故可利用等式的性质求解,求解过程实质是等式变形为x=a的过程.(2)通过将所求结果代入方程的左右两边的方法,可以检验所求结果是否正确,这一点在下面的例题中我们会讲到.三、典例精析,掌握新知例1利用等式的性质,在括号内填上适当的数或式子,并说明等号成立的依据:【分析】根据等式的性质1或性质2,在方程两边同时加上或减去相同的数或式子;或同乘一个数,或除以同一个不为0的数,结果仍相等.解:(1)根据等式的性质1,等式两边都减去3,得x=1.(2)根据等式的性质2,等式两边都乘2,得x=6.(3)根据等式的性质1,等式两边都减去2a,得5a=-3.再根据等式的性质2,等式两边都除以5,得a=-3/5.(4)根据等式的性质1,等式两边都减去73y,得-2y=-4.再根据等式的性质2,等式两边都除以-2,得y=2.例2小涵的妈妈从商店买回一条裤子,小涵问妈妈:“这条裤子需要多少钱?”妈妈说:“按标价的八折是36元.”你知道标价是多少元吗?要求学生尝试用列方程的方法进行解答.在学生基本完成的情况下,教师给出示范.解:设标价是x元,则售价就是80%x元,根据售价是36元可列方程:80%x=36,两边同除以80%,得x=45.答:这条裤子的标价是45元. 例3利用等式的性质解方程:(1)0.5-x=3.4(2)-13x-5=4【教学说明】先让学生对第(1)题进行尝试,然后教师进行引导:①要把方程0.5-x=3.4转化为x=a的形式,必须去掉方程左边的0.5,怎么去?②要把方程-x=2.9转化为x=a的形式,必须去掉x前面的“-”号,怎么去?然后给出解答:解:两边减0.5,得0.5-x-0.5=3.4-0.5化简,得-x=2.9,两边同乘-1,得:x=-2.9.教师提醒学生注意:(1)这个方程的解答中两次运用了等式的性质;(2)解方程的目标是把方程最终化为x=a的形式,在运用性质进行变形时,始终要朝着这个目标去转化.你能用这种方法解第(2)题吗?在学生解答后再点评.教师向学生提问:①第(2)题能否先在方程的两边同乘“-3”?②比较这两种方法,你认为哪一种方法更好?为什么?允许学生在讨论后再回答.试一试教材第83页练习.在学生弄清题意后,教师再作分析:如果设余下的布可以做x套儿童服装,那么这x套服装就需要布1.5xm,根据题意,你能列出方程吗?解:设余下的布可以做x套儿童服装,那么这x套服装就需要布1.5xm,根据题意,得80×3.5+1.5x=355.化简,得280+1.5x=355,两边减280,得280+1.5x-280=355-280,化简,得1.5x=75,两边同除以1.5,得x=50.答:用余下的布还可以做50套儿童服装.【教学说明】对于许多实际问题,我们可以通过设未知数,列方程,解方程,以求出问题的解,也就是把实际问题转化为数学问题.问题:我们如何才能判断求出的答案50是否正确?在学生代入验算后,教师引导学生归纳出方法:检验一个数值是不是某个方程的解,可以把这个数值代入方程,看方程左右两边是否相等,例如:把x=50代入方程80×3.5+1.5x=355的左边,得80×3.5+1.5×50=280+75=355.方程的左右两边相等,所以x=50是方程的解.试一试你能检验一下x=-27是不是方程-13x-5=4的解吗?四、运用新知,深化理解3.七年级(3)班有18名男生,占全班人数的45%,求七年级(3)班的学生人数.【教学说明】这些题目较简单,教师让学生口答上述题目,并给予评讲.五、师生互动,课堂小结让学生进行小结,主要从以下几个方面去归纳:1.等式的性质有哪几条?用字母怎样表示?字母代表什么?2.解方程的依据是什么?最终必须化为什么形式?3.在字母与数字的乘积中,数字因数又叫做这个式子的系数.1.布置作业::从教材习题3.1中选取.2.完成练习册中本课时的练习.本课时教学要重视学生思维的多角度培养,教师对教材中的实际问题要直观演示,指导学生观察图形,从实验中归纳结论,并用实验验证.对发现的结论用文字、数学语言分别表达出来.突出对等式性质的理解和应用,在解方程时,要求说明每一步变形的依据,解题后及时小结.扎实做到这些,可为后面教与学打下坚实基础.。

人教版初一数学 6.6.3 实数的概念 第2课时PPT课件

人教版初一数学 6.6.3 实数的概念 第2课时PPT课件
解:因为-( )=- , = ,
所以 的相反数是- ,绝对值是 .
探究新知
(3)1- 5;
解:因为-(1- 5)= 5-1, 1− 5 = 5-1,
所以1- 5的相反数是 5-1,绝对值是 5-1.
探究新知
(4)π-3.14.
解:因为-(π-3.14)=3.14-π,|π-3.14|=π-3.14,
学习重难点
学习重点:实数范围内相反数与绝对值的意义.
学习难点:实数的运算.
回顾复习
请说出有理数中的几个重要相关知识:
答:①相反数;②绝对值;③倒数.
导入新课(创设情境)
无理数也有相反数、绝对值、倒数吗?分别怎么表示?
答:在实数范围内,相反数、倒数、绝对值的意义
和有理数范围内的相反ຫໍສະໝຸດ 、倒数、绝对值的意义完全一样.
探究新知
学生活动一【一起探究】
思考:
(1) 2的相反数是 - 2 ,-π的相反数是 π
数是 0 ;
(2) 2 =
2 ,|-π|=
π ,|0|= 0 .
,0的相反
探究新知
归纳:数a的相反数是-a,这里a表示任意实数.
一个正实数的绝对值是它本身;一个负实数的绝
对值是它的相反数;0的绝对值是0.即设a表示一个实数,
第六章
实数
6.3 实数的概念
第2课时 实数的运算
学习目标
1.能借助数轴理解相反数和绝对值的意义,会求实数的
相反数、绝对值.体会“数形结合”的数学思想.
2.了解有理数范围内的运算法则、运算律、运算公式和
运算顺序在实数范围内同样适用,并能熟练运用运算法
则对实数进行运算,提高计算能力.
3.会进行实数的近似计算,解决实际问题,发展应用意识.

人教版2019学年数学七年级下 6.3 第2课时 实数的有关概念及运算课件 (共17张PPT)

人教版2019学年数学七年级下 6.3 第2课时 实数的有关概念及运算课件 (共17张PPT)

随堂训练 1.判断:
(1)
(×)
×
B
B > >
5.计算: (1)2 3 3 2 5 3 3 2;
3 3
(2) 3 2 3 1; 1
(3)2 3 (4)2 2 3. 4
练一练
规律总结
2.①一个正实数的绝对值是它本身; ②一个负实数的绝对值是它的相反数; ③0的绝对值是0.
a, 当a 0时; a 0, 当a 0时;
a, 当a 0时.
2.实数的运算
填空:设a,b,c是任意实数,则
(1)a+b =
b+a
(加法交换律);
(2)(a+b)+c = a+(b+c)
(加法结合律);
0
ba
(5)(ab)c =
(乘法结合律);
(6) 1 ·a = a ·1 = a ;
ba+ca
倒数

实数的平方根与立方根的性质: 每个正实数有且只有两个平方根,它们互为相反数.0的平 方根是0. 在实数范围内,负实数没有平方根.
在实数范围内,每个实数有且只有一个立方根,而且与 它本身的符号相同.
例2
解:
例3 计算(结果保留小数点后两位):
(1) 5 π ;

(2) 3 2.
(1) 5 π 2.236 3.142 5.38;
(2) 3 2 1.7321.414 2.45.
【方法总结】在实数运算中,如果遇到无理数,并 且需要求出结果的近似值时,可按要求的精确度用 相应的近似有限小数代替无理数,再进行计算.
③倒数 如果两个数的积是1,则这两个数互为倒数 . 思考:无理数也有相反数吗?怎么表示?有绝对值吗?怎么 表示?有倒数吗?怎么表示?

第1章 第2课时 实数的运算

第1章 第2课时 实数的运算

课件目录
首页
末页
1.[2019·苏州]计算:( 3)2+|-2|-(π-2)0. 解:原式=3+2-1=4. 2.[2019·成都]计算:(π-2)0-2cos 30°- 16+|1- 3|. 解:原式=1-2× 23-4+( 3-1)=-4.
课件目录
首页
末页
【点悟】 (1)在进行实数的混合运算时,首先要明确与实数有关的概念、性质、 运算法则和运算律,要弄清按怎样的运算顺序进行.中考时,实数的混合运算常 常与绝对值、锐角三角函数、二次根式等结合在一起考查. (2)要注意零指数幂和负整数指数幂的意义.负整数指数幂的运算为a-p=a1p (a≠0,且p是正整数),零指数幂的运算为a0=1(a≠0).
[2018·恩施州]我国古代《易经》一书中记载,远古时期,人们通过在绳子上打结 来记录数量,即“结绳记数”.如图2-1,一位妇女在从右到左依次排列的绳子上 打结,满六进一,用来记录采集到的野果数量.由图可知,她一共采集到的野果 数量为 1 838 个.
图2-1
课件目录
首页
末页
【解析】 本题为探索规律型,由题意可知,因为满六进一,从右到左依次排列 的绳子分别代表绳结数乘6的0次幂,6的1次幂,6的2次幂,6的3次幂,6的4次 幂.可以得到她一共采集到的野果数量为2+0×6+3×62+2×63+1×64=1 838(个).
A.0
B.83
C.130
D.6
课件目录
首页
末页
二、填空题(每题5分,共20分)
7.[2019·广东]计算:2 0190+13-1= 4 . 8.[2019·聊城]计算:-13-12÷54= -23 . 9.[2019·长春]计算:3 5- 5= 2 5 .

2.第2课时 实数的运算及大小比较

2.第2课时 实数的运算及大小比较
练习1 在实数0、- 2 、|-3|、-1中,最小的是
(D)
A. 0 B. - 2 C. |-3| D. -1
【解析】|-3|=3,根据实数比较大小的方
法,可得- 2 <-1<0<3,所以在实数0、 - 2 、|-3|、-1中,最小的是- 2 .
练习2 比较大小:-2 7 __<____-3 3 .
类别比较法:正数>0>负数;两个负数比较大小, 绝对值大的② 大
平方比较法:若a >b>0,则 a > b
加法
同号两数相加:取相同的符号,并把绝 对值 ③ 相加 .
异号两数相加:取绝对值较大的加数符号,并用较 大的绝对值④ 减去 较小的绝对值,互为相反数 的两个数相加得⑤ 0 .
减法:a - b =a +⑥ (-b) . a·b=a b;(-a )·(-b)=⑦ ab ;
•2、科学的灵感,决不是坐等可以等来的。如果说,科学上的发现有什么偶然的机遇的话,那么这种‘偶然的机遇’只能给那些学有素养的人,给那些善于独
立思考的人,给那些具有锲而不舍的人。2022年3考月2点022清/3/3单2022/3/32022/重3/3难3/3/点202突2 破
精练习题
•3、书籍—通过心灵观察世界的窗口.住宅里没有书,犹如房间里没有窗户。2022/3/32022/3/3March 3, 2022
⑬ a-b (a>b)
0
(a=b)
⑭ b-a -1的奇偶次幂:(-1) n =
常用的开方
开平方 开立方
(a<b) ⑮ 1 , n为偶数 -1,n为奇数
1、先乘方,再乘除,后加减
2、同级运算按从左到右进行
3、如有括号先做括号内的运算,按小括 号、中括号、大括号的顺序依次进行

苏科版八年级上册数学教学课件 第4章 实数 第2课时 实数的运算

苏科版八年级上册数学教学课件 第4章 实数 第2课时 实数的运算
第4章 实 数
4.3 实 数
第2课时 实数的运算
新知导入 课程讲授
随堂练习 课堂小结
知识要点
1.实数的相反数、绝对值 2.实数的大小比较 3.实数的运算
新知导入
想一想:
有理数中的几个重要概念: 什么是相反数? 只有符号不同的两个数,其中一个是另一个的相反数. 什么是绝对值? 数轴上表示数a的点到原点的距离叫做数a的绝对值, 用︱a︱表示. 什么是倒数? 如果两个数的积是1,则这两个数互为倒数 .
D. 5
随堂练习
3.计算: (1)2 2 3 2; (2) 2 3 2 2. 解:
课堂小结
在实数范围内,相反数、绝对值、倒 数的意义和有理数范围内的相反数、 绝对值、倒数的意义完全一样.
实数
实数的大小比较
实数的运算
B.5和6之间
C.6和7之间
D.7和8之间
课程讲授
2 实数的大小比较
在估算的过程中,为方便计算,可借助 计算器.
按键顺序:
3
a=
课程讲授
2 实数的大小比较
3 9 例1 用计算器比较
与 4.3265 的大小.
解:用计算器求得
3 9=-2.080083823 4.3265= 2.080024038
(4)已知一个数的绝对值是 3 ,求这个数. (4)因为 3 3, 3 3 ,
所以绝对值为 3的数是 3 或 3 .
课程讲授
1 实数的相反数、绝对值
练一练:
- 11 是 11 的( A )
A.相反数
B.倒数

• 有多问大题呢1?: 2
因为 12 = 1,22=4,所以1< 2 <2; 因为 1. 42 = 1. 96,1. 52=2. 25,所以 1.4< 2 <1.5; 因为 1.412 = 1.988 1,1.422 = 2.016 4, 所以 1.41< 2 <1.42; 因为 1. 4142 = 1. 999 396,1. 4152=2. 002 225, 所以 1.414< 2 <1.415; ……
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

[2011· 内江]同学们,我们曾经研究过 n×n 的正方形网 格,得到了网格中正方形的总数的表达式为 12+22+32+… +n2.但 n 为 100 时, 应如何计算正方形的具体个数呢?下面 我们就一起来探究并解决这个问题.首先,通过探究我们已 1 经知道 0×1+1×2+2×3+…+(n-1)×n= n(n+1)(n-1) 3 时,我们可以这样做:
第2课时
实数的运算
考点管理
1.实数的运算顺序:先算乘方,开方,再算乘除,最后 算加减,有括号的要先算括号内的,若没有括号,在 左至右依次 进行运算. 同一级运算中,要从______________ 绝对值 符号,再进行计 2.遇到绝对值一般要先去掉_________ 算;无论何种运算,都要先确定符号后运算.
2S=2+22+23+24+25+…+22 013+22 014.
将下式减去上式,得2S-S=22 014-1. 即S=22 014-1.
即1+2+22+23+24+…+22 013=22 014-1.
请你仿照此法计算: (1)1+2+22+23+24+…+210; (2)1+3+32+33+34+…+3n(其中n为正整数).
5.[2013· 宿迁]计算:( 2-1)
0Hale Waihona Puke 1-1 -2 +2cos60°.
1 解:原式=1-2+2× =1-2+1=0. 2
归类探究
类型之一 实数的运算
[2013· 成都]计算:(-2)2+|- 3|+2sin 60°- 12.
3 解:原式=4+ 3+2× -2 3=4. 2
1-1 1.[2013· 广安]计算:2 +|1-
类型之二
实数运算的创新应用
a b b 的意义是 c d d
[2012· 张家界]阅读材料:
a 对于任何实数, 我们规定符号 c 1 =ad-bc.例如: 3
-2 2 = 1 × 4 - 2 × 3 =- 2 , 4 3
3 【正解】 原式=3+ 3× -2-1=3+1-2-1=1. 3
课时作业
易错警示
3 [2013· 遂宁]计算:|-3|+ 3·tan30°- 8-(2 013-π )0.
【错解】 原式=-3+ 3× 3-3-0=-3.
实数的运算有陷阱
【错因】 错在对绝对值的概念、零指数次幂理解错
误,特殊角三角函数值的记忆混淆.
3 |-3|=3,tan30°= ,(2 013-π)0=1. 3
4 = 5
(-2)×5-4×3=-22.
5 (1)按照这个规定请你计算 7
6 的值; 8
(2)按照这个规定,请你计算当 x2-4x+4=0 时,
x+1 x-1 2x 的值. 2x-3
【解析】
a (1)根据符号 c
b 的意义进行实数的运算; d
3|- -8-2sin60°.
3
解:原式=2+ 3-1+2- 3=3.
2.[2013· 义乌]计算:(π -3.14)
0
1-1 +2 +|-2
2|- 8.
解:原式=(π-3.14)
0
1-1 +2 +|-2
2|-2 2
=1+2+2 2-2 2=3.
【点悟】 (1)在进行实数的混合运算时,首先要明确与 实数有关的概念、性质、运算法则和运算律,要弄清按 怎样的运算顺序进行.中考中常常与绝对值、锐角三角 函数、二次根式结合在一起考查;(2)要注意零指数幂和 1 - 负整数指数幂的意义.负指数的运算 a p=ap(a≠0,且 p 是正整数),零指数幂的运算 a0=1(a≠0).
2)×3+…+[1+(n—1)]n
=1+0×1+2+1×2+3+2×3+…+n+(n- 1)×n=(____________)+[____________]=________+
1 = ×________________. 6
(3)实践应用:
通过以上探究过程,我们就可以算出当n为100时,
正方形网格中正方形的总个数是________. 解:(1+3)×4
D.(-5)4÷(-5)2=-52
3. [2013· 锦州]计算: |1- 3|+ 12-(3.14-π )
0
1 - 1 --2 =
3 3 . ______
4. [2013· 福州]计算: (-1)0+|-4|- 12.
解:(-1)0+|-4|- 12=1+4-2 3=5-2 3.
(1)观察并猜想: 12+22=(1+0)×1+(1+1)×2=1+0×1+2+1×2
=(1+2)+(0×1+1×2).
12+22+32=(1+0)×1+(1+1)×2+(1+2)×3 =1+0×1+2+1×2+3+2×3 =(1+2+3)+(0×1+1×2+2×3).
12+22+32+42=(1+0)×1+(1+1)×2+(1+2)×3 +____________=(1+2+3+4)+(_______________). (2)归纳结论: 12+22+32+…+n2=(1+0)×1+(1+1)×2+(1+
(2)利用配方法解方程 x2-4x+4=0 得 x=2,然后根据
a 符号 c
b 的意义进行实数的运算. d
5 解:(1) 7
6 =5×8-6×7=-2; 8 4 =3×1-4×1=-1. 1
(2)由 x2-4x+4=0 得 x=2,
x+1 x-1 2x 3 = 2x-3 1
1 1. [2012· 自贡]若 x 是不等于 1 的实数, 我们把 1-x 1 称为 x 的差倒数,如 2 的差倒数是 =-1,-1 的 1-2 1 1 1 差倒数为 = ,现已知 x1=- ,x2 是 x1 的 3 1-(-1) 2 差倒数,x3 是 x2 的差倒数,x4 是 x3 的差倒数,…,依 3 4 . 此类推,则 x2 012=_______
3.零指数幂,负整数指数幂要防止出现类似下面的错误: 1 1 -2 -2 3 =- ,2a = 2. 9 2a
1.[2013· 南充]计算-2+3的结果是 A.-5 B.1
(
B )
C.-1
D.5 2.[2013· 广东]下列等式正确的是 A.(-1)-3=1 B.(-4)0=1 ( B )
C.(-2)2×(-2)3=-26
解:(1)设S=1+2+22+23+24+…+210, 将等式两边同时乘以2,得2S=2+22+23+24+25+…+ 210+211, 将下式减去上式,得2S-S=211-1,
即S=211-1,
则1+2+22+23+24+…+210=211-1; (2)设S=1+3+32+33+34+…+3n, 两边乘以3,得3S=3+32+33+34+35+…+3n+3n+1, 下式减去上式,得3S-S=3n+1-1, 3n+1-1 即 S= , 2 n+ 1 3 -1 2 3 4 n 则 1+3+3 +3 +3 +…+3 = . 2
图2-1
【解析】 首先发现奇数的个数与前面的底数相同,
再得出每一组分裂出的第一个数是底数×(底数-1)+1. 【点悟】 解答此类新概念型问题时,要弄清楚新数 的定义,在新定义下进行运算.
类型之三
实数中的数字规律问题
[2013· 张家界]阅读材料:求1+2+22+23+24 +…+22 013的值. 解:设S=1+2+22+23+24+…+22012+22 013,将等 式两边同时乘以2,得
4+3×4
0×1+1×2+2×3+3×4 1+2+3+…+n 0×1+1×2+2×3+…+(n-1)×n 1 1 n(n+1) n(n+1)(n-1) 2 3 n(n+1)(2n+1)
【点悟】 此类实数规律性问题的特点是给定一列数
或等式或图形,要求适当进行运算,必要的观察,猜想, 归纳,验证,利用从特殊到一般的数学思想,分析特点, 探索规律,总结结论.
1 3 【解析】 根据差倒数定义可得: x1=- , x = , 3 2 4 1 x3=4, x4 =- , 很明显, 进入一个三个数的循环数组, 3 3 只要分析 2 012 被 3 整除余 2,即可知道 x2 012= . 4
2.[2012· 菏泽]一个自然数的立方,可以分裂为若干 个连续奇数的和,例如:23,33和43分别可以按如图2-1 所示的方式“分裂”为2个,3个和4个连续奇数的和,即23 =3+5;33=7+9+11;43=13+15+17+19;…;若63 也按照此规律进行“分裂”,则63“分裂”出的奇数中最大 的那个奇数是_______ 41 .
相关文档
最新文档