八年级上期末复习几何专题(全等三角形、轴对称、勾股定理)
初二数学三角形与全等三角形、轴对称知识点归纳
一、与三角形有关的线段1、不在同一条直线上的三条线段首尾顺次相接组成的图形叫做三角形2、等边三角形:三边都相等的三角形3、等腰三角形:有两条边相等的三角形4、不等边三角形:三边都不相等的三角形5、在等腰三角形中,相等的两边都叫腰,另一边叫底,两腰的夹角叫做顶角,腰和底边的夹角叫做底角6、三角形分类:不等边三角形等腰三角形:底边和腰不等的等腰三角形等边三角形7、三角形两边之和大于第三边,两边之差小于第三边注:1)在实际运用中,只需检验最短的两边之和大于第三边,则可说明能组成三角形 2)在实际运用中,已经两边,则第三边的取值范围为:两边之差〈第三边<两边之和3)所有通过周长相加减求三角形的边,求出两个答案的,注意检查每个答案能否组成三角形8、三角形的高:从△ABC的顶点A向它所对的边BC所在的直线画垂线,垂足为D,所得线段AD叫做△ABC的边 BC上的高9、三角形的中线:连接△ABC的顶点A和它所对的边BC的中点D,所得线段AD叫做△ABC的边BC 上的中线注:两个三角形周长之差为x,则存在两种可能:即可能是第一个△周长大,也有可能是第一个△周长小10、三角形的角平分线:画∠A的平分线AD,交∠A所对的边BC于D,所得线段AD叫做△ABC的角平分线11、三角形的稳定性,四边形没有稳定性二、与三角形有关的角1、三角形内角和定理:三角形三个内角的和等于180度. 证明方法:利用平行线性质2、三角形的外角:三角形的一边与另一边的延长线组成的角,叫做三角形的外角3、三角形的一个外角等于与它不相邻的两个内角的和4、三角形的一个外角大于与它不相邻的任何一个内角5、三角形的外角和为360度6、等腰三角形两个底角相等一、全等三角形能够完全重合的两个三角形叫做全等三角形。
一个三角形经过平移、翻折、旋转可以得到它的全等形.2、全等三角形有哪些性质(1):全等三角形的对应边相等、对应角相等。
(2):全等三角形的周长相等、面积相等。
八年级上期末复习几何专题(全等三角形轴对称勾股定理)
初二数学几何总复习专题一•轴对称图形的识别和作图问题1. 如图,由小正方形组成的L形图中,请你用三种方法分别在下图中添画一个小正方形使它成为轴对称图形:4.下列几何图形中,①线段;②角;③圆;④等腰三角形;⑤直角三角形;其中是轴对称图形的是A 1个B 2个C、3个D、4个5•点P (3, -4 ),则点P关于y轴对称的点的坐标是 ____________6. 如图,把一个长方形ABCD& AE对折点B落在F点,EF交AD于点G如果/ BEA38°,则/ EGA勺度数为__________ 度.7. 如图,把△ ABC沿EF对折,叠合后的图形如图所示.若A 60 , 1 95,则/ 2的度数为()9.如图,在Rt△ ABC中,/ C=90°,Z ABC勺平分线BD交AC于D,若CD=3,则点D到AB的距离是()A. 5 B . 4 C . 3 D . 210.如图,AO OB是互相垂直的墙壁,墙角O处是一个老鼠洞,一只猫在A处发现了若猫以与老鼠同样的速度去追捕老鼠,请在图中作出最快能截住老鼠的位置 C.方法一方法二方法三2.如图是2 X 2的方格,在格点处有一个厶ABC ,仿照图例在备用图中画出三种与△ABC成轴对称的“格点三角形”A . 24B . 25 °C . 30 °D . 35EF翻折,三个顶点均落在点O处.若1 129,贝U 2的度数为(B处的一只老鼠正在向洞口逃窜(尺规作图,保留作图痕迹,B3.下列图形中,为轴对称图形的是(D&如图,将△ ABC沿DE、HG、写作法)专题二•利用等腰三角形的性质求角的问题及分类思想 1. 等腰三角形有一个角为 40 2. 等腰三角形中,有一个角是 3. 一个等腰三角形的一边长是5. 如图 2,在厶 ABC 中,/ B =Z C , FD 丄 BC 于 D, DE I AB 于 E,/ AFD= 158°,则/ EDF 等于=11.如图,已知 (1) (2) (3) C , 3), B ( 3,1 ) B 2)请画出△ ABC 关于y 轴对称的△ ABC (其中A , B ,B 的坐标为 △ ABC 的面积是 12.已知:如图,/ ABC 及两点 求作:点P,使得PM= PN M N.且P 点到/ ABC 两边的距离相等. 分别是A, B, C 的对应点,不写画法);保留作图痕迹)(不写画法,答:即为所求.C,则另外两个角分别为 _________ . 50°,则它的一条腰上的高与底边的夹角是 6, —个外角是120 °,则它的周长为( A . 12 B . 15 C.16 D . 184. 已知:如图1, P 、Q 是厶ABC 边BC 上的两点,且 BP=PQ=QC=AP=A (求:/ BAC的度数.6. 如图3,在Rt△ ABC中,/ B= 90°, ED是AC的垂直平分线, 则/C的度数为()7. 如图4, AB=AC AD=AE / &如图5,A ABC中,AB=ACA. 30° B . 36BAD=40,则/ CDE= _______BD=BC AD=DE=EB贝A为(AC于点D,交BC于点E.已知/ BAB 10°,图59.如图6, △ ABC中,A . / 1=2 / 2 BC.Z 1+3/ 2=180°AB=AC=B,那么/ 1与/ 2之间的关系满足.2/ 1 + Z 2=180°D . 3/ 1- / 2=180°10. 如图7, AC L BC, AC=BC CD L AB,A. 1个B . 2个C . 5个11. 如图8,/ A=90°, E是BC上一点,图7DEL BC,则图中共有等腰三角形(D . 4个A点和E点关于BD对称,)图8 12.如图,在△ ABC中,AB= AC,点D在AC上,且BD= BC=AD求厶ABC各角的度数•专题三•利用等腰三角形的性质求线段的问题1.已知:在厶ABC中,AB< AC, BC边上的垂直平分求:AB的长。
初中八年级上册数学 期末总复习 勾股定理期末复习
C B
A
例3、在正方形ABCD中, A E
D
E是AD的中点,点F在DC 上DF且= 14 DC
F
,试判断BE与EF的位
置关系,并作出说明.
B
C
例4、在△ABC中,a=m2-n2,b=m2+n2,c=2mn, 其中m,n是正整数,且m>n,试判断△ABC是 否为直角三角形.
练一练: 1、若三角形三边长分别为n+1,n+2,n+3,当n= 时,这个三角形是直角三角形.
c=
.
③ 分不清直角边、斜边. 例3、在直角三角形中,已知两边的长分别为
3和4,求第三边长的平方.
错解:设第三边的长为x,由勾股定理,得 x2=32+42=25.
④ 考虑不周,忽略钝角三角形的情形. 例4、在△ABC中,AB=15,AC=13,高
AD=12,求△ABC的周长.
用“勾股”解“折叠”两类题
二、直角三角形的判定
例1、已知△ABC中,
A
AB=17cm,BC=30cm,BC边 上的中线AD=8cm,求
17
8
证:△ABC为等腰三角形.并 B
C
求△ABC的面积.
D
例2、如图,一块四边形菜地
ABCD的示意图,∠B=90
°,AB=4m,BC=3m, CD=12m,DA=13m,求四边 D
形的面积.
用反证法证明
例1、已知△ABC,求证:在∠A、 ∠B、 ∠C这三 个内角中,至少有两个锐角.
例2、已知m为整数,m2为偶数,求证:m为偶数.
例3、如图,在△ABC中,D、E分别是AC、AB 边的中点,BD ≠CE.求证:AB ≠AC.A
E
D
人教八年级数学上册《全等三角形》、《轴对称》知识要点归纳
第十一章《全等三角形》知识要点归纳一、知识网络二、基础知识梳理 1、全等三角形的性质(1)全等三角形对应边相等;(2)全等三角形对应角相等;(3)全等三角形周长、面积相等。
2、全等三角形的判定方法 (1)三边对应相等的两个三角形全等。
(2)两边和它们的夹角对应相等的两个三角形全等。
(3)两角和它们的夹边对应相等的两个三角形全等。
⎧⎧⎨⎪⎩⎪⎪⎧⎪⎪→⇒⎨⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩⎩⎧⎨⎩对应角相等性质对应边相等边边边 SSS 全等形全等三角形应用边角边 SAS 判定角边角 ASA 角角边 AAS 斜边、直角边 HL 作图 角平分线性质与判定定理A B C D E F 中和在DEF ABC ∆∆⎪⎩⎪⎨⎧===DF AC EF BC DEAB DEF(SSS) ABC ∆∆∴≌ A B C D EF中和在DEF ABC ∆∆⎪⎩⎪⎨⎧=∠=∠=EF BC E B DE AB DEF(SAS) ABC ∆∆∴≌ AB CDE F中和在DEF ABC ∆∆⎪⎩⎪⎨⎧∠=∠=∠=∠E B DE AB D A(4)两角和其中一角的对边对应相等的两个三角形全等。
(5)斜边和一条直角边对应相等的两个直角三角形全等。
注意:①全等三角形问题中,找准对应点,对应边,对应角。
(突出对应) ②题中已知平移、翻折、旋转相当已知全等;③判定两个三角形全等的定理中,必须具备三个条件,且至少要有一组边对应相等,因此在寻找全等的条件时,总是先寻找边相等的可能性。
④要善于发现和利用隐含的等量元素,如公共角、公共边、对顶角等。
⑤要善于灵活选择适当的方法判定两个三角形全等。
其中:一般三角形有四 种判定方法 。
直角三角形有五 种判定方法。
3、角平分线的性质及判定性质:角平分线上的点到这个角的两边的距离相等判定:到一个角的两边距离相等的点在这个角平分线上DEF(ASA)ABC ∆∆∴≌ A B C DE F中和在DEF ABC ∆∆⎪⎩⎪⎨⎧=∠=∠∠=∠EF BC E B D A DEF(AAS)ABC ∆∆∴≌ A C BEFD中和在DEF Rt ABC Rt ∆∆⎩⎨⎧==DF AC DE AB )HL (DEF Rt ABC Rt ∆∆∴ ≌ ·ADP COB角平分线的性质)平分PD(PC OAPD OB PC AOB OP =∴⊥⊥∠ ·ADP CBAOB∠∠=∠∴=⊥⊥平分或:角平分线的判定)OP BOP(AOP PD PC OA PD OB PC注:①性质与判定都是由三个条件推出一个结论,要正确应用; ②会用尺规做一个角的平分线,依据为“边边边”。
八年级上期末复习几何专题(全等三角形、轴对称、勾股定理)
初二数学几何总复习专题一.轴对称图形的识别和作图问题1.如图,由小正方形组成的L 形图中,请你用三种方法分别在下图中添画一个小正方形使它成为轴对称图形:2.如图是2×2的方格,在格点处有一个△ABC ,仿照图例在备用图中画出三种与△ABC 成轴对称的“格点三角形”.3.称图形的是()4. A5.点P (3,-4),则点P 关于y 轴对称的点的坐标是_______.6.如图,把一个长方形ABCD 沿AE 对折点B 落在F 点,EF 交AD 于点G ,如果∠BEA =38°,则∠EGA 的度数为______度.7.如图,把△ABC 沿EF 对折,叠合后的图形如图所示.若60A ∠=︒,195∠=︒,则∠2的度数为() A .24°B .25°C .30°D .35°8.如图,将△ABC 沿DE 、HG 、EF 翻折,三个顶点均落在点O 处.若1129∠=︒,则2∠的度数为() A .49°B .50°C .51°D .52°6图7图8图9.如图,在Rt △ABC 中,∠C =90°,∠ABC 的平分线BD 交AC 于D ,若CD =3,则点D 到AB 的距离是()A .5B .4C .3D .210.如图,AO 、OB 是互相垂直的墙壁,墙角O 处是一个老鼠洞,一只猫在A 处发现了B 处的一只老鼠正在向洞口逃窜.若猫以与老鼠同样的速度去追捕老鼠,请在图中作出最快能截住老鼠的位置C .(尺规作图,保留作图痕迹,不 写作法) 11.如图,已知A (-2,3),B (-3,1),C (1,-2).(1)请画出ABC △关于y 轴对称的A B C '''△(其中A B C ''',,分别是A B C ,,的对应点,不写画法); (2)B '的坐标为______; (3)△ABC 的面积是________. 12.已知:如图,∠ABC 及两点M ,N .求作:点P ,使得PM =PN ,且P 点到∠ABC 两边的距离相等.(不写画法,保留作图痕迹) 答:______即为所求.专题二.利用等腰三角形的性质求角的问题及分类思想 1.等腰三角形有一个角为40°,则另外两个角分别为_______.2.等腰三角形中,有一个角是50°,则它的一条腰上的高与底边的夹角是()AB C B'C'EF12BBBBBDCA3.一个等腰三角形的一边长是6,一个外角是120°,则它的周长为() A .12B .15C .16D .184.已知:如图1,P 、Q 是△ABC 边BC 上的两点,且BP=PQ=QC=AP=AQ ,求:∠BAC 的度数. 图15.如图2,在△ABC 中,∠B =∠C ,FD ⊥BC 于D ,DE ⊥AB 于E ,∠AFD =158°,则∠EDF 等于=__________. 图2图3图46. 如图3,在Rt △ABC 中,∠B =90°,ED 是AC 的垂直平分线,交AC 于点D ,交BC 于点E .已知∠BAE =10°, 则∠C 的度数为()7.如图4,AB=AC ,AD=AE ,∠BAD=40°,则∠CDE=_______. 8.如图5,△ABC 中,AB=AC ,BD=BC ,AD=DE=EB ,则∠A 为()A .30°B .36°C .45°D .54° 图5图6图79.如图6,△ABC 中,AB=AC=BD ,那么∠1与∠2之间的关系满足() A .∠1=2∠2B .2∠1+∠2=180°C .∠1+3∠2=180°D .3∠1-∠2=180°10.如图7,AC ⊥BC ,AC=BC ,CD ⊥AB ,DE ⊥BC ,则图中共有等腰三角形() A .1个B .2个C .5个D .4个11.如图8,∠A=90°,E 是BC 上一点,A 点和E 点关于BD 对称,B 点、C 点关于DE 对称,求∠ABC 和∠C 的度数. 图812.如图,在△ABC 中,AB =AC ,点D 在AC 上,且BD =BC=AD ,求△ABC 各角的度数. 专题三.利用等腰三角形的性质求线段的问题1.已知:在△ABC 中,AB <AC ,BC 边上的垂直平分DE 交BC 于点D ,交AC 于点E ,AC =8cm ,△ABE 的周长是14cm , 求:AB 的长。
苏科版数学八年级上册数学期末几何专题复习——三角形综合(全等与勾股定理)(三)
八年级上册数学期末几何专题复习——三角形综合(全等与勾股定理)(三)1.在△ABC中,∠ACB=90°,AC=BC,直线MN经过点C,且AD⊥MN于D,BE⊥MN于E.(1)当直线MN绕点C旋转到图1的位置时,求证:①△ADC≌△CEB;②DE=AD+BE;(2)当直线MN绕点C旋转到图2的位置时,求证:DE=AD﹣BE;(3)当直线MN绕点C旋转到图3的位置时,试问DE、AD、BE具有怎样的等量关系?请写出这个等量关系,并加以证明.2.已知,如图△ABC中,∠ABC=45°,CD⊥AB于D,BE平分∠ABC,且BE⊥AC于E,与CD 相交于点F.求证:(1)BF=AC;(2)CE=BF.3.已知:如图,E在△ABC的边AC上,且∠AEB=∠ABC.(1)求证:∠ABE=∠C;(2)若∠BAE的平分线AF交BE于点F,FD∥BC交AC于点D,设AB=8,AC=10,求DC 的长.4.阅读下题及证明过程:已知:如图,D是△ABC中BC边上一点,E是AD上一点,EB=EC,∠ABE=∠ACE,求证:∠BAE=∠CAE.证明:在△AEB和△AEC中,∵EB=EC,∠ABE=∠ACE,AE=AE,∴△AEB≌△AEC…第一步∴∠BAE=∠CAE…第二步问上面证明过程是否正确?若正确,请写出每一步推理的依据;若不正确,请指出错在哪一步,并写出你认为正确的证明过程.5.在△ABC中,AB=AC,点D是BC的中点,点E和点F是AC上的两点,AB=BF,连接ED 交BF于点H.(1)如图1,连接BE,若∠BEC=90°,BC=10,CE=6,求AB的长;(2)如图2,G为ED延长线上一点,且BD=BG,∠ABF=∠CBG,求证:AE=EF.6.如图,点O为线段AB上的任意一点(不于A、B重合),分别以AO,BO为一腰在AB的同侧作等腰△AOC和△BOD,OA=OC,OB=OD,∠AOC与∠BOD都是锐角,且∠AOC=∠BOD,AD与BC交于点P,AD交CO于点M,BC交DO于点N.(1)试说明:CB=AD;(2)若∠COD=70°,求∠APB的度数.7.已知,△ABC为等边三角形,点D为直线BC上一动点(点D不与B、C重合).以AD为边作菱形ADEF,使∠DAF=60°,连接CF.(1)如图1,当点D在边BC上时,①求证:∠ADB=∠AFC;②请直接判断结论∠AFC=∠ACB+∠DAC是否成立;(2)如图2,当点D在边BC的延长线上时,其他条件不变,结论∠AFC=∠ACB+∠DAC 是否成立?请写出∠AFC、∠ACB、∠DAC之间存在的数量关系,并写出证明过程;(3)如图3,当点D在边CB的延长线上时,且点A、F分别在直线BC的异侧,其他条件不变,请补全图形,并直接写出∠AFC、∠ACB、∠DAC之间存在的等量关系.8.已知,如图1,在△ABC中,∠A是锐角,AB=AC,点D,E分别在AC,AB上,BD与CE 相交于点O,且∠DBC=∠ECB=∠A.(1)写出图1中与∠A相等的角,并加以证明:(2)判断BE与CD之间的数量关系,并说明理由.小刚通过观察度量,找到了∠A相等的角,并利用三角形外角的性质证明了结论的正确性;他又利用全等三角形的知识,得到了BE=CD.小刚继续思考,提出新问题:如果AB≠AC,其他条件不变,那么上述结论是否仍然成立?小刚画出图2,通过分析得到猜想:当AB≠AC时,上述结论仍然成立,小组同学又通过讨论,形成了证明第(2)问结论的几种想法:想法1:在OE上取一点F,使得OF=OD,故△OBF≌△OCD,欲证BE=CD,即证BE=BF.想法2:在OD的延长线上取一点M,使得OM=OE,故△OBE≌△OCM,欲证BE=CD,即证CD=CM.想法3:分别过点B,C作OE和OD的垂线段BP,CQ,可得△OBP≌△OCQ,欲证BE=CD,即证△BEP≌△CDQ.……请你参考上面的材料,解决下列问题:(1)直接写出图2中与∠A相等的一个角;(2)请你在图2中,帮助小刚证明BE=CD.(一种方法即可)9.如图,在△ABC中,∠ACB=45°,过点A作AD⊥BC于点D,点E为AD上一点,且ED=BD.(1)求证:△ABD≌△CED;(2)若CE为∠ACD的角平分线,求∠BAC的度数.10.如图,四边形ABCD是正方形,G是BC上任意一点(点G与B、C不重合),AE⊥DG于E,CF∥AE交DG于F.(1)在图中找出一对全等三角形,并加以证明;(2)求证:AE=FC+EF.参考答案1.证明:(1)①∵∠ADC=∠ACB=∠BEC=90°,∴∠CAD+∠ACD=90°,∠BCE+∠CBE=90°,∠ACD+∠BCE=90°.∴∠CAD=∠BCE.∵AC=BC,∴△ADC≌△CEB.②∵△ADC≌△CEB,∴CE=AD,CD=BE.∴DE=CE+CD=AD+BE.解:(2)∵∠ADC=∠CEB=∠ACB=90°,∴∠ACD=∠CBE.又∵AC=BC,∴△ACD≌△CBE.∴CE=AD,CD=BE.∴DE=CE﹣CD=AD﹣BE.(3)当MN旋转到图3的位置时,AD、DE、BE所满足的等量关系是DE=BE﹣AD(或AD =BE﹣DE,BE=AD+DE等).∵∠ADC=∠CEB=∠ACB=90°,∴∠ACD=∠CBE,又∵AC=BC,∴△ACD≌△CBE,∴AD=CE,CD=BE,∴DE=CD﹣CE=BE﹣AD.2.(1)证明:∵CD⊥AB,BE⊥AC,∴∠BDC=∠ADC=∠AEB=90°,∴∠A+∠ABE=90°,∠ABE+∠DFB=90°,∴∠A=∠DFB,∵∠ABC=45°,∠BDC=90°,∴∠DCB=90°﹣45°=45°=∠DBC,∴BD=DC,在△BDF和△CDA中∵,∴△BDF≌△CDA(AAS),∴BF=AC;(2)证明:∵BE⊥AC,∴∠AEB=∠CEB,∵BE平分∠ABC,∴∠ABE=∠CBE,在△AEB和△CEB中∵,∴△AEB≌△CEB(ASA),∴AE=CE,即CE=AC,∵由(1)知AC=BF,∴CE=BF.3.(1)证明:在△ABE中,∠ABE=180°﹣∠BAE﹣∠AEB,在△ABC中,∠C=180°﹣∠BAC﹣∠ABC,∵∠AEB=∠ABC,∠BAE=∠BAC,∴∠ABE=∠C;(2)解:∵FD∥BC,∴∠ADF=∠C,又∠ABE=∠C,∴∠ABE=∠ADF,∵AF平分∠BAE,∴∠BAF=∠DAF,在△ABF和△ADF中,,∴△ABF≌△ADF(AAS),∴AB=AD,∵AB=8,AC=10,∴DC=AC﹣AD=AC﹣AB=10﹣8=2.4.解:上面证明过程不正确;错在第一步.正确过程如下:在△BEC中,∵BE=CE∴∠EBC=∠ECB又∵∠ABE=∠ACE∴∠ABC=∠ACB∴AB=AC.在△AEB和△AEC中,AE=AE,BE=CE,AB=AC∴△AEB≌△AEC(SSS)∴∠BAE=∠CAE.5.解:(1)如图1,连接AD,∵AB=AC,点D是BC的中点,∴AD⊥BC∵∠BEC=90°,BC=10,CE=6,∴BE===8设AB=x,则AE=x﹣6∵AE2+BE2=AB2,即(x﹣6)2+82=x2,解得:x=,∴AB=,(2)证明:如图2,连接BE,∵BD=BG∴∠BDG=∠BGD∵AB=BF,∴∠A=∠AFB∵∠ABF=∠CBG,∴∠BDG=∠A∴∠EDC=∠BDG=∠A∵∠A+∠ABC+∠C=∠EDC+∠CED+∠C=180°∴∠CED=∠ABC∵AB=AC∴∠C=∠ABC∴∠C=∠CED∴DE=DC∵点D是BC的中点,∴BD=DC∴DE=DC=BD∴∠BED=∠EBD∵∠BED+∠EBD+∠C+∠CED=180°,即2∠BED+2∠CED=180°∴∠BED+∠CED=90°∴BE⊥AF∵BA=BF∴AE=EF6.证明:(1)∵∠AOC=∠BOD,∴∠AOD=∠BOC,又∵OA=OC,OB=OD,∴△AOD≌△COB(SAS),∴CB=AD;(2)∵∠COD=70°,∴∠AOC=∠BOD=55°,∴∠AOD=∠COD+∠BOD=125°=∠BOC,∵△AOD≌△COB,∴∠BCO=∠DAO,∴∠DAO+∠CBO=∠BCO+∠CBO,∴180°﹣∠APB=180°﹣∠BOC,∴∠APB=125°7.解:(1)①证明:∵△ABC为等边三角形,∴AB=AC,∠BAC=60°,∵∠DAF=60°,∴∠BAC=∠DAF,∴∠BAD=∠CAF,∵四边形ADEF是菱形,∴AD=AF,在△ABD和△ACF中AB=AC,∠BAD=∠CAF,AD=AF,∴△ABD≌△ACF,∴∠ADB=∠AFC,②结论:∠AFC=∠ACB+∠DAC成立.(2)结论∠AFC=∠ACB+∠DAC不成立.∠AFC、∠ACB、∠DAC之间的等量关系是∠AFC=∠ACB﹣∠DAC.证明:∵△ABC为等边三角形,∴AB=AC,∠BAC=60°,∵∠BAC=∠DAF,∴∠BAD=∠CAF,∵四边形ADEF是菱形,∴AD=AF.在△ABD和△ACF中AB=AC,∠BAD=∠CAF,AD=AF,∴△ABD≌△ACF.∴∠ADB=∠AFC.又∵∠ACB=∠ADC+∠DAC,∴∠AFC=∠ACB﹣∠DAC.(3)补全图形如下图:∠AFC、∠ACB、∠DAC之间的等量关系是:∠AFC=2∠ACB﹣∠DAC (或∠AFC+∠DAC+∠ACB=180°以及这两个等式的正确变式).8.解:(1)与∠A相等是∠BOE或∠COD;(2)如图2,在OE上取一点F,使得OF=OD,∵∠DBC=∠ECB=∠A,∴OB=OC,∵∠BOE=∠COD,∴△OBF≌△OCD(SAS).∴BF=CD,∠OBF=∠OCD.∵∠BFE=∠ECB+∠CBF=∠ECB+∠DBC+∠OBF=∠A+∠A+∠OBF=∠A+∠OBF,∵∠BEC=∠A+∠OCD,=∠A+∠OBF,∴∠BFE=∠BEC.∴BE=BF.∴BE=CD.9.(1)证明:∵AD⊥BC,∠ACB=45°,∴∠ADB=∠CDE=90°,△ADC是等腰直角三角形,∴AD=CD,∠CAD=∠ACD=45°,在△ABD与△CED中,,∴△ABD≌△CED(SAS);(2)解:∵CE为∠ACD的角平分线,∴∠ECD=∠ACD=22.5°,由(1)得:△ABD≌△CED,∴∠BAD=∠ECD=22.5°,∴∠BAC=∠BAD+∠CAD=22.5°+45°=67.5°.10.(1)解:△AED≌△DFC.证明:∵四边形ABCD是正方形,∴AD=DC,∠ADC=90°.又∵AE⊥DG,CF∥AE,∴∠AED=∠DFC=90°,∴∠EAD+∠ADE=∠FDC+∠ADE=90°,∴∠EAD=∠FDC.∴△AED≌△DFC(AAS).(2)证明:∵△AED≌△DFC,∴AE=DF,ED=FC.∵DF=DE+EF,∴AE=FC+EF.。
苏科版数学八年级上册数学期末几何专题复习——三角形综合(全等与勾股定理)(四)
八年级上册数学期末几何专题复习——三角形综合(全等与勾股定理)(四)1.如图,在等腰△ABC中,CH是底边上的高线,点P是线段CH上不与端点重合的任意一点,连接AP交BC于点E,连接BP交AC于点F.(1)证明:∠CAE=∠CBF;(2)证明:AE=BF;(3)以线段AE,BF和AB为边构成一个新的三角形ABG(点E与点F重合于点G),记△ABC和△ABG的面积分别为S△ABC 和S△ABG,如果存在点P,能使得S△ABC=S△ABG,求∠ACB的取值范围.2.如图,在等边三角形ABC中,点E是边AC上一定点,点D是直线BC上一动点,以DE 为一边作等边三角形DEF,连接CF.【问题解决】如图1,若点D在边BC上,求证:CE+CF=CD;【类比探究】如图2,若点D在边BC的延长线上,请探究线段CE,CF与CD之间存在怎样的数量关系?并说明理由.3.已知△ABC为等边三角形,点D为直线BC上一动点(点D不与点B,点C重合).以AD 为边作等边三角形ADE,连接CE.(1)如图1,当点D在边BC上时.①求证:△ABD≌△ACE;②直接判断结论BC=DC+CE是否成立(不需证明);(2)如图2,当点D在边BC的延长线上时,其他条件不变,请写出BC,DC,CE之间存在的数量关系,并写出证明过程.4.如图,在Rt△ABC和Rt△ABD中,∠C=∠BAD=90°,BD、AC交于点F,且AF=AD,作DE⊥AC于点E.(1)求证:∠CBF=∠ABF;(2)若AB﹣BC=4,AC=8,求BC的长;(3)求证:AE=CF.5.阅读下面材料:小明遇到这样一个问题:如图1,△ABC中,AB=AC,点D在BC边上,∠DAB=∠ABD,BE⊥AD,垂足为E.求证:BC=2AE.小明探究发现,可以通过构造全等三角形来解决,在BC上截取BF=AE,连接AF,可证△ABF≌△BAE(如图2),从而使问题得到解决.(1)根据阅读材料回答:△ABF与△BAE全等的条件是(填“SSS”“SAS”“ASA”“AAS”或“HL”中的一个);参考小明思考问题的方法,解答下列问题:(2)如图3,△ABC是等边三角形,点P在BQ上,且∠APB=120°,CP=CQ,探究线段AP,BQ的数量关系,并证明你的结论.6.(1)如图1,已知以△ABC的边AB、AC分别向外作等腰直角△ABD与等腰直角△ACE,∠BAD=∠CAE=90°,连接BE和CD相交于点O,AB交CD于点F,AC交BE于点G,求证:BE=DC,且BE⊥DC.请补充完整证明“BE=DC,且BE⊥DC”的推理过程;证明:∵△ABD和△ACE都是等腰直角三角形(已知)∴AB=AD,AE=AC(等腰直角三角形定义)又∵∠BAD=∠CAE=90°(已知)∴∠BAD+∠BAC=(等式性质)即:∴△ABE≌△ADC()∴BE=DC(全等三角形的对应边相等)∠ABE=∠ADC(全等三角形的对应角相等)又∵∠BFO=∠DFA()∠ADF+∠DFA=90°(直角三角形的两个锐角互余)∴∠ABE+∠BFO=90°(等量代换)∴即BE⊥DC(2)探究:若以△ABC的边AB、AC分别向外作等边△ABD与等边△ACE,连接BE和CD 相交于点O,AB交CD于点F,AC交BE于G,如图2,则BE与DC还相等吗?若相等,请证明,若不相等,说明理由;并请求出∠BOD的度数?7.如图,在△ABC中,AB=AC,射线BD上有一点P,且∠BPC=∠BAC.(1)求证:∠APC=∠APD;(2)求证:AB+AC>PB+PC.8.已知:△ABC的高AD所在直线与高BE所在直线相交于点F,过点F作FG∥BC,交直线AB于点G.(1)如图1,若△ABC为锐角三角形,且∠ABC=45°.求证:①△BDF≌△ADC;②FG+DC=AD;(2)如图2,若∠ABC=135°,直接写出FG、DC、AD之间满足的数量关系.9.阅读探索题:(1)如图1,OP是∠MON的平分线,以O为圆心任意长为半径作弧,分别交射线ON、OM 于C、B两点,在射线OP上任取一点A(点O除外),连接AB、AC.求证:△AOB≌△AOC.(2)请你参考以上方法,解答下列问题:如图2,在 Rt△ABC中,∠ACB=90°,∠A=60°,CD平分∠ACB,试判断BC和AC、AD 之间的数量关系并证明.10.阅读理解:如图①,在四边形ABCD中,AB∥DC,E是BC的中点,若AE是∠BAD的平分线,试判断AB,AD,DC之间的等量关系.解决此问题可以用如下方法:延长AE交DC的延长线于点F,易证△AEB≌△FEC,得到AB=FC,从而把AB,AD,DC转化到△ADF中即可判断.(1)AB、AD、DC之间的等量关系为;(2)完成(1)的证明.问题探究:如图②,在四边形ABCD中,AB∥DC,AF与DC的延长线交于点F,E是BC的中点,若AE是∠BAF的平分线,试探究AB,AF,CF之间的等量关系,并证明你的结论.参考答案1.(1)证明:∵△ABC是等腰三角形,CH是底边上的高线,∴AC=BC,∠ACP=∠BCP.又∵CP=CP,∴△ACP≌△BCP.∴∠CAP=∠CBP,即∠CAE=∠CBF.(2)证明:∵在△ACE与△BCF中,,∴△ACE≌△BCF(ASA).∴AE=BF.(3)解:∵由(2)知△ABG是以AB为底边的等腰三角形,∴S△ABC =S△ABG.∴AE=AC.①当∠ACB为直角或钝角时,在△ACE中,不论点P在CH何处,均有AE>AC,所以结论不成立;②当∠ACB为锐角时,∠CAH=90°﹣∠ACB,而∠CAE<∠CAH,要使AE=AC,只需使∠ACB=∠CEA,此时,∠CAE=180°﹣2∠ACB,只须180°﹣2∠ACB<90°﹣∠ACB,解得:60°<∠ACB<90°.2.【问题解决】证明:在CD上截取CH=CE,如图1所示:∵△ABC是等边三角形,∴∠ECH=60°,∴△CEH是等边三角形,∴EH=EC=CH,∠CEH=60°,∵△DEF是等边三角形,∴DE=FE,∠DEF=60°,∴∠DEH+∠HEF=∠FEC+∠HEF=60°,∴∠DEH=∠FEC,在△DEH和△FEC中,,∴△DEH≌△FEC(SAS),∴DH=CF,∴CD=CH+DH=CE+CF,∴CE+CF=CD;【类比探究】解:线段CE,CF与CD之间的等量关系是FC=CD+CE;理由如下:∵△ABC是等边三角形,∴∠A=∠B=60°,过D作DG∥AB,交AC的延长线于点G,如图2所示:∵GD∥AB,∴∠GDC=∠B=60°,∠DGC=∠A=60°,∴∠GDC=∠DGC=60°,∴△GCD为等边三角形,∴DG=CD=CG,∠GDC=60°,∵△EDF为等边三角形,∴ED=DF,∠EDF=∠GDC=60°,∴∠EDG=∠FDC,在△EGD和△FCD中,,∴△EGD≌△FCD(SAS),∴EG=FC,∴FC=EG=CG+CE=CD+CE.3.解:(1)①∵△ABC和△ADE是等边三角形,∴∠BAC=∠DAE=60°,AB=BC=AC,AD=DE=AE.∴∠BAC﹣∠DAC=∠DAE﹣∠DAC,∴∠BAD=∠EAC.在△ABD和△ACE中,∴△ABD≌△ACE(SAS).②∵△ABD≌△ACE,∴BD=CE.∵BC=BD+CD,∴BC=CE+CD.(2)BC+CD=CE.∵△ABC和△ADE是等边三角形,∴∠BAC=∠DAE=60°,AB=BC=AC,AD=DE=AE.∴∠BAC+∠DAC=∠DAE+∠DAC,∴∠BAD=∠EAC.在△ABD和△ACE中,∴△ABD≌△ACE(SAS).∴BD=CE.∵BD=BC+CD,∴CE=BC+CD;4.(1)证明:∵AF=AD,∴∠ADF=∠AFD,∵∠AFD=∠BFC,∴∠ADF=∠BFC,在Rt△CBF和Rt△ABD中,∴Rt△CBF~Rt△ABD,∴∠CBF=∠ABF.(2)解:设BC=x,∵AB﹣BC=4,∴AB=x+4,在Rt△ABC中,∵AC=8,∴(x+4)2﹣x2=64,整理,可得8x+16=64,解得x=6,∴BC的长是6.(3)证明:如图1,作FG⊥AB于点G,,∵∠CBF=∠ABF,∴FG=CF,∵∠FAG+∠DAE=90°,∠ADE+∠DAE=90°,∴∠FAG=∠ADE,∵∠AFG=90°﹣∠FAG,∠DAE=90°﹣∠ADE,∴∠AFG=∠DAE,在Rt△AFG和Rt△DAE中,∴Rt△AFG≌Rt△DAE,∴AE=FG,∵FG=CF,∴AE=CF.5.解:(1)在BC上截取BF=AE,连接AF,如图2所示:∵∠DAB=∠ABD,∴∠BAE=∠ABF,在△ABF和△BAE中,,∴△ABF≌△BAE(SAS),故答案为:SAS;(2)BQ=2AP,理由如下:在BP上截取点M,使BM=AP,连接CM,在QB上取点N,使QN=PM,连接CN,如图3所示:∵∠APB=120°,∴∠APQ=180°﹣120°=60°,∵△ABC是等边三角形,∴∠ABC=60°,AB=BC,∴∠APQ=∠ABC,即∠ABP+∠BAP=∠ABP+∠CBM,∴∠BAP=∠CBM,在△ABP和△BCM中,,∴△ABP≌△BCM(SAS),∴BP=CM,∠APB=∠BMC=120°,∴∠CMN=180°﹣120°=60°,∵CP=CQ,∴∠CPM=∠Q,在△PCM和△QCN中,,∴△PCM≌△QCN(SAS),∴CM=CN,∴△CMN是等边三角形∴CM=MN,∵BQ=BP+PM+MN+QN,∴BQ=2BM=2AP.6.(1)解:∠CAE+∠BAC,∠DAC=∠BAE,SAS,对顶角相等,∠BOF=∠DAF=90°;(2)证明:如图2,∵以AB、AC为边分别向外做等边△ABD和等边△ACE,∴AD=AB,AE=AC,∠ACE=∠AEC=60°,∠DAB=∠EAC=60°,∴∠DAB+∠BAC=∠EAC+∠BAC,∴∠DAC=∠BAE,在△DAC和△BAE中,,∴△DAC≌△BAE(SAS),∴CD=BE,∠BEA=∠ACD,∴∠BOC=∠ECO+∠OEC=∠DCA+∠ACE+∠OEC=∠BEA+∠ACE+∠OEC=∠ACE+∠AEC=60°+60°=120°.∴∠BOC=60°.7.解:(1)证明:∵AB=AC,∴∠ABC=∠ACB,∵∠BPC=∠BAC,∴A、P、B、C四点共圆,∴∠APC=∠ABC,∠APB+∠ACB=180°∴∠APC=∠ACB,∵∠APB+∠APD=180°∴∠ACB=∠APD(2)证明:如图,在射线PD上截取PE=PC,连接AE,在△PAE和△PAC中∴△PAE≌△PAC(SAS)∴AE=AC∵在△ABE中,AB+AE>BE∴AB+AC>PB+PC.8.解:(1)①证明:∵∠ADB=90°,∠ABC=45°,∴∠BAD=∠ABC=45°,∴AD=BD;∵∠BEC=90°,∴∠CBE+∠C=90°又∵∠DAC+∠C=90°,∴∠CBE=∠DAC;∵∠FDB=∠CDA=90°,∴△FDB≌△CDA(ASA)②∵△FDB≌△CDA,∴DF=DC;∵GF∥BC,∴∠AGF=∠ABC=45°,∴∠AGF=∠BAD,∴FA=FG;∴FG+DC=FA+DF=AD.(2)FG、DC、AD之间的数量关系为:FG=DC+AD.理由:∵∠ABC=135°,∴∠ABD=45°,△ABD、△AGF皆为等腰直角三角形,∴BD=AD,FG=AF=AD+DF;∵∠FAE+∠DFB=∠FAE+∠DCA=90°,又∵∠FDB=∠CDA=90°,BD=AD,∴△BDF≌△ADC(AAS);∴DF=DC,∴FG、DC、AD之间的数量关系为:FG=DC+AD.9.(1)证明:在△AOB和△AOC中,,∴△AOB≌△AOC(SAS).(2)在CB上截取CE=CA,∵CD平分∠ACB,∴∠ACD=∠BCD,在△ACD和△ECD中,,∴△ACD≌△ECD(SAS),∴∠CAD=∠CED=60°,∵∠ACB=90°,∴∠B=30°,∴∠EDB=30°,即∠EDB=∠B,∴DE=EB,∵BC=CE+BE,∴BC=AC+DE,∴BC=AC+AD.10.解:(1)如图①,延长AE交DC的延长线于点F,∵AB∥DC,∴∠BAF=∠F,∵E是BC的中点,∴CE=BE,在△AEB和△FEC中,∵,∴△AEB≌△FEC,∴AB=FC,∵AE是∠BAD的平分线,∴∠DAF=∠BAF,∴∠DAF=∠F,∴DF=AD,∴AD=DC+CF=DC+AB,故答案为:AD=AB+DC;(2)AB=AF+CF,如图②,延长AE交DF的延长线于点G,∵E是BC的中点,∴CE=BE,∵AB∥DC,∴∠BAE=∠G,在△AEB和△GEC中,,∴△AEB≌△GEC,∴AB=GC,∵AE是∠BAF的平分线,∴∠BAG=∠FAG,∵AB∥CD,∴∠BAG=∠G,∴∠FAG=∠G,∴FA=FG,∴AB=CG=AF+CF.。
苏科版数学八年级上册数学期末几何专题复习——三角形综合(全等与勾股定理)(五)
八年级上册数学期末几何专题复习——三角形综合(全等与勾股定理)(五)1.如图1,点D、F、A、E在同一条直线上,且AE=DF,分别以DA、AE为一边,在直线DE 的同侧作等边△DBA和等边三角形ACE,试证明△BCF也是等边三角形.(1)下面是小伟对此题的分析过程,请你根据他的分析填空;此题中,要证明△BCF是等边三角形,至少要证明两条边相等,欲证明两条边相等,可以通过证明两条边所在的两个三角形全等来实现,根据条件,在不加辅助线情况下,不妨尝试证明≌△ABC,依据是(写出定义、公理或定理内容);(2)如图2,点D、B、C在同一条直线上,分别以DB、BC为一边、在直线DC的同侧作等边三角形DBA和等边三角形BCF,再以DA、DF为邻边作平行四边形ADFE.求证:△ACE 是等边三角形;(3)图3是图2中的等边△BCF绕点B顺时针旋转一个角度后得到的图形,若其他条件不变,△ACE是否还是等边三角形?请加以说明.2.如图,△ABC中,AB=AC,∠BAC=90°,点D是直线AB上的一动点(不和A、B重合),BE⊥CD于E,交直线AC于F.(1)点D在边AB上时,证明:AB=FA+BD;(2)点D在AB的延长线或反向延长线上时,(1)中的结论是否成立?若不成立,请画出图形并直接写出正确结论.3.如图1,在△ABC中,∠BAC=90°,AB=AC,AE是过A的一条直线,且B,C在AE的异侧,BD⊥AE于点D,CE⊥AE于点E.(1)求证:BD=DE+CE;(2)若直线AE绕点A旋转到图2位置时(BD<CE),其余条件不变,问BD与DE,CE 的关系如何,请证明;(3)若直线AE绕点A旋转到图3时(BD>CE),其余条件不变,BD与DE,CE的关系怎样?请直接写出结果,不须证明.(4)归纳(1),(2),(3),请用简捷的语言表述BD与DE,CE的关系.4.已知点A与点C为x轴上关于y轴对称的两点,点B为y轴负半轴上一点.(1)如图1,点E在BA延长线,连接EC交y轴于点D,若BE=8,EC=6,CB=4,求△ADE的周长;(2)如图2,点G为第四象限内一点,BG=BA,连接GC并延长交y轴于F,试探究∠ABG 与∠FCA之间有和数量关系?并证明你的结论;(3)如图3,A(﹣3,0),B(0,﹣4),点E(﹣6,4)在射线BA上,以BC为边向下构成等边△BCM,以EC为边向上构造等腰△CNE,其中CN=EN,∠CNE=120°,连接AN,MN,求证:.5.如图1,OA=2,OB=4,以A点为顶点、AB为腰在第三象限作等腰Rt△ABC,(1)求C点的坐标;(2)如图2,P为y轴负半轴上一个动点,当P点向y轴负半轴向下运动时,以P为顶点,PA为腰作等腰Rt△APD,过D作DE⊥x轴于E点,求OP﹣DE的值;(3)如图3,已知点F坐标为(﹣2,﹣2),当G在y轴的负半轴上沿负方向运动时,作Rt△FGH,始终保持∠GFH=90°,FG与y轴负半轴交于点G(0,m),FH与x轴正半轴交于点H(n,0),当G点在y轴的负半轴上沿负方向运动时,以下两个结论:①m﹣n 为定值;②m+n为定值,其中只有一个结论是正确的,请找出正确的结论,并求出其值.6.如图所示,A,E,F,C在一条直线上,AE=CF,过E,F分别作DE⊥AC,BF⊥AC,垂足分别为E、F,且AB=CD.(1)△ABF与△CDE全等吗?为什么?(2)求证:EG=FG.7.如图,已知等腰△ABC,∠ACB=120°,P是线段CB上一动点(与点C,B不重合),连接AP,延长BC至点Q,使得∠PAC=∠QAC,过点Q作射线QH交线段AP于H,交AB于点M,使得∠AHQ=60°.(1)若∠PAC=α,求∠AMQ的大小(用含α的式子表示);(2)用等式表示线段QC和BM之间的数量关系,并证明.8.如图,点C在线段AB上,AD∥EB,AC=BE,AD=BC.CF平分∠DCE.求证:(1)△ACD≌△BEC;(2)CF⊥DE.9.感知:如图1,点B、C在∠MAN的边AM、AN上,点E、F在∠MAN内部的射线AD上,∠1、∠2分别是△ABE、△CAF的外角,已知AB=AC,∠1=∠2=∠BAC.求证:△ABE≌△CAF;应用:如图2,在△ABC中,AB=AC,AB>BC,点D在边BC上,CD=2BD,点E、F在线段AD上,∠1=∠2=∠BAC.若△ABC的面积为12,则△ABE与△CDF的面积之和为.10.如图1,在△ABC中,∠ACB=90°,∠BAC=60°,点E是∠BAC角平分线上一点,过点E作AE的垂线,过点A作AB的垂线,两垂线交于点D,连接DB,点F是BD的中点,DH⊥AC,垂足为H,连接EF,HF.(1)如图1,若点H是AC的中点,AC=2,求AB,BD的长;(2)如图1,求证:HF=EF;(3)如图2,连接CF,CE.猜想:△CEF是否是等边三角形?若是,请证明;若不是,说明理由.参考答案1.解:(1)∵△ABD与△FBC都是等边三角形,∴AB=AD=BD,AC=AE=CE,∠ABD=∠BAD=∠D=∠CAE=60°.∵D、F、A、E在同一条直线上,∴∠BAD+∠BAC+∠CAE=180°,∴∠BAC=∠D=60°.∵AE=DF,∴DF=AC.在△DBF和△ABC中,,∴△DBF≌△ABC(SAS).故答案为:△DBF,两边及夹角对应相等的两三角形全等;(2)∵△ABD与△FBC都是等边三角形,∴AB=AD=BD,BF=BC=CF,∠ABD=∠BAD=∠ADB=∠CBE=60°.∴∠ABD+∠ABE=∠CBE+∠ABE,∴∠DBF=∠ABC.在△DBF和△ABC中,,∴△DBF≌△ABC(SAS),∴DF=AC,∠BDF=∠BAC,∠BFD=∠BCA,∵∠AOD=∠FDC+∠OCD,∴∠AOD=∠FDC+∠BFD=∠FBC=60°.∵四边形ADFE是平行四边形,∴AE=DF,AE∥DF,∴AE=AC,∠CAE=∠AOD=60°,∴△ACE是等边三角形.(3)△ACE是等边三角形.延长EF的交AB的延长线于点P,与BC相交于点Q.∵△ABD与△FBC都是等边三角形,∴AB=AD=BD,BF=BC=CF,∠ABD=∠BAD=∠ADB=∠CBE=60°.∴∠ABD+∠ABE=∠CBE+∠ABE,∴∠DBF=∠ABC.在△DBF和△ABC中,,∴△DBF≌△ABC(SAS),∴DF=AC.∵四边形ADFE是平行四边形,∴EF=AD=AB,AE=DF,EF∥AD,∴AE=AC,∠P=∠BAD=60°=∠BCF,∵∠ABC=∠P+∠PQB,∠EFC=∠BCF+∠CQF,∠PQB=∠CQF,∴∠ABC=∠EFC,在△ABC和△EFC中,,∴△ABC≌△EFC(SAS),∴AC=CE,∴AE=AC=CE.∴△ACE是等边三角形.2.(本题满分8分)(1)证明:如图1,∵BE⊥CD,即∠BEC=90°,∠BAC=90°,∴∠F+∠FBA=90°,∠F+∠FCE=90°.∴∠FBA=∠FCE.……………………………………………………………(1分)∵∠FAB=180°﹣∠DAC=90°,∴∠FAB=∠DAC.∵AB=AC,∴△FAB≌△DAC.………………………………………………(2分)∴FA=DA.………………………………………………(3分)∴AB=AD+BD=FA+BD.………………………………………(4分)(2)如图2,当D在AB延长线上时,AF=AB+BD,…………(6分)理由是:同理得:△FAB≌△DAC,∴AF=AD=AB+BD;如图3,当D在AB反向延长线上时,BD=AB+AF,…………………(8分)理由是:同理得:△FAB≌△DAC,∴AF=AD,∴BD=AB+AD=AB+AF.3.(1)证明:在△ABD和△CAE中,∵∠CAD+∠BAD=90°,∠BAD+∠ABD=90°,∴∠CAD=∠ABD.又∠ADB=∠AEC=90°,AB=AC,∴△ABD≌△CAE.(AAS)(3分)∴BD=AE,AD=CE.又AE=AD+DE,∴AE=DE+CE,即BD=DE+CE.(4分)(2)BD=DE﹣CE.(5分)证明:∵∠BAC=90°,∴∠BAD+∠CAE=90°.又∵BD⊥DE,∴∠BAD+∠ABD=90°,∴∠ABD=∠CAE.又AB=AC,∠ADB=∠CEA=90°,∴△ADB≌△CEA.∴BD=AE,AD=CE.∵DE=AD+AE,∴DE=CE+BD,即BD=DE﹣CE.(8分)(3)同理:BD=DE﹣CE.(9分)(4)当点BD、CE在AE异侧时,BD=DE+CE;当点BD、CE在AE同侧时,BD=DE﹣CE.(12分)4.解:(1)∵点C与点A关于y轴对称∴AD=CD,AB=BC,=ED+AD+EA∴C△ADE=ED+CD+EB﹣AB=EC+EB﹣BC=8+6﹣4=10;(2)连接BC,作BH⊥FG,交FG于点H,如图2,∵AO=OC,BO⊥AC,∴BA=BC.∴∠ABO=∠CBO,设∠CBO=α,则∠ABO=α,∠ACB=90°﹣α.∵BG=BA,∴BG=BC.∵BH⊥FG,∴∠CBH=∠GBH.设∠CBH=β,则∠GBH=β,∠BCG=90°﹣β.∵∠ABG=2α+2β=2(α+β),∠FCA=180°﹣(90°﹣α)﹣(90°﹣β)=α+β.∴∠ABG=2∠FCA.(3)延长NA到P,使AN=AP,连接PB,PM,如图3,在△AEN和△ABP中,,∴△AEN≌△ABP(SAS),∴EN=BP,∠NEA=∠2,∵CN=EN,∠CNE=120°,∴∠NEC=∠NCE=30°,设∠1=m°,∠EBC=n°,∴∠MCN=∠NCE+180﹣m°﹣∠EBC+60=270°﹣m°﹣n°又∠MBP=360°﹣60°﹣∠2﹣∠EBC=270°﹣m°﹣n°,∴∠MCN=∠MBP,在△BMP和△CMN中,,∴△BMP≌△CMN(SAS),∴MP=MN,∠CMN=∠BMP,∴∠PMN=60°,∴△PMN为等边三角形,∴PN=MN,∴=.5.解:(1)过C作CM⊥x轴于M点,如图1,∵CM⊥OA,AC⊥AB,∴∠MAC+∠OAB=90°,∠OAB+∠OBA=90°则∠MAC=∠OBA在△MAC和△OBA中,则△MAC≌△OBA(AAS)则CM=OA=2,MA=OB=4,则点C的坐标为(﹣6,﹣2);(2)过D作DQ⊥OP于Q点,如图2,则OP﹣DE=PQ,∠APO+∠QPD=90°∠APO+∠OAP=90°,则∠QPD=∠OAP,在△AOP和△PDQ中,则△AOP≌△PDQ(AAS)∴OP﹣DE=PQ=OA=2;(3)结论②是正确的,m+n=﹣4,如图3,过点F分别作FS⊥x轴于S点,FT⊥y轴于T点,则FS=FT=2,∠FHS=∠HFT=∠FGT,在△FSH和△FTG中,则△FSH≌△FTG(AAS)则GT=HS,又∵G(0,m),H(n,0),点F坐标为(﹣2,﹣2),∴OT═OS=2,OG=|m|=﹣m,OH=n,∴GT=OG﹣OT=﹣m﹣2,HS=OH+OS=n+2,则﹣2﹣m=n+2,则m+n=﹣4.6.(1)解:△ABF与△CDE全等,理由如下:∵DE⊥AC,BF⊥AC,∴∠AFB=∠CED=90°,∵AE=CF,∴AE+EF=CF+EF,即AF=CE,在Rt△ABF和Rt△CDE中,,∴Rt△ABF≌Rt△CDE(HL);(2)证明:∵Rt△ABF≌Rt△CDE,∴BF=DE,在△DEG和△BFG中,,∴△DEG≌△BFG(AAS),∴EG=FG.7.解:(1)∠ACB=120°,AC=BC,∴∠B=∠CAB=30°,∠ACQ=60°,∵∠AHQ=60°.∵∠AGH=∠QGC∴∠MQB=∠PAC=α∠AMQ=∠B+∠MQB=30°+α;(2)如图,∵∠PAC=∠QAC=α,∴∠QAM=∠QMA=30°+α∴QA=QM过点M作ME∥AC,交BQ于点E,∴∠ACQ=∠MEQ=60°,∠QAC=∠MQE∴△QAC≌△MQE(AAS)∴CQ=EM∵∠B=30°∴∠EMB=30°∴EM=EB,作EN⊥BM于点N,设EN=x,则BE=EM=2x,BN=x,∴BM=2x,CQ=EM=2x,∴BM=CQ.8.证明:(1)∵AD∥BE,∴∠A=∠B,在△ACD和△BEC中,∴△ACD≌△BEC(SAS);(2)∵△ACD≌△BEC,∴CD=CE,又∵CF平分∠DCE,∴CF⊥DE.9.证明:如图(1)所示:∵∠1=∠2,∴∠BEA=∠AFC,又∵∠1=∠ABE+∠3,∠3+∠4=∠BAC,∠1=∠BAC,∴∠BAC=∠ABE+∠3,∴∠4=∠ABE,在△ABE和△CAF中有:,∴△ABE≌△CAF(AAS).(2)如图(2)所示:设△ABC的BC上的高为h,∴,,又∵CD=2BD,S△ABC=12,∴S△ABD =4,S△ADC=8,同(1)可得△ABE≌△CAF,∴S△ABE =S△ACF,=S△ABE +S△CDF=S△ACF+S△CDF=S△ADC=8故答案为:810.解:(1)∵∠ACB=90°,∠BAC=60°,∴∠ABC=30°,∴AB=2AC=2×2=4,∵AD⊥AB,∠CAB=60°,∴∠DAC=30°,∵AH=AC=,∴AD==2,∴BD==2;(2)如图1,连接AF,∵AE是∠BAC角平分线,∴∠HAE=30°,∴∠ADE=∠DAH=30°,在△DAE与△ADH中,,∴△DAE≌△ADH,∴DH=AE,∵点F是BD的中点,∴DF=AF,∵∠EAF=∠EAB﹣∠FAB=30°﹣∠FAB∠FDH=∠FDA﹣∠HDA=∠FDA﹣60°=(90°﹣∠FBA)﹣60°=30°﹣∠FBA,∴∠EAF=∠FDH,在△DHF与△AEF中,,∴△DHF≌△AEF,∴HF=EF;(3)如图2,取AB的中点M,连接CM,FM,∵F、M分别是BD、AB的中点,∴FM∥AD,即FM⊥AB.在R t△ADE中,AD=2AE,∵DF=BF,AM=BM,∴AD=2FM,∴FM=AE,∵∠ABC=30°,∴AC=CM=AB=AM,∵∠CAE=∠CAB=30°∠CMF=∠AMF﹣∠AMC=30°,在△ACE与△MCF中,,∴△ACE≌△MCF,∴CE=CF,∠ACE=∠MCF,∵∠ACM=60°,∴∠ECF=60°,∴△CEF是等边三角形.。
八年级上册几何知识点总结
几何部分一. 全等三角形1、能完全重合的图像叫做全等图形。
两个图形全等, 它们的形状和大小都相同。
2、两个能重合的三角形叫全等三角形。
3、全等三角形的对应边相等, 对应角相等。
4、三角形全等的判定:1)三组对应边分别相等的两个三角形全等(简称SSS或“边边边”)。
2)有两边及其夹角对应相等的两个三角形全等(SAS或“边角边”)。
3)有两角及其夹边对应相等的两个三角形全等(ASA或“角边角”)。
4)有两角及其一角的对边对应相等的两个三角形全等(AAS或“角角边”)5)三条中线(或高、角平分线)分别对应相等的两个三角形全等。
5、直角三角形全等的判定:1)斜边和一条直角边对应相等的两个直角三角形全等(简称HL或“斜边直角边”)。
2)以上判定方法对于直角三角形全部适用。
二. 轴对称图形(一)轴对称与轴对称图形1.轴对称: 如果把一个图形沿着某一条直线折叠后, 能够与另一个图形重合, 那么这两个图形关于这条直线成轴对称, 这条直线叫做对称轴, 两个图形中的对应点叫做对称点。
2.轴对称图形:如果把一个图形沿着一条直线折叠, 直线两旁的部分能够互相重合, 那么这个图形叫做轴对称图形, 这条直线叫做对称轴。
轴对称和轴对称图形的区别和联系:区别: ①轴对称是指两个图形沿某直线对折能够完全重合, 而轴对称图形是指一个图形的两个部分沿某直线对折能完全重合。
②轴对称是反映两个图形的特殊位置、大小关系;轴对称图形是反映一个图形的特性。
3.联系: ①两部分都完全重合, 都有对称轴, 都有对称点。
4.②如果把成轴对称的两个图形看成是一个整体, 这个整体就是一个轴对称图形;如果把一个轴对称图形的两旁的部分看成两个图形, 这两个部分图形就成轴对称。
常见的轴对称图形: 圆、正方形、长方形、菱形、等腰梯形、等腰三角形、等边三角形、角、线段、相交的两条直线等, 正多边形等。
(分别指出这些图形的对称轴的条数)怎样画轴对称图形: 画轴对称图形时, 应先确定对称轴, 再找出对称点。
(完整版)八年级上册数学几何专题期末复习讲义
三角形、全等三角形、轴对称期末复习学生/课程年级学科授课教师日期时段核心内容三角形三边关系,全等三角形的判定与性质,角平分线,等腰三角形,等边三角形课型教学目标1.掌握三角形的三边关系,多边形的内角和外角和的应用;2.掌握全等三角形的判定和性质的内容,灵活应用知识点进行解题,掌握角平分线的内容,学会作图以及应用;3.掌握轴对称的基本概念,熟练应用线段垂直平分线的内容,掌握分类讨论的思想,灵活解答等腰三角形以及等边三角形的内容。
重、难点熟练掌握全等三角形的性质和判定,能够解答等腰三角形,等边三角形的相关题型知识导图导学一三角形知识点讲解 1:例 1. [单选题] 长度分别为2,7,x的三条线段能组成一个三角形,x的值可以是()A.4 B.5 C.6 D.9例 2. [单选题] 下列四个图形中,线段BE是△ABC的高的是()D.A. B. C.例 3. 如图,李叔叔家的凳子坏了,于是他给凳子加了两根木条,这样凳子就比较牢固了,他所应用的数学原理是例 4. [单选题] 小明把一副含45°,30°的直角三角板如图摆放,其中∠C=∠F=90°,∠A=45°,∠D=30°,则∠α+∠β等于()A.180°B.210°C.360°D.270°例 5. [单选题] 已知一个正多边形的一个外角为36°,则这个正多边形的边数是()A.8 B.9 C.10 D.11例 6. [单选题] 如图,小明在操场上从A点出发,沿直线前进10米后向左转40°,再沿直线前进10米后,又向左转40°,照这样走下去,他第一次回到出发地A点时,一共走了()米.A.70 B.80 C.90 D.100例 7. 如图,在△ABC中,AD⊥BC,AE平分∠BAC,∠B=70°,∠C=30°.求:(1)∠BAE的度数;(2)∠DAE的度数;(3)探究:小明认为如果条件∠B=70°,∠C=30°改成∠B﹣∠C=40°,也能得出∠DAE的度数?若能,请你写出求解过程;若不能,请说明理由.例8. 如图,∠AOB=90°,点C、D分别在射线OA、OB上,CE是∠ACD的平分线,CE的反向延长线与∠CDO的平分线交于点F.(1)当∠OCD=50°(图1),试求∠F.(2)当C、D在射线OA、OB上任意移动时(不与点O重合)(图2),∠F的大小是否变化?若变化,请说明理由;若不变化,求出∠F.我爱展示1.[单选题] 已知a,b,c是△ABC的三条边长,化简|a+b-c|-|c-a-b|的结果为()A.2a+2b-2c B.2a+2b C.2c D.02.如图,BD是△ABC的中线,AB=6cm,BC=4cm,则△ABD和△BCD的周长差为cm3.[单选题] 如图,把△ABC纸片沿DE折叠,当点A落在四边形BCDE内部时,则∠A与∠1+∠2之间有一种数量关系始终保持不变.请试着找一找这个规律,你发现的规律是()A.∠A=∠1+∠2B.2∠A=∠1+∠2C.3∠A=2∠1+∠2D.3∠A=2(∠1+∠2)4.[单选题] 如图,在△ABC中,点D、E分别在边AB、AC上,如果∠A=50°,那么∠1+∠2的大小为()A.130°B.180°C.230°D.260°5.如图,CE是△ABC的外角∠ACD的平分线,若∠B=35°,∠ACE=60°,则∠A=6.[单选题] 一个多边形剪去一个角后(剪痕不过任何一个其它顶点),内角和为1980°,则原多边形的边数为()A.11 B.12 C.13 D.11或127.如图所示,△ABC中,AD⊥BC,AE平分∠BAC.(1)若∠B=30°,∠C=70°,求∠DAE的度数;(2)△ABC中,若∠B=α,∠C=β(α<β),请你根据(1)问的结果大胆猜想∠DAE与α,β间的等量关系,并说明理由。
八年级上期末复习几何专题(全等三角形、轴对称、勾股定理)
初二数学几何总复习专题一.轴对称图形的识别和作图问题1.如图,由小正方形组成的L 形图中,请你用三种方法分别在下图中添画一个小正方形使它成为轴对称图形:2.如图是2×2的方格,在格点处有一个△ABC ,仿照图例在备用图中画出三种与△ABC 成轴对称的“格点三角形”.3.称图形的是()4. A5.点P (3,-4),则点P 关于y 轴对称的点的坐标是_______.6.如图,把一个长方形ABCD 沿AE 对折点B 落在F 点,EF 交AD 于点G ,如果∠BEA =38°,则∠EGA 的度数为______度.7.如图,把△ABC 沿EF 对折,叠合后的图形如图所示.若60A ∠=︒,195∠=︒,则∠2的度数为() A .24°B .25°C .30°D .35°8.如图,将△ABC 沿DE 、HG 、EF 翻折,三个顶点均落在点O 处.若1129∠=︒,则2∠的度数为() A .49°B .50°C .51°D .52°6图7图8图9.如图,在Rt △ABC 中,∠C =90°,∠ABC 的平分线BD 交AC 于D ,若CD =3,则点D 到AB 的距离是()A .5B .4C .3D .210.如图,AO 、OB 是互相垂直的墙壁,墙角O 处是一个老鼠洞,一只猫在A 处发现了B 处的一只老鼠正在向洞口逃窜.若猫以与老鼠同样的速度去追捕老鼠,请在图中作出最快能截住老鼠的位置C .(尺规作图,保留作图痕迹,不 写作法) 11.如图,已知A (-2,3),B (-3,1),C (1,-2).(1)请画出ABC △关于y 轴对称的A B C '''△(其中A B C ''',,分别是A B C ,,的对应点,不写画法); (2)B '的坐标为______; (3)△ABC 的面积是________. 12.已知:如图,∠ABC 及两点M ,N .求作:点P ,使得PM =PN ,且P 点到∠ABC 两边的距离相等.(不写画法,保留作图痕迹) 答:______即为所求.专题二.利用等腰三角形的性质求角的问题及分类思想 1.等腰三角形有一个角为40°,则另外两个角分别为_______.2.等腰三角形中,有一个角是50°,则它的一条腰上的高与底边的夹角是()AB C B'C'EF12BBBBBDCA3.一个等腰三角形的一边长是6,一个外角是120°,则它的周长为() A .12B .15C .16D .184.已知:如图1,P 、Q 是△ABC 边BC 上的两点,且BP=PQ=QC=AP=AQ ,求:∠BAC 的度数. 图15.如图2,在△ABC 中,∠B =∠C ,FD ⊥BC 于D ,DE ⊥AB 于E ,∠AFD =158°,则∠EDF 等于=__________. 图2图3图46. 如图3,在Rt △ABC 中,∠B =90°,ED 是AC 的垂直平分线,交AC 于点D ,交BC 于点E .已知∠BAE =10°, 则∠C 的度数为()7.如图4,AB=AC ,AD=AE ,∠BAD=40°,则∠CDE=_______. 8.如图5,△ABC 中,AB=AC ,BD=BC ,AD=DE=EB ,则∠A 为()A .30°B .36°C .45°D .54° 图5图6图79.如图6,△ABC 中,AB=AC=BD ,那么∠1与∠2之间的关系满足() A .∠1=2∠2B .2∠1+∠2=180°C .∠1+3∠2=180°D .3∠1-∠2=180°10.如图7,AC ⊥BC ,AC=BC ,CD ⊥AB ,DE ⊥BC ,则图中共有等腰三角形() A .1个B .2个C .5个D .4个11.如图8,∠A=90°,E 是BC 上一点,A 点和E 点关于BD 对称,B 点、C 点关于DE 对称,求∠ABC 和∠C 的度数. 图812.如图,在△ABC 中,AB =AC ,点D 在AC 上,且BD =BC=AD ,求△ABC 各角的度数. 专题三.利用等腰三角形的性质求线段的问题1.已知:在△ABC 中,AB <AC ,BC 边上的垂直平分DE 交BC 于点D ,交AC 于点E ,AC =8cm ,△ABE 的周长是14cm , 求:AB 的长。
人教版数学八年级上册几何知识点
人教版数学八年级上册的几何知识点主要包括以下几个方面:
1.三角形的基本性质:三角形具有稳定性,即三角形三条边的长度确定后,它的形状
就固定了。
此外,三角形还有中线、角平分线和高线等基本性质。
2.全等三角形:如果两个三角形的三边分别相等,或者两边和夹角分别相等,则这两
个三角形全等。
全等三角形具有性质对应边相等、对应角相等。
3.轴对称和中心对称:轴对称是指一个图形关于一条直线对称,中心对称是指一个图
形关于一个点对称。
4.四边形:四边形是由四条边组成的封闭图形,其中有平行四边形、矩形、菱形和正
方形等特殊情况。
5.勾股定理:勾股定理是一个重要的几何定理,它描述了直角三角形中三边的关系。
具体来说,直角三角形的两直角边的平方和等于斜边的平方。
6.面积和周长:面积是指一个平面图形所占的区域大小,周长是指一个平面图形的边
的总长度。
7.相似三角形:如果两个三角形的对应角相等,则这两个三角形相似。
相似三角形对
应边之间的比例是一个常数,这个常数叫做相似比。
以上是八年级上册的主要几何知识点,通过掌握这些知识点,学生可以更好地理解几何学的基本概念和性质,提高自己的几何思维能力。
【教育资料】人教版 初中数学八年级上册第 1213章 全等三角形及轴对称知识点学习专用
全等三角形知识总结一、知识网络二、基础知识梳理(一)、基本概念1、“全等”的理解全等的图形必须满足:(1)形状相同的图形;(2)大小相等的图形;即能够完全重合的两个图形叫全等形。
同样我们把能够完全重合的两个三角形叫做全等三角形。
2、全等三角形的性质(1)全等三角形对应边相等;(2)全等三角形对应角相等;3、全等三角形的判定方法(1)三边对应相等的两个三角形全等。
(2)两角和它们的夹边对应相等的两个三角形全等。
(3)两角和其中一角的对边对应相等的两个三角形全等。
(4)两边和它们的夹角对应相等的两个三角形全等。
(5)斜边和一条直角边对应相等的两个直角三角形全等。
4、角平分线的性质及判定性质:角平分线上的点到这个角的两边的距离相等判定:到一个角的两边距离相等的点在这个角平分线上(二)灵活运用定理1、判定两个三角形全等的定理中,必须具备三个条件,且至少要有一组边对应相等,因此在寻找全等的条件时,总是先寻找边相等的可能性。
2、要善于发现和利用隐含的等量元素,如公共角、公共边、对顶角等。
3、要善于灵活选择适当的方法判定两个三角形全等。
(1)已知条件中有两角对应相等,可找:①夹边相等(ASA)②任一组等角的对边相等(AAS)(2)已知条件中有两边对应相等,可找①夹角相等(SAS)②第三组边也相等(SSS)(3)已知条件中有一边一角对应相等,可找①任一组角相等(AAS 或ASA)②夹等角的另一组边相等(SAS)轴对称知识梳理一、基本概念1.轴对称图形如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形就叫做轴对称图形,这条直线就叫做对称轴.折叠后重合的点是对应点,叫做对称点.2.线段的垂直平分线经过线段中点并且垂直于这条线段的直线,叫做这条线段的垂直平分线3.轴对称变换由一个平面图形得到它的轴对称图形叫做轴对称变换.4.等腰三角形有两条边相等的三角形,叫做等腰三角形.相等的两条边叫做腰,另一条边叫做底边,两腰所夹的角叫做顶角,底边与腰的夹角叫做底角.5.等边三角形三条边都相等的三角形叫做等边三角形.二、主要性质1.如果两个图形关于某条直线对称,那么对称轴是任何一对对应点所连线段的垂直平分线.或者说轴对称图形的对称轴,是任何一对对应点所连线段的垂直平分线.2.线段垂直平分钱的性质线段垂直平分线上的点与这条线段两个端点的距离相等.3.(1)点P(x,y)关于x轴对称的点的坐标为P′(x,-y).(2)点P(x,y)关于y轴对称的点的坐标为P″(-x,y).4.等腰三角形的性质(1)等腰三角形的两个底角相等(简称“等边对等角”).(2)等腰三角形的顶角平分线、底边上的中线、底边上的高相互重合.(3)等腰三角形是轴对称图形,底边上的中线(顶角平分线、底边上的高)所在直线就是它的对称轴.(4)等腰三角形两腰上的高、中线分别相等,两底角的平分线也相等.(5)等腰三角形一腰上的高与底边的夹角是顶角的一半。
期末总复习数学八年级上第14章勾股定理复习(华师大版)
第14章 勾股定理复习知识梳理1、勾股定理 格式: 在Rt ⊿ABC 中,由勾股定理得 AC =2、勾股定理的逆定理 格式:在⊿ABC 中, ∵AB 2+BC 2=32+42=25=52=AC 2∴⊿ABC 是直角三角形3、勾股定理的应用: 一、审题、画图、转移数据 二、实际问题 几何问题 三、解决几何问题 题型总结一、已知直角三角形两边求第三边;画长度为无理数的线段。
1、若∠A :∠B :∠C =1:1:2,则 a:b:c = 。
2、在数轴上作出 、 所表示的点。
(尽可能简便)二、判断直角三角形:(一)用角判断:1、一个角是直角;2、两个锐角互余。
(二)用边判断:勾股定理的逆定理 1、如图,正方形网格中画有⊿ABC 、且⊿ABC 的三个 顶点都在网格的格点上,若小方格边长为1,判断⊿ABC 的形状,并说明理由。
2、求无盖的正方体纸盒平面展开图中∠B ′A ′C ′的大小。
34A B C 2222345AB BC =+=+345A B C→5-3C AB3、如图所示的一块地的平面图,已知∠ADC=90°,AD=4cm ,CD=3cm ,AB=13cm ,BC=12cm ,求这块地的面积.三、勾股定理的证明方法——等面积法的应用1、把两个全等的直角三角形拼成如图所示的形状,使点A 、 E 、D 在同一条直线上,利用此图的面积表示式证明勾股定理。
2. 如图,已知Rt △ABC 的两直角边长分别为6和8, 分别以其三边为直径作半圆,则图中阴影部分的面积为 ___________.3、如图,在Rt ⊿ABC 中,∠ABC =90°,CD 是高, 如果AB =10cm,BC=8cm,求CD 和BD 的长 。
4、如图所示为我国领海线,即MN 以左为我国领海,以右为公海,上午9时50分,我国反走私艇A 发现正东方有一走私艇C 以每小时13海里的速度偷偷向我领海开来,便立即通知正在MN 线上巡逻的我国反走私艇B 密切注意,可知A 和C 两艇的距离为13海里,A 和B 两艇的距离是5海里,反走私艇B 测得距离C12海里,若走私艇C 的速度不变,问最早什么时间进入我国领海?D CBA CA BD5、在⊿ABC中,点O为⊿ABC三条角平分线的交点,OD⊥BC于D,OE⊥AC于E,OF⊥AB于F,且AB=10cm,BC=8cm,AC=6cm,则点O到三边AB、AC、BC的距离为。
苏教版八年级上册数学期末复习知识点+常考题型
苏教版八年级上册期末复习(知识点+考试热点题型)汇总第一章全等三角形知识点梳理1、全等三角形的定义:能够完全重合的两个三角形叫做全等三角形。
理解:①全等三角形形状与大小完全相等,与位置无关;②一个三角形经过平移、翻折、旋转后得到的三角形,与原三角形仍然全等..;③三角形全等不因位置发生变化而改变。
2、全等三角形的性质:⑴全等三角形的对应边相等、对应角相等。
理解:①长边对长边,短边对短边;最大角对最大角,最小角对最小角;②对应角的对边为对应边,对应边对的角为对应角。
⑵全等三角形的周长相等、面积相等。
⑶全等三角形的对应边上的对应中线、角平分线、高线分别相等。
3、全等三角形的判定:①边角边公理(SAS)有两边和它们的夹角对应相等的两个三角形全等。
②角边角公理(ASA)有两角和它们的夹边对应相等的两个三角形全等。
③推论(AAS)有两角和其中一角的对边对应相等的两个三角形全等。
④边边边公理(SSS) 有三边对应相等的两个三角形全等。
⑤斜边、直角边公理(HL)有斜边和一条直角边对应相等的两个直角三角形全等。
4、证明两个三角形全等的基本思路:⑴已知两边:①找第三边(SSS);②找夹角(SAS);③找是否有直角(HL).⑵已知一边一角:①找一角(AAS或ASA);②找夹边(SAS).⑶已知两角:①找夹边(ASA);②找其它边(AAS).常考题型汇总一、选择题1.如图,已知AE=CF,∠AFD=∠CEB,那么添加下列一个条件后,仍无法判定△ADF≌△CBE 的是()A、∠A=∠CB、AD=CBC、BE='DF'D、AD∥BC2.如图,D在AB上,E在AC上,且∠B=∠C,那么补充下列条件后,不能判定△ABE≌△ACD 的是( )A、AD=AEB、BE=CDC、∠AEB=∠ADCD、AB=AC3.如图所示,△ABD≌△CDB,下面四个结论中,不正确的是()A.△ABD和△CDB的面积相等B.△ABD和△CDB的周长相等C.∠A+∠ABD=∠C+∠CBDD.AD∥BC,且AD=BC4.如图,在下列条件中,不能证明△ABD≌△ACD的是()A.BD=DC,AB=ACB.∠ADB=∠ADC,BD=DCC.∠B=∠C,∠BAD=∠CADD.∠B=∠C,BD=DC5.已知图中的两个三角形全等,则∠1等于()A.72°B.60°C.50°D.58°6.在△ABC中和△DEF中,已知AC=DF,∠C= ∠F,增加下列条件后还不能判定△ABC≌△DEF 的是()A.BC=EF B.AB=DE C.∠A= ∠D D.∠B= ∠E7.(3分)如图,已知∠1=∠2,则不一定能使△ABD≌△ACD的条件是()A.AB=AC B.BD=CD C.∠B=∠C D.∠BDA=∠CDA二、填空题1.如图,△ABC≌△ADE,∠B=100°,∠BAC=30°,那么∠AED=________°.2.如图所示,已知△ABC≌△ADE,∠C=∠E,AB=AD,则另外两组对应边为________,另外两组对应角为________.3.如图,△ACE≌△DBF,点A、B、C、D共线,若AC=5,BC=2,则CD的长度等于________.4.如图,AB=AD,只需添加一个条件________,就可以判定△ABC≌△ADE.5.△ABC中,AB=AC=12厘米,∠B=∠C,BC=8厘米,点D为AB的中点.如果点P在线段BC上以2厘米/秒的速度由B点向C点运动,同时,点Q在线段CA上由C点向A点运动.若点Q的运动速度为v厘米/秒,则当△BPD与△CQP全等时,v的值为________.三、解答题1.如图,已知△ABC≌△BAD,AC与BD相交于点O,求证:OC=OD.2.如图,AB=CB,BE=BF,∠1=∠2,证明:△ABE≌△CBF.3. 已知:如图,点D、E在BC上,且BD=CE,AD=AE,求证:AB=AC.4 已知:如图,A、C、F、D在同一直线上,AF=D C,AB=DE,BC=EF,求证:△ABC≌△DEF.5.已知:BE⊥CD,BE=DE,BC=DA,求证:①△BEC≌△DEA;②DF⊥BC.BCDEFAACD E6.如图,在△ABE 中,AB =AE,AD =AC,∠BAD =∠EAC, BC 、DE 交于点O.求证:(1) △ABC ≌△AED ; (2) OB =OE .第二章 轴对称知识点梳理1、 轴对称图形相对一个图形的对称而言;轴对称是关于直线对称的两个图形而言。
八年级上学期期末复习专题《全等三角形及轴对称》
期末复习专题三:全等三角形与轴对称全等三角形1. 全等三角形的概念及性质;2. 三角形全等的判定;3. 角平分线的性质及判定。
知识点一:证明三角形全等的思路通过对问题的分析,将解决的问题归结到证明某两个三角形的全等后,采用哪个全等判定定理加以证明,可以按下图思路进行分析:⎧→⎧⎪⎪→⎨⎪⎪⎪→⎩⎪⎪→→⎧⎪⎪→⎧⎪⎪⎨⎨⎪→⎨⎪⎪⎪⎪⎪→⎩⎩⎪⎪→⎧⎪⎨→⎪⎩⎪⎩SAS SSSHL AAS SAS ASAAAS ASA AAS 找夹角已知两边找第三边找直角边为角的对边找任一角找夹角的另一边已知一边一角边为角的邻边找夹边的另一角找边的对角找夹边已知两角找任一对边 切记:“有三个角对应相等”和“有两边及其中一边的对角对应相等”的两个三角形不一定全等。
例1. 如图,,,,A F E B 四点共线,AC CE ⊥,BD DF ⊥,AE BF =,AC BD =。
求证:ACF BDE ∆≅∆。
知识点二:构造全等三角形例2. 如图,在ABC ∆中,BE 是∠ABC 的平分线, AD BE ⊥,垂足为D 。
求证:21C ∠=∠+∠。
例3. 如图,在ABC ∆中,AB BC =,90ABC ∠=。
F 为AB 延长线上一点,点E 在BC上,BE BF =,连接,AE EF 和CF 。
求证:AE CF =。
知识点三:常见辅助线的作法1. 连接四边形的对角线例4. 如图,AB //CD ,AD //BC ,求证:AB CD =。
2. 作垂线,利用角平分线的知识例5. 如图,,AP CP 分别是ABC ∆外角MAC ∠和NCA ∠的 平分线,它们交于点P 。
求证:BP 为MBN ∠的平分线。
例6. 如图,D 是ABC ∆的边BC 上的点,且CD AB =,ADB BAD ∠=∠,AE 是ABD ∆的中线。
求证:2AC AE =。
解答过程:延长AE 至点F ,使EF AE =,连接DF 在ABE ∆与FDE ∆中 AE FE AEB FED BE DE =⎧⎪∠=∠⎨⎪=⎩∴ABE FDE ∆≅∆(SAS) ∴B EDF ∠=∠ADF ADB EDF ∠=∠+∠,ADC BAD B ∠=∠+∠又ADB BAD ∠=∠ ∴ADF ADC ∠=∠AB DF =,AB CD = ∴DF DC =在ADF ∆与ADC ∆中 AD AD ADF ADC DF DC =⎧⎪∠=∠⎨⎪=⎩∴ADF ADC ∆≅∆(SAS) ∴AF AC = 又2AF AE = ∴2AC AE =。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
初二数学几何总复习专题一.轴对称图形的识别和作图问题1.如图,由小正方形组成的L 形图中,请你用三种方法分别在下图中添画一个小正方形使它成为轴对称图形:2.如图是2×2的方格,在格点处有一个△ABC ,仿照图例在备用图中画出三种与△ABC 成轴对称的“格点三角形”.3.下列图形中,为轴对称图形的是( )4.下列几何图形中,①线段;②角;③圆;④等腰三角形;⑤直角三角形;其中是轴对称图形的是 A 、1个B 、2个C 、3个D 、4个5.点P (3,-4), 则点P 关于y 轴对称的点的坐标是_______.6.如图,把一个长方形ABCD 沿AE 对折点B 落在F 点,EF 交AD 于点G ,如果∠BEA =38°,则∠EGA 的度数为______度.7.如图,把△ABC 沿EF 对折,叠合后的图形如图所示.若60A ∠=︒,195∠=︒,则∠2的度数为( ) A . 24° B . 25° C . 30° D . 35°8.如图,将△ABC 沿DE 、HG 、EF 翻折,三个顶点均落在点O 处.若1129∠=︒,则2∠的度数为( ) A .49° B .50° C .51° D .52°6图7图 8图9.如图,在Rt △ABC 中,∠C =90°,∠ABC 的平分线BD 交AC 于D ,若CD =3,则点D 到AB 的距离是( )A .5B .4C .3D .2AB C B'C'EF12CBA CBA CBA C BABDCA10. 如图,AO 、OB 是互相垂直的墙壁,墙角O 处是一个老鼠洞,一只猫在A 处发现了B 处的一只老鼠正在向洞口逃窜.若猫以与老鼠同样的速度去追捕老鼠,请在图中作出最快能截住老鼠的位置C . (尺规作图,保留作图痕迹,不 写作法)11.如图,已知A (-2,3),B (-3,1),C (1,-2).(1)请画出ABC △关于y 轴对称的A B C '''△(其中A B C ''',,分别是A B C ,,的对应点,不写画法); (2)B '的坐标为______; (3)△ABC 的面积是________.12.已知:如图,∠ABC 及两点M ,N .求作:点P ,使得PM =PN ,且P 点到∠ABC 两边的距离相等.(不写画法,保留作图痕迹)BCNMA答:______即为所求.专题二.利用等腰三角形的性质求角的问题及分类思想1. 等腰三角形有一个角为40°,则另外两个角分别为_______.2.等腰三角形中,有一个角是50°,则它的一条腰上的高与底边的夹角是( )3.一个等腰三角形的一边长是6,一个外角是120°,则它的周长为( )A .12B .15C .16D .184.已知:如图1,P 、Q 是△ABC 边BC 上的两点,且BP=PQ=QC=AP=AQ ,求:∠BAC 的度数.图15. 如图2,在△ABC 中,∠B =∠C ,FD ⊥BC 于D ,DE ⊥AB 于E ,∠AFD =158°,则∠EDF 等于=__________.图2 图3 图46. 如图3,在Rt △ABC 中,∠B =90°,ED 是AC 的垂直平分线,交AC 于点D ,交BC 于点E .已知∠BAE =10°, 则∠C 的度数为( )7.如图4,AB=AC ,AD=AE ,∠BAD=40°,则∠CDE=_______. 8.如图5,△ABC 中,AB=AC ,BD=BC ,AD=DE=EB ,则∠A 为( )A .30°B .36°C .45°D .54°图5 图6 图7 9.如图6,△ABC 中,AB=AC=BD ,那么∠1与∠2之间的关系满足( ) A .∠1=2∠2 B .2∠1+∠2=180°C .∠1+3∠2=180°D .3∠1-∠2=180°10.如图7,AC ⊥BC ,AC=BC ,CD ⊥AB ,DE ⊥BC ,则图中共有等腰三角形( ) A .1个 B .2个 C .5个 D .4个11.如图8,∠A=90°,E 是BC 上一点,A 点和E 点关于BD 对称,B 点、C 点关于DE 对称,求∠ABC 和∠C 的度数.图8 12. 如图,在△ABC 中,AB =AC ,点D 在AC 上,且BD =BC=AD ,求△ABC 各角的度数.ABC DE FABCDE专题三.利用等腰三角形的性质求线段的问题1.已知:在△ABC 中,AB <AC ,BC 边上的垂直平分DE 交BC 于点D ,交AC 于点E ,AC =8cm ,△ABE 的周长是14cm , 求:AB 的长。
2.等腰三角形中,两条边的长分别为4和9,则它的周长是3.等腰三角形底边长为5,一腰上的中线把其周长分为两部分的差为3,则腰长为 .4.已知:在△ABC 中,AB <AC , BC 边上的垂直平分线DE 交BC 于点D ,交AC 于点E ,AC =8 cm ,△ABE 的周长是14 cm ,求AB 的长.5.如图,DE 是ABC 中AC 边的垂直平分线,若BC =8厘米,AB =10厘米。
则∆EBC 的周长为( )厘米 A .16 B .28 C .26 D .186.已知:如图,∠1=12°,∠2=36°,∠3=48°,∠4=24°. 求ADB ∠的度数.7.在△ABC 中,AB =AC ,∠A =80°,D 为形内一点,且∠DAB =∠DBA =10°,求∠ACD 的度数.3题)EDABC8.知等腰ABC ∆中,30BAC ,AB AC,PAB α∠==∠=,点B 关于直线AP 的对称点为点D ,连接AD ,连接BD 交AP 于点G ,连接CD 交AP 于点E ,交AB 于点F 。
(1)如图(1)当15α=时,①按要求画出图形,②求出ACD ∠的度数,③探究DE 与BF 的倍数关系并加以证明;(2)在直线AP 绕点A 顺时针旋转的过程中(075α<<),当AEF ∆为等腰三角形时,利用下页备用图直接求出α的值为 .PCBA图(1)备用图ABCCBA备用图专题四:勾股定理及其逆定理:1.下列四条线段不能组成直角三角形的是( )A.a =8,b =15,c =17B.a =9,b =12,c =15C.a =5,b =3,c =2D.a :b :c =2:3:42.有一块边长为24米的正方形绿地,如图所示,在绿地旁边B 处有健身器材,7 BC , 由于居住在A 处的居民为走近路(AB )践踏了绿地,小明想在A 处树立一个标牌 “少走▇米,踏之何忍?”请你计算后帮小明在标牌的▇填上适当的数字为:_________. 3.边长为4的等边三角形的高为( ). A .2B .4C .3D .234.如图所示的一块地,已知AD =4m ,CD =3m , AD ⊥DC ,AB =13m ,BC =12m ,求这块地的面积.专题五.等腰三角形中的有关角或线段的证明问题1.如图,已知△ABC 中,∠1=∠2,AB=AC=BC ,ED=EB ,试证明:CE=CD .2.已知:如图△ABC 中,AB=AC ,AD 和BE 是高,它们交于点H ,且AE=BE , 求证:AH=2BD .ADCB3.已知:如图,在ABC △中,AD 平分BAC ∠,AC DC ⊥,AD=BD .求证:AC AB 2=4.图①所示在△ABC 中,AB=AC ,在底边BC 上有任意一点P ,则P•点到两腰的距离之和等于定长(腰上的高),即PD+PE=CF . 若P 点在BC 的延长线上,那么请你猜想PD 、PE 和CF 之间存在怎样的等式关系?写出你的猜想并加以证明.5.知在△ABC 中,∠A=2∠B,CD 是∠ACB 的平分线,求征: BC=AC+AD6.等腰三角形△ABC 中,AB=AC,∠A=108o,BD 平分∠ABC, 求证: BC=AB+DC AB CDABCDDABC7.D 是△ABC 的角平分线,H ,G 分别在AC ,AB 上,且HD BD =. (1)求证:B ∠与AHD ∠互补;(2)若︒=∠+∠1802DGA B ,请探究线段AG 与线段AH 、HD 之间满足的等量关系,并加以证明.8.在△ABC 中,2ACB B ∠=∠,BAC ∠的平分线AO 交BC 于点D ,点H 为AO 上一动点,过点H 作直线l ⊥AO 于H ,分别交直线AB AC BC 、、于点N E M 、、. (1)当直线l 经过点C 时(如图2),证明:BN CD =;(2)当M BC 是中点时,写出CE 和CD 之间的等量关系,并加以证明; (3)请直接写出BN 、CE 、CD 之间的等量关系. 解:9.已知:如图1,△ABC 中,D 为BC 中点,E 为AB 上一点,F 为AC 上一点,ED ⊥DF ,连结EF ,求证:BE+FC>EF.F ABCE D图110.已知△ABC 中.(1)如果AB=AC,D 、E 是AB 、AC 上的点,若AD=AE ,请你写出此图中的另一组相等的线段; (2)如果AB>AC ,D 、E 是AB 、AC 上的点,若BD=CE ,请你确定DE 与BC 的数量关系,并证明你的结论.11.在等边三角形ABC 中D 、E 分别为AB 、BC 边上的两动点且总使AD =BE ,AE 与CD 交于点F ,AG ⊥CD 于点G ,判断并证明AF 与FG 之间的数量关系.12.已知:如图,△ABC 中,BC 边中垂线ED 交BC 于E ,交BA 延长线于D ,过C 作CF ⊥BD 于F ,交DE 于G ,DF =12BC ,试证明:∠FCB =12∠B .13.△ABC 是等腰三角形,D 、E 分别是腰AB 、AC 的延长线上的点,且BD =CE ,连结DE 交BC 于G 点, 求证:DE 被BC 平分.GFEDC BAA BCDEFG专题六 等腰三角形的拼接与分割问题1. △ABC 中,AD 平分∠BAC ,若∠B =20°,∠C =40°,且AB =16,AC =10,求AC 的长.2.△ABC 中,AD 平分∠BAC ,∠C =2∠B ,求证:AB=CD+AC .3.△ABC 中,AD 平分∠CAB ,AD ⊥CD .AB=AC +2CD , 求证:∠ACB =3∠B .4.已知AD//BC ,∠ADC 、∠BCD 的平分线交AB 边于点E ,试确定AD 、BC 与CD 的关系,并证明.5.如图,△ABC 中,∠A =90°,∠B =67.5°,请画一条直线,把这个三角形分割成两个等腰三角形.DABCDABCDABCEADBC6.已知△ABC 中,∠C 是其最小的内角,过顶点B 的一条直线把这个三角形分割成了两个等腰三角形, 请探求∠ABC 与∠C 之间的关系.期末:在四边形ABDE 中,C 是BD 边的中点.(1)如图(1),若AC 平分BAE ∠,ACE ∠=90°, 则线段AE 、AB 、DE 的长度满足的数量关系为 ;(直接写出答案) (2)如图(2),AC 平分BAE ∠, EC 平分AED ∠,若120ACE ∠=︒, 则线段AB 、BD 、DE 、AE 的长度满足怎样的数量关系?写出结论并证明;(3)如图(3),BD = 8,AB =2,DE =8,135ACE ∠=︒,则线段AE 长度的最大值是____________(直接写出答案).EDCBA图(2)EDCBA图(3)EDC BA图(1)C(如图1)B (如图2)A CB(如图3)C专题七.图形的运动与变化问题1.点A 、B 、C 在同一直线上,在直线AC 的同侧作ABE ∆和BCF ∆,连接AF ,CE .取AF 、CE 的中点M 、N , 连接BM ,BN , MN .(1)如图1,若ABE ∆和FBC ∆是等腰直角三角形,且090=∠=∠FBC ABE ,则MBN ∆ 是 三角形. (2)如图2,在ABE ∆和BCF ∆中,若BA=BE,BC=BF,且α=∠=∠FBC ABE ,则MBN ∆是 三角形, 且=∠MBN .(3)如图3,若将(2)中的ABE ∆绕点B 旋转一定角度,其他条件不变,那么(2)中的结论是否成立? 若成立, 给出你的证明;若不成立,写出正确的结论并给出证明.2.(1)已知:如图1-1,Rt△ABC中,∠ACB=90°,AC=BC,点D、E在斜边AB上,且∠DCE=45°.求证:线段DE、AD、EB总能构成一个直角三角形;(2)已知:如图1-2,等边三角形ABC中,点D、E在边AB上,且∠DCE=30°,请你找出一个条件,使线段D E、AD、EB能构成一个等腰三角形,并求出此时等腰三角形顶角的度数;(3)在(1)的条件下,如果AB=10,求BD·AE的值.图1-1图1-23.如图1,△ABC ,△BDE 都是等边三角形. 将△BDE 绕着点B 旋转到任意位置(点A 、E 、B 以及B 、C 、D 、三点不共线), 1)求证△ABE ≌△C BD2)如图2 分别取AE 、CD 的中点K 、L ,得到△BKL ,那么当△BDE 绕着点B 旋转时,试猜想△BKL 形状并证明你的结论 3)如图3思考:如果K 、L 不是AE 、CD 的中点,那么满足怎样的条件可以使2)中的结论仍成立?直接写出你的条件图1 图2 图34.有公共顶点C 的ABC ∆和CDE ∆都是等边三角形,ABC ∆的位置保持不变.将CDE ∆绕点C 沿顺时针方向旋转一 个任意角,如图1,BE AD =成立吗?5.如图3,B 、A 、E 三点在同一直线上,若cm AD 15=,cm AE 6=,则AC = ,∠EAD = .A图3图16.已知:在△ABC 中,AB =AC ,D 、E 为直线BC 上与点B 、点C 不重合的两点(点D 在点E 的左侧),且∠DAE =21∠BAC . (1)如图1,若∠ABC =30°,AD =AE ,则以BD 、DE 、CE 为边的三角形的形状是 ; (2)如图2,若∠ABC =45°,AD =AE ,请你判断以BD 、DE 、CE 为边的三角形的形状,并证明你的结论; (3)若∠ABC =α,请你直接写出以BD 、DE 、CE 为边的三角形中,DE 边所对角的度数(用含α的式子表示) .(图1) (图2) (备用图)7. 已知:△ABC 中,AD 平分∠BAC 交BC 于点D ,且∠ADC =60°.问题1:如图1,若∠ACB =90°,AC =m AB ,BD =n DC ,则m 的值为_________,n 的值为__________.问题2:如图2,若∠ACB 为钝角,且AB >AC ,BD >DC . (1)求证:AC AB DC BD -<-;(2)若点E 在AD 上,且DE =DB ,延长CE 交AB 于点F ,求∠BFC 的度数. 、图2ABC DE F 图1ABDC。