2018-2019学年四川省成都市高新区八年级(下)期末数学试卷
四川省成都市高新区统考 2017-2018学年九年级期末数学质量检测试题及答案

2017-2018学年四川省成都市高新区九年级(上)期末数学试卷一、选择题(本大题共10个小题,每小题3分,共30分,每小题均有四个选项,其中只有一项符合题目要求,答案涂在答题卡上)1.(3分)sin30° 的值为()A.B.C.D.2.(3分)下面的几何体中,俯视图为三角形的是()A.B.C.D.3.(3分)2017年10月18 日上午9时,中国共产党第十九次全国代表大会在北京人民大会堂开幕.据统计,在 10月18日9时至10月19日9时期间,新浪微博话题#十九大#阅读量25.3亿,把数据 25.3 亿写成科学记数法正确的是()A.25.3×108B.2.53×108C.2.53×109D.25.3×109 4.(3分)一枚质地均匀的骰子,其六个面上分别标有数字1,2,3,4,5,6,投掷一次,朝上一面的数字是偶数的概率为()A.B.C.D.5.(3分)下列各点中,在反比例函数y=﹣图象上的点是()A.(1,3)B.(3,1)C.(2,)D.(﹣,2)6.(3分)如图,在△ABC中,点D在AB上,BD=2AD,DE∥BC交AC于E,则下列结论不正确的是()A.BC=3DE B. =C.△ADE∽△ABC D.S△ADE =S△ABC7.(3分)二次函数y=x2﹣2x+1与x轴的交点个数为()A.0 个B.1 个C.2 个D.3 个8.(3分)在菱形ABCD中,AE⊥BC于点E,AF⊥CD于点F,且E、F分别为BC、CD的中点,(如图)则∠EAF等于()A.75°B.45°C.60°D.30°9.(3分)如图,在⊙O中,半径OC与弦AB垂直于点D,且AB=8,OC=5,则CD 的长是()A.3 B.2.5 C.2 D.110.(3分)如图,Rt△AOB中,AB⊥OB,且AB=OB=3,设直线x=t截此三角形所得阴影部分的面积为S,则S与t之间的函数关系的图象为下列选项中的()A.B.C.D.二、填空题(本大题共4个小题,每小题3分,共16分,答案写在答题卡上)11.(3分)在某一时刻,测得一根长为1.5m的标杆的影长为3m,同时测得一根旗杆的影长为26m,那么这根旗杆的高度为m.12.(3分)抛物线y=x2+1向右平移一个单位后,得到的新抛物线的解析式为.13.(3分)如图,AB是⊙O的直径,点C、D在⊙O上,连接AC、BC、AD、CD,若∠BAC=50°,则∠ADC的度数等于.14.(3分)双曲线y=与直线y=x交于A、B两点,且A(﹣2,m),则点B 的坐标是.三、解答题(本大题共6个小题,共54分,解答过程写在答题卡上)15.(6分)(1)计算:|﹣1|﹣+2cos30°+()﹣2(2)解方程:(x﹣1)2+2x﹣2=0.16.(6分)已知关于 x的方程3x2+2x﹣m=0有两个不相等的实数根.(1)求 m 的取值范围;(2)若方程的一个根为﹣1,求方程的另一个根.17.(8分)如图,某地标性大厦离小伟家 60m,小伟从自家的窗中眺望大厦,并测得大厦顶部的仰角是45°,而大厦底部的俯角是37°,求该大厦 DC 的高度.(可选用数据:sin 37°≈0.60,cos37°≈0.80,tan 37°≈0.75 )18.(8分)为了了解成都市初中学生“数学核心素养”的掌握情况,教育科学院命题教师赴某校初三年级进行调研,命题教师将随机抽取的部分学生成绩(得分为整数,满分 160 分)分为 5 组:第一组 85~100;第二组100~115;第三组 115~130;第四组 130~145;第五组 145~160,统计后得到如图所示的频数分布直方图(每组含最小值不含最大值)和扇形统计图,观察图形的信息,回答下列问题:(1)本次调查共随机抽取了该年级多少名学生?成绩为第五组的有多少名学生?(2)针对考试成绩情况,现各组分别派出1名代表(分别用 A、B、C、D、E 表示5个小组中选出来的同学),命题教师从这5名同学中随机选出两名同学谈谈做题的感想,请你用列表或画树状图的方法求出所选两名同学刚好来自第一、五组的概率.19.(10分)如图,直线y=﹣x+5与双曲线y=(x>0)相交于A、B两点,与x轴相交于C点,且△BOC的面积是.(1)求反比例函数的表达式及点A的坐标;(2)点E为线段AB上一个动点,且直线OE将△AOB的面积分成1:2的两部分,求点E的坐标.20.(10分)如图所示,P是⊙O外一点,PA是⊙的切线,A是切点,B是⊙O上一点,且PA=PB,连接AO、BO、AB,并延长BO与切线PA相交于点Q.(1)求证:PB是⊙O的切线;(2)求证:AQ•PQ=BQ•OQ;(3)设∠P=α,若tanɑ=,AQ=3,求AB的长.一、填空题(本大题共5个小题,每小题0分,共20分,答案写在答题卡上)21.若2x+y=4,x﹣=1,则4x2﹣y2= .22.如图,AB是⊙O的弦,AB=2,点C是⊙O上的一个动点,且∠ACB=45°.若点M、N分别是AB、BC的中点,则MN长的最大值是.23.如图,矩形ABCD中,BC=2,将矩形ABCD绕点D顺时针旋转90°,点A、C 分别落在点A′、C′处.如果点A′、C′、B在同一条直线上,那么tan∠ABA′的值为.24.如图,在正方形纸片ABCD中,EF∥AD,M,N是线段EF的六等分点,若把该正方形纸片卷成一个圆柱,使点A与点D重合,此时,底面圆的半径为2cm,则此时M、N两点间的距离是cm.25.若实数 m、n 满足m+n=mn,且n≠0时,就称点 P(m,)为“完美点”,若反比例函数y=的图象上存在两个“完美点”A、B,且 AB=4,则 k的值为.二、解答题(本大题共3个小题,共30分,解答过程写在答题卡上)26.(8分)某种商品的标价为400元/件,经过两次降价后的价格为324元/件,并且两次降价的百分率相同.(1)求该种商品每次降价的百分率;(2)若该种商品进价为300元/件,两次降价共售出此种商品100件,为使两次降价销售的总利润不少于3480元.问第一次降价后至少要售出该种商品多少件?27.(10分)在矩形ABCD边AD上有一个动点P,点P沿AD﹣﹣﹣DC﹣﹣﹣CA 运动,并且不与点A重合,连接BP,以BP为直角边作等腰直角三角形BPQ,AB=3,AD=2.(1)如图1所示,当点P在AD边上运动时,△BPQ的边PQ与DC交于点E,当△BPQ的面积最大时,BP=;若AP:AD=1:2时,BP:PE的值为;若AP:AD=1:n时,BP:PE的值为;(2)如图2所示,当点P在DC上运动且PQ∥AC时,请求出PC的长度;(3)如图3所示,当点P运动到CA的延长线上时,PQ与射线CD交于点F,请探究PF与QF有怎样的数量关系,并说明理由.28.(12分)如图,二次函数y=ax2+bx+c(a≠0)的图象经过点A(1,4),对称轴是x=﹣,线段AD平行于x轴,交抛物线于点D.在y轴上取一点C(0,2),直线AC交抛物线于点B,连接OA、OB、OD、BD.(1)求该二次函数的解析式;(2)求点B的坐标和坐标平面内使△EOD∽△COB的点E的坐标;(3)设点F是BD的中点,点P是线段DO上的动点,问PD为何值时,将△BPF 沿边PF翻折,使△BPF与△DPF重叠部分的面积是△BDP的面积的?参考答案与解析一、选择题1.【解答】解:sin30°=,故选:A.2.【解答】解:俯视图为三角形的是.故选:C.3.【解答】解:将25.3亿用科学记数法表示为:2.53×109.故选:C.4.【解答】解:∵一枚质地均匀的骰子,其六个面上分别标有数字1,2,3,4,5,6,投掷一次,∴朝上一面的数字是偶数的概率为: =.故选:C.5.【解答】解:∵y=﹣,∴xy=﹣3,A、∵1×3=3≠﹣3,∴点(1,3)不在反比例函数y=﹣图象上,故本选项错误;B、∵3×1=3≠﹣3,∴点(3,1)不在反比例函数y=﹣图象上,故本选项错误;C、∵2×=3≠﹣3,∴点(2,)不在反比例函数y=﹣图象上,故本选项错误;D、∵﹣×2=﹣3,∴点(﹣,2)在反比例函数y=﹣图象上,故本选项正确.故选:D.6.【解答】解:∵BD=2AD,∴AB=3AD,∵DE∥BC,∴==,∴BC=3DE,A结论正确;∵DE∥BC,∴=,B结论正确;∵DE∥BC,∴△ADE∽△ABC,C结论正确;∵DE∥BC,AB=3AD,∴S△ADE =S△ABC,D结论错误,故选:D.7.【解答】解:令y=0,则x2﹣2x+1=0,△=b2﹣4ac=(﹣2)2﹣4×1×1=4﹣4=0,所以,二次函数与x轴有1个交点.故选:B.8.【解答】解:连接AC,∵AE⊥BC,AF⊥CD,且E、F分别为BC、CD的中点,∴AB=AC,AD=AC,∵四边形ABCD是菱形,∴AB=BC=CD=AD,∴AB=BC=AC,AC=CD=AD,∴∠B=∠D=60°,∴∠BAE=∠DAF=30°,∠BAD=180°﹣∠B=120°,∴∠EAF=∠BAD﹣∠BAE﹣∠DAF=60°.故选:C.9.【解答】解:连接OA,设CD=x,∵OA=OC=5,∴OD=5﹣x,∵OC⊥AB,∴由垂径定理可知:AB=4,由勾股定理可知:52=42+(5﹣x)2∴x=2,∴CD=2,故选:C.10.【解答】解:∵Rt△AOB中,AB⊥OB,且AB=OB=3,∴∠AOB=∠A=45°,∵CD⊥OB,∴CD∥AB,∴∠OCD=∠A,∴∠AOD=∠OCD=45°,∴OD=CD=t,=×OD×CD∴S△OCD=t2(0≤t≤3),即S=t2(0≤t≤3)故S与t之间的函数关系的图象应为定义域为[0,3]、开口向上的二次函数图象;故选:D.二、填空题(本大题共4个小题,每小题3分,共16分,答案写在答题卡上)11.【解答】解:设旗杆高度为x米,由题意得, =,解得x=13.故答案为13.12.【解答】解:函数y=x2+1向右平移1个单位,得:y=(x﹣1)2+1;故答案为:y=(x﹣1)2+113.【解答】解:∵AB是⊙O的直径,∴∠ACB=90°,∵∠BAC=50°,∴∠B=40°,∴∠ADC=∠B=40°.故答案为:40°14.【解答】解:将A(﹣2,m)代入y=x,得m=×(﹣2)=﹣1,即A(﹣2,﹣1).将A点坐标代入y=,得k=﹣2×(﹣1)=2,反比例函数的解析式为y=.解方程组,得,,则B(2,1).故答案为(2,1).三、解答题(本大题共6个小题,共54分,解答过程写在答题卡上)15.【解答】解:(1)原式=﹣1﹣3+2×+4=2﹣;(2)因式分解,得(x﹣1)(x﹣1+2)=0,于是,得x﹣1=0或x+1=0,解得x1=1,x2=﹣1.16.【解答】解:(1)∵关于 x的方程3x2+2x﹣m=0有两个不相等的实数根,∴△=22﹣4×3×(﹣m)>0,解得:m>﹣,即 m 的取值范围是m>﹣;(2)设方程的另一个根为a,根据根与系数的关系得:a+(﹣1)=﹣,解得:a=﹣,即方程的另一个根为﹣.17.【解答】解:过点A作AE⊥CD于E,∵AB⊥BC,DC⊥BC,∴四边形ABCE是矩形,∵BC=60米,∴AE=BC=60米,∴在Rt△AEC中,EC=AE•tan∠EAC=60×tan37°≈45.2(米),在Rt△ADE中,∵∠D AE=45°,∴DE=AE=60(米),∴BC=DE+CE=60+45.2=105.2(米).答:该大厦的高度约为105.2米.18.【解答】解:(1)本次调查的学生总数为20÷40%=50(名),成绩在第5组的学生人数为50﹣(4+8+20+14)=4(人);(2)画树状图如下:由树状图知,共有20种等可能结果,其中所选两名同学刚好来自第一、五组的情况有2种结果,所以所选两名同学刚好来自第一、五组的概率为.19.【解答】解:(1)过点B作BD⊥x轴于点D,如图所示.令直线y=﹣x+5中y=0,则0=﹣x+5,解得:x=5,即OC=5.∵△BOC的面积是,∴OC•BD=×5•BD=,解得:BD=1.结合题意可知点B的纵坐标为1,当y=1时,有1=﹣x+5,解得:x=4,∴点B的坐标为(4,1),∴k=4×1=4,即反比例函数的解析式为y=;解方程组,得,,∴点A的坐标为(1,4);(2)如图,过点E作EF⊥x轴于点F,过点A作AG⊥x轴于点G,则BD∥EF∥AG.∵点A的坐标为(1,4),点B的坐标为(4,1),∴G(1,0),D(4,0),∴GD=3.∵点E为线段AB上一个动点,∴可设E(x,﹣x+5).∵直线OE将△AOB的面积分成1:2的两部分,∴=或=2,.∴=或=.∵BD∥EF∥AG,∴=,∴GF=•GD=×3=1或GF=•GD=×3=2,∴OF=OG+GF=1+1=2或OF=OG+GF=1+2=3,∴x=2或x=3,∴﹣x+5=3或﹣x+5=2,∴点E的坐标为(2,3)或(3,2).20.【解答】(1)证明:在△PAO和△PBO中,,∴△PAO≌△PBO(SSS),∴∠PBO=∠PAO.∵PA是⊙的切线,A是切点,∴∠PAO=90°,∴∠PBO=90°,∴PB是⊙O的切线.(2)证明:∵∠APB+∠PAO+∠AOB+PBO=360°,∴∠APB+∠AOB=180°.又∵∠AOQ+∠AOB=180°,∴∠AOQ=∠APB.∵OA=OB,∴∠ABQ=∠BAO=∠AOQ.∵△PAO≌△PBO,∴∠OPQ=∠OPB=∠APB,∴∠ABQ=∠OPQ.又∵∠AQB=∠OQP,∴△QAB∽△QOP,∴=,即AQ•PQ=BQ•OQ.(3)解:设AB与PO交于点E,则AE⊥PO,如图所示.∵∠AOQ=∠APB,∴tan∠AOQ=.在Rt△OAQ中,∠OAQ=90°,tan∠AOQ=,AQ=3,∴AO=4,OQ==5,∴BQ=BO+OQ=9.∵AQ•PQ=BQ•OQ,∴PQ=15,∴PA=PQ﹣AQ=12,∴PO==4.由面积法可知:AE==,∴AB=2AE=.一、填空题(本大题共5个小题,每小题0分,共20分,答案写在答题卡上)21.【解答】解:∵x﹣=1,∴2x﹣y=2,则4x2﹣y2=(2x+y)(2x﹣y)=4×2=8.故答案为:8.22.【解答】解:连接OA、OB,如图,∴∠AOB=2∠ACB=2×45°=90°,∴△OAB为等腰直角三角形,∴OA=AB=×2=2,∵点M、N分别是AB、BC的中点,∴MN=AC,当AC为直径时,AC的值最大,∴MN的最大值为2.故答案为2.23.【解答】解:设AB=x,则CD=x,A′C=x+2,∵AD∥BC,∴=,即=,解得,x1=﹣1,x2=﹣﹣1(舍去),∵AB∥CD,∴∠ABA′=∠BA′C,tan∠BA′C===,∴tan∠ABA′=,故答案为:.24.【解答】解:根据题意得:EF=BC,MN=EF,把该正方形纸片卷成一个圆柱,使点A与点D重合,则线段BC形成一半径为2cm的圆,线段BC是圆的周长,BC=EF=2π×2=4π,∴MN=EF=cm,故答案为:.25.【解答】解:∵m+n=mn且n≠0,∴+1=m,即=m﹣1,∴P(m,m﹣1),即“完美点”P在直线y=x﹣1上,设点A、B坐标分别为(x1,y1),(x2,y2),令=x﹣1化简得x2﹣x﹣k=0,∵AB=4,∴|x1﹣x2|=2,由韦达定理x1+x2=1,x1x2=﹣k,∴(x1﹣x2)2=(x1+x2)2﹣4x1x2=8,∴1+4k=8,解得:k=,此时x2﹣x﹣k=0的△>0,∴k=;故答案为.二、解答题(本大题共3个小题,共30分,解答过程写在答题卡上)26.【解答】解:(1)设该种商品每次降价的百分率为x%,依题意得:400×(1﹣x%)2=324,解得:x=10,或x=190(舍去).答:该种商品每次降价的百分率为10%.(2)设第一次降价后售出该种商品m件,则第二次降价后售出该种商品(100﹣m)件,第一次降价后的单件利润为:400×(1﹣10%)﹣300=60(元/件);第二次降价后的单件利润为:324﹣300=24(元/件).依题意得:60m+24×(100﹣m)=36m+2400≥3480,解得:m≥30.答:为使两次降价销售的总利润不少于3480元.第一次降价后至少要售出该种商品30件.27.【解答】解(1)∵当点P移动到点D处时,BP>BA>BC,此时BP=BD==(最大)∵△BPQ是等腰直角三角形∴△BPQ的面积=BP2=×()2=即P点运动到D点的时,△BPQ有面积的最大值.如图1,当AP:AD=1:2时,AP=PD=AD=1,由△ABP∽△DPE,∴BP:PE=AB:PD=3:1此时,AB:PD=3:1═3,当AP:AD=1:n时,AP=AD×=,∴PD=AD﹣AP=2﹣=,由△ABP∽△DPE,∴BP:PE=AB:PD=3: =3n:2(n﹣1),故答案为:,3:1,3n:2(n﹣1).(2)如图2,当PQ∥AC时,∵∠BPQ=90°,∴PB⊥PQ,∴PB⊥AC,∴∠CAB+∠ABP=90°,∠ABP+∠CBP=90°,∴∠CAB=∠CBP,∵∠ABC=∠BCP=90°,∴△ABC∽△BCP,∴=,∴=,∴PC=.(3)如图3,当点P运动到CA的延长线上时,过P作PG⊥CB于G,作PH⊥CD 于H,则∠PGB=∠PHF=90°,∠HPG=90°∵等腰直角三角形BPQ中,∠FPB=90°∴∠GPB=∠HPF∴△GPB∽△HPF∴=①∵PG∥AB,PH∥AD∴==,即==②由①②可得, =,∴PF:QF=2:1.28.【解答】解:(1)∵y=ax2+bx(a≠0)的图象经过点A(1,4),且对称轴是直线x=﹣1.5,∴,解得:,∴二次函数的解析式为y=x2+3x;(2)如图1,∵点A(1,4),线段AD平行于x轴,∴D的纵坐标为4,∴4=x2+3x,∴x1=﹣4,x2=1,∴D(﹣4,4).设直线AC的解析式为y=kx+b,由题意,得,解得:,∴y=2x+2;当2x+2=x2+3x时,解得:x1=﹣2,x2=1(舍去).∴y=﹣2.∴B(﹣2,﹣2).∴DO=4,BO=2,BD=2,OA=.∴DO2=32,BO2=8,BD2=40,∴DO2+BO2=BD2,∴△BDO为直角三角形.∵△EOD∽△AOB,∴∠EOD=∠AOB,=2,∴∠AOB﹣∠AOD=∠EOD﹣∠AOD,∴∠BOD=∠AOE=90°.即把△AOB绕着O点顺时针旋转90°,OB落在OD上B′,OA落在OE上A1∴A1(4,﹣1),∴E(8,﹣2).作△AOB关于x轴的对称图形,所得点E的坐标为(2,﹣8).∴当点E的坐标是(8,﹣2)或(2,﹣8)时,△EOD∽△AOB;(3)由(2)知DO=4,BO=2,BD=2,∠BOD=90°.若翻折后,点B落在FD的左下方,连接B′P与BD交于点H,连接B′D,如图2.S△HFP =S△BDP=S△DPF=S△B′PF=S△DHP=S△B′HF,∴DH=HF,B′H=PH,∴在平行四边形B′FPD中,PD=B′F=BF=BD=;若翻折后,点B,D重合,S△HFP =S△BDP,不合题意,舍去.若翻折后,点B落在OD的右上方,连接B′F交OD于点H,连接B′D,如图3,S△HFP =S△BDP=S△BPF=S△DPF=S△B′PF=S△DHF=S△B′HP∴B′P=BP,B′F=BF,DH=HP,B′H=HF,∴四边形DFPB′是平行四边形,∴B′P=DF=BF,∴B′P=BP=B′F=BF,∴四边形B′FBP是菱形,∴FD=B′P=BP=BD=,根据勾股定理,得OP2+OB2=BP2,∴(4﹣PD)2+(2)2=()2,解得P D=3,PD=5>4(舍去),综上所述,PD=或PD=3时,将△BPF沿边PF翻折,使△BPF与△DPF重叠部分的面积是△BDP的面积的.。
2018-2019学年第二学期期中质量检测八年级数学试题(带答案)

姓名: 班级: 考号: 考场: 座号: 密 封 线 内 不 要 答 题2018-2019学年第二学期期中质量检测八年级数学试题(时间 120分钟 分值 120分)一.选择题(本大题共10小题,每小题3分,共30分) 1.下列方程中,是关于x 的一元二次方程的是( ) A .ax 2+bx +c =0(a ,b ,c 为常数) B .x 2﹣x ﹣2=0 C .+﹣2=0D .x 2+2x =x 2﹣12.一元二次方程x 2+ax+a ﹣1=0的根的情况是( ) A .有两个相等的实数根 B .有两个不相等的实数根C .有实数根D .没有实数根3.如果关于x 的一元二次方程(m ﹣3)x 2+3x +m 2﹣9=0有一个解是0,那么m 的值是( )A .﹣3B .3C .±3D .0或﹣34.要组织一次篮球联赛,赛制为单循环形式(每两队之间都赛一场),计划安排21场比赛,则应邀请( )个球队参加比赛. A.6 B.7C.8D.95.若n (0n ≠)是关于x 的方程220x mx n ++=的根,则m +n 的值为( )A.1B.2C.-1D.-26.已知点A(-3,y 1),B(2,y 2),C(3,y 3)在抛物线y =2x 2-4x +c 上,则y 1,y 2,y 3的大小关系是( )A .y 1>y 2>y 3B .y 1>y 3>y 2C .y 3>y 2>y 1D .y 2>y 3>y 17.某烟花厂为春节烟火晚会特别设计制作一种新型礼炮,这种礼炮的升空高度h(m )与飞行时间t(s )的关系式是h =-52t 2+20t +1,若这种礼炮点火升空到最高点处引爆,则从点火升空到引爆需要的时间为( )A .3 sB .4 sC .5 sD .6 s 8.已知函数y =ax 2-2ax -1(a 是常数,a ≠0),下列结论正确的是( )A .当a =1时,函数图象过点(-1,1)B .当a =-2时,函数图象与x 轴没有交点C .若a >0,则当x ≥1时,y 随x 的增大而减小D .若a <0,则当x ≤1时,y 随x 的增大而增大9.在同一坐标系内,一次函数y =ax +b 与二次函数y =ax 2+8x +b 的图象可能是( )10. 如图,抛物线y =ax 2+bx +c(a≠0)与x 轴交于点A(-2,0),B(1,0), 直线x =-0.5与此抛物线交于点C ,与x 轴交于点M , 在直线上取点D ,使MD =MC ,连接AC ,BC ,AD ,BD , 某同学根据图象写出下列结论:①a-b =0;②当-2<x<1时,y>0;③四边形ACBD 是菱形; ④9a-3b +c>0,你认为其中正确的是( )A .②③④B .①②④C .①③④D .①②③ 第10题图二.填空题(本大题共8小题,其中11-14小题每小题3分,15-18题每小题4分,共28分) 11.如果y =(m ﹣2)是关于x 的二次函数,则m =__________.12. 如果一元二次方程x 2﹣4x+k =0经配方后,得(x ﹣2)2=1,那么k = . 13.若m 是方程2x 2+3x ﹣1=0的根,则式子4m 2+6m+2019的值为 .14. 已知抛物线c bx ax y ++=2经过点A(-2,7),B(6,7),C(3,-8),则该抛物线上纵坐标为-8的另一点的坐标是__________.15. 若函数y =(a -1)x 2-4x +2a 的图象与x 轴有且只有一个交点,则a 的值为 __________.16.已知关于x 的方程(k ﹣2)2x 2+(2k+1)x+1=0有实数根,则k 的取值范围是__________. 17.把二次函数y =12x 2+3x +52的图象向右平移2个单位后,再向上平移3个单位,所得的函数图象的顶点是__________.18.如图,抛物线的顶点为P(-2,2),与y 轴交于点A(0,3). 若平移该抛物线使其顶点P 沿直线移动到点P ′(2,-2), 点A 的对应点为A ′,则抛物线上PA 段扫过的区域(阴影部分)的面积为__________. 第18题图三.解答题(本大题共7小题,共62分)19.(8分)选择适当方法解下列方程(1)(3x﹣1)2=(x﹣1)2(2)3x(x﹣1)=2﹣2x20.(7分)已知关于x的一元二次方程x2+x+m﹣1=0.(1)当m=0时,求方程的实数根.(2)若方程有两个不相等的实数根,求实数m的取值范围.21.(8分)如图,要利用一面墙(墙长为25米)建羊圈,用100米的围栏围成总面积为400平方米的三个大小相同的矩形羊圈,求羊圈的边长AB,BC各为多少米?22.(8分)为落实素质教育要求,促进学生全面发展,我市某中学2016年投资11万元新增一批电脑,计划以后每年以相同的增长率进行投资,2018年投资18.59万元.(1)求该学校为新增电脑投资的年平均增长率;(2)从2016年到2018年,该中学三年为新增电脑共投资多少万元?23.(9分)已知关于x的一元二次方程x2-(2k+1)x+k2+k=0.(1)求证:方程有两个不相等的实数根;(2)若△ABC的两边AB,AC的长是这个方程的两个实数根,第三边BC的长为5,当△ABC是等腰三角形时,求k的值.24.(10分)某网店销售某款童装,每件售价60元,每星期可卖300件,为了促销,该网店决定降价销售.市场调查反映:每降价1元,每星期可多卖30件.已知该款童装每件成本价40元,设该款童装每件售价x元,每星期的销售量为y件.(1)求y与x之间的函数关系式;(2)当每件售价定为多少元时,每星期的销售利润最大,最大利润是多少元?(3)若该网店每星期想要获得不低于6480元的利润,每星期至少要销售该款童装多少件?25.(12分)在2016年巴西里约奥运会上,中国女排克服重重困难,凭借顽强的毅力和超强的实力先后战胜了实力同样超强的巴西队,荷兰队和塞尔维亚队,获得了奥运冠军,为祖国和人民争了光.如图,已知女排球场的长度OD为18米,位于球场中线处的球网AB的高度为2.24米,一队员站在点O处发球,排球从点O的正上方2米的C点向正前方飞去,排球的飞行路线是抛物线的一部分,当排球运行至离点O的水平距离OE为6米时,到达最高点F,以O为原点建立如图所示的平面直角坐标系.(1)当排球运行的最大高度为2.8米时,求排球飞行的高度y(单位:米)与水平距离x(单位:米)之间的函数关系式.(2)在(1)的条件下,这次所发的球能够过网吗?如果能够过网,是否会出界?请说明理由.(3)喜欢打排球的李明同学经研究后发现,发球要想过网,球运行的最大高度h(米)应满足h>2.32,但是他不知道如何确定h的取值范围,使排球不会出界(排球压线属于没出界),请你帮忙解决并指出使球既能过网又不会出界的h的取值范围.姓名: 班级: 考号: 考场: 座号: 密 封 线 内 不 要 答 题2018-2019学年第二学期期中质量检测八年级数学试题答案一.选择题(本大题共10小题,每小题3分,共30分)1. B2. C3. A4.B5. D6.B7.B8. D9. C 10.D二.填空题(本大题共8小题,其中11-14小题每小题3分,15-18题每小题4分,共28分)11. m=-1 12. 3 13. 2021 14. (1,-8) 15. -1或2或1 16. k ≥ 17. (-1,1) 18. 12三.解答题(本大题共7小题,共62分)19.(8分)解:(1)3x ﹣1=±(x ﹣1)………………………………………………1分 即3x ﹣1=x ﹣1或3x ﹣1=﹣(x ﹣1)……………………3分 所以x 1=0,x 2=;……………………4分(2)3x (x ﹣1)+2(x ﹣1)=0…………………………………1分(x ﹣1)(3x +2)=0x ﹣1=0或3x +2=0…………………3分 所以x 1=1,x 2=﹣.……………………4分20.解:(1)当m =0时,方程为x 2+x ﹣1=0. △=12﹣4×1×(﹣1)=5>0. ∴x =, ∴x 1=,x 2=.…………………4分(2)∵方程有两个不相等的实数根, ∴△>0即(﹣1)2﹣4×1×(m ﹣1) =1﹣4m +4 =5﹣4m >0 ∵5﹣4m >0∴m <.…………………7分21. (8分)解:设AB 的长度为x 米,则BC 的长度为(100-4x)米,根据题意得 (100-4x)x =400,解得x 1=20,x 2=5,………………4分 则100-4x =20或100-4x =80,∵80>25,∴x 2=5舍去, 即AB =20,BC =20,则羊圈的边长AB ,BC 分别是20米,20米。
2018-2019学年度八年级上数学期末试卷(解析版)

2018-2019学年联考八年级(上)期末数学试卷一、选择题:本大题共14个小题,每小题3分,共42分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(3分)近似数0.13是精确到()A.十分位B.百分位C.千分位D.百位2.(3分)下列四张扑克牌中,左旋转180°后还是和原来一样的是()A.B.C.D.3.(3分)是2的()A.倒数B.平方根C.立方根D.算术平方根4.(3分)在3×3的方格中涂有阴影图形,下列阴影图形不是轴对称图形的是()A.B.C.D.5.(3分)下列选项中,可以用来证明命题“若|a﹣1|>1,则a>2”是假命题的反例是()A.a=2B.a=1C.a=0D.a=﹣16.(3分)如图是作△ABC的作图痕迹,则此作图的已知条件是()A.已知两边及夹角B.已知三边C.已知两角及夹边D.已知两边及一边对角7.(3分)在代数式和中,x均可以取的值为()A.9B.3C.0D.﹣28.(3分)如果把分式中的a、b同时扩大为原来的2倍,得到的分式的值不变,则W 中可以是()A.1B.C.ab D.a29.(3分)我国是最早了解勾股定理的国家之一.下面四幅图中,不能证明勾股定理的是()A.B.C.D.10.(3分)若(b为整数),则a的值可以是()A.B.27C.24D.2011.(3分)如图,AB⊥CD,且AB=CD,E,F是AD上两点,CE⊥AD,BF⊥AD.若CE =4,BF=3,EF=2,则AD的长为()A.3B.5C.6D.712.(3分)已知:△ABC中,AB=AC,求证:∠B<90°,下面写出可运用反证法证明这个命题的四个步骤:①∴∠A+∠B+∠C>180°,这与三角形内角和为180°矛盾②因此假设不成立.∴∠B<90°③假设在△ABC中,∠B≥90°④由AB=AC,得∠B=∠C≥90°,即∠B+∠C≥180°.这四个步骤正确的顺序应是()A.③④①②B.③④②①C.①②③④D.④③①②13.(3分)已知x=,则代数式(7+4)x2+(2+)x+的值是()A.0B.C.D.2﹣14.(3分)在一张直角三角形纸片的两直角边上各取一点,分别沿斜边中点与这两点的连线剪去两个三角形,剩下的部分是如图所示的直角梯形,其中三边长分别为2、4、3,则原直角三角形纸片的斜边长是()A.10B.C.10或D.10或二、填空题(本大题有3个小题,每小题4分,共20分.把答案写在题中横线上)15.(4分)=.16.(4分)如图,在△ABC中,∠B=∠ACB=2∠A,AC的垂直平分线交AB于点E,D 为垂足,连接EC,则∠ECD=.17.(4分)如图,在△ABC中,∠ACB=90°,∠A=30°,以点C为圆心,CB长为半径作弧,交AB于点D;再分别以点B和点D为圆心,大于的长为半径作弧,两弧相交于点E,作射线CE交AB于点F,若AF=6,则BC的长为.三、解答题(本大题共7小题,共66分.解答应写出文字说明、证明过程或演算步骤.)18.如图,以O为圆心,以OB为半径画弧交数轴于A点;(1)说出数轴上点A所表示的数;(2)比较点A所表示的数与﹣2.5的大小.19.(1)发现.①;②;③;…………写出④;⑤;(2)归纳与猜想.如果n为正整数,用含n的式子表示这个运算规律;(3)证明这个猜想.20.如图,在△ABC中,AB=BC,BD是∠ABC的平分线,E为AB的中点,连接DE,若DE=5,AC=16,求DB的长.21.如图所示,△ABC中,∠BAC的平分线与BC的垂直平分线相交于点E,EF⊥AB,EG ⊥AC,垂足分别为F、G,则BF=CG吗?说明理由.22.已知代数式(﹣1)÷,则:(1)当x=﹣3时,求这个代数式的值;(2)这个代数式的值能等于﹣1吗?请说明理由.23.某超市为了促销,将本来售完后可得1800元的奶糖和900元的水果糖混合后配成杂拌糖出售.这种糖每千克比奶糖便宜4元,比水果糖贵6元.已知这两种糖混合前后质量相同,求杂拌糖的单价.24.如图,在△ABC中,∠BAC=90°,AB=AC,点D是BC上一动点,连接AD,过点A 作AE⊥AD,并且始终保持AE=AD,连接CE.(1)求证:△ABD≌△ACE;(2)若AF平分∠DA E交BC于F,探究线段BD,DF,FC之间的数量关系,并证明;(3)在(2)的条件下,若BD=3,CF=4,求AD的长.2018-2019学年河北省石家庄市八校联考八年级(上)期末数学试卷参考答案与试题解析一、选择题:本大题共14个小题,每小题3分,共42分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(3分)近似数0.13是精确到()A.十分位B.百分位C.千分位D.百位【分析】确定近似数精确到哪一位,就是看这个数的最后一位是什么位即可.【解答】解:近似数0.13是精确到百分位,故选:B.【点评】此题考查了近似数,用到的知识点是精确度,一个数最后一位所在的位置就是这个数的精确度.2.(3分)下列四张扑克牌中,左旋转180°后还是和原来一样的是()A.B.C.D.【分析】左旋转180°后还是和原来一样的图形是中心对称图形,根据中心对称图形的定义解答即可.【解答】解:左旋转180°后还是和原来一样的是只有C.故选:C.【点评】本题主要考查了中心对称图形的定义,是需要熟记的内容.3.(3分)是2的()A.倒数B.平方根C.立方根D.算术平方根【分析】根据算术平方根与平方根的定义即可求出答案.【解答】解:是2的算术平方根,故选:D.【点评】本题考查平方根,解题的关键是熟练运用平方根的定义,本题属于基础题型.4.(3分)在3×3的方格中涂有阴影图形,下列阴影图形不是轴对称图形的是()A.B.C.D.【分析】直接利用轴对称图形的定义判断得出即可.【解答】解:A、是轴对称图形,不合题意;B、是轴对称图形,不合题意;C、是轴对称图形,不合题意;D、不是轴对称图形,符合题意;故选:D.【点评】此题主要考查了轴对称图形的定义,轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合.5.(3分)下列选项中,可以用来证明命题“若|a﹣1|>1,则a>2”是假命题的反例是()A.a=2B.a=1C.a=0D.a=﹣1【分析】所选取的a的值符合题设,则不满足结论即作为反例.【解答】解:当a=﹣1时,满足|a﹣1|>1,但满足a>2,所以a=﹣1可作为证明命题“若|a﹣1|>1,则a>2”是假命题的反例.故选:D.【点评】本题考查了命题与定理:判断一件事情的语句,叫做命题.许多命题都是由题设和结论两部分组成,题设是已知事项,结论是由已知事项推出的事项,一个命题可以写成“如果…那么…”形式.有些命题的正确性是用推理证实的,这样的真命题叫做定理.要说明一个命题的正确性,一般需要推理、论证,而判断一个命题是假命题,只需举出一个反例即可.6.(3分)如图是作△ABC的作图痕迹,则此作图的已知条件是()A.已知两边及夹角B.已知三边C.已知两角及夹边D.已知两边及一边对角【分析】观察图象可知已知线段AB,α,β,由此即可判断.【解答】解:观察图象可知:已知线段AB,∠CAB=α,∠CBA=β,故选:C.【点评】本题考查作图﹣复杂作图,解题的关键是理解题意,属于中考常考题型.7.(3分)在代数式和中,x均可以取的值为()A.9B.3C.0D.﹣2【分析】根据分式的分母不等于0且二次根式的被开方数是非负数得出x的范围,据此可得答案.【解答】解:由题意知,x﹣3≠0且x﹣3≥0,解得:x>3,故选:A.【点评】本题主要考查二次根式有意义的条件,解题的关键是掌握分式的分母不等于0且二次根式的被开方数是非负数.8.(3分)如果把分式中的a、b同时扩大为原来的2倍,得到的分式的值不变,则W 中可以是()A.1B.C.ab D.a2【分析】直接利用分式的基本性质分别代入判断得出答案.【解答】解:如果把分式中的a、b同时扩大为原来的2倍,得到的分式的值不变,则W中可以是:b.故选:B.【点评】此题主要考查了分式的基本性质,正确掌握分式的基本性质是解题关键.9.(3分)我国是最早了解勾股定理的国家之一.下面四幅图中,不能证明勾股定理的是()A.B.C.D.【分析】先表示出图形中各个部分的面积,再判断即可.【解答】解:A、∵+c2+ab=(a+b)(a+b),∴整理得:a2+b2=c2,即能证明勾股定理,故本选项不符合题意;B、∵4×+c2=(a+b)2,∴整理得:a2+b2=c2,即能证明勾股定理,故本选项不符合题意;C、∵4×+(b﹣a)2=c2,∴整理得:a2+b2=c2,即能证明勾股定理,故本选项不符合题意;D、根据图形不能证明勾股定理,故本选项符合题意;故选:D.【点评】本题考查了勾股定理的证明,能根据图形中各个部分的面积列出等式是解此题的关键.10.(3分)若(b为整数),则a的值可以是()A.B.27C.24D.20【分析】根据二次根式的运算法则即可求出答案.【解答】解:+=3+=b当a=20时,∴=2,∴b=5,符合题意,故选:D.【点评】本题考查二次根式的运算法则,解题的关键是熟练运用二次根式的运算法则,本题属于基础题型.11.(3分)如图,AB⊥CD,且AB=CD,E,F是AD上两点,CE⊥AD,BF⊥AD.若CE =4,BF=3,EF=2,则AD的长为()A.3B.5C.6D.7【分析】只要证明△ABF≌△CDE,可得AF=CE=4,BF=DE=3,推出AD=AF+DF =4+(3﹣2)=5;【解答】解:∵AB⊥CD,CE⊥AD,BF⊥AD,∴∠AFB=∠CED=90°,∠A+∠D=90°,∠C+∠D=90°,∴∠A=∠C,∵AB=CD,∴△ABF≌△CDE(AAS),∴AF=CE=4,BF=DE=3,∵EF=2,∴AD=AF+DF=4+(3﹣2)=5,故选:B.【点评】本题考查全等三角形的判定和性质,解题的关键是正确寻找全等三角形解决问题,属于中考常考题型.12.(3分)已知:△ABC中,AB=AC,求证:∠B<90°,下面写出可运用反证法证明这个命题的四个步骤:①∴∠A+∠B+∠C>180°,这与三角形内角和为180°矛盾②因此假设不成立.∴∠B<90°③假设在△ABC中,∠B≥90°④由AB=AC,得∠B=∠C≥90°,即∠B+∠C≥180°.这四个步骤正确的顺序应是()A.③④①②B.③④②①C.①②③④D.④③①②【分析】通过反证法的证明步骤:①假设;②合情推理;③导出矛盾;④结论;理顺证明过程即可.【解答】解:由反证法的证明步骤:①假设;②合情推理;③导出矛盾;④结论;所以题目中“已知:△ABC中,AB=AC,求证:∠B<90°”.用反证法证明这个命题过程中的四个推理步骤:应该为:假设∠B≥90°;那么,由AB=AC,得∠B=∠C≥90°,即∠B+∠C≥180°所以∠A+∠B+∠C>180°,这与三角形内角和定理相矛盾,;所以因此假设不成立.∴∠B<90°;原题正确顺序为:③④①②.故选:A.【点评】本题考查反证法证明步骤,考查基本知识的应用,逻辑推理能力.13.(3分)已知x=,则代数式(7+4)x2+(2+)x+的值是()A.0B.C.D.2﹣【分析】将x的值代入原式,再利用完全平方公式和平方差公式计算可得.【解答】解:当x=时,原式=(7+4)(2﹣)2+(2+)(2﹣)+=(7+4)(7﹣4)+4﹣3+=49﹣48+1+=2+,故选:C.【点评】本题主要考查二次根式的化简求值,解题的关键是熟练掌握完全平方公式、平方差公式及二次根式的运算法则.14.(3分)在一张直角三角形纸片的两直角边上各取一点,分别沿斜边中点与这两点的连线剪去两个三角形,剩下的部分是如图所示的直角梯形,其中三边长分别为2、4、3,则原直角三角形纸片的斜边长是()A.10B.C.10或D.10或【分析】先根据题意画出图形,再根据勾股定理求出斜边上的中线,最后即可求出斜边的长.【解答】解:①如图:因为CD==2,点D是斜边AB的中点,所以AB=2CD=4,②如图:因为CE==5,点E是斜边AB的中点,所以AB=2CE=10,原直角三角形纸片的斜边长是10或,故选:C.【点评】此题考查了图形的剪拼,解题的关键是能够根据题意画出图形,在解题时要注意分两种情况画图,不要漏解.二、填空题(本大题有3个小题,每小题4分,共20分.把答案写在题中横线上)15.(4分)=﹣.【分析】如果一个数x的立方等于a,那么x是a的立方根,根据此定义求解即可.【解答】解:∵﹣的立方为﹣,∴﹣的立方根为﹣,故答案为﹣.【点评】此题主要考查了求一个数的立方根,解题时应先找出所要求的这个数是哪一个数的立方.由开立方和立方是互逆运算,用立方的方法求这个数的立方根.注意一个数的立方根与原数的性质符号相同.16.(4分)如图,在△ABC中,∠B=∠ACB=2∠A,AC的垂直平分线交AB于点E,D 为垂足,连接EC,则∠ECD=36°.【分析】根据三角形内角和定理求出∠A,根据线段垂直平分线的性质得到EA=EC,根据等腰三角形的性质解答.【解答】解:设∠A=x,则∠B=∠ACB=2x,则x+2x+2x=180°,解得,x=36°,∴∠B=∠ACB=72°,∵DE是AC的垂直平分线,∴EA=EC,∴∠ECD=∠A=36°,故答案为:36°.【点评】本题考查的是线段的垂直平分线的性质、等腰三角形的性质,掌握线段的垂直平分线上的点到线段的两个端点的距离相等是解题的关键.17.(4分)如图,在△ABC中,∠ACB=90°,∠A=30°,以点C为圆心,CB长为半径作弧,交AB于点D;再分别以点B和点D为圆心,大于的长为半径作弧,两弧相交于点E,作射线CE交AB于点F,若AF=6,则BC的长为4.【分析】连接CD,根据在△ABC中,∠ACB=90°,∠A=30°,BC为x,可知AB=2BC=2x,再由作法可知BC=CD=x,CE是线段BD的垂直平分线,故CD是斜边AB 的中线,据此可得出BD=x,进而可得出结论.【解答】解:连接CD,∵在△ABC中,∠ACB=90°,∠A=30°,设BC=x,∴AB=2BC=2x.∵作法可知BC=CD=x,CE是线段BD的垂直平分线,∴CD是斜边AB的中线,∴BD=AD=x,∴BF=DF=x,∴AF=AD+DF=x+x=6.解得:x=4.故答案为:4【点评】本题考查的是作图﹣基本作图,熟知线段垂直平分线的作法和直角三角形的性质是解答此题的关键.三、解答题(本大题共7小题,共66分.解答应写出文字说明、证明过程或演算步骤.)18.如图,以O为圆心,以OB为半径画弧交数轴于A点;(1)说出数轴上点A所表示的数;(2)比较点A所表示的数与﹣2.5的大小.【分析】(1)根据勾股定理求出OB的长度,再根据圆的半径定义得到OA,求出A;(2)根据A所代表的数,直接比较与﹣2.5的大小;【解答】解:(1)OB=,∵OB=OA=∴A所代表的数字为﹣\sqrt{5}$;(2)A点表示的数为﹣$\sqrt{5}$≈﹣2.235∴A点表示的数大于﹣2.5【点评】本题运用了勾股定理、数轴上负数大小比较的方法;19.(1)发现.①;②;③;…………写出④;⑤;(2)归纳与猜想.如果n为正整数,用含n的式子表示这个运算规律;(3)证明这个猜想.【分析】(1)根据题目中的例子可以写出例4;(2)根据(1)中特例,可以写出相应的猜想;(3)根据(2)中的猜想,对等号左边的式子化简,即可得到等号右边的式子,从而可以解答本题.【解答】解:(1)由例子可得,④为:,⑤,故答案为,,(2)如果n为正整数,用含n的式子表示这个运算规律:,故答案为:,(3)证明:∵n是正整数,∴.即.故答案为:∵n是正整数,∴.即.【点评】本题考查二次根式的混合运算、数字的变化类,解答本题的关键是明确题意,找出所求问题需要的条件.20.如图,在△ABC中,AB=BC,BD是∠ABC的平分线,E为AB的中点,连接DE,若DE=5,AC=16,求DB的长.【分析】根据等腰三角形的性质得到AD=8,AD⊥AC,根据直角三角形的性质求出AB,根据勾股定理计算即可.【解答】解:∵AB=BC,BD是∠ABC的平分线,∴AD=DC=AC=8,AD⊥AC,∴∠ADB=90°,又E为AB的中点,∴AB=2DE=10,由勾股定理得,BD==6.【点评】本题考查的是角平分线的定义、等腰三角形的性质、直角三角形的性质,掌握等腰三角形的三线合一是解题的关键.21.如图所示,△ABC中,∠BAC的平分线与BC的垂直平分线相交于点E,EF⊥AB,EG ⊥AC,垂足分别为F、G,则BF=CG吗?说明理由.【分析】先根据点E在BC的垂直平分线上可求出BE=CE,再根据点E在∠BAC的角平分线上,且EF⊥AB,EG⊥AC可求出EF=EG,再由HL定理可求出Rt△EFB≌Rt△EGC,由全等三角形的性质即可得出结论.【解答】解:BF=CG;理由如下:因为点E在BC的垂直平分线上,所以BE=CE.因为点E在∠BAC的角平分线上,且EF⊥AB,EG⊥AC,所以EF=EG,在Rt△EFB和Rt△EGC中,因为BE=CE,EF=EG,所以Rt△EFB≌Rt△EGC(HL).所以BF=CG.【点评】本题涉及到角平分线的性质、线段垂直平分线的性质、直角三角形全等的判定定理及全等三角形的性质,涉及面较广,难度适中.22.已知代数式(﹣1)÷,则:(1)当x=﹣3时,求这个代数式的值;(2)这个代数式的值能等于﹣1吗?请说明理由.【分析】(1)先根据分式的混合运算顺序和运算法则化简原式,再将x的值代入计算可得;(2)假设分式的值等于﹣1,根据化简结果列出关于x的方程,解方程求出x的值,依据分式有意义的条件作出判断.【解答】解:(1)原式=(﹣)÷=•=,当x=﹣3时,原式==﹣2;(2)若原式的值为﹣1,则=﹣1,解得:x=﹣1,而当x =﹣1时,原式分母为0,无意义;所以原式的值不能等于﹣1.【点评】本题主要考查分式的化简求值,解题的关键是熟练掌握分式的混合运算顺序和运算法则.23.某超市为了促销,将本来售完后可得1800元的奶糖和900元的水果糖混合后配成杂拌糖出售.这种糖每千克比奶糖便宜4元,比水果糖贵6元.已知这两种糖混合前后质量相同,求杂拌糖的单价.【分析】设杂拌糖的单价为x 元,则奶糖的单价为(x +4)元,水果糖的单价为(x ﹣6)元,根据这两种糖混合前后质量相同列出方程,解方程即可.【解答】解:设杂拌糖的单价为x 元,则奶糖的单价为(x +4)元,水果糖的单价为(x ﹣6)元,根据题意得+=,解得:x =36.经检验,x =36是原方程的解.答:杂拌糖的单价为36元.【点评】本题考查分式方程的应用,分析题意,找到合适的等量关系是解决问题的关键.24.如图,在△ABC 中,∠BAC =90°,AB =AC ,点D 是BC 上一动点,连接AD ,过点A 作AE ⊥AD ,并且始终保持AE =AD ,连接CE .(1)求证:△ABD ≌△ACE ;(2)若AF 平分∠DAE 交BC 于F ,探究线段BD ,DF ,FC 之间的数量关系,并证明;(3)在(2)的条件下,若BD =3,CF =4,求AD 的长.【分析】(1)根据SAS ,只要证明∠1=∠2即可解决问题;(2)结论:BD 2+FC 2=DF 2.连接FE ,想办法证明∠ECF =90°,EF =DF ,利用勾股定理即可解决问题;(3)过点A 作AG ⊥BC 于G ,在Rt △ADG 中,想办法求出AG 、DG 即可解决问题;【解答】(1)证明:∵AE ⊥AD ,∴∠DAE=∠DAC+∠2=90°,又∵∠BAC=∠DAC+∠1=90°,∴∠1=∠2,在△ABD和△ACE中,∴△ABD≌△ACE.(2)解:结论:BD2+FC2=DF2.理由如下:连接FE,∵∠BAC=90°,AB=AC,∴∠B=∠3=45°由(1)知△ABD≌△ACE∴∠4=∠B=45°,BD=CE∴∠ECF=∠3+∠4=90°,∴CE2+CF2=EF2,∴BD2+FC2=EF2,∵AF平分∠DAE,∴∠DAF=∠EAF,在△DAF和△EAF中,∴△DAF≌△EAF∴DF=EF∴BD2+FC2=DF2.(3)解:过点A作AG⊥BC于G,由(2)知DF2=BD2+FC2=32+42=25∴DF=5,∴BC=BD+DF+FC=3+5+4=12,∵AB=AC,AG⊥BC,∴BG=AG=BC=6,∴DG=BG﹣BD=6﹣3=3,∴在Rt△ADG中,AD===3.【点评】本题考查三角形综合题、等腰直角三角形的性质、勾股定理、全等三角形的判定和性质等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题,属于中考压轴题.。
2023-2024学年四川省成都市高新区八年级(上)期末数学试卷(含答案)

2023-2024学年四川省成都市高新区八年级(上)期末数学试卷一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求,答案涂在答题卡上)1.(4分)下列各数中,属于无理数的是()A.B.C.D.0.572.(4分)下列运算正确的是()A.B.C.D.3.(4分)下面4组数值中,是二元一次方程3x+y=10的解是()A.B.C.D.4.(4分)如图,这是一个利用平面直角坐标系画出的某学校的示意图,如果这个坐标系以正东方向为x轴的正方向,以正北方向为y轴的正方向,并且综合楼和教学楼的坐标分别是(﹣4,﹣1)和(1,2)则食堂的坐标是()A.(3,5)B.(﹣2,3)C.(2,4)D.(﹣1,2)5.(4分)甲、乙、丙、丁四名同学参加立定跳远训练,他们成绩的平均数相同,方差如下:,,,,则成绩最稳定的是()A.甲B.乙C.丙D.丁6.(4分)如图,在Rt△ABC中,∠ACB=90°,AC=6,BC=8,CD是斜边的高,则CD 的长为()A.B.C.5D.107.(4分)某城市几条道路的位置关系如图所示,道路AB∥CD,道路AB与AE的夹角∠BAE=80°,城市规划部门想新修一条道路CE,要求CF=EF,则∠C的度数为()A.30°B.40°C.50°D.80°8.(4分)关于一次函数y=﹣2x+4,下列说法正确的是()A.函数值y随自变量x的增大而减小B.图象与x轴交于点(4,0)C.点A(1,6)在函数图象上D.图象经过第二、三、四象限二、填空题(本大题共5个小题,每小题4分,共20分,答案写在答题卡上)9.(4分)一块面积为3m2的正方形桌布,其边长为m.10.(4分)在平面直角坐标系xOy中,点A的坐标是(2,3),若AB∥x轴,且AB=4,则点B的坐标是.11.(4分)下表是小明参加一次“青春风采”才艺展示活动比赛的得分情况:项目书法舞蹈演唱得分859070总评分时,按书法占40%,舞蹈占30%,演唱占30%考评,则小明的最终得分为.12.(4分)若直线y=x向上平移m个单位长度后经过点(3,5),则m的值为.13.(4分)如图,有两棵树,一棵高12米,另一棵高7米,两树相距12米,一只小鸟从一棵树的树梢A飞到另一棵树的树梢B,则小鸟至少要飞行米.三、解答题(本大题共5个小题,共48分,解答过程写在答题卡上)14.(12分)(1)计算:;(2)解方程组:.15.(8分)学校组织七、八年级学生参加体育综合素质评价测试,已知七、八年级各有160人,现从两个年级分别随机抽取8名学生的测试成绩(单位:分)进行统计.七年级:89,87,91,91,93,98,94,97八年级:98,84,92,93,95,95,88,95整理如下:年级平均数中位数众数七年级92.5x91八年级92.594y根据以上信息,回答下列问题:(1)填空:x=,y=;(2)甲同学说:“这次测试我得了93分,位于年级中等偏上水平”,你认为甲同学在哪个年级,并简要说明理由;(3)若规定测试成绩不低于90分为“优秀”,估计该学校这两个年级测试成绩达到“优秀”的学生总人数.16.(8分)在平面直角坐标系xOy中,△ABC的顶点A(1,1),B(3,2),C(2,3)均在正方形网格的格点上.(1)画△ABC关于y轴的对称图形△A1B1C1;(2)已知点D的坐标为(3,﹣3),判断△ABD的形状,并说明理由.17.(10分)某单位准备购买一种水果,现有甲、乙两家超市进行促销活动,该水果在两家超市的标价均为13元/千克.甲超市购买该水果的费用y(元)与该水果的质量x(千克)之间的关系如图所示;乙超市该水果在标价的基础上每千克直降3元.(1)求y与x之间的函数表达式;(2)现计划用290元购买该水果,选甲、乙哪家超市能购买该水果更多一些?18.(10分)如图,在△ABC中,∠BAC=90°,AB=AC.点D是△ABC所在平面内一点,且∠ADB=90°.(1)如图1,当点D在BC边上,求证:AD=CD;(2)如图2,当点D在△ABC外部,连接CD,若AB=5,AC=CD,求线段BD的长;(3)如图3,当点D在△ABC内部,连接CD,若∠ADC=∠BDC,AD=3,求点D到BC的距离.一、填空题(本大题共5个小题,每小题4分,共20分)19.(4分)如图,数轴上的点A表示的实数是.20.(4分)已知直线y=﹣3x与y=x+n(n为常数)的交点坐标为(1,m),则方程组的解为.21.(4分)如图,在平面直角坐标系xOy中,△ABC的顶点坐标分别为A(0,3),B(0,1),C(﹣4,0),点D在y轴右侧,若以A,B,D为顶点的三角形与△ABC全等,则点D的坐标为.22.(4分)在Rt△ABC中,∠BAC=90°,BD=AD=2,在BC的延长线上有一点E使得AE=AD,过点E作AC的垂线,垂足为F,若∠FEA=67.5°,则CE =.23.(4分)定义:若三个正整数a,b,c满足a<b,a2+b2=c2,且c﹣b=2,则称(a,b,c)为“偶差”勾股数组.例如:(6,8,10),(8,15,17)都是“偶差”勾股数组.令m=a+b+c,将m从小到大排列,分别记为m1,m2,m3,…,m n(n为正整数),则m20的值为.二、解答题(本大题共3个小题,共30分,解答过程写在答题卡上)24.(8分)2023年12月4日至10日,国际乒联混合团体世界杯在四川成都举行,在此期间,成都某酒店对三人间及双人间客房进行优惠大酬宾,优惠方案为:三人间为每天每间360元,双人间为每天每间300元,一个40人的旅游团于2023年12月4日在该酒店入住,住了一些三人间及双人间客房,且每个客房正好住满.(1)若旅游团一天共花去住宿费5100元,求该旅行团租住了三人间、双人间各多少间?(2)设有x人住三人间,这个团一天共花去住宿费y元,请求出y与x的函数表达式.25.(10分)如图1,在边长为2的正方形ABCD中,点E是射线BC上一动点,连接AE,以AE为边在直线AE右侧作正方形AEFG.(1)当点E在线段BC上,连接DG,求证:BE=DG;(2)当点E是线段BC的中点,连接CF,求线段CF的长;(3)如图2,点E在线段BC的延长线上,连接BG,若ED的延长线恰好经过BG的中点P,求线段EP的长.26.(12分)如图,直线l1:y=﹣x+3与x轴,y轴分别交于A,B两点,点C坐标为(﹣5,﹣2),连接AC,BC,点D是线段AB上的一动点,直线l2过C,D两点.(1)求△ABC的面积;(2)若点D的横坐标为1,直线l2上是否存在点E,使点E到直线l1的距离为,若存在,求出点E的坐标,若不存在,请说明理由;(3)将△BCD沿直线CD翻折,点B的对应点为M,若△ADM为直角三角形,求线段BD 的长.参考答案一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求,答案涂在答题卡上)1.C;2.D;3.D;4.B;5.C;6.A;7.B;8.A;二、填空题(本大题共5个小题,每小题4分,共20分,答案写在答题卡上)9.;10.(6,3)或(﹣2,3);11.32.16;12.2;13.13;三、解答题(本大题共5个小题,共48分,解答过程写在答题卡上)14.(1)4;(2).;15.92;95;16.(1)见解答.(2)△ABD为直角三角形,理由见解答.;17.(1)y1与x之间的函数解析式为y1=;(2)在甲商店购买更多一些.;18.(1)证明见解析.(2);(3).;一、填空题(本大题共5个小题,每小题4分,共20分)19.1+; 20.;21.(4,4)或(4,0);22.2﹣2;23.1012;二、解答题(本大题共3个小题,共30分,解答过程写在答题卡上)24.(1)此旅游团住了三人间客房10间,住了双人间客房5间;(2)y与x的函数表达式为y=﹣30x+6000.;25.(1)证明见解答;(2)线段CF的长为;(3)EP=3.;26.(1)S△ABC=15;(2)存在,点E的坐标为或;(3)BD的长为或﹣.。
模拟卷:2018-2019学年八年级数学上学期期末原创卷B卷(河北)

数学试题 第1页(共6页) 数学试题 第2页(共6页)………………○………………内………………○………………装………………○………………订………………○………………线………………○………………………………○………………外………………○………………装………………○………………订………………○………………线………………○………………… 学校:______________姓名:_____________班级:_______________考号:______________________绝密★启用前2018-2019学年上学期期末原创卷B 卷(河北)八年级数学(考试时间:120分钟 试卷满分:120分)注意事项:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。
答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答第Ⅰ卷时,选出每小题答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
写在本试卷上无效。
3.回答第Ⅱ卷时,将答案写在答题卡上。
写在本试卷上无效。
4.考试结束后,将本试卷和答题卡一并交回。
5.考试范围:冀教版八上全册。
第Ⅰ卷一、选择题(本大题共16小题,共42分,1~10小题各3分,11~16小题各2分.在每小题给出的四个选项中,只有一个选项是符合题目要求的)1.下列图形中,是轴对称图形,但不是中心对称图形的是( )A .B .C .D .2.16的算术平方根是( ) A .4B .±4C .±2D .23.在实数|-3|,-2,0,π中,最小的数是( ) A .|-3|B .-2C .0D .π4.要使得代数式12x x --在实数范围内有意义,则x 的取值范围是( ) A .2x ≥ B .1x ≥ C .2x ≠D .1x ≥且2x ≠5.如果132x y x +=,那么yx的值为( ) A .12 B .23 C .13D .256.下列运算错误的是( ) A .532-=B .632÷=C .6332⨯=D .2333-=7.已知a 、b 、c 是三角形的三边长,如果满足2(6)8|10|0a b c -+-+-=,则三角形的形状是( ) A .底与边不相等的等腰三角形B .等边三角形C .钝角三角形D .直角三角形8.下列命题中,真命题的是( )A .相等的两个角是对顶角B .若a >b ,则|a |>|b |C .两条直线被第三条直线所截,内错角相等D .等腰三角形的两个底角相等9.如图,在△ABC 中,AB =AC ,∠A =40°,AB 的垂直平分线交AB 于点D ,交AC 于点E ,连接BE ,则 ∠CBE 的度数为( )A .80°B .70°C .40°D .30°10.如图,一架云梯长25米,斜靠在一面墙上,梯子底端离墙7米,如果梯子的顶端下滑4米,那么梯子的底部在水平方向上滑动了( )A .4米B .6米C .8米D .10米11.数学课上,小丽用尺规这样作图:(1)以点O 为圆心,任意长为半径作弧,交OA ,OB 于D ,E 两点;(2)分别以点D ,E 为圆心,大于12DE 的长为半径作弧,两弧交于点C ;(3)作射线OC 并连数学试题第3页(共6页)数学试题第4页(共6页)………………○………………内………………○………………装………………○………………订………………○………………线………………○………………此卷只装订不密封………………○………………外………………○………………装………………○………………订………………○………………线………………○………………接CD,CE,下列结论不正确的是()A.∠1=∠2 B.S△OCE=S△OCD C.OD=CD D.OC垂直平分DE12.如图,△ABC中,AB⊥BC,BE⊥AC,∠1=∠2,AD=AB,则下列结论不正确的是()A.BF=DF B.∠1=∠EFD C.BF>EF D.FD∥BC13.已知:如果二次根式28n是整数,那么正整数n的最小值是()A.1 B.4 C.7 D.2814.如图,∠AOB=30º,∠AOB内有一定点P,且OP=12,在OA上有一动点Q,OB上有一动点R.若△PQR 周长最小,则最小周长是()A.6 B.12 C.16 D.2015.若关于x的方程2222x mx x++=--的解为正数,则m的取值范围是()A.m<6 B.m>6 C.m<6且m≠0D.m>6且m≠816.在△ABC中,AB=BC,将△ABC绕点B顺时针旋转α度,得到△A1BC1,A1B交AC于E,A1C1分别交AC、BC于点D、F,下列结论:①∠CDF=α,②A1E=CF,③DF=FC,④AD=CE,⑤A1F=CE.其中一定正确的有()A.①②④B.②③④C.①②⑤D.③④⑤第Ⅱ卷二、填空题(本大题共3小题,共12分.17~18小题各3分;19小题有两个空,每空3分)17.同学们都知道,蜜蜂建造的蜂房既坚固又省料.那你知道蜂房蜂巢的厚度吗?事实上,蜂房的蜂巢厚度仅仅约为0.000073m.此数据用科学记数法表示为__________.18.已知:如图,在△AOB中,∠AOB=90°,AO=3 cm,BO=4 cm.将△AOB绕顶点O,按顺时针方向旋转到△A1OB1处,此时线段OB1与AB的交点D恰好为AB的中点,则线段B1D=__________cm.19.在方格纸中,选择标有序号的一个小正方形涂黑,与图中阴影构成中心对称图形,涂黑的小正方形序号为__________;若与图中阴影构成轴对称图形,涂黑的小正方形序号为__________.三、解答题(本大题共7小题,共66分.解答应写出文字说明、证明过程或演算步骤)20.(本小题满分8分)计算下列各题:(1)03816(21)-++-;(2)211(3)||292----+-.21.(本小题满分9分)如图,某公路上A,B两点的正南方有D,C两村庄,现要在公路AB上建一个车站E,使C,D两村到E站的距离相等,已知AB=50 km,DA=20 km,CB=10 km,请你设计出E站的位置,并计算车站E距A点多远?数学试题 第5页(共6页) 数学试题 第6页(共6页)………………○………………内………………○………………装………………○………………订………………○………………线………………○………………………………○………………外………………○………………装………………○………………订………………○………………线………………○………………… 学校:______________姓名:_____________班级:_______________考号:______________________22.(本小题满分9分)如图,△ABC 中,AB 的垂直平分线分别交AB ,BC 于D ,E ,AC 的垂直平分线分别交AC ,BC 于F ,G .(1)若△AEG 的周长为10,求线段BC 的长. (2)若∠BAC =128°,求∠EAG 的度数.23.(本小题满分9分)如图,在△ABC 中,∠BAC =90°,AC =AB ,点D 为BC 边上的一个动点(点D 不与B ,C 重合),以AD 为边作等腰直角△ADE ,∠DAE =90°,连接CE . (1)求证:△ABD ≌△ACE .(2)试猜想线段BD ,CD ,DE 之间的等量关系,并证明你的猜想.24.(本小题满分10分)某地下管道,若由甲队单独铺设,恰好在规定时间内完成;若由乙队单独铺设,需要超过规定时间15天才能完成,如果先由甲、乙两队合做10天,再由乙队单独铺设正好按时完成. (1)这项工程的规定时间是多少天?(2)已知甲队每天的施工费用为5000元,乙队每天的施工费用为3000元,为了缩短工期以减少对居民交通的影响,工程指挥部最终决定该工程由甲、乙两队合做来完成,那么该工程施工费用是多少? 25.(本小题满分10分)如图,在△ABC 中,AB =AC ,D ,E ,F 分别在三边上,且BE =CD ,BD =CF ,G为EF 的中点.(1)若∠A =40°,求∠B 的度数; (2)试说明:DG 垂直平分EF .26.(本小题满分11分)如图1,△ABC 中,CD ⊥AB 于D ,且BD ∶AD ∶CD =2∶3∶4,(1)试说明△ABC 是等腰三角形;(2)已知S △ABC =40 cm 2,如图2,动点M 从点B 出发以每秒1 cm 的速度沿线段BA 向点A 运动,同时动点N 从点A 出发以相同速度沿线段AC 向点C 运动,当其中一点到达终点时整个运动都停止.设点M 运动的时间为t (秒),①若△DMN 的边与BC 平行,求t 的值;②若点E 是边AC 的中点,问在点M 运动的过程中,△MDE 能否成为等腰三角形?若能,求出t 的值;若不能,请说明理由.。
2018-2019学年江苏省苏州市高新区八年级(下)期末数学试卷含解析

2018-2019学年江苏省苏州市高新区八年级(下)期末数学试卷一、选择题:(本大题共10小题,每小题2分,共20分,在每小题给出的四个选项中,只有一项是符合题目要求的,请将答案填涂在答题卡相应的位置上.)1.(2分)下列图形中,既是轴对称图形又是中心对称图形的是()A.B.C.D.2.(2分)下列调查方式中适合的是()A.要了解一批节能灯的使用寿命,采用普查方式B.调查你所在班级同学的身高,采用抽样调查方式C.环保部门调查沱江某段水域的水质情况,采用抽样调查方式D.调查全市中学生每天的就寝时间,采用普查方式3.(2分)某校艺术节的乒乓球比赛中,小东同学顺利进入决赛.有同学预测“小东夺冠的可能性是80%”,则对该同学的说法理解最合理的是()A.小东夺冠的可能性较大B.如果小东和他的对手比赛10局,他一定会赢8局C.小东夺冠的可能性较小D.小东肯定会赢4.(2分)某商品经过连续两次降价,销售单价由原来的125元降到80元,则两次降价的平均百分率为()A.10%B.15%C.20%D.25%5.(2分)若﹣1是关于x的方程nx2+mx+2=0(n≠0)的一个根,则m﹣n的值为()A.1B.2C.﹣1D.﹣26.(2分)函数y=kx﹣3与y=(k≠0)在同一坐标系内的图象可能是()A.B.C.D.7.(2分)如图,在▱ABCD中,已知AD=8cm,AB=6cm,DE平分∠ADC交BC边于点E,则BE等于()A.2cm B.4cm C.6cm D.8cm8.(2分)如图,有一个平行四边形ABCD和一个正方形CEFG,其中点E在边AD上.若∠ECD =40°,∠AEF=25°,则∠B的度数为()A.55°B.60°C.65°D.75°9.(2分)若点A(﹣2,y1)、B(﹣1,y2)、C(1,y3)都在反比例函数(k为常数)的图象上,则y1、y2、y3的大小关系为()A.y1<y2<y3B.y1<y3<y2C.y2<y1<y3D.y3<y2<y110.(2分)如图,在平行四边形ABCD中,AB=26,AD=6,将平行四边形ABCD绕点A旋转,当点D的对应点D'落在AB边上时,点C的对应点C',恰好与点B、C在同一直线上,则此时△C'D'B的面积为()A.240B.260C.320D.480二、填空题:(本大题共8小题,每小题2分,共16分,把答案直接填写在答题卡相应位置上.)11.(2分)若二次根式有意义,则x的取值范围为.12.(2分)一次跳远比赛中,成绩在4.05米以上的人有8人,频率为0.4,则参加比赛的运动员共有人.13.(2分)已知α,β是一元二次方程x2+x﹣2=0的两个实数根,则α+β﹣αβ的值是.14.(2分)如图,已知:l1∥l2∥l3,AB=6,DE=5,EF=7.5,则AC=.15.(2分)如图,直线y=﹣2x+2与x轴y轴分别相交于点A、B,四边形ABCD是正方形,曲线y=在第一象限经过点D.则k=.16.(2分)如图,△ABC和△DEC的面积相等,点E在BC边上,DE∥AB交AC于点F.AB=24,EF=18,则DF的长是.17.(2分)如图,正方形ABCD的边长为5cm,E是AD边上一点,AE=3cm.动点P由点D向点C运动,速度为2cm/s,EP的垂直平分线交AB于M,交CD于N.设运动时间为t秒,当PM∥BC时,t的值为.18.(2分)如图,在菱形ABCD中,∠ABC=120°,AB=6,点E在AC上,以AD为对角线的所有平行四边形AEDF中,EF最小的值是.三、解答题:(本大题共10小题,共64分,把解答过程写在答题卡相应的位置上,解答时应写出必要的计算过程、推演步骤或文字说明.)19.(6分)计算或化简(1)(2)20.(6分)解下列方程:(1)x2﹣6x+8=0(2)21.(4分)化简并求值:,其中a=.22.(6分)如图,在平面直角坐标系中,△ABC三个顶点的坐标分别为A(﹣2,1),B(﹣1,4),C(﹣3,2)(1)画出△ABC关于点B中心对称的△A1BC1,并直接写出点C1的坐标.(2)以原点O为位似中心,位似比为2:1,在y轴的左侧画出△ABC放大后的△A2B2C2,并直接写出点C2的坐标.23.(6分)昆明市某校学生会干部对校学生会倡导的“牵手滇西”自愿捐款活动进行抽样调查,得到一组学生捐款情况的数据,对学校部分捐款人数进行调查和分组统计后,将数据整理成如图所示的统计图(图中信息不完整).已知A、B两组捐款人数的比为1:5.请结合以上信息解答下列问题.(1)a=,本次调查样本的容量是;(2)先求出C组的人数,再补全“捐款人数分组统计图1”;(3)根据统计情况,估计该校参加捐款的4500名学生有多少人捐款在20至40元之间.24.(6分)如图,在矩形ABCD中,点E在AD上,EC平分∠BED.(1)△BEC是否为等腰三角形?为什么?(2)已知AB=1,∠ABE=45°,求BC的长.25.(6分)某旅游纪念品店购进一批旅游纪念品,进价为6元.第一周以每个10元的价格售出200个、第二周决定降价销售,根据市场调研,单价每降低1元,一周可比原来多售出50个,这两周一共获利1400元.(1)设第二周每个纪念品降价x元销售,则第二周售出个纪念品(用含x代数式表示);(2)求第二周每个纪念品的售价是多少元?26.(6分)已知:如图,在Rt△ABC中,∠C=90°,AC=8cm,BC=6cm.直线PE从B点出发,以2cm/s的速度向点A方向运动,并始终与BC平行,与线段AC交于点E.同时,点F从C点出发,以1cm/s的速度沿CB向点B运动,设运动时间为t(s)(0<t<5).(1)当t为何值时,四边形PFCE是矩形?(2)当△ABC面积是△PEF的面积的5倍时,求出t的值.27.(8分)如图,点P为x轴负半轴上的一个点,过点P作x轴的垂线,交函数的图象于点A,交函数的图象于点B,过点B作x轴的平行线,交于点C,连接AC.(1)当点P的坐标为(﹣1,0)时,求△ABC的面积;(2)若AB=BC,求点A的坐标;(3)连接OA和OC.当点P的坐标为(t,0)时,△OAC的面积是否随t的值的变化而变化?请说明理由.28.(10分)如图,矩形OABC的两条边OA、OC分别在y轴和x轴上,已知点B坐标为(4,﹣3).把矩形OABC沿直线DE折叠,使点C落在点A处,直线DE与OC、AC、AB的交点分别为D、F、E.(1)线段AC=;(2)求点D坐标及折痕DE的长;(3)若点P在x轴上,在平面内是否存在点Q,使以P、D、E、Q为顶点的四边形是菱形?若存在,则请求出点Q的坐标;若不存在,请说明理由.2018-2019学年江苏省苏州市高新区八年级(下)期末数学试卷参考答案与试题解析一、选择题:(本大题共10小题,每小题2分,共20分,在每小题给出的四个选项中,只有一项是符合题目要求的,请将答案填涂在答题卡相应的位置上.)1.【解答】解:A、不是轴对称图形,是中心对称图形;B、是轴对称图形,不是中心对称图形;C、是轴对称图形,不是中心对称图形;D、是轴对称图形,是中心对称图形.故选:D.2.【解答】解:A、了解一批节能灯的使用寿命,调查过程带有破坏性,只能采取抽样调查,而不能将整批节能灯全部用于实验;B、调查你所在班级同学的身高,要求精确、难度相对不大、实验无破坏性,应选择普查方式;C、了解环保部门调查沱江某段水域的水质情况,会给调查对象带来损伤破坏,应该选取抽样调查的方式才合适;D、调查全市中学生每天的就寝时间,进行一次全面的调查,费大量的人力物力是得不偿失的,采取抽样调查即可;故选:C.3.【解答】解:根据题意,有人预测李东夺冠的可能性是80%,结合概率的意义,A、李东夺冠的可能性较大,故本选项正确;B、李东和他的对手比赛10局时,他可能赢8局,故本选项错误;C、李东夺冠的可能性较大,故本选项错误;D、李东可能会赢,故本选项错误.故选:A.4.【解答】解:设这种商品平均每次降价的百分率为x,根据题意列方程得,125(1﹣x)2=80,解得x1=0.2=20%,x2=﹣1.8(不合题意,舍去);答:平均每次降价的百分率是20%.故选:C.5.【解答】解:由题意,得x=﹣1满足方程nx2+mx+2=0(n≠0),所以,n﹣m+2=0,解得,m﹣n=2.故选:B.6.【解答】解:∵当k>0时,y=kx﹣3过一、三、四象限,反比例函数y=过一、三象限,当k<0时,y=kx﹣3过二、三、四象限,反比例函数y=过二、四象限,∴B正确;故选:B.7.【解答】解:根据平行四边形的性质得AD∥BC,∴∠EDA=∠DEC,又∵DE平分∠ADC,∴∠EDC=∠ADE,∴∠EDC=∠DEC,∴CD=CE=AB=6,即BE=BC﹣EC=8﹣6=2.故选:A.8.【解答】解:∵四边形CEFG是正方形,∴∠CEF=90°,∵∠CED=180°﹣∠AEF﹣∠CEF=180°﹣25°﹣90°=65°,∴∠D=180°﹣∠CED﹣∠ECD=180°﹣65°﹣40°=75°,∵四边形ABCD为平行四边形,∴∠B=∠D=75°(平行四边形对角相等).故选:D.9.【解答】解:∵k2+3>0,∴反比函数在每个象限内,y随x的增大而减小,A(﹣2,y1)、B(﹣1,y2)在第三象限内,∵﹣1>﹣2,∴y1>y2,∴y3>y1>y2,故选:C.10.【解答】解:∵▱ABCD绕点A旋转后得到▱AB′C′D′,∴∠DAB=∠D′AB′,AB=AB′=C′D′=26,∵AB′∥C′D′,∴∠D′AB′=∠BD′C′,∵四边形ABCD为平行四边形,∴∠C=∠DAB,∴∠C=∠BD′C′,∵点C′、B、C在一直线上,而AB∥CD,∴∠C=∠C′BD′,∴∠C′BD′=∠BD′C′,∴△C′BD′为等腰三角形,作C′H⊥D′B,则BH=D′H,∵AB=26,AD=6,∴BD′=20,∴D′H=10,∴C′H=,∴△C′D′B的面积=BD′•C′H=×20×24=240.故选:A.二、填空题:(本大题共8小题,每小题2分,共16分,把答案直接填写在答题卡相应位置上.)11.【解答】解:根据题意得,x+2≥0,解得x≥﹣2.故答案为:x≥﹣2.12.【解答】解:∵成绩在4.05米以上的频数是8,频率是0.4,∴参加比赛的运动员=8÷0.4=20.故答案为:20.13.【解答】解:∵α,β是一元二次方程x2+x﹣2=0的两个实数根,∴α+β=﹣1、αβ=﹣2,则α+β﹣αβ=﹣1+2=1,故答案为:1.14.【解答】解:∵:l1∥l2∥l3,∴=,∵AB=6,DE=5,EF=7.5,∴BC=9,∴AC=AB+BC=15,故答案为:15.15.【解答】解:作DE⊥x轴,垂足为E,连OD.∵∠DAE+∠BAO=90°,∠OBA+∠BAO=90°,∴∠DAE=∠OBA,又∵∠BOA=∠AED,AB=DA,∴△BOA≌△AED(HL),∴OA=DE.∵y=﹣2x+2,可知B(0,2),A(1,0),∴OA=DE=1,∴OE=OA+AE=1+2=3,=•OE•DE=×3×1=,∴S△DOE∴k=×2=3.故答案为:3.16.【解答】解:作CM ⊥AB 交EF 于N ,垂足为M .∵EF ∥AB ,∴△CEF ∽△CBA ,∴===,设CN =3h ,CM =4h ,则MN =h ,∵S △ABC =S △CED ,∴S 四边形ABEF =S △DFC ,∴(AB +EF )•MN =•DF •CN ,∴(18+24)•h =•DF •3h ,∴DF =14,故答案为:14.17.【解答】解:如图,连接ME ,∵MN 垂直平分PE ,∴MP =ME ,当MP ∥BC 时,四边形BCPM 是矩形,∴BC =MP =5,∴ME =5,又∵AE =3,∴AM =4=DP ,∴t=4÷2=2(s),故答案为:2.18.【解答】解:∵在菱形ABCD中,∠ABC=120°,AB=6,∴AD=6,∠EAD=30°,以AD为对角线的所有▱AEDF中,当EF⊥AC时,EF最小,即△AOE是直角三角形,∵∠AEO=90°,∠EAD=30°,OE=OA=,∴EF=2OE=3,故答案为:3.三、解答题:(本大题共10小题,共64分,把解答过程写在答题卡相应的位置上,解答时应写出必要的计算过程、推演步骤或文字说明.)19.【解答】解:(1)原式=2+3﹣3﹣4=﹣﹣;(2)原式=+1﹣1﹣=﹣.20.【解答】解:(1)(x﹣2)(x﹣4)=0,x﹣2=0或x﹣4=0,所以x1=2,x2=4;(2)去分母得x+3=3x﹣3,解得x=3,检验:当x=3时,x﹣1≠0,则x=3是原方程的解,所以原方程的解为x=3.21.【解答】解:原式===当a=时,∴原式==1﹣.22.【解答】解:(1)△A1BC1如图所示,点C1的坐标(1,6).(2)△A2B2C2如图所示,点C2的坐标(﹣6,4).23.【解答】解:(1)a=100×=20,本次调查样本的容量是:(100+20)÷(1﹣40%﹣28%﹣8%)=500,故答案为:20,500;(2)∵500×40%=200,∴C组的人数为200,补全“捐款人数分组统计图1”如右图所示;(3)4 500×(40%+28%)=3060(人),答:该校4 500名学生中大约有3060人捐款在20至40元之间.24.【解答】解:(1)△BEC是等腰三角形,理由是:∵四边形ABCD是矩形,∴AD∥BC,∴∠DEC=∠BCE,∵EC平分∠DEB,∴∠DEC=∠BEC,∴∠BEC=∠ECB,∴BE=BC,即△BEC是等腰三角形.(2)∵四边形ABCD是矩形,∴∠A=90°,∵∠ABE=45°,∴∠ABE=AEB=45°,∴AB=AE=1,由勾股定理得:BE==,即BC=BE=.25.【解答】解:(1)设第二周每个纪念品降价x元销售,则第二周售出(200+50x)个旅游纪念品,故答案是:(200+50x);(2)根据题意得:(10﹣6)×200+(10﹣6﹣x)(200+50x)=1400,整理得:x2﹣4=0,解得:x1=2,x2=﹣2(不符题意,舍去),∴10﹣x=8.答:第二周每个纪念品的销售价格为8元.26.【解答】解:(1)在Rt△ABC中,∵∠C=90°,AC=8,BC=6,∴AB==10,∵PE∥BC,∴=,∴=,∴PE=(10﹣2t),AE=(10﹣2t)当PE=CF时,四边形PECF是矩形,∴t=(10﹣2t),解得t=.(2)∵当△ABC面积是△PEF的面积的5倍时,∴24=5×××[8﹣(10﹣2t)]∴t=27.【解答】解:(1)点P(﹣1,0)则点A(﹣1,1),点B(﹣1,4),点C(﹣,4),S=BC×AB=(﹣+1)(4﹣1)=;△ABC(2)设点P(t,0),则点A、B、C的坐标分别为(t,﹣)、(t,﹣)、(,﹣),AB=BC,即:﹣=,解得:t=±2(舍去2),故点A (﹣2,);(3)过点A 作AM ⊥y 轴于点M ,过点C 作CN ⊥y 轴于点N ,各点坐标同(2),S △OAC =S 梯形AMNC =(﹣﹣t )(﹣)=,故△OAC 的面积是否随t 的值的变化不变化.28.【解答】解:(1)∵四边形OABC 是矩形,点B 坐标为(4,﹣3).∴∠AOC =90°.OA =3,OC =4,∴AC ==5.故答案为:5;(2)由折叠可得:DE ⊥AC ,AF =FC =,∵∠FCD =∠OCA ,∠DFC =∠AOC =90°,∴△DFC ∽△AOC .∴==,∴==,∴DF =,DC =,∴OD =OC ﹣DC =4﹣=.∴D (,0);∵四边形OABC 是矩形,∴AB ∥DC ,∴∠EAF=∠DCF,在△AFE和△CFD中,,∴△AFE≌△CFD(ASA).∴EF=DF.∴DE=2DF=2×=.即折痕DE的长为.(3)如图所示:由(2)可知,AE=CD=∴E(,﹣3),D(,0),①当DE为菱形的边时,DP=DE=,可得Q(,﹣3),Q1(﹣,﹣3).②当DE为菱形的对角线时,P与C重合,Q与A重合,Q2(0,﹣3),③当点Q在第一象限,E与Q关于x轴对称,Q(,3)综上所述,满足条件的点Q坐标为(,﹣3)或(﹣,﹣3)或(0,﹣3)或(,3).。
冀教版2018-2019学年八年级第二学期期末数学试卷含答案解析

冀教版2018-2019学年八年级第二学期期末数学试卷一、细心选一选(本大题共12个小题,每小题2分,共24分,每小题后均给出四个选项。
请把最符合题意的选项序号填在题后的括号内)1.(2分)函数y=中,自变量x的取值范围是()A.x>2 B.x≥2C.x>﹣3 D.x≥﹣32.(2分)如图,将矩形ABCD沿AE折叠,使D点落在BC边的F处,若∠BAF=60°,则∠DAE等于()A.15°B.30°C.45°D.60°3.(2分)下列图象中,表示y是x的函数的个数有()A.1个B.2个C.3个D.4个4.(2分)一次函数y=﹣2x+4的图象与y轴的交点坐标是()A.(0,4)B.(4,0)C.(2,0)D.(0,2)5.(2分)菱形、矩形、正方形都具有的性质是()A.对角线相等B.对角线互相垂直C.对角线互相平分D.对角线平分一组对角6.(2分)如图,一次函数y=(m﹣1)x﹣3+m的图象分别于x轴、y轴的负半轴相交于点A、B,则m的取值范围是()A.m>3 B.m<3 C.m>1 D.m<17.(2分)如图,在矩形ABCD中,AB=2,BC=4,对角线AC的垂直平分线分别交AD、AC 于点E、O,连接CE,则CE的长为()A.3B.3.5 C.2.5 D.2.88.(2分)如图,函数y=2x和y=ax+4的图象相交于点A(m,3),则不等式2x<ax+4的解集为()A.x<B.x<3 C.x>D.x>39.(2分)2012年“国际攀岩比赛”在重庆举行.小丽从家出发开车前去观看,途中发现忘了带门票,于是打电话让妈妈马上从家里送来,同时小丽也往回开,遇到妈妈后聊了一会儿,接着继续开车前往比赛现场.设小丽从家出发后所用时间为t,小丽与比赛现场的距离为S.下面能反映S与t的函数关系的大致图象是()A. B. C. D.10.(2分)如图,第①个图形中一共有1个平行四边形,第②个图形中一共有5个平行四边形,第③个图形中一共有11个平行四边形,…则第⑩个图形中平行四边形的个数是()A.54 B.110 C.19 D.10911.(2分)为了解中学300名男生的身高情况,随机抽取若干名男生进行身高测量,将所得数据整理后,画出频数分布直方图(如图).估计该校男生的身高在169.5cm~174.5cm之间的人数有()A.12 B.48 C.72 D.9612.(2分)某储运部紧急调拨一批物资,调进物资共用4小时,调进物资2小时后开始调出物资(调进物资与调出物资的速度均保持不变).储运部库存物资w(吨)与时间t(小时)之间的函数关系如图所示,这批物资从开始调进到全部调出需要的时间是()A.4.5小时B.4.75小时C.5小时D.5小时二、认真填一填(每空3分,共30分,请把正确答案填在题后的横线上)13.(3分)如图是一次函数y=kx+b的图象,则方程kx+b=0的解为.14.(3分)如果点P1(﹣3,y1)、P2(﹣2,y2)在一次函数y=2x+b的图象上,则y1y2.(填“>”,“<”或“=”)15.(3分)如图,平行四边形ABCD中,AB=5,AD=3,AE平分∠DAB交BC的延长线于F点,则CF=.16.(3分)如图,菱形ABCD的对角线AC、BD相交于点O,且AC=8,BD=6,过点O作OH丄AB,垂足为H,则点0到边AB的距离OH=.17.(3分)如图所示中的折线ABC为甲地向乙地打长途电话需付的电话费y(元)与通话时间t(分钟)之间的函数关系,则通话8分钟应付电话费元.18.(3分)如图,过矩形ABCD的对角线BD上一点K分别作矩形两边的平行线MN与PQ,那么图中矩形AMKP的面积S1与矩形QCNK的面积S2的大小关系是S1S2;(填“>”或“<”或“=”)19.(3分)如图,已知正方形ABCD的边长为3,E为CD边上一点,DE=1.以点A为中心,把△ADE顺时针旋转90°,得△ABE′,连接EE′,则EE′的长等于.20.(3分)如图,边长为m+4的正方形纸片剪出一个边长为m的正方形之后,剩余部分可剪拼成一个矩形,若拼成的矩形一边长为4,则另一边长为.21.(3分)在平面直角坐标系xOy中,已知点A(0,1),B(1,2),点P在x轴上运动,当点P到A、B两点距离之差的绝对值最大时,点P的坐标是.22.(3分)如图,正方形ABCD中,AB=4,E是BC的中点,点P是对角线AC上一动点,则PE+PB的最小值为.三、解答题(本大题共66分)23.(9分)小明受《乌鸦喝水》故事的启发,利用量桶和体积相同的小球进行了如下操作:请根据图中给出的信息,解答下列问题:(1)放入一个小球量桶中水面升高cm;(2)求放入小球后量桶中水面的高度y(cm)与小球个数x(个)之间的一次函数关系式(不要求写出自变量的取值范围);(3)量桶中至少放入几个小球时有水溢出?24.(10分)在兰州市开展的“体育、艺术2+1”活动中,某校根据实际情况,决定主要开设A:乒乓球,B:篮球,C:跑步,D:跳绳这四种运动项目.为了解学生喜欢哪一种项目,随机抽取了部分学生进行调查,并将调查结果绘制成如图甲、乙所示的条形统计图和扇形统计图.请你结合图中的信息解答下列问题:(1)样本中喜欢B项目的人数百分比是,其所在扇形统计图中的圆心角的度数是;(2)把条形统计图补充完整;(3)已知该校有1000人,根据样本估计全校喜欢乒乓球的人数是多少?25.(11分)如图(*),四边形ABCD是正方形,点E是边BC的中点,∠AEF=90°,且EF 交正方形外角平分线CF于点F.请你认真阅读下面关于这个图的探究片段,完成所提出的问题.(1)探究1:小强看到图(*)后,很快发现AE=EF,这需要证明AE和EF所在的两个三角形全等,但△ABE和△ECF显然不全等(一个是直角三角形,一个是钝角三角形),考虑到点E是边BC的中点,因此可以选取AB的中点M,连接EM后尝试着去证△AEM≌EFC 就行了,随即小强写出了如下的证明过程:证明:如图1,取AB的中点M,连接EM.∵∠AEF=90°∴∠FEC+∠AEB=90°又∵∠EAM+∠AEB=90°∴∠EAM=∠FEC∵点E,M分别为正方形的边BC和AB的中点∴AM=EC又可知△BME是等腰直角三角形∴∠AME=135°又∵CF是正方形外角的平分线∴∠ECF=135°∴△AEM≌△EFC(ASA)∴AE=EF(2)探究2:小强继续探索,如图2,若把条件“点E是边BC的中点”改为“点E是边BC 上的任意一点”,其余条件不变,发现AE=EF仍然成立,请你证明这一结论.(3)探究3:小强进一步还想试试,如图3,若把条件“点E是边BC的中点”改为“点E是边BC延长线上的一点”,其余条件仍不变,那么结论AE=EF是否成立呢?若成立请你完成证明过程给小强看,若不成立请你说明理由.26.(12分)2008年5月12日14时28分四川汶川发生里氏8.0级强力地震.某市接到上级通知,立即派出甲、乙两个抗震救灾小组乘车沿同一路线赶赴距出发点480千米的灾区.乙组由于要携带一些救灾物资,比甲组迟出发1.25小时(从甲组出发时开始计时).图中的折线、线段分别表示甲、乙两组的所走路程y甲(千米)、y乙(千米)与时间x(小时)之间的函数关系对应的图象.请根据图象所提供的信息,解决下列问题:(1)由于汽车发生故障,甲组在途中停留了小时;(2)甲组的汽车排除故障后,立即提速赶往灾区.请问甲组的汽车在排除故障时,距出发点的路程是多少千米?(3)为了保证及时联络,甲、乙两组在第一次相遇时约定此后两车之间的路程不超过25千米,请通过计算说明,按图象所表示的走法是否符合约定?27.(12分)如图1,在△OAB中,∠OAB=90°,∠AOB=30°,OB=8.以OB为边,在△OAB 外作等边△OBC,D是OB的中点,连接AD并延长交OC于E.(1)求证:四边形ABCE是平行四边形;(2)如图2,将图1中的四边形ABCO折叠,使点C与点A重合,折痕为FG,求OG的长.28.(12分)在茶节期间,某茶商订购了甲种茶叶90吨,乙种茶叶80吨,准备用A、B两种型号的货车共20辆运往外地.已知A型货车每辆运费为0.4万元,B型货车每辆运费为0.6万元.(1)设A型货车安排x辆,总运费为y万元,写出y与x的函数关系式;(2)若一辆A型货车可装甲种茶叶6吨,乙种茶叶2吨;一辆B型货车可装甲种茶叶3吨,乙种茶叶7吨.按此要求安排A、B两种型号货车一次性运完这批茶叶,共有哪几种运输方案?(3)说明哪种方案运费最少?最少运费是多少万元?参考答案与试题解析一、细心选一选(本大题共12个小题,每小题2分,共24分,每小题后均给出四个选项。
2019-2020学年四川省成都市天府新区八年级下学期期末数学试卷 (解析版)

2019-2020学年四川省成都市天府新区八年级下学期期末数学试卷一、选择题(共10小题).1.下列各式中,是分式的是()A.B.x2C.D.(x﹣y)2.下列图形中,是轴对称图形,但不是中心对称图形的是()A.B.C.D.3.若代数式有意义,则实数x的取值范围是()A.x=0B.x=2C.x≠0D.x≠24.据中央气象台报道,某日我市最高气温是33℃,最低气温是25℃,则当天气温t(℃)的变化范围是()A.t>25B.t≤25C.25<t<33D.25≤t≤335.在平面直角坐标系中,将△ABC各点的纵坐标保持不变,横坐标都加上3,则所得图形与原图形的关系是:将原图形()A.向左平移3个单位B.向右平移3个单位C.向上平移3个单位D.向下平移3个单位6.将分式中的x,y的值同时扩大为原来的3倍,则分式的值()A.扩大6倍B.扩大9倍C.不变D.扩大3倍7.能判定四边形ABCD是平行四边形的是()A.AB∥CD,AB=CD B.AB=BC,AD=CDC.AC=BD,AB=CD D.AB∥CD,AD=CB8.若解分式方程=产生增根,则m=()A.1B.0C.﹣4D.﹣59.如图,已知直线y1=x+b与y2=kx﹣1相交于点P,点P的横坐标为﹣1,则关于x的不等式x+b≤kx﹣1的解集在数轴上表示正确的是()A.B.C.D.10.如图,四边形ABCD是平行四边形,点E是边CD上一点,且BC=EC,CF⊥BE交AB于点F,P是EB延长线上一点,下列结论:①BE平分∠CBF;②CF平分∠DCB;③BC=FB;④PF=PC.其中正确结论的个数为()A.1B.2C.3D.4二、填空题(本大题共4个小题,每小题4分,共16分)11.若一个多边形的每一个外角都等于40°,则这个多边形的边数是.12.若分式的值为0,则x的值为.13.如图,在△ABC中,点D,E,F分别是AB,AC,BC的中点,已知∠ADE=65°,则∠CFE的度数为.14.如图,△ABC是等腰直角三角形,BC是斜边,P为△ABC内一点,将△ABP绕点A 逆时针旋转后与△ACP′重合,如果AP=3,那么线段PP′的长等于.三、解答题(本大题共6个小题,共54分.解答应写出必要的文字说明、证明过程或演算步骤)15.(1)分解因式:ax2﹣2ax+a;(2)解不等式组:,并写出所有非负整数解.16.先化简,再求值:(﹣1)÷,其中x=2020.17.如图,在平面直角坐标系中,△ABC的三个顶点坐标分别为A(1,3),B(2,5),C(4,2)(每个方格的边长均为1个单位长度)(1)将△ABC平移,使点A移动到点A1,请画出△A1B1C1;(2)作出△ABC关于O点成中心对称的△A2B2C2,并直接写出A2,B2,C2的坐标;(3)△A1B1C1与△A2B2C2是否成中心对称?若是,请写出对称中心的坐标;若不是,请说明理由.18.如图,在四边形ABCD中,AB=CD,BF=DE,AE⊥BD,CF⊥BD,垂足分别为E、F.(1)求证:△ABE≌△CDF;(2)若AC与BD交于点O,求证:AO=CO.19.某工厂制作甲、乙两种窗户边框,已知同样用12米材料制成甲种边框的个数比制成乙种边框的个数少1个,且制成一个甲种边框比制成一个乙种边框需要多用20%的材料.(1)求制作每个甲种边框、乙种边框各用多少米材料?(2)如果制作甲、乙两种边框的材料共640米,要求制作乙种边框的数量不少于甲种边框数量的2倍,求应最多安排多少米材料制作甲种边框?(不计材料损耗)20.如图,BC为等边△ABM的高,AB=5,点P为射线BC上的动点(不与点B,C 重合),连接AP,将线段AP绕点P逆时针旋转60°,得到线段PD,连接MD,BD.(1)如图①,当点P在线段BC上时,求证:BP=MD;(2)如图②,当点P在线段BC的延长线上时,求证:BP=MD;(3)若点P在线段BC的延长线上,且∠BDM=30°时,请直接写出线段AP的长度.四、填空题(本大题共5个小题,每小题4分,共20分)21.若m2+4=3n,则m3﹣3mn+4m=.22.关于x的不等式组的整数解共有6个,则a的取值范围是.23.有六张大小形状相同的卡片,分别写有1~6这六个数字,将它们背面朝上洗匀后,任意抽取一张,记卡片上的数字为a,则a的值使得关于x的分式方程﹣1=有整数解的概率为.24.如图1,在平面直角坐标系中,将平行四边形ABCD放置在第一象限,且AB∥x轴.直线y=﹣x从原点出发沿x轴正方向平移,在平移过程中直线被平行四边形截得的线段长度l与直线在x轴上平移的距离m的函数图象如图2,那么平行四边形ABCD的面积为.25.如图,在△ABC中,∠ACB=90°,∠A=30°,AB=2,点P是AC上的动点,连接BP,以BP为边作等边△BPQ,连接CQ,则点P在运动过程中,线段CQ长度的最小值是.五.解答题(本大题共3个小题,共30分,解答应巧出必要的文字说明.证明过程或演算步骤)26.为建设天府新区“公园城市”.天府新区某公司生产一种产品面向全国各地销售.该公司经过实地考察后,现将200件该产品运往A,B,C三地进行销售,已知运往A地的运费为30元/件,运往B地的运费为8元/件,运往C地的运费为25元/件,要求运往C地的件数是运往A地件数的2倍,设安排x件产品运往A地.(1)试用含x的代数式表示总运费y元;(2)若运往B地的件数不多于运往C地的件数,总运费不超过4000元,则有几种运输方案?A,B,C三地各运多少件时总运费最低?最低总运费是多少元?27.已知点E,F分别是平行四边形ABCD的边BC,CD上的点,∠EAF=60°.(1)如图1,若AB=2,AF=5,点E与点B,点F与点D分别重合,求平行四边形ABCD的面积;(2)如图2,若AB=BC,∠B=∠EAF=60°,求证:AE=AF;(3)如图3,若BE=CE,CF=3DF,AB=4,AF=6,求AE的长度.28.如图1,平面直角坐标系中,直线y=﹣x+m交x轴于点A(4,0),交y轴正半轴于点B.(1)求△AOB的面积;(2)如图2,直线AC交y轴负半轴于点C,AB=BC,P为线段AB(不含A,B两点)上一点,过点P作y轴的平行线交线段AC于点Q,设点P的横坐标为t,线段PQ的长为d,求d与t之间的函数关系式;(3)在(2)的条件下,M为线段CA延长线上一点,且AM=CQ,在直线AC上方的直线AB上是否存在点N,使△QMN是以QM为斜边的等腰直角三角形?若存在,请求出点N的坐标;若不存在,请说明理由.参考答案一、选择题(共10小题).1.下列各式中,是分式的是()A.B.x2C.D.(x﹣y)【分析】根据分式的定义(注意分式的分母中不含有字母,)逐个判断即可.解:A、分母中不含有字母,不是分式,故本选项不符合题意;B、分母中不含有字母,不是分式,故本选项不符合题意;C、分母中含有字母,是分式,故本选项符合题意;D、分母中不含有字母,不是分式,故本选项不符合题意;故选:C.2.下列图形中,是轴对称图形,但不是中心对称图形的是()A.B.C.D.【分析】根据轴对称图形与中心对称图形的概念判断.解:A、是轴对称图形,但不是中心对称图形;B、既是轴对称图形,又是中心对称图形;C、不是轴对称图形,是中心对称图形;D、既是轴对称图形,又是中心对称图形.故选:A.3.若代数式有意义,则实数x的取值范围是()A.x=0B.x=2C.x≠0D.x≠2【分析】根据分式有意义的条件列出不等式,解不等式得到答案.解:由题意的,2﹣x≠0,解得,x≠2,故选:D.4.据中央气象台报道,某日我市最高气温是33℃,最低气温是25℃,则当天气温t(℃)的变化范围是()A.t>25B.t≤25C.25<t<33D.25≤t≤33【分析】最高气温与最低气温之间的气温即为当天气温t(℃)的变化范围.解:当天气温t(℃)的变化范围是25≤t≤33,故选:D.5.在平面直角坐标系中,将△ABC各点的纵坐标保持不变,横坐标都加上3,则所得图形与原图形的关系是:将原图形()A.向左平移3个单位B.向右平移3个单位C.向上平移3个单位D.向下平移3个单位【分析】利用平移中点的变化规律求解即可.解:在平面直角坐标系中,将三角形各点的横坐标都加上3,纵坐标保持不变,所得图形与原图形相比,向右平移了3个单位.故选:B.6.将分式中的x,y的值同时扩大为原来的3倍,则分式的值()A.扩大6倍B.扩大9倍C.不变D.扩大3倍【分析】将原式中的x、y分别用3x、3y代替,化简,再与原分式进行比较.解:∵把分式中的x与y同时扩大为原来的3倍,∴原式变为:==9×,∴这个分式的值扩大9倍.故选:B.7.能判定四边形ABCD是平行四边形的是()A.AB∥CD,AB=CD B.AB=BC,AD=CDC.AC=BD,AB=CD D.AB∥CD,AD=CB【分析】根据平行四边形的判定方法即可判断;解:∵AB∥CD,AB=CD,∴四边形是平行四边形(一组对边平行且相等的四边形是平行四边形),故选:A.8.若解分式方程=产生增根,则m=()A.1B.0C.﹣4D.﹣5【分析】增根是分式方程化为整式方程后产生的使分式方程的分母为0的根.把增根代入化为整式方程的方程即可求出m的值.解:方程两边都乘(x+4),得x﹣1=m,∵原方程增根为x=﹣4,∴把x=﹣4代入整式方程,得m=﹣5,故选:D.9.如图,已知直线y1=x+b与y2=kx﹣1相交于点P,点P的横坐标为﹣1,则关于x的不等式x+b≤kx﹣1的解集在数轴上表示正确的是()A.B.C.D.【分析】观察函数图象得到当x≤﹣1时,函数y1=x+b的图象都在y2=kx﹣1的图象下方,所以不等式x+b≤kx﹣1的解集为x≤﹣1,然后根据用数轴表示不等式解集的方法对各选项进行判断.解:根据题意得当x≤﹣1时,y1≤y2,所以不等式x+b≤kx﹣1的解集为x≤﹣1.故选:D.10.如图,四边形ABCD是平行四边形,点E是边CD上一点,且BC=EC,CF⊥BE交AB于点F,P是EB延长线上一点,下列结论:①BE平分∠CBF;②CF平分∠DCB;③BC=FB;④PF=PC.其中正确结论的个数为()A.1B.2C.3D.4【分析】分别利用平行线的性质结合线段垂直平分线的性质以及等腰三角形的性质分别判断得出答案.【解答】证明:∵BC=EC,∴∠CEB=∠CBE,∵四边形ABCD是平行四边形,∴DC∥AB,∴∠CEB=∠EBF,∴∠CBE=∠EBF,∴①BE平分∠CBF,正确;∵BC=EC,CF⊥BE,∴∠ECF=∠BCF,∴②CF平分∠DCB,正确;∵DC∥AB,∴∠DCF=∠CFB,∵∠ECF=∠BCF,∴∠CFB=∠BCF,∴BF=BC,∴③正确;∵FB=BC,CF⊥BE,∴B点一定在FC的垂直平分线上,即PB垂直平分FC,∴PF=PC,故④正确.故选:D.二、填空题(共4个小题)11.若一个多边形的每一个外角都等于40°,则这个多边形的边数是9.【分析】根据任何多边形的外角和都是360度,利用360除以外角的度数就可以求出外角和中外角的个数,即多边形的边数.解:360÷40=9,即这个多边形的边数是9.12.若分式的值为0,则x的值为2.【分析】根据分式的值为零的条件可以得到,从而求出x的值.解:由分式的值为零的条件得,由2x﹣4=0,得x=2,由x+1≠0,得x≠﹣1.综上,得x=2,即x的值为2.故答案为:2.13.如图,在△ABC中,点D,E,F分别是AB,AC,BC的中点,已知∠ADE=65°,则∠CFE的度数为65°.【分析】利用三角形的中位线的性质解决问题即可.解:∵AD=DB,AE=EC,∴DE∥BC,∴∠ADE=∠B=65°,∵AE=EC.CF=BF,∴EF∥AB,∴∠CFE=∠B=65°,故答案为65°.14.如图,△ABC是等腰直角三角形,BC是斜边,P为△ABC内一点,将△ABP绕点A 逆时针旋转后与△ACP′重合,如果AP=3,那么线段PP′的长等于.【分析】根据旋转的性质,知:旋转角度是90°,根据旋转的性质得出AP=AP′=3,即△PAP′是等腰直角三角形,腰长AP=3,则可用勾股定理求出斜边PP′的长.解:∵△ABP绕点A逆时针旋转后与△ACP′重合,∴△ABP≌△ACP′,即线段AB旋转后到AC,∴旋转了90°,∴∠PAP′=∠BAC=90°,AP=AP′=3,∴PP′=3.三、解答题(共6小题).15.(1)分解因式:ax2﹣2ax+a;(2)解不等式组:,并写出所有非负整数解.【分析】(1)利用提公因式、公式法进行因式分解即可;(2)利用解不等式组的解法步骤进行解答即可.解:(1)ax2﹣2ax+a=a(x2﹣2x+1)=a(x﹣1)2;(2),解不等式①得,x≥﹣1,解不等式②得,x<3将两个不等式的解集在数轴上表示为:∴不等式组的解集为﹣1≤x<3:∴非负整数解有:0,1,2.16.先化简,再求值:(﹣1)÷,其中x=2020.【分析】先根据分式的混合运算顺序和运算法则化简原式,再将x的值代入计算可得.解:原式=[﹣1]÷=(﹣)÷=•=﹣,当x=2020时,原式=﹣=﹣.17.如图,在平面直角坐标系中,△ABC的三个顶点坐标分别为A(1,3),B(2,5),C(4,2)(每个方格的边长均为1个单位长度)(1)将△ABC平移,使点A移动到点A1,请画出△A1B1C1;(2)作出△ABC关于O点成中心对称的△A2B2C2,并直接写出A2,B2,C2的坐标;(3)△A1B1C1与△A2B2C2是否成中心对称?若是,请写出对称中心的坐标;若不是,请说明理由.【分析】(1)利用点A和A1坐标的关系确定平移的方向与距离,关于利用此平移规律写出B1、C1的坐标,然后描点即可;(2)利用关于点对称的点的坐标特征写出A2,B2,C2的坐标,然后描点即可;(3)连接A1A2,B1B2,C1C2,它们都经过点P,从而可判断△A1B1C1与△A2B2C2关于点P中心对称,再写出P点坐标即可.解:(1)如图,△A1B1C1为所作;(2)如图,△A2B2C2为所作;点A2,B2,C2的坐标分别为(﹣1,﹣3),(﹣2,﹣5),(﹣4,﹣2);(3)△A1B1C1与△A2B2C2关于点P中心对称,如图,对称中心的坐标的坐标为(﹣2,﹣1).18.如图,在四边形ABCD中,AB=CD,BF=DE,AE⊥BD,CF⊥BD,垂足分别为E、F.(1)求证:△ABE≌△CDF;(2)若AC与BD交于点O,求证:AO=CO.【分析】(1)根据AB=CD,BE=DF,利用HL即可证明.(2)只要证明四边形ABCD是平行四边形即可解决问题.【解答】证明:(1)∵BF=DE,∴BF﹣EF=DE﹣EF,即BE=DF.∵AE⊥BD,CF⊥BD,∴∠AEB=∠CFD=90°,∵AB=CD,BE=DF,∴Rt△ABE≌Rt△CDF(HL).(2)∵△ABE≌△CDF,∴∠ABE=∠CDF,∴AB∥CD,∵AB=CD,∴四边形ABCD是平行四边形,∴AO=CO.19.某工厂制作甲、乙两种窗户边框,已知同样用12米材料制成甲种边框的个数比制成乙种边框的个数少1个,且制成一个甲种边框比制成一个乙种边框需要多用20%的材料.(1)求制作每个甲种边框、乙种边框各用多少米材料?(2)如果制作甲、乙两种边框的材料共640米,要求制作乙种边框的数量不少于甲种边框数量的2倍,求应最多安排多少米材料制作甲种边框?(不计材料损耗)【分析】(1)设制作每个乙种边框用x米材料,则制作甲种边框用(1+20%)x米材料,根据“同样用12米材料制成甲种边框的个数比制成乙种边框的个数少1个”,列出方程,即可解答;(2)根据所需要材料的总长度l=甲的材料的总长度+乙的材料的总长度,列出函数关系式;再根据“乙种边框的数量不少于甲种边框数量的2倍”列出不等式并解答.解:(1)设制作每个乙种边框用x米材料,则制作甲种边框用(1+20%)x米材料,由题意,得﹣1=,解得:x=2,经检验x=2是原方程的解,∴(1+20%)x=2.4(米),答:制作每个甲种用2.4米材料;制作每个乙种用2米材料.(2)设应安排制作甲种边框需要a米,则安排制作乙种边框需要(640﹣a)米,由题意,得≥×2.解得a≤240,则≤100.答:应最多安排制作甲种边框100个.20.如图,BC为等边△ABM的高,AB=5,点P为射线BC上的动点(不与点B,C 重合),连接AP,将线段AP绕点P逆时针旋转60°,得到线段PD,连接MD,BD.(1)如图①,当点P在线段BC上时,求证:BP=MD;(2)如图②,当点P在线段BC的延长线上时,求证:BP=MD;(3)若点P在线段BC的延长线上,且∠BDM=30°时,请直接写出线段AP的长度.【分析】(1)如图①,连接AD,由“SAS”可证△BAP≌△MAD,可得BP=MD;(2)如图②,连接AD,由“SAS”可证△BAP≌△MAD,可得BP=MD;(3)由全等三角形的性质可得∠ABP=∠AMD=30°,可得∠BMD=∠AMB+∠AMD =90°,可得点D在BA的延长线上,由直角三角形的性质和等边三角形的性质可求AP 的长.解:(1)如图①,连接AD,∵△AMB是等边三角形,∴AB=AM,∠BAM=60°由旋转的性质可得:AP=DP,∠APD=60°,∴△APD是等边三角形,∴PA=PD=AD,∠PAD=60°=∠BAM,∴∠BAP=∠BAC﹣∠CAP,∠MAD=∠PAD﹣∠CAP,∴∠BAP=∠MAD,在△BAP与△MAD中,,∴△BAP≌△MAD(SAS),∴BP=MD;(2)如图②,连接AD,∵△AMB是等边三角形,∴AB=AM,∠BAM=60°=∠AMB,由旋转的性质可得:AP=DP,∠APD=60°,∴△APD是等边三角形,∴PA=PD=AD,∠PAD=60°=∠BAM,∴∠BAP=∠BAC+∠CAP,∠MAD=∠PAD+∠CAP,∴∠BAP=∠MAD,在△BAP与△MAD中,,∴△BAP≌△MAD(SAS),∴BP=MD;(3)∵BC为等边△ABM的高,∴∠ABC=30°,∵△BAP≌△MAD,∴∠ABP=∠AMD=30°,∴∠BMD=∠AMB+∠AMD=90°,∴∠BMD=90°,∵∠BDM=30°,∴∠DBM=60°,∴点D在BA的延长线上,如图③,∵∠BDM=30°,∠BMD=90°,∴BD=2BM=10,∴AD=BD﹣AB=5∵PA=PD=AD,∴AP=AD=5.四、填空题(本大题共5个小题,每小题4分,共20分)21.若m2+4=3n,则m3﹣3mn+4m=0.【分析】将m3﹣3mn+4m提取公因式m,得到原式=m(m2﹣3n+4),把m2+4=3n代入,计算即可.解:∵m2+4=3n,∴m3﹣3mn+4m=m(m2﹣3n+4)=m(3n﹣3n)=0.故答案为:0.22.关于x的不等式组的整数解共有6个,则a的取值范围是﹣6≤a<﹣5.【分析】解不等式得出其解集为a<x<1,根据不等式组的整数解有6个得出其整数解得情况,从而得出字母a的取值范围.解:解不等式x﹣a>0,得:x>a,解不等式3﹣3x>0,得:x<1,则不等式组的解集为a<x<1,∵不等式组的整数解有6个,∴不等式组的整数解为0、﹣1、﹣2、﹣3、﹣4、﹣5,则﹣6≤a<﹣5,故答案为:﹣6≤a<﹣5.23.有六张大小形状相同的卡片,分别写有1~6这六个数字,将它们背面朝上洗匀后,任意抽取一张,记卡片上的数字为a,则a的值使得关于x的分式方程﹣1=有整数解的概率为.【分析】先把分式方程化为整式方程,解整式方程得到x=且x≠2,利用有理数的整除性得到a=2或3,然后根据概率公式求解.解:把分式方程﹣1=去分母得ax﹣2﹣(x﹣2)=6,∴(a﹣1)x=6,∵分式方程有整数解,∴x=且x≠2,∴a=2或3,∴a的值使得关于x的分式方程﹣1=有整数解的概率==.故答案为.24.如图1,在平面直角坐标系中,将平行四边形ABCD放置在第一象限,且AB∥x轴.直线y=﹣x从原点出发沿x轴正方向平移,在平移过程中直线被平行四边形截得的线段长度l与直线在x轴上平移的距离m的函数图象如图2,那么平行四边形ABCD的面积为.【分析】根据函数图象中的数据可以分别求得平行四边形的边AB的长和边AB边上的高的长,从而可以求得平行四边形的面积.解:作DM⊥AB于点M,如右图1所示,由图象和题意可得,AE=7﹣4=3,EB=8﹣7=1,DE=3,∴AB=3+1=4,∵直线DE平行直线y=﹣x,∴DM=ME,∴DM=DE•sin45°=,∴平行四边形ABCD的面积是:4×=.故答案为:.25.如图,在△ABC中,∠ACB=90°,∠A=30°,AB=2,点P是AC上的动点,连接BP,以BP为边作等边△BPQ,连接CQ,则点P在运动过程中,线段CQ长度的最小值是.【分析】如图,取AB的中点E,连接CE,PE.由△QBC≌△PBE(SAS),推出QC =PE,推出当EP⊥AC时,QC的值最小;解:如图,取AB的中点E,连接CE,PE.∵∠ACB=90°,∠A=30°,∴∠CBE=60°,∵BE=AE,∴CE=BE=AE,∴△BCE是等边三角形,∴BC=BE,∵∠PBQ=∠CBE=60°,∴∠QBC=∠PBE,∵QB=PB,CB=EB,∴△QBC≌△PBE(SAS),∴QC=PE,∴当EP⊥AC时,QC的值最小,在Rt△AEP中,∵AE=,∠A=30°,∴PE=AE=,∴CQ的最小值为.五.解答题(本大题共3个小题,共30分,解答应巧出必要的文字说明.证明过程或演算步骤)26.为建设天府新区“公园城市”.天府新区某公司生产一种产品面向全国各地销售.该公司经过实地考察后,现将200件该产品运往A,B,C三地进行销售,已知运往A地的运费为30元/件,运往B地的运费为8元/件,运往C地的运费为25元/件,要求运往C地的件数是运往A地件数的2倍,设安排x件产品运往A地.(1)试用含x的代数式表示总运费y元;(2)若运往B地的件数不多于运往C地的件数,总运费不超过4000元,则有几种运输方案?A,B,C三地各运多少件时总运费最低?最低总运费是多少元?【分析】(1)根据总运费=每件运费×运往该地的件数,即可用含x的代数式表示总运费y元;(2)根据“运往B地的件数不多于运往C地的件数,总运费不超过4000元”,即可得出关于x的一元一次不等式组,解之即可得出x的取值范围,结合x为正整数即可得出运输方案的次数,再利用一次函数的性质即可解决最值问题.解:(1)∵安排x件产品运往A地,∴安排2x件产品运往C地,安排(200﹣x﹣2x)件产品运往B地,∴总运费y=30x+8(200﹣x﹣2x)+25×2x=56x+1600.(2)依题意,得:,解得:40≤x≤42.又∵x为正整数,∴x可以取40,41,42,∴共有3种运输方案.∵在y=56x+1600中k=56>0,∴y随x的增大而增大,∴当x=40时,y取得最小值,最小值=56×40+1600=3840,此时2x=80,200﹣x﹣2x =80.即当运往A地40件、运往B地80件、运往C地80件时,总运费最低,最低总运费是3840元.27.已知点E,F分别是平行四边形ABCD的边BC,CD上的点,∠EAF=60°.(1)如图1,若AB=2,AF=5,点E与点B,点F与点D分别重合,求平行四边形ABCD的面积;(2)如图2,若AB=BC,∠B=∠EAF=60°,求证:AE=AF;(3)如图3,若BE=CE,CF=3DF,AB=4,AF=6,求AE的长度.【分析】(1)过点B作BH⊥AD于H,先求出∠ABH=30°,进而求出BH,由平行四边形的面积公式即可得出结论;(2)先判断出∠BAE=∠CAF,进而判断出△ABE≌△ACF,即可得出结论;(3)延长AE交DC延长线于P,过点F作FG⊥AP于G,证△ABE≌△PCE(ASA),得出AE=PE,PC=AB=CD=4,求出PF=7,由含30°角的直角三角形的性质得出AG=3,由勾股定理得FG=3,PG=,则AP=AG+PG=3+,即可得出答案.【解答】(1)解:过点B作BH⊥AD于H,如图1所示:在Rt△ABH中,∠BAD=60°,∴∠ABH=30°,∵AB=2,∴AH=1,BH===,∴S▱ABCD=AD×BH=AF×BH=5×=5;(2)证明:连接AC,如图2所示:∵AB=BC,∠B=∠EAF=60°,∴△ABC是等边三角形,∴AB=AC,∠BAC=∠ACB=60°,∴∠BAE=∠CAF,∵四边形ABCD是平行四边形,AB=AC,∴四边形ABCD是菱形,∴∠ACF=∠ACB=60°,∴∠B=∠ACF,在△ABE和△ACF中,,∴△ABE≌△ACF(ASA),∴AE=AF;(3)解:延长AE交DC延长线于P,过点F作FG⊥AP于G,如图3所示:∵四边形ABCD是平行四边形,∴AB∥CD,∴∠B=∠ECP,在△ABE和△PCE中,,∴△ABE≌△PCE(ASA),∴AE=PE,PC=AB=CD=4,∵CF=3DF,∴CF=3,∴PF=7,在Rt△AFG中,AF=6,∠EAF=60°,∴∠AFG=30°,∴AG=AF=3,FG===3在Rt△PFG中,由勾股定理得:PG===,∴AP=AG+PG=3+,∴AE=PE=AP=.28.如图1,平面直角坐标系中,直线y=﹣x+m交x轴于点A(4,0),交y轴正半轴于点B.(1)求△AOB的面积;(2)如图2,直线AC交y轴负半轴于点C,AB=BC,P为线段AB(不含A,B两点)上一点,过点P作y轴的平行线交线段AC于点Q,设点P的横坐标为t,线段PQ的长为d,求d与t之间的函数关系式;(3)在(2)的条件下,M为线段CA延长线上一点,且AM=CQ,在直线AC上方的直线AB上是否存在点N,使△QMN是以QM为斜边的等腰直角三角形?若存在,请求出点N的坐标;若不存在,请说明理由.【分析】(1)由于y=﹣x+m交x轴于点A(4,0),求出m的值,可得出OA=4,OB=3,则可得出答案;(2)根据勾股定理得到AB=5=BC,得到点C(0,﹣2),求出直线AC解析式为y =x﹣2,由于P在直线y=﹣x+3上,可设点P(t,﹣t+3),即可得到结论;(3)过点M作MG⊥PQ于G,根据全等三角形的性质得到QG=OC=2,GM=OA=4,过点N作NH⊥PQ于H,过点M作MR⊥NH于点R,推出四边形GHRM是矩形,根据矩形的性质得到HR=GM=4,可设GH=RM=k,根据全等三角形的性质得到HN=RM=k,NR=QH=2+k,得到N(t+1,t+1)根据N在直线AB:y=﹣x+3上,即可得出答案.解:(1)∵y=﹣x+m交x轴于点A(4,0),∴0=﹣×4+m,解得m=3,∴直线AB解析式为y=﹣x+3,令x=0,y=3,B(0,3);∵A(4,0),B(0,3),∴OA=4,OB=3,∵∠AOB=90°,∴==6;(2)∵OA=4,OB=3,∴AB═=5=BC,∴OC=2,∴点C(0,﹣2),设直线AC解析式为y=kx+n,∴,∴,∴直线AC解析式为y=x﹣2,∵P在直线y=﹣x+3上,∴可设点P(t,﹣t+3),∵PQ∥y轴,且点Q在y=x﹣2上,∴Q(t,t﹣2),∴d=(﹣t+3)﹣(t﹣2)=﹣t+5(0<t<4);(3)过点M作MG⊥PQ于G,∴∠QGM=90°=∠COA,∵PQ∥y轴,∴∠OCA=∠GQM,∵CQ=AM,∴AC=QM,在△OAC与△GMQ中,,∴△OAC≌△GMQ(AAS),∴QG=OC=2,GM=OA=4,过点N作NH⊥PQ于H,过点M作MR⊥NH于点R,∴∠MGH=∠RHG=∠MRH=90°,∴四边形GHRM是矩形,∴HR=GM=4,可设GH=RM=k,∵△MNQ是等腰直角三角形,∴∠QNM=90°,NQ=NM,∴∠HNQ+∠HQN=90°,∠HNQ+∠RNM=90°,∴∠RNM=∠HQN,∴△HNQ≌△RMN(AAS),∴HN=RM=k,NR=QH=2+k,∵HR=HN+NR,∴k+2+k=4,∴k=1,∴GH=NH=RM=1,∴HQ=3,∵Q(t,t﹣2),∴N(t+1,t﹣2+3)即N(t+1,t+1),∵N在直线AB:y=﹣x+3上,∴t+1=﹣(t+1)+3,∴t=1,∴P(1,),N(2,)。
2021-2022学年四川省成都市都江堰市、彭州市、邛崃市九年级(上)期末数学试卷

2021-2022学年四川省成都市高新区九年级(上)期末数学试卷(一诊)一、选择题(本大题共10小题,每小题3分,共30分,每小题均有四个选项,其中只有一项符合题目要求,答案涂在答题卡上)1.(3分)正方形的对称轴的条数为()A.1B.2C.3D.42.(3分)如图所示,该几何体的主视图是()A.B.C.D.3.(3分)若反比例函数的图象过点(3,2),那么下列各点中在此函数图象上的点是()A.(﹣2,3)B.(﹣3,2)C.(﹣3,﹣2)D.(4,1)4.(3分)同一时刻,同一地点,在阳光下影长为0.4米的小王身高为1.6米,一棵树的影长为3.2米,则这棵树的高度为()A.0.8米B.6.4米C.12.8米D.25.6米5.(3分)在一个不透明的口袋中有四个完全相同的小球,把它们分别标号为1,2,3,4.若随机摸出一个小球后不放回,再随机摸出一个小球,则两次取出小球标号的和等于5的概率为()A.B.C.D.6.(3分)某公司今年10月的营业额为2500万元,按计划第四季度的总营业额要达到9100万元,求该公司11,12两个月营业额的月平均增长率.设该公司11,12两个月营业额的月平均增长率为x,则可列方程为()A.2500(1+x)2=9100B.2500(1+x)(1+2x)=9100C.2500+2500(1+x)+2500(1+2x)=9100D.2500+2500(1+x)+2500(1+x)2=91007.(3分)如图,在平面直角坐标系xOy中,两个“E”字是位似图形,位似中心点O,①号“E”与②号“E”的位似比为2:1.点P(﹣6,9)在①号“E”上,则点P在②号“E”上的对应点Q的坐标为()A.(﹣3,)B.(﹣2,3)C.(﹣,3)D.(﹣3,2)8.(3分)根据表格对应值:x 1.1 1.2 1.3 1.4ax2+bx+c﹣0.590.84 2.29 3.76判断关于x的方程ax2+bx+c=2的一个解x的范围是()A.1.1<x<1.2B.1.2<x<1.3C.1.3<x<1.4D.无法判定9.(3分)如图,四边形ABCD是平行四边形,两条对角线交于点O,下列条件中,不能判定平行四边形ABCD为矩形的是()A.∠ABC=∠BCD B.∠ABC=∠ADC C.AO=BO D.AO=DO10.(3分)如图,P,Q是反比例函数y=(k>0)图象上的两个点,点Q的横坐标大于点P的横坐标,过点P分别作x轴,y轴的垂线,垂足分别为B,A,过点Q分别作x轴,y轴的垂线,垂足分别为D,C.PB与CQ交于点E,设四边形ACEP的面积为S1,四边形BDQE的面积为S2,则S1与S2的大小关系为()A.S1>S2B.S1=S2C.S1<S2D.无法确定二、填空题(本大题共4个小题,每小题4分,共16分,答案写在答题卡上)11.(4分)已知,则=.12.(4分)已知△ABC∽△DEF,,若△ABC的面积为2,则△DEF的面积为.13.(4分)已知点A(x1,y1)与点B(x2,y2)都在反比例函数y=的图象上,且0<x1<x2,那么y1y2(填“>”或“=”或“<”).14.(4分)如图,四边形ABCD是边长为cm的菱形,其中对角线BD的长为2cm,则菱形ABCD的面积为cm2.三、解答题(本大题共6个小题,共54分,解答过程写在答题卡上)15.(10分)(1)解方程x2﹣x﹣6=0;(2)关于x的一元二次方程x2﹣2x+m=0有实数根,求m的取值范围.16.(8分)垂直于地面的电线杆顶端是路灯灯泡,如图所示,木杆AB,DE垂直于地面.它们在路灯下的影子分别是BC,EF.(1)请画出电线杆PQ(路灯灯泡用点P表示,电线杆底部用点Q表示);(2)若木杆AB的高度为3米,影长BC为4米,木杆底部B与电线杆底部Q的距离为2米,求电线杆PQ的高度.17.(8分)小颖为学校联欢会设计了一个“配紫色”的游戏:下面是两个可以自由转动的转盘,每个转盘被分成面积相等的几个扇形,游戏者同时转动两个转盘,如果转盘A转出了红色,转盘B转出了蓝色,那么他就赢了,因为红色和蓝色在一起配成了紫色.(1)利用树状图或列表的方法表示出游戏所有可能出现的结果;(2)游戏者获胜的概率是多少?18.(8分)如图,要围一个矩形菜园,现利用一面长度为12米的墙,另外三边用24米长的篱笆.能否围出一个面积为70平方米的矩形菜园?若能,求出该菜园与墙平行一边的长度;若不能,说明理由.19.(10分)如图,一次函数y=kx+b的图象与反比例函数y=的图象相交于A(4,1),B(n,﹣4)两点,与y轴交于点C.(1)求一次函数和反比例函数的表达式;(2)将直线y=kx+b向上平移,平移后的直线与反比例函数y=在第一象限的图象交于点P,连接P A,PC,若△P AC的面积为12,求点P的坐标.20.(10分)如图1,在矩形ABCD中,点E是CD上一动点,连接AE,将△ADE沿AE折叠,点D落在点F处,AE与DF交于点O.(1)射线EF经过点B,射线DF与BC交于点G.ⅰ)求证:△ADE∽△DCG;ⅱ)若AB=10,AD=6,求CG的长;(2)如图2,射线EF与AB交于点H,射线DF与BC交于点G,连接HG,若HG∥AE,AD=10,DE =5,求CE的长.四、填空题(本大题共5个小题,每小题4分,共20分,答案写在答题卡上)21.(4分)一个口袋中有红球,白球共20个,这些球除颜色外都相同.将口袋中的球搅拌均匀,从中随机摸出一个球,记下它的颜色后再放回口袋中.不断重复这一过程,共摸了100次球,发现有60次摸到红球,估计这个口袋中红球的数量为个.22.(4分)已知m,n是方程x2﹣x﹣3=0的两根,则n2+n+2m的值为.23.(4分)如图,正方形ABCD的边长为2,E是AB的中点,连接ED,延长EA至F,使EF=ED.以线段AF为边作正方形AFGH,点H落在AD边上,连接FH并延长,交ED于点M,则的值为.24.(4分)如图,△ABC中,AB=2,∠ABC=60°,∠ACB=45°,点D在直线BC上运动,连接AD,在AD的右侧作△ADE∽△ABC,点F为AC中点,连接EF,则EF的最小值为.25.(4分)如图,平面直角坐标系xOy中,Rt△ABO的斜边BO在x轴正半轴上,OB=5,反比例函数y=(x>0)的图象过点A,与AB边交于点C,且AC=3BC,则a的值为,射线OA,射线OC分别交反比例函数y=(b>a>0)的图象于点D,E,连接DE,DC,若△DEC的面积为45,则b 的值为.五、解答题(本大题共3个小题,共30分,解答题写在答题卡上)26.(8分)某商场将进货价为30元的台灯以40元售出,平均每月能售出600个,调查表明:售价在40元至60元范围内,这种台灯的售价每上涨1元,其销售量就将减少10个,设该商场决定把售价上涨x(0<x<20)元.(1)售价上涨x元后,该商场平均每月可售出个台灯(用含x的代数式表示);(2)为了实现平均每月10000元的销售利润,这种台灯的售价应定为多少元?这时应进台灯多少个?27.(10分)如图1,在Rt△ABC中,∠ACB=90°,AB=10,BC=6.D、E分别是AB、AC边的中点,连接DE.现将△ADE绕A点逆时针旋转,连接BD,CE并延长交于点F.(1)如图2,点E正好落在AB边上,CF与AD交于点P.①求证:AE•AB=AD•AC;②求BF的长;(2)如图3,若AF恰好平分∠DAE,直接写出CE的长.28.(12分)如图,在平面直角坐标系中,点A,B分别在x轴,y轴正半轴上,AO=2BO,点C(3,0)(A点在C点的左侧),连接AB,过点A作AB的垂线,过点C作x轴的垂线,两条垂线交于点D,已知△ABO≌△DAC,直线BD交x轴于点E.(1)求直线AD的解析式;(2)直线AD有一点F,设点F的横坐标为t,若△ACF与△ADE相似,求t的值;(3)如图2,在直线AD上找一点G,直线BD上找一点P,直线CD上找一点Q,使得四边形AQPG 是菱形,求出G点的坐标.。
2018-2019学年八年级(下)期中数学试卷1 解析版

2018-2019学八年级(下)期中数学试卷一.选择题(共10小题)1.下列性质中,菱形具有而平行四边形不具有的性质是()A.对边平行且相等B.对角线互相平分C.对角线互相垂直D.对角互补2.在Rt△ABC中,∠B=90°,BC=1,AC=2,则AB的长是()A.1B.C.2D.3.下列运算正确的是()A.2﹣=1B.+=C.×=4D.÷=2 4.如图,在平行四边形ABCD中,CE⊥AB,E为垂足.如果∠A=118°,则∠BCE=()A.28°B.38°C.62°D.72°5.若代数式有意义,则x的取值范围是()A.x>﹣1且x≠1B.x≥﹣1C.x≠1D.x≥﹣1且x≠1 6.如图,在一个高为3m,长为5m的楼梯表面铺地毯,则地毯长度为()A.7m B.8m C.9m D.10m7.如图,在▱ABCD中,对角线AC,BD相交于点O,点E,F分别是AB,AO的中点,连接EF,若EF=3,则BD的长为()A.6B.9C.12D.158.如图正方形ABCD中以CD为边向外作等边三角形CDE,连接AE、AC,则∠CAE度数为()A.15°B.30°C.45°D.20°9.如图,四边形ABCD是菱形,对角线AC=8,DB=6,DH⊥AB于点H,则DH的长为()A.4.8cm B.5cm C.9.6cm D.10cm10.如图,已知长方形ABCD中,AD=6,AB=8,P是AD边上的点,将△ABP沿BP折叠,使点A落在点E上,PE、BE与CD分别交于点O、F,且OD=OE,则AP的长为()A.4.8B.5C.5.2D.5.4二.填空题(共4小题)11.计算3﹣的结果是.12.如图所示,数轴上点A所表示的数为a,则a的值是.13.如图所示,DE为△ABC的中位线,点F在DE上,且∠AFB=90°,若AB=5,BC=7,则EF的长为.14.如图,在Rt△ABC中,∠BAC=90°,∠B=60°,AB=1,点P为BC上任意一点,连接P A,以P A、PC为邻边作▱P AQC,连接PQ,则PQ的最小值为.三.解答题(共11小题)15.计算:(﹣2)×﹣616.先化简,再求值:(2﹣)÷,其中x=﹣3.17.若x、y都是实数,且y=++,求x2y+xy2的值.18.已知:如图,在△ABC中,AB=13,AC=20,AD=12,且AD⊥BC,垂足为点D,求BC的长.19.已知:如图,在▱ABCD中,E,F是对角线BD上两个点,且BE=DF.求证:AE=CF.20.如图,在四边形ABCD中,AB=AD=6,∠A=60°,BC=10,CD=8.(1)求∠ADC的度数;(2)求四边形ABCD的面积.21.如图,在矩形ABCD中,M为BC上的点,过点D作DE⊥AM于E,DE=DC=5,AE =2EM.(1)求证:BM=AE;(2)求BM的长.22.阅读理解材料:把分母中的根号化掉叫做分母有理化,例如:①==;②===+1等运算都是分母有理化.根据上述材料,(1)化简:(2)计算:+++…+.23.如图,点O是菱形ABCD对角线的交点,CE∥BD,EB∥AC,连接OE,交BC于F.(1)求证:OE=CB;(2)如果OC:OB=1:2,OE=,求菱形ABCD的面积.24.如图,正方形ABCD中,M为BC上的点,E是AD的延长线的点,且AE=AM,过E 作EF⊥AM垂足为F,EF交DC于点N.(1)求证:AF=BM;(2)若AB=12,AF=5,求DE的长.25.【问题情境】如图1,四边形ABCD是正方形,M是BC边上的一点,E是CD边的中点,AE平分∠DAM.【探究展示】(1)直接写出AM、AD、MC三条线段的数量关系:;(2)AM=DE+BM是否成立?若成立,请给出证明;若不成立,请说明理由.【拓展延伸】(3)若四边形ABCD是长与宽不相等的矩形,其他条件不变,如图2,探究展示(1)、(2)中的结论是否成立?请分别作出判断,不需要证明.参考答案与试题解析一.选择题(共10小题)1.下列性质中,菱形具有而平行四边形不具有的性质是()A.对边平行且相等B.对角线互相平分C.对角线互相垂直D.对角互补【分析】根据平行四边形的性质和菱形的性质对各选项进行判断.【解答】解:A、平行四边形的对边平行且相等,所以A选项错误;B、平行四边形的对角线互相平分,所以B选项错误;C、菱形的对角线互相垂直,平行四边形的对角线互相平分,所以C选项正确;D、平行四边形的对角相等,所以D选项错误.故选:C.2.在Rt△ABC中,∠B=90°,BC=1,AC=2,则AB的长是()A.1B.C.2D.【分析】根据勾股定理即可得到结论.【解答】解:在Rt△ABC中,∠B=90°,BC=1,AC=2,∴AB===,故选:B.3.下列运算正确的是()A.2﹣=1B.+=C.×=4D.÷=2【分析】根据二次根式的运算法则逐一计算可得.【解答】解:A.2﹣=,此选项错误;B.与不是同类二次根式,不能合并,此选项错误;C.×=×2=4,此选项正确;D.÷=,此选项错误;故选:C.4.如图,在平行四边形ABCD中,CE⊥AB,E为垂足.如果∠A=118°,则∠BCE=()A.28°B.38°C.62°D.72°【分析】由在平行四边形ABCD中,∠A=118°,可求得∠B的度数,又由CE⊥AB,即可求得答案.【解答】解:∵四边形ABCD是平行四边形,∴∠B=180°﹣∠A=180°﹣118°=62°,∵CE⊥AB,∴∠BCE=90°﹣∠B=28°.故选:A.5.若代数式有意义,则x的取值范围是()A.x>﹣1且x≠1B.x≥﹣1C.x≠1D.x≥﹣1且x≠1【分析】根据二次根式有意义的条件可得x+1≥0,根据分式有意义的条件可得x﹣1≠0,再解即可.【解答】解:由题意得:x+1≥0,且x﹣1≠0,解得:x≥﹣1,且x≠1,故选:D.6.如图,在一个高为3m,长为5m的楼梯表面铺地毯,则地毯长度为()A.7m B.8m C.9m D.10m【分析】当地毯铺满楼梯时其长度的和应该是楼梯的水平宽度与垂直高度的和,根据勾股定理求得水平宽度,然后求得地毯的长度即可.【解答】解:由勾股定理得:楼梯的水平宽度==4,∵地毯铺满楼梯是其长度的和应该是楼梯的水平宽度与垂直高度的和,∴地毯的长度至少是3+4=7(m).故选:A.7.如图,在▱ABCD中,对角线AC,BD相交于点O,点E,F分别是AB,AO的中点,连接EF,若EF=3,则BD的长为()A.6B.9C.12D.15【分析】根据已知条件可以得到EF是△OAB的中位线,则OB=2EF=6,再利用平行四边形的性质得出BD即可.【解答】解:∵点E,F分别是AB,AO的中点,连接EF,EF=3,∴EF是△OAB的中位线,则OB=2EF=6,∵在▱ABCD中,∴BD=2OB=12,故选:C.8.如图正方形ABCD中以CD为边向外作等边三角形CDE,连接AE、AC,则∠CAE度数为()A.15°B.30°C.45°D.20°【分析】先利用正方形的性质得到DA=DC,∠CAD=45°,∠ADC=90°,利用等边三角形的性质得到DE=DC,∠CDE=60°,则DA=DE,∠ADE=150°,再根据等腰三角形的性质和三角形内角和计算出∠DAE=15°,然后计算∠CAD与∠DAE的差即可.【解答】解:∵四边形ABCD为正方形,∴DA=DC,∠CAD=45°,∠ADC=90°,∵△CDE为等边三角形,∴DE=DC,∠CDE=60°,∴DA=DE,∠ADE=90°+60°=150°,∴∠DAE=∠DEA,∴∠DAE=(180°﹣150°)=15°,∴∠CAE=45°﹣15°=30°.故选:B.9.如图,四边形ABCD是菱形,对角线AC=8,DB=6,DH⊥AB于点H,则DH的长为()A.4.8cm B.5cm C.9.6cm D.10cm【分析】思想两个勾股定理求出菱形的边长,再利用菱形的面积的两种求法构建方程即可解决问题.【解答】解:∵四边形ABCD是菱形,∴AC⊥BD,OA=OC=AC=4,OB=OD=3,∴AB=5cm,∴S菱形ABCD=AC•BD=AB•DH,∴DH==4.8.故选:A.10.如图,已知长方形ABCD中,AD=6,AB=8,P是AD边上的点,将△ABP沿BP折叠,使点A落在点E上,PE、BE与CD分别交于点O、F,且OD=OE,则AP的长为()A.4.8B.5C.5.2D.5.4【分析】由矩形的性质得出∠A=∠C=∠D=90°,CD=AB=8,BC=AD=6,由折叠的性质得出EP=AP,BE=AB=8,∠E=∠A=90°,由ASA证明△ODP≌△OEF,得出PD=FE,OP=OF,因此DF=EP=AP,设AP=x,则DF=x,FE=PD=6﹣x,得出CF=CD﹣DF=8﹣x,BF=BE﹣FE=x+2,在Rt△BCF中,由勾股定理得出方程,解方程即可.【解答】解:∵四边形ABCD是长方形,∴∠A=∠C=∠D=90°,CD=AB=8,BC=AD=6,由折叠的性质得:EP=AP,BE=AB=8,∠E=∠A=90°,在△ODP和△OEF中,,∴△ODP≌△OEF(ASA),∴PD=FE,OP=OF,∴DF=EP=AP,设AP=x,则DF=x,FE=PD=6﹣x,∴CF=CD﹣DF=8﹣x,BF=BE﹣FE=x+2,在Rt△BCF中,BC2+CF2=BF2,即62+(8﹣x)2=(x+2)2,解得:x=4.8;故选:A.二.填空题(共4小题)11.计算3﹣的结果是﹣.【分析】直接化简二次根式,进而合并得出答案.【解答】解:原式=3×﹣2=﹣2=﹣.故答案为:﹣.12.如图所示,数轴上点A所表示的数为a,则a的值是﹣.【分析】根据图形,利用勾股定理可以求得a的值.【解答】解:由图可得,a=﹣,故答案为:﹣.13.如图所示,DE为△ABC的中位线,点F在DE上,且∠AFB=90°,若AB=5,BC=7,则EF的长为1.【分析】根据三角形中位线定理得到DE=BC=3.5,根据直角三角形的性质得到DF =AB=2.5,计算即可.【解答】解:∵DE是△ABC的中位线,∴DE=BC=3.5,DE∥BC,∵∠AFB=90°,D为AB的中点,∴DF=AB=2.5,∴EF=DE﹣DF=1,故答案为:1.14.如图,在Rt△ABC中,∠BAC=90°,∠B=60°,AB=1,点P为BC上任意一点,连接P A,以P A、PC为邻边作▱P AQC,连接PQ,则PQ的最小值为.【分析】以P A,PC为邻边作平行四边形P AQC,由平行四边形的性质可知O是AC中点,PQ最短也就是PO最短,所以应该过O作BC的垂线P′O,根据垂线段最短即可解决问题;【解答】解:∵∠BAC=90°,∠B=60°,AB=1,∴BC=2AB=2,AC=,∵四边形APCQ是平行四边形,∴PO=QO,CO=AO=,∵PQ最短也就是PO最短,∴过O作BC的垂线OP′,∴则PQ的最小值为2OP′=2OC•sin30°=,故答案为:.三.解答题(共11小题)15.计算:(﹣2)×﹣6【分析】先算乘法,再合并同类二次根式即可.【解答】解:原式=3﹣2﹣3=﹣2.16.先化简,再求值:(2﹣)÷,其中x=﹣3.【分析】原式括号中两项通分并利用同分母分式的减法法则计算,同时利用除法法则变形,约分得到最简结果,把x的值代入计算即可求出值.【解答】解:原式=×=,把x=﹣3代入得:原式===1﹣2.17.若x、y都是实数,且y=++,求x2y+xy2的值.【分析】根据二次根式有意义的条件可得x=2,进而可得y的值,然后代入求值即可.【解答】解:由题意得:,解得:x=2,则y=,x2y+xy2=xy(x+y)=2(2+)=4+4.18.已知:如图,在△ABC中,AB=13,AC=20,AD=12,且AD⊥BC,垂足为点D,求BC的长.【分析】依据勾股定理,即可得到BD和CD的长,进而得出BC=BD+CD=21.【解答】解:∵AB=13,AC=20,AD=12,AD⊥BC,∴Rt△ABD中,BD===5,Rt△ACD中,CD===16,∴BC=BD+CD=5+16=21.19.已知:如图,在▱ABCD中,E,F是对角线BD上两个点,且BE=DF.求证:AE=CF.【分析】根据平行四边形的性质和全等三角形的判定和性质证明即可.【解答】证明:∵四边形ABCD为平行四边形,∴AB∥DC,AB=DC,∴∠ABE=∠CDF,又∵BE=DF,在△ABE与△CDF中,∴△ABE≌△CDF(SAS)∴AE=CF.20.如图,在四边形ABCD中,AB=AD=6,∠A=60°,BC=10,CD=8.(1)求∠ADC的度数;(2)求四边形ABCD的面积.【分析】(1)连接BD,根据AB=AD=6,∠A=60°,得出△ABD是等边三角形,求得BD=8,然后根据勾股定理的逆定理判断三角形BDC是直角三角形,从而求得∠ADC=150°;(2)根据四边形的面积等于三角形ABD和三角形BCD的和即可求得.【解答】解:(1)连接BD,∵AB=AD=6,∠A=60°,∴△ABD是等边三角形,∴BD=6,∠ADB=60°,∵BC=10,CD=8,则BD2+CD2=82+62=100,BC2=102=100,∴BD2+CD2=BC2,∴∠BDC=90°,∴∠ADC=150°;(2)S=S△ABD+S△BDC=AD•AD+BD•DC=×6××6+×8×6=9+24.21.如图,在矩形ABCD中,M为BC上的点,过点D作DE⊥AM于E,DE=DC=5,AE =2EM.(1)求证:BM=AE;(2)求BM的长.【分析】(1)由题意可证△AED≌△ABM,则结论可得.(2)在Rt△ABM中根据勾股定理可求EM的长,即可求AE的长.【解答】证明:(1)∵四边形ABCD是矩形∴AD∥BC,AB=CD,∠B=∠C=90°∴∠DAE=∠AMB∵CD=DE,CD=AB∴AB=DE,且∠ABC=∠AED=90°,∠DAE=∠AMB∴△ADE≌△ABM∴BM=AE(2)在Rt△ABM中,AM2=AB2+BM2.∴9EM2=25+4EM2.∴EM=∴AE=BM=222.阅读理解材料:把分母中的根号化掉叫做分母有理化,例如:①==;②===+1等运算都是分母有理化.根据上述材料,(1)化简:(2)计算:+++…+.【分析】(1)原式分母有理化,计算即可得到结果;(2)原式各自分母有理化化简后,合并即可得到结果.【解答】解:(1)原式==+;(2)原式=﹣1+﹣+…+﹣=﹣1.23.如图,点O是菱形ABCD对角线的交点,CE∥BD,EB∥AC,连接OE,交BC于F.(1)求证:OE=CB;(2)如果OC:OB=1:2,OE=,求菱形ABCD的面积.【分析】(1)通过证明四边形OCEB是矩形来推知OE=CB;(2)利用(1)中的AC⊥BD、OE=CB,结合已知条件,在Rt△BOC中,由勾股定理求得CO=1,OB=2.然后由菱形的对角线互相平分和菱形的面积公式进行解答.【解答】(1)证明:∵四边形ABCD是菱形,∴AC⊥BD.∵CE∥BD,EB∥AC,∴四边形OCEB是平行四边形,∴四边形OCEB是矩形,∴OE=CB;(2)解:∵由(1)知,AC⊥BD,OC:OB=1:2,∴BC=OE=.∴在Rt△BOC中,由勾股定理得BC2=OC2+OB2,∴CO=1,OB=2.∵四边形ABCD是菱形,∴AC=2,BD=4,∴菱形ABCD的面积是:BD•AC=4.24.如图,正方形ABCD中,M为BC上的点,E是AD的延长线的点,且AE=AM,过E 作EF⊥AM垂足为F,EF交DC于点N.(1)求证:AF=BM;(2)若AB=12,AF=5,求DE的长.【分析】(1)由正方形的性质可得∠ABC=90°,AD∥BC,由“AAS”可证△ABM≌△EF A,可得AF=BM;(2)由勾股定理可求AM=13,由全等三角形的性质可得AM=AE=13,即可求DE的长.【解答】证明:(1)∵四边形ABCD是正方形∴∠ABC=90°,AD∥BC∴∠EAF=∠AMB,∵∠AFE=∠ABC=90°,AE=AM,∴△ABM≌△EF A(AAS)∴AF=BM(2)∵在Rt△ABM中,AB=12,AF=BM=5∴AM==13∵△ABM≌△EF A,∴AM=AE=13,∵四边形ABCD是正方形,∴AB=AD,∴DE=AE﹣AD=13﹣12=125.【问题情境】如图1,四边形ABCD是正方形,M是BC边上的一点,E是CD边的中点,AE平分∠DAM.【探究展示】(1)直接写出AM、AD、MC三条线段的数量关系:AM=AD+MC;(2)AM=DE+BM是否成立?若成立,请给出证明;若不成立,请说明理由.【拓展延伸】(3)若四边形ABCD是长与宽不相等的矩形,其他条件不变,如图2,探究展示(1)、(2)中的结论是否成立?请分别作出判断,不需要证明.【分析】(1)从平行线和中点这两个条件出发,延长AE、BC交于点N,如图1(1),易证△ADE≌△NCE,从而有AD=CN,只需证明AM=NM即可.(2)作F A⊥AE交CB的延长线于点F,易证AM=FM,只需证明FB=DE即可;要证FB=DE,只需证明它们所在的两个三角形全等即可.(3)在图2(1)中,仿照(1)中的证明思路即可证到AM=AD+MC仍然成立;在图2(2)中,采用反证法,并仿照(2)中的证明思路即可证到AM=DE+BM不成立.【解答】证明:延长AE、BC交于点N,如图1(1),∵四边形ABCD是正方形,∴AD∥BC.∴∠DAE=∠ENC.∵AE平分∠DAM,∴∠DAE=∠MAE.∴∠ENC=∠MAE.∴MA=MN.在△ADE和△NCE中,∴△ADE≌△NCE(AAS).∴AD=NC.∴MA=MN=NC+MC=AD+MC.(2)AM=DE+BM成立.证明:过点A作AF⊥AE,交CB的延长线于点F,如图1(2)所示.∵四边形ABCD是正方形,∴∠BAD=∠D=∠ABC=90°,AB=AD,AB∥DC.∵AF⊥AE,∴∠F AE=90°.∴∠F AB=90°﹣∠BAE=∠DAE.在△ABF和△ADE中,∴△ABF≌△ADE(ASA).∴BF=DE,∠F=∠AED.∵AB∥DC,∴∠AED=∠BAE.∵∠F AB=∠EAD=∠EAM,∴∠AED=∠BAE=∠BAM+∠EAM=∠BAM+∠F AB=∠F AM.∴∠F=∠F AM.∴AM=FM.∴AM=FB+BM=DE+BM.(3)①结论AM=AD+MC仍然成立.证明:延长AE、BC交于点P,如图2(1),∵四边形ABCD是矩形,∴AD∥BC.∴∠DAE=∠EPC.∵AE平分∠DAM,∴∠DAE=∠MAE.∴∠EPC=∠MAE.∴MA=MP.在△ADE和△PCE中,∴△ADE≌△PCE(AAS).∴AD=PC.∴MA=MP=PC+MC=AD+MC.②结论AM=DE+BM不成立.证明:假设AM=DE+BM成立.过点A作AQ⊥AE,交CB的延长线于点Q,如图2(2)所示.∵四边形ABCD是矩形,∴∠BAD=∠D=∠ABC=90°,AB∥DC.∵AQ⊥AE,∴∠QAE=90°.∴∠QAB=90°﹣∠BAE=∠DAE.∴∠Q=90°﹣∠QAB=90°﹣∠DAE=∠AED.∵AB∥DC,∴∠AED=∠BAE.∵∠QAB=∠EAD=∠EAM,∴∠AED=∠BAE=∠BAM+∠EAM=∠BAM+∠QAB=∠QAM.∴∠Q=∠QAM.∴AM=QM.∴AM=QB+BM.∵AM=DE+BM,∴QB=DE.在△ABQ和△ADE中,∴△ABQ≌△ADE(AAS).∴AB=AD.与条件“AB≠AD“矛盾,故假设不成立.∴AM=DE+BM不成立.。
2018-2019 学年四川省成都市高新区三年级(上)期末数学试卷

2018-2019学年四川省成都市高新区三年级(上)期末数学试卷一、填空题.(每空1分共26分)1.(3分)今年2019年有个月,2月份有天,第三季度的天数有天.2.(3分)算式:125﹣25×4,先算法,再算法,得数是.3.(3分)小明上周五16时45分放学,也就是下午:放学,他坐公交车回家看表正好是下午5:20.那么他坐公交车一共用了分.4.(2分)算式216×5的积的最高位是位,126×5的积的最高位是位.5.(1分)最大的两位数与最大的一位数的积是,商是.6.(2分)5元5分=元12个0.1米=厘米7.(4分)在横线里填上“>、<”或“=”234+567267+54313×616x31000﹣811﹣891000﹣(811+89)10.9元11元8.(2分)横线中填几:(﹣30)÷3=430=5×+109.(1分)一个长方形长与宽的和是24厘米,那么这个长方形的周长是厘米.10.(2分)找规律填数:(1)0、3、6、9、12、(2)1、4、9、16、25、11.(1分)一条游泳道长50米,小明游了2个来回,共游了米.12.(1分)淘气5分打200个字,笑笑3分打132个字,打字快一点.13.(1分)图中一共有块小正方体.14.(1分)食堂中一份盒饭含一种主食和一种炒菜.已知:今日午餐主食:米饭、面条炒菜:土豆片、麻婆豆腐、番茄炒蛋、烧土豆一共有种配餐方法.二、选择题.(6分15.(1分)用2019厘米长的铁丝先围成一个圆,再用这根铁丝围成了一个正方形,圆和正方形周长相比,()A.一样长B.圆的周长更长C.正方形的周长更长16.(1分)下面得数最大的算式是()A.0÷100B.0×100C.100﹣017.(1分)1.88元中的两个“8”的大小()A.一样大B.相差7.2元C.相差0.72元18.(1分)下面的节日中在大月的是()A.元旦节B.教师节C.儿童节19.(1分)下面图形中()的周长最长.A.B.C.20.(1分)比1小的小数一共有()A.无数个B.9个C.99个三、判断题.(6分21.(1分)一年中有7个大月,那么还有5个月就是小月.(判断对错)22.(1分)在有余数的除法里,除数一定比余数大..(判断对错)23.(1分)四个正方形一定能拼成一个大正方形..24.(1分)如果两个因数的末尾都没有0,那么它们乘得的积的末尾一定没有0.(判断对错)25.(1分)一张周长为40厘米的正方形纸剪成完全一样的两张长方形纸,每个长方形纸的周长都是20厘米.(判断对错)26.(1分)一根木料锯成4段用12分钟,另一根锯成8段要24分钟.(判断对错)四、计算27.(12分)口算12×4=96÷3=400÷5= 4.7+3=100÷4=24×5=50×8=1﹣0.09=×3=308.4元﹣4元=15+25÷5=400÷5+3=28.(8分)竖式计算.727+114+68=502×4=650×8=70元﹣7.9元=元角29.(12分)脱式计算.327+46﹣135l000﹣582﹣128(124﹣62)×6500﹣400÷5五、操作题.(每题3分,共9分)30.(3分)连一连.31.(3分)先在图上圈一圈,然后再写出得数:69÷3=32.请把下面这三个人看到的图连线:六、解决问题.(5题5分,其余每题4分,共21分)33.(4分)下面是“北京﹣﹣乌鲁木齐”沿线各大站的火车里程表.到站保定石家庄郑州洛阳西安兰州敦煌乌鲁木齐里程/千米1462776898131200187629433768(1)北京到洛阳有多远?(2)从敦煌到郑州有多远?(3)你还能提出什么问题?试解答.34.(4分)红光小学3名老师带40名学生去海洋馆参观,用400元买门票够吗?35.(4分)李阿姨不小心将购物发票弄脏了,你能帮她算出排球的单价吗?物品名称单价数量总价篮球57元1个145元排球4个36.(4分)王大伯在一面靠墙的地方有一块长32米,宽14米的长方形菜地,他计划给这块菜地除墙外的另外三面围上篱笆,至少需要多少米的篱笆?37.(5分)2019年春节快到了,自来水公司要给优秀职工发奖品,计划购买7盒杯子,那么一共需要多少元钱?(请用两种不同的方法解决,分步与综合不是两种方法哟!)七、填空.(每题2分,共8分)38.(2分)一个除法算式,商和余数都是6,那么被除数最小是.39.(2分)在一张长为12厘米,宽为5厘米的长方形纸的四个角落分别剪去边长为2厘米的正方形,这时剩下图形的周长是厘米.40.(2分)笑笑看一本80页的故事书,计划每天看10页,那么她第三天应该从第页看起.41.(2分)淘气和笑笑用同样多的钱去买同样的笔,结果淘气比笑笑多6支笔,这样淘气就还要给笑笑24元钱,那么每支笔元.八、解决问题.(每题4分,共12分42.(4分)用22根同样长的小棒可以摆出几种不同的长方形?请用你喜欢的方法记录下来,一定不要遗漏哟.43.(4分)淘气在计算一个数乘27时,错误的看成了乘21,这样得到的结果就比少了48,那么正确的结果应该是多少呢?44.(4分)笑笑到爷爷家,如果去时坐车、回来步行一共需要20分钟,如果去时和回来都步行需要32分钟,那么去时和回来都坐车需要多少分钟?2018-2019学年四川省成都市高新区三年级(上)期末数学试卷参考答案与试题解析一、填空题.(每空1分共26分)1.(3分)今年2019年有12个月,2月份有28天,第三季度的天数有92天.【分析】一年有12个月,今年2019年,2019不能被4整除,是平年,2月有28天,第三季度是7月、8月、9月,7、8月是大月有31天,9月是小月有30天,加起来即可得解.【解答】解:2019÷4=504…3,所以2019年是平年,2月28天;31+31+30=92(天)答:今年2019年有12个月,2月份有28天,第三季度的天数有92天;故答案为:12,28,92.2.(3分)算式:125﹣25×4,先算乘法,再算减法,得数是25.【分析】125﹣25×4有乘法和减法,应先算乘法,再算减法.【解答】解:125﹣25×4=125﹣100=25即:125﹣25×4,先算乘法,再算减法,得数是25.故答案为:乘,减,25.3.(3分)小明上周五16时45分放学,也就是下午4:45放学,他坐公交车回家看表正好是下午5:20.那么他坐公交车一共用了35分.【分析】(1)把24时计时法化成普通计时法,下午和晚上时间减去12时,上午时间不变;反之,普通计时法化成24时计时法则下午和晚上时间加上12时,上午不变;因此得解.(2)根据经过时间=结束时间﹣开始时间,代入数据,即可得解.【解答】解:(1)16时45分﹣12时=4时45分,答:小明上周五16时45分放学,也就是下午4:45分放学;(2)5时20分+12时=17时20分17时20分﹣16时45分=35分答:他坐公交车一共用了35分.故答案为:4,45,35.4.(2分)算式216×5的积的最高位是千位,126×5的积的最高位是百位.【分析】三位数乘一位数的积可能是三位数、也可能是四位数,根据整数乘法的计算法则分别求出216×5和126×5的积,进而确定积的最高位是什么位.据此解答.【解答】解:216×5=1080;126×5=630;答:216×5的积的最高位是千位,126×5的积的最高位是百位.故答案为:千、百.5.(1分)最大的两位数与最大的一位数的积是891,商是11.【分析】最大的两位数是99,最大的一位数是9,分别用99乘9和99除以9求出积和商即可.【解答】解:99×9=89199÷9=11答:最大的两位数与最大的一位数的积是891,商是11.故答案为:891,11.6.(2分)5元5分= 5.05元12个0.1米=120厘米【分析】把5元5分换算成元,先把5分除以进率100,再加上5元;12个0.1米是1.2米,把1.2米换算成厘米,应当乘进率100,计算即可.【解答】解:5元5分=5.05元12个0.1米=120厘米故答案为:5.05,120.7.(4分)在横线里填上“>、<”或“=”234+567<267+54313×6>16x31000﹣811﹣89=1000﹣(811+89)10.9元<11元【分析】(1)(2)先计算出算式的结果,再比较;(3)根据减法的性质进行比较;(4)根据小数比较大小的方法求解.【解答】解:(1)234+567=801267+543=810801<810所以:234+567<267+543;(2)13×6=7816×3=4878>48所以:13×6>16×3(3)根据减法的性质可知:1000﹣811﹣89=1000﹣(811+89);(4)根据小数比较大小的方法可知:10.9元<11元故答案为:<,>,=,<.8.(2分)横线中填几:(42﹣30)÷3=430=5×4+10【分析】(1)先用3乘4求出小括号里面的结果,再加上30即可求解;(2)先用30减去10求出5乘□的结果,再除以5即可.【解答】解:(1)3×4+30=12+30=42即:(42﹣30)÷3=4;(2)(30﹣10)÷5=20÷5=4即:30=5×4+10.故答案为:42,4.9.(1分)一个长方形长与宽的和是24厘米,那么这个长方形的周长是48厘米.【分析】已知长方形长与宽的和是24厘米,根据长方形的周长=(长+宽)×2,据此解答.【解答】解:24×2=48(厘米)答:这个长方形的周长是48厘米.故答案为:48.10.(2分)找规律填数:(1)0、3、6、9、12、15(2)1、4、9、16、25、36【分析】(1)规律:3﹣0=3,6﹣3=3,9﹣6=3,12﹣9=3,依次增加3;(2)规律:1×1=1,2×2=4,3×3=9,4×4=16,5×5=25;都是连续的完全平方数;【解答】解:(1)12+3=15(2)6×6=36故答案为:15;36.11.(1分)一条游泳道长50米,小明游了2个来回,共游了200米.【分析】小明游了2个来回,即游了2×2个50米,然后根据整数乘法的意义解答即可.【解答】解:50×(2×2)=50×4=200(米)答:共游了200米.故答案为:200.12.(1分)淘气5分打200个字,笑笑3分打132个字,笑笑打字快一点.【分析】淘气5分打200个字,用200个字除以5分钟,即可求出每分钟打字的个数,同理求出笑笑每分钟打多少个字,再比较即可求解.【解答】解:200÷5=40(个)132÷3=44(个)40<44答:笑笑打字快一点.故答案为:笑笑.13.(1分)图中一共有72块小正方体.【分析】长方体的长宽高商分别有6、4、3块正方体,然后利用长方体体积公式V=abh解答即可.【解答】解:6×4×3=24×3=72(块)答:图中一共有72块小正方体.故答案为:72.14.(1分)食堂中一份盒饭含一种主食和一种炒菜.已知:今日午餐主食:米饭、面条炒菜:土豆片、麻婆豆腐、番茄炒蛋、烧土豆一共有8种配餐方法.【分析】炒菜有4种不同的选择方法,主食有2种不同的选择方法,根据乘法原理,它们的积就是全部的配餐方法.【解答】解:4×2=8(种)答:一共有8种不同的配餐方法.故答案为:8.二、选择题.(6分15.(1分)用2019厘米长的铁丝先围成一个圆,再用这根铁丝围成了一个正方形,圆和正方形周长相比,()A.一样长B.圆的周长更长C.正方形的周长更长【分析】由周长的定义,根据铁丝的长度是2019厘米即可得到圆和正方形周长,从而求解.【解答】解:由分析可知圆和正方形周长都是2019厘米长.故选:A.16.(1分)下面得数最大的算式是()A.0÷100B.0×100C.100﹣0【分析】根据“0除以任何数都得0”、“0乘任何数都得0”、“一个数减去0,仍得这个数”,计算出得数再判断.【解答】解:因为0÷100=0,0×5=100,100﹣0=100;所以,得数最大的算式是100﹣0.故选:C.17.(1分)1.88元中的两个“8”的大小()A.一样大B.相差7.2元C.相差0.72元【分析】首先搞清这个数字在小数的什么数位上,这个数位的计数单位是什么,它就表示有几个这样的计数单位,然后相减即可.【解答】解:1.88元中的两个“8”一个在十分位上,表示0.8元,一个在百分位上,表示0.08元,相差:0.8﹣0.88=0.72(元);故选:C.18.(1分)下面的节日中在大月的是()A.元旦节B.教师节C.儿童节【分析】元旦是1月1日,儿童节是6月1日,教师节是9月10日,一年有12个月,分为7个大月:1、3、5、7、8、10、12月,大月每月31天,据此判断并选择.【解答】解:元旦是1月1日,儿童节是6月1日,教师节是9月10日,在大月的是元旦节;故选:A.19.(1分)下面图形中()的周长最长.A.B.C.【分析】周长是指封闭图形一周的长度,只要数出各选项中,一周有几个小正方形的边长,就可以表示出各图形的周长,再比较即可.【解答】解:令图中小正方形的边长是1,A,它的周长是10;B,它的周长是12;C,它的周长是14;14>12>10;C的周长最大.故选:C.20.(1分)比1小的小数一共有()A.无数个B.9个C.99个【分析】比任何一个整数小的小数都有无数个,据此判断即可.【解答】解:比1小的小数一共有无数个.故选:A.三、判断题.(6分21.(1分)一年中有7个大月,那么还有5个月就是小月.×(判断对错)【分析】根据年月日的知识可知:一年有12个月,分为7个大月:1、3、5、7、8、10、12月,大月每月31天,4个小月:4、6、9、11月,小月每月30天,闰年的二月有29天,平年的二月有28天,据此进行分析判断.【解答】解:一年有12个月,分为7个大月4个小月,二月份是特殊月,所以,一年中有7个大月,那么还有5个月就是小月的说法是错误的.故答案为:×.22.(1分)在有余数的除法里,除数一定比余数大.√.(判断对错)【分析】根据“在有余数的除法中,余数一定比除数小”,进行判断即可.【解答】解:在有余数的除法里,除数一定比余数大,说法正确;故答案为:√.23.(1分)四个正方形一定能拼成一个大正方形.×.【分析】根据小正方形拼组大正方形的方法,可以画图举出反例:据此即可判断.【解答】解:如图,2个边长1厘米的正方形和2个边长3厘米的正方形,则拼不成一个大正方形;故答案为:×.24.(1分)如果两个因数的末尾都没有0,那么它们乘得的积的末尾一定没有0.×(判断对错)【分析】根据题意,假设这两个数分别是2与3或2与5,分别求出它们的乘积,然后再进一步解答.【解答】解:假设这两个数分别是2与3或2与5,2×3=6,6的末尾没有0;2×5=10,10的末尾有0;所以,两个因数的末尾没有0.它们的积的末尾可能有0,也可能没有0.原题说法不正确.故答案为:×.25.(1分)一张周长为40厘米的正方形纸剪成完全一样的两张长方形纸,每个长方形纸的周长都是20厘米.×(判断对错)【分析】首先用正方形的周长除以4求出正方形的边长,把这个正方形纸剪成完全一样的两张长方形纸,每张长方形纸的宽是正方形边长的一半,据此求出长方形的宽,再根据长方形的周长公式:C=(a+b)×2,求出长方形的周长与20厘米进行比较即可.【解答】解:40÷4=10(厘米)10÷2=5(厘米)(10+5)×2=15×2=30(厘米)答:每个长方形纸的周长都是30厘米.故答案为:×.26.(1分)一根木料锯成4段用12分钟,另一根锯成8段要24分钟.×(判断对错)【分析】据题意可知,锯成4段用12分钟,也就是锯了3次用12分钟,每次用12÷3=4(分钟);锯成8段,也就是锯了7次,据此解答即可.【解答】解:12÷(4﹣1)×(8﹣1)=4×7=28(分钟).答:另一根锯成8段要28分钟.故答案为:×.四、计算27.(12分)口算12×4=96÷3=400÷5= 4.7+3=100÷4=24×5=50×8=1﹣0.09=10×3=308.4元﹣4元=15+25÷5=400÷5+3=【分析】根据整数乘除法以及小数加减法的计算方法直接口算即可,()×3=30,根据一个因数=积÷另一个因数解答.【解答】解:12×4=4896÷3=32400÷5=80 4.7+3=7.7100÷4=2524×5=12050×8=4001﹣0.09=0.9110×3=308.4元﹣4元=4.4元15+25÷5=20400÷5+3=83故答案为:10.28.(8分)竖式计算.727+114+68=909502×4=2008650×8=520070元﹣7.9元=62元1角【分析】根据整数加法和乘法以及小数减法的计算方法进行计算即可.【解答】解:727+114+68=909502×4=2008650×8=520070元﹣7.9元=62元1角故答案为:909,2008,5200,62,1.29.(12分)脱式计算.327+46﹣135l000﹣582﹣128(124﹣62)×6500﹣400÷5【分析】(1)按照从左到右的顺序计算;(2)按照减法的性质计算;(3)先算减法,再算乘法;(4)先算除法,再算减法.【解答】解:(1)327+46﹣135=373﹣135=238(2)l000﹣582﹣128=1000﹣(582+128)=1000﹣710=290(3)(124﹣62)×6=62×6=372(4)500﹣400÷5=500﹣80=420五、操作题.(每题3分,共9分)30.(3分)连一连.【分析】根据钟表的认识,当分针指向12时,时针指向几就是几时整;不是整时时,时针刚几就是几时,分针指向多少分,就是几时多少分.【解答】解:连一连:31.(3分)先在图上圈一圈,然后再写出得数:69÷3=23【分析】69÷3,是把69平均分成3份,求每份的数量,先把6捆(60根小棒)平均分成3份,每份是2捆,再把9根平均分成3份,每份是3个,所以每份就是20+3=23根,由此求解.【解答】解:算式:69÷3=23.故答案为:23.32.请把下面这三个人看到的图连线:【分析】根据题意,在正面内得到的由前向后观察物体的视图,叫做主视图;在侧面内得到的由左向右观察物体的视图,叫做左视图,有时也叫做侧视图.进而连线即可.【解答】解:六、解决问题.(5题5分,其余每题4分,共21分)33.(4分)下面是“北京﹣﹣乌鲁木齐”沿线各大站的火车里程表.到站保定石家庄郑州洛阳西安兰州敦煌乌鲁木齐1462776898131200187629433768里程/千米(1)北京到洛阳有多远?(2)从敦煌到郑州有多远?(3)你还能提出什么问题?试解答.【分析】(1)北京到洛阳的距离从表中直接可以看出;或把起始站的里程看作0,用终了站的里程减去起始站的里程.(2)用到敦煌的里程减去到郑州里程即可.(3)还能提出很多问题,如:郑州到乌鲁木齐有多远?用到乌鲁木齐的里程减去到郑州的里程.【解答】解:(1)答:北京到洛阳有813千米;(2)2493﹣689=1804(千米),答:从敦煌到郑州有1804千米;(3)郑州到乌鲁木齐有多远?3768﹣689=3079(千米),答:郑州到乌鲁木齐有3079千米.34.(4分)红光小学3名老师带40名学生去海洋馆参观,用400元买门票够吗?【分析】根据题意,3名老师乘上成人票价12元,可以求出老师买门票的钱数,40名学生乘上儿童票价9元,可以求出学生买门票的钱数,把老师和和学生买门票的钱数加起来,就是买门票的总钱数,如果不大于400元就够,否则不够.【解答】解:根据题意可得:3×12=36(元);40×9=360(元);36+360=396(元);396<400.答:用400元买门票够.35.(4分)李阿姨不小心将购物发票弄脏了,你能帮她算出排球的单价吗?物品名称单价数量总价篮球57元1个145元排球224个【分析】先用145元减去1个篮球的价格,即为4个排球的价格,再据“总价÷数量=单价”即可得解.【解答】解:(145﹣57)÷4=88÷4=22(元)答:排球的单价是22元.物品名称单价数量总价篮球57元1个145元排球224个故答案为:22.36.(4分)王大伯在一面靠墙的地方有一块长32米,宽14米的长方形菜地,他计划给这块菜地除墙外的另外三面围上篱笆,至少需要多少米的篱笆?【分析】当长方形的菜地的长边靠墙,所需篱笆较少,可得篱笆的长为:2个宽+1个长,代入数据解答即可.【解答】解:32+14×2=32+28=60(米)答:至少要用60米长的篱笆.37.(5分)2019年春节快到了,自来水公司要给优秀职工发奖品,计划购买7盒杯子,那么一共需要多少元钱?(请用两种不同的方法解决,分步与综合不是两种方法哟!)【分析】方法一:先用每个杯子的价格乘6个,求出每盒需要的钱数,再乘7盒即可求解;方法二:先用每盒杯子的个数乘7盒求出杯子的总数,再乘每个杯子的单价即可求解.【解答】解:方法一:8×6×7=48×7=336(元)6×7×8=42×8=336(元)答:一共需要336元钱.七、填空.(每题2分,共8分)38.(2分)一个除法算式,商和余数都是6,那么被除数最小是48.【分析】根据在有余数的除法中,余数总比除数小,即除数最小为:余数+1,进而根据“被除数=商×除数+余数”解答即可.【解答】解:除数最小为:6+1=76×7+6=42+6=48答:被除数最小是48.故答案为:48.39.(2分)在一张长为12厘米,宽为5厘米的长方形纸的四个角落分别剪去边长为2厘米的正方形,这时剩下图形的周长是34厘米.【分析】根据题意可知:在一张长为12厘米,宽为5厘米的长方形纸的四个角落分别剪去边长为2厘米的正方形,虽然面积减少了,但是周长不变.根据长方形的周长公式:C =(a+b)×2,把数据代入公式解答.【解答】解:(12+5)×2=17×2=34(厘米),答:这时剩下图形的周长是34厘米.故答案为:34.40.(2分)笑笑看一本80页的故事书,计划每天看10页,那么她第三天应该从第21页看起.【分析】根据整数乘法的意义:求几个相同的加数的和是多少用乘法计算,用每天看的页数10乘以看的天数2就是笑笑已经看完的页数;看完的页数加1就是需要开始看的页数.【解答】解:10×2+1=20+1=21(页)答:第三天应该从第21页看起.故答案为:21.41.(2分)淘气和笑笑用同样多的钱去买同样的笔,结果淘气比笑笑多6支笔,这样淘气就还要给笑笑24元钱,那么每支笔4元.【分析】由题意可知:结果淘气比笑笑多6支笔,多花了24元,则24元对应的数量就是6支笔,于是用除法计算即可求出每支的价格.【解答】解:24÷6=4元,答:每支笔24元.故答案为:4.八、解决问题.(每题4分,共12分42.(4分)用22根同样长的小棒可以摆出几种不同的长方形?请用你喜欢的方法记录下来,一定不要遗漏哟.【分析】摆成的长方形的长与宽的和是(22÷2),从而可以求出长于宽分别是多少,就能知道符合要求的长方形的个数.【解答】解:摆成的长方形的长与宽的和是22÷2=11,则摆成的长方形的长和宽分别是:10、1;9、2;3、8;4、7;5、6;所以能摆5种.43.(4分)淘气在计算一个数乘27时,错误的看成了乘21,这样得到的结果就比少了48,那么正确的结果应该是多少呢?【分析】由题意得:误把27写成了21,一个因数少了27﹣21=6,积少了48,用48÷6即可求出原来的没有错的因数,进而求出正确的积.【解答】解:48÷(27﹣21)×27=48÷6×27=8×27=216答:正确的结果应该是216.44.(4分)笑笑到爷爷家,如果去时坐车、回来步行一共需要20分钟,如果去时和回来都步行需要32分钟,那么去时和回来都坐车需要多少分钟?【分析】根据题意,如果去时和回来都步行需要32分钟,则步行1趟需要时间:32÷2=16(分钟);又如果去时坐车、回来步行一共需要20分钟,则坐车1趟需要时间:20﹣16=4(分钟);所以,来回都坐车用时:4×2=8(分钟).【解答】解:(20﹣32÷2)×2=(20﹣16)×2=4×2=8(分钟)答:去时和回来都坐车需要8分钟.。
2018-2019学年度八年级上数学期末试卷(解析版) (2)

2018-2019学年八年级(上)期末数学试卷一、选择题:本大题共14个小题,每小题3分,共42分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(3分)近似数0.13是精确到()A.十分位B.百分位C.千分位D.百位2.(3分)下列四张扑克牌中,左旋转180°后还是和原来一样的是()A.B.C.D.3.(3分)是2的()A.倒数B.平方根C.立方根D.算术平方根4.(3分)在3×3的方格中涂有阴影图形,下列阴影图形不是轴对称图形的是()A.B.C.D.5.(3分)下列选项中,可以用来证明命题“若|a﹣1|>1,则a>2”是假命题的反例是()A.a=2B.a=1C.a=0D.a=﹣16.(3分)如图是作△ABC的作图痕迹,则此作图的已知条件是()A.已知两边及夹角B.已知三边C.已知两角及夹边D.已知两边及一边对角7.(3分)在代数式和中,x均可以取的值为()A.9B.3C.0D.﹣28.(3分)如果把分式中的a、b同时扩大为原来的2倍,得到的分式的值不变,则W 中可以是()A.1B.C.ab D.a29.(3分)我国是最早了解勾股定理的国家之一.下面四幅图中,不能证明勾股定理的是()A.B.C.D.10.(3分)若(b为整数),则a的值可以是()A.B.27C.24D.2011.(3分)如图,AB⊥CD,且AB=CD,E,F是AD上两点,CE⊥AD,BF⊥AD.若CE =4,BF=3,EF=2,则AD的长为()A.3B.5C.6D.712.(3分)已知:△ABC中,AB=AC,求证:∠B<90°,下面写出可运用反证法证明这个命题的四个步骤:①∴∠A+∠B+∠C>180°,这与三角形内角和为180°矛盾②因此假设不成立.∴∠B<90°③假设在△ABC中,∠B≥90°④由AB=AC,得∠B=∠C≥90°,即∠B+∠C≥180°.这四个步骤正确的顺序应是()A.③④①②B.③④②①C.①②③④D.④③①②13.(3分)已知x=,则代数式(7+4)x2+(2+)x+的值是()A.0B.C.D.2﹣14.(3分)在一张直角三角形纸片的两直角边上各取一点,分别沿斜边中点与这两点的连线剪去两个三角形,剩下的部分是如图所示的直角梯形,其中三边长分别为2、4、3,则原直角三角形纸片的斜边长是()A.10B.C.10或D.10或二、填空题(本大题有3个小题,每小题4分,共20分.把答案写在题中横线上)15.(4分)=.16.(4分)如图,在△ABC中,∠B=∠ACB=2∠A,AC的垂直平分线交AB于点E,D 为垂足,连接EC,则∠ECD=.17.(4分)如图,在△ABC中,∠ACB=90°,∠A=30°,以点C为圆心,CB长为半径作弧,交AB于点D;再分别以点B和点D为圆心,大于的长为半径作弧,两弧相交于点E,作射线CE交AB于点F,若AF=6,则BC的长为.三、解答题(本大题共7小题,共66分.解答应写出文字说明、证明过程或演算步骤.)18.如图,以O为圆心,以OB为半径画弧交数轴于A点;(1)说出数轴上点A所表示的数;(2)比较点A所表示的数与﹣2.5的大小.19.(1)发现.①;②;③;…………写出④;⑤;(2)归纳与猜想.如果n为正整数,用含n的式子表示这个运算规律;(3)证明这个猜想.20.如图,在△ABC中,AB=BC,BD是∠ABC的平分线,E为AB的中点,连接DE,若DE=5,AC=16,求DB的长.21.如图所示,△ABC中,∠BAC的平分线与BC的垂直平分线相交于点E,EF⊥AB,EG ⊥AC,垂足分别为F、G,则BF=CG吗?说明理由.22.已知代数式(﹣1)÷,则:(1)当x=﹣3时,求这个代数式的值;(2)这个代数式的值能等于﹣1吗?请说明理由.23.某超市为了促销,将本来售完后可得1800元的奶糖和900元的水果糖混合后配成杂拌糖出售.这种糖每千克比奶糖便宜4元,比水果糖贵6元.已知这两种糖混合前后质量相同,求杂拌糖的单价.24.如图,在△ABC中,∠BAC=90°,AB=AC,点D是BC上一动点,连接AD,过点A 作AE⊥AD,并且始终保持AE=AD,连接CE.(1)求证:△ABD≌△ACE;(2)若AF平分∠DA E交BC于F,探究线段BD,DF,FC之间的数量关系,并证明;(3)在(2)的条件下,若BD=3,CF=4,求AD的长.2018-2019学年河北省石家庄市八校联考八年级(上)期末数学试卷参考答案与试题解析一、选择题:本大题共14个小题,每小题3分,共42分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(3分)近似数0.13是精确到()A.十分位B.百分位C.千分位D.百位【分析】确定近似数精确到哪一位,就是看这个数的最后一位是什么位即可.【解答】解:近似数0.13是精确到百分位,故选:B.【点评】此题考查了近似数,用到的知识点是精确度,一个数最后一位所在的位置就是这个数的精确度.2.(3分)下列四张扑克牌中,左旋转180°后还是和原来一样的是()A.B.C.D.【分析】左旋转180°后还是和原来一样的图形是中心对称图形,根据中心对称图形的定义解答即可.【解答】解:左旋转180°后还是和原来一样的是只有C.故选:C.【点评】本题主要考查了中心对称图形的定义,是需要熟记的内容.3.(3分)是2的()A.倒数B.平方根C.立方根D.算术平方根【分析】根据算术平方根与平方根的定义即可求出答案.【解答】解:是2的算术平方根,故选:D.【点评】本题考查平方根,解题的关键是熟练运用平方根的定义,本题属于基础题型.4.(3分)在3×3的方格中涂有阴影图形,下列阴影图形不是轴对称图形的是()A.B.C.D.【分析】直接利用轴对称图形的定义判断得出即可.【解答】解:A、是轴对称图形,不合题意;B、是轴对称图形,不合题意;C、是轴对称图形,不合题意;D、不是轴对称图形,符合题意;故选:D.【点评】此题主要考查了轴对称图形的定义,轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合.5.(3分)下列选项中,可以用来证明命题“若|a﹣1|>1,则a>2”是假命题的反例是()A.a=2B.a=1C.a=0D.a=﹣1【分析】所选取的a的值符合题设,则不满足结论即作为反例.【解答】解:当a=﹣1时,满足|a﹣1|>1,但满足a>2,所以a=﹣1可作为证明命题“若|a﹣1|>1,则a>2”是假命题的反例.故选:D.【点评】本题考查了命题与定理:判断一件事情的语句,叫做命题.许多命题都是由题设和结论两部分组成,题设是已知事项,结论是由已知事项推出的事项,一个命题可以写成“如果…那么…”形式.有些命题的正确性是用推理证实的,这样的真命题叫做定理.要说明一个命题的正确性,一般需要推理、论证,而判断一个命题是假命题,只需举出一个反例即可.6.(3分)如图是作△ABC的作图痕迹,则此作图的已知条件是()A.已知两边及夹角B.已知三边C.已知两角及夹边D.已知两边及一边对角【分析】观察图象可知已知线段AB,α,β,由此即可判断.【解答】解:观察图象可知:已知线段AB,∠CAB=α,∠CBA=β,故选:C.【点评】本题考查作图﹣复杂作图,解题的关键是理解题意,属于中考常考题型.7.(3分)在代数式和中,x均可以取的值为()A.9B.3C.0D.﹣2【分析】根据分式的分母不等于0且二次根式的被开方数是非负数得出x的范围,据此可得答案.【解答】解:由题意知,x﹣3≠0且x﹣3≥0,解得:x>3,故选:A.【点评】本题主要考查二次根式有意义的条件,解题的关键是掌握分式的分母不等于0且二次根式的被开方数是非负数.8.(3分)如果把分式中的a、b同时扩大为原来的2倍,得到的分式的值不变,则W 中可以是()A.1B.C.ab D.a2【分析】直接利用分式的基本性质分别代入判断得出答案.【解答】解:如果把分式中的a、b同时扩大为原来的2倍,得到的分式的值不变,则W中可以是:b.故选:B.【点评】此题主要考查了分式的基本性质,正确掌握分式的基本性质是解题关键.9.(3分)我国是最早了解勾股定理的国家之一.下面四幅图中,不能证明勾股定理的是()A.B.C.D.【分析】先表示出图形中各个部分的面积,再判断即可.【解答】解:A、∵+c2+ab=(a+b)(a+b),∴整理得:a2+b2=c2,即能证明勾股定理,故本选项不符合题意;B、∵4×+c2=(a+b)2,∴整理得:a2+b2=c2,即能证明勾股定理,故本选项不符合题意;C、∵4×+(b﹣a)2=c2,∴整理得:a2+b2=c2,即能证明勾股定理,故本选项不符合题意;D、根据图形不能证明勾股定理,故本选项符合题意;故选:D.【点评】本题考查了勾股定理的证明,能根据图形中各个部分的面积列出等式是解此题的关键.10.(3分)若(b为整数),则a的值可以是()A.B.27C.24D.20【分析】根据二次根式的运算法则即可求出答案.【解答】解:+=3+=b当a=20时,∴=2,∴b=5,符合题意,故选:D.【点评】本题考查二次根式的运算法则,解题的关键是熟练运用二次根式的运算法则,本题属于基础题型.11.(3分)如图,AB⊥CD,且AB=CD,E,F是AD上两点,CE⊥AD,BF⊥AD.若CE =4,BF=3,EF=2,则AD的长为()A.3B.5C.6D.7【分析】只要证明△ABF≌△CDE,可得AF=CE=4,BF=DE=3,推出AD=AF+DF =4+(3﹣2)=5;【解答】解:∵AB⊥CD,CE⊥AD,BF⊥AD,∴∠AFB=∠CED=90°,∠A+∠D=90°,∠C+∠D=90°,∴∠A=∠C,∵AB=CD,∴△ABF≌△CDE(AAS),∴AF=CE=4,BF=DE=3,∵EF=2,∴AD=AF+DF=4+(3﹣2)=5,故选:B.【点评】本题考查全等三角形的判定和性质,解题的关键是正确寻找全等三角形解决问题,属于中考常考题型.12.(3分)已知:△ABC中,AB=AC,求证:∠B<90°,下面写出可运用反证法证明这个命题的四个步骤:①∴∠A+∠B+∠C>180°,这与三角形内角和为180°矛盾②因此假设不成立.∴∠B<90°③假设在△ABC中,∠B≥90°④由AB=AC,得∠B=∠C≥90°,即∠B+∠C≥180°.这四个步骤正确的顺序应是()A.③④①②B.③④②①C.①②③④D.④③①②【分析】通过反证法的证明步骤:①假设;②合情推理;③导出矛盾;④结论;理顺证明过程即可.【解答】解:由反证法的证明步骤:①假设;②合情推理;③导出矛盾;④结论;所以题目中“已知:△ABC中,AB=AC,求证:∠B<90°”.用反证法证明这个命题过程中的四个推理步骤:应该为:假设∠B≥90°;那么,由AB=AC,得∠B=∠C≥90°,即∠B+∠C≥180°所以∠A+∠B+∠C>180°,这与三角形内角和定理相矛盾,;所以因此假设不成立.∴∠B<90°;原题正确顺序为:③④①②.故选:A.【点评】本题考查反证法证明步骤,考查基本知识的应用,逻辑推理能力.13.(3分)已知x=,则代数式(7+4)x2+(2+)x+的值是()A.0B.C.D.2﹣【分析】将x的值代入原式,再利用完全平方公式和平方差公式计算可得.【解答】解:当x=时,原式=(7+4)(2﹣)2+(2+)(2﹣)+=(7+4)(7﹣4)+4﹣3+=49﹣48+1+=2+,故选:C.【点评】本题主要考查二次根式的化简求值,解题的关键是熟练掌握完全平方公式、平方差公式及二次根式的运算法则.14.(3分)在一张直角三角形纸片的两直角边上各取一点,分别沿斜边中点与这两点的连线剪去两个三角形,剩下的部分是如图所示的直角梯形,其中三边长分别为2、4、3,则原直角三角形纸片的斜边长是()A.10B.C.10或D.10或【分析】先根据题意画出图形,再根据勾股定理求出斜边上的中线,最后即可求出斜边的长.【解答】解:①如图:因为CD==2,点D是斜边AB的中点,所以AB=2CD=4,②如图:因为CE==5,点E是斜边AB的中点,所以AB=2CE=10,原直角三角形纸片的斜边长是10或,故选:C.【点评】此题考查了图形的剪拼,解题的关键是能够根据题意画出图形,在解题时要注意分两种情况画图,不要漏解.二、填空题(本大题有3个小题,每小题4分,共20分.把答案写在题中横线上)15.(4分)=﹣.【分析】如果一个数x的立方等于a,那么x是a的立方根,根据此定义求解即可.【解答】解:∵﹣的立方为﹣,∴﹣的立方根为﹣,故答案为﹣.【点评】此题主要考查了求一个数的立方根,解题时应先找出所要求的这个数是哪一个数的立方.由开立方和立方是互逆运算,用立方的方法求这个数的立方根.注意一个数的立方根与原数的性质符号相同.16.(4分)如图,在△ABC中,∠B=∠ACB=2∠A,AC的垂直平分线交AB于点E,D 为垂足,连接EC,则∠ECD=36°.【分析】根据三角形内角和定理求出∠A,根据线段垂直平分线的性质得到EA=EC,根据等腰三角形的性质解答.【解答】解:设∠A=x,则∠B=∠ACB=2x,则x+2x+2x=180°,解得,x=36°,∴∠B=∠ACB=72°,∵DE是AC的垂直平分线,∴EA=EC,∴∠ECD=∠A=36°,故答案为:36°.【点评】本题考查的是线段的垂直平分线的性质、等腰三角形的性质,掌握线段的垂直平分线上的点到线段的两个端点的距离相等是解题的关键.17.(4分)如图,在△ABC中,∠ACB=90°,∠A=30°,以点C为圆心,CB长为半径作弧,交AB于点D;再分别以点B和点D为圆心,大于的长为半径作弧,两弧相交于点E,作射线CE交AB于点F,若AF=6,则BC的长为4.【分析】连接CD,根据在△ABC中,∠ACB=90°,∠A=30°,BC为x,可知AB=2BC=2x,再由作法可知BC=CD=x,CE是线段BD的垂直平分线,故CD是斜边AB 的中线,据此可得出BD=x,进而可得出结论.【解答】解:连接CD,∵在△ABC中,∠ACB=90°,∠A=30°,设BC=x,∴AB=2BC=2x.∵作法可知BC=CD=x,CE是线段BD的垂直平分线,∴CD是斜边AB的中线,∴BD=AD=x,∴BF=DF=x,∴AF=AD+DF=x+x=6.解得:x=4.故答案为:4【点评】本题考查的是作图﹣基本作图,熟知线段垂直平分线的作法和直角三角形的性质是解答此题的关键.三、解答题(本大题共7小题,共66分.解答应写出文字说明、证明过程或演算步骤.)18.如图,以O为圆心,以OB为半径画弧交数轴于A点;(1)说出数轴上点A所表示的数;(2)比较点A所表示的数与﹣2.5的大小.【分析】(1)根据勾股定理求出OB的长度,再根据圆的半径定义得到OA,求出A;(2)根据A所代表的数,直接比较与﹣2.5的大小;【解答】解:(1)OB=,∵OB=OA=∴A所代表的数字为﹣\sqrt{5}$;(2)A点表示的数为﹣$\sqrt{5}$≈﹣2.235∴A点表示的数大于﹣2.5【点评】本题运用了勾股定理、数轴上负数大小比较的方法;19.(1)发现.①;②;③;…………写出④;⑤;(2)归纳与猜想.如果n为正整数,用含n的式子表示这个运算规律;(3)证明这个猜想.【分析】(1)根据题目中的例子可以写出例4;(2)根据(1)中特例,可以写出相应的猜想;(3)根据(2)中的猜想,对等号左边的式子化简,即可得到等号右边的式子,从而可以解答本题.【解答】解:(1)由例子可得,④为:,⑤,故答案为,,(2)如果n为正整数,用含n的式子表示这个运算规律:,故答案为:,(3)证明:∵n是正整数,∴.即.故答案为:∵n是正整数,∴.即.【点评】本题考查二次根式的混合运算、数字的变化类,解答本题的关键是明确题意,找出所求问题需要的条件.20.如图,在△ABC中,AB=BC,BD是∠ABC的平分线,E为AB的中点,连接DE,若DE=5,AC=16,求DB的长.【分析】根据等腰三角形的性质得到AD=8,AD⊥AC,根据直角三角形的性质求出AB,根据勾股定理计算即可.【解答】解:∵AB=BC,BD是∠ABC的平分线,∴AD=DC=AC=8,AD⊥AC,∴∠ADB=90°,又E为AB的中点,∴AB=2DE=10,由勾股定理得,BD==6.【点评】本题考查的是角平分线的定义、等腰三角形的性质、直角三角形的性质,掌握等腰三角形的三线合一是解题的关键.21.如图所示,△ABC中,∠BAC的平分线与BC的垂直平分线相交于点E,EF⊥AB,EG ⊥AC,垂足分别为F、G,则BF=CG吗?说明理由.【分析】先根据点E在BC的垂直平分线上可求出BE=CE,再根据点E在∠BAC的角平分线上,且EF⊥AB,EG⊥AC可求出EF=EG,再由HL定理可求出Rt△EFB≌Rt△EGC,由全等三角形的性质即可得出结论.【解答】解:BF=CG;理由如下:因为点E在BC的垂直平分线上,所以BE=CE.因为点E在∠BAC的角平分线上,且EF⊥AB,EG⊥AC,所以EF=EG,在Rt△EFB和Rt△EGC中,因为BE=CE,EF=EG,所以Rt△EFB≌Rt△EGC(HL).所以BF=CG.【点评】本题涉及到角平分线的性质、线段垂直平分线的性质、直角三角形全等的判定定理及全等三角形的性质,涉及面较广,难度适中.22.已知代数式(﹣1)÷,则:(1)当x=﹣3时,求这个代数式的值;(2)这个代数式的值能等于﹣1吗?请说明理由.【分析】(1)先根据分式的混合运算顺序和运算法则化简原式,再将x的值代入计算可得;(2)假设分式的值等于﹣1,根据化简结果列出关于x的方程,解方程求出x的值,依据分式有意义的条件作出判断.【解答】解:(1)原式=(﹣)÷=•=,当x=﹣3时,原式==﹣2;(2)若原式的值为﹣1,则=﹣1,解得:x=﹣1,而当x =﹣1时,原式分母为0,无意义; 所以原式的值不能等于﹣1.【点评】本题主要考查分式的化简求值,解题的关键是熟练掌握分式的混合运算顺序和运算法则.23.某超市为了促销,将本来售完后可得1800元的奶糖和900元的水果糖混合后配成杂拌糖出售.这种糖每千克比奶糖便宜4元,比水果糖贵6元.已知这两种糖混合前后质量相同,求杂拌糖的单价.【分析】设杂拌糖的单价为x 元,则奶糖的单价为(x +4)元,水果糖的单价为(x ﹣6)元,根据这两种糖混合前后质量相同列出方程,解方程即可.【解答】解:设杂拌糖的单价为x 元,则奶糖的单价为(x +4)元,水果糖的单价为(x ﹣6)元,根据题意得+=,解得:x =36.经检验,x =36是原方程的解. 答:杂拌糖的单价为36元.【点评】本题考查分式方程的应用,分析题意,找到合适的等量关系是解决问题的关键. 24.如图,在△ABC 中,∠BAC =90°,AB =AC ,点D 是BC 上一动点,连接AD ,过点A 作AE ⊥AD ,并且始终保持AE =AD ,连接CE . (1)求证:△ABD ≌△ACE ;(2)若AF 平分∠DAE 交BC 于F ,探究线段BD ,DF ,FC 之间的数量关系,并证明; (3)在(2)的条件下,若BD =3,CF =4,求AD 的长.【分析】(1)根据SAS ,只要证明∠1=∠2即可解决问题;(2)结论:BD 2+FC 2=DF 2.连接FE ,想办法证明∠ECF =90°,EF =DF ,利用勾股定理即可解决问题;(3)过点A 作AG ⊥BC 于G ,在Rt △ADG 中,想办法求出AG 、DG 即可解决问题; 【解答】(1)证明:∵AE ⊥AD ,∴∠DAE=∠DAC+∠2=90°,又∵∠BAC=∠DAC+∠1=90°,∴∠1=∠2,在△ABD和△ACE中,∴△ABD≌△ACE.(2)解:结论:BD2+FC2=DF2.理由如下:连接FE,∵∠BAC=90°,AB=AC,∴∠B=∠3=45°由(1)知△ABD≌△ACE∴∠4=∠B=45°,BD=CE∴∠ECF=∠3+∠4=90°,∴CE2+CF2=EF2,∴BD2+FC2=EF2,∵AF平分∠DAE,∴∠DAF=∠EAF,在△DAF和△EAF中,∴△DAF≌△EAF∴DF=EF∴BD2+FC2=DF2.(3)解:过点A作AG⊥BC于G,由(2)知DF2=BD2+FC2=32+42=25∴DF=5,∴BC=BD+DF+FC=3+5+4=12,∵AB=AC,AG⊥BC,∴BG=AG=BC=6,∴DG=BG﹣BD=6﹣3=3,∴在Rt△ADG中,AD===3.【点评】本题考查三角形综合题、等腰直角三角形的性质、勾股定理、全等三角形的判定和性质等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题,属于中考压轴题.。
四川省成都外国语学校2018-2019学年八年级下学期期中考试数学试题-7cf3f994dcbb4753a1d9a9fe0fc9da76

……○…………○……学校:__________班级:_……○…………○……绝密★启用前四川省成都外国语学校2018-2019学年八年级下学期期中考试数学试题试卷副标题注意事项:1.答题前填写好自己的姓名、班级、考号等信息 2.请将答案正确填写在答题卡上第I 卷(选择题)请点击修改第I 卷的文字说明 一、单选题1.如图所示的图形中,是中心对称图形的是( )A .B .C .D .2.无论a 取何值时,下列分式一定有意义的是( )A .221a a + B .21a a +C .211a a -+D .211a a -+ 3.不等式x ≤-1的解集在数轴上表示正确的是() A . B . C .D .4.下列因式分解正确的是( ) A .x 2﹣xy +x =x (x ﹣y ) B .a 3+2a 2b +ab 2=a (a +b )2 C .x 2﹣2x +4=(x ﹣1)2+3D .ax 2﹣9=a (x +3)(x ﹣3)5.下列变形中,不正确的是( ) A .若a>b ,则a+3>b+3 B .若a>b ,则13a>13b C .若a<b ,则-a<-bD .若a<b ,则-2a>-2b.…………○……………订……………线…※※请※※※线※※内※※答…………○……………订……………线…6.若分式方程12x -+3=12a x +-有增根,则a 的值是( )A .﹣1B .0C .1D .27.一次函数y =x ﹣1的图象交x 轴于点A .交y 轴于点B ,在y =x ﹣1的图象上有两点(x 1,y 1)、(x 2,y 2),若x 1<0<x 2,则下列式子中正确的是( )A .y 1<0<y 2B .y 1<y 2<0C .y 1<﹣1<y 2D .y 2<0<y 18.如图,DE 是△ABC 中AC 边的垂直平分线,若BC =6cm ,AB =8cm ,则△EBC 的周长是( )A .14cmB .18cmC .20cmD .22cm9.已知四边形ABCD ,对角线AC 与BD 交于点O ,从下列条件中:①//AB CD ;②AD BC =;③ABC ADC ∠=∠;④OA OC =.任取其中两个,以下组合能够判定四边形ABCD 是平行四边形的是( ) A .①②B .②③C .②④D .①④10.如图,已知△ABC 的面积为 12,点 D 在线段 AC 上,点 F 在线段 BC 的延长线上,且 BC=4CF ,四边形 DCFE 是平行四边形,则图中阴影部分的面积为( )A .2B .3C .4D .6第II 卷(非选择题)请点击修改第II 卷的文字说明二、填空题…………外……………订……○…………线…级:___________考号:______…………内……………订……○…………线…11.当x=_________时,分式313x x -+值为0. 12.已知a ﹣b =3,ab =﹣2,则a 2b ﹣ab 2的值为_______.13.将正三角形、正方形、正五边形按如图所示的位置摆放,则123∠+∠+∠=__________.14.如图,平面直角坐标系中,A 、B 两点的坐标分别为(2,0)、(0,1),若将线段AB 平移至A 1B 1,点A 1的坐标为(3,1),则点B 1的坐标为_______.15.若x 2+2(m+3)x+9是关于x 的完全平方式,则常数m =_______.16.直线y =﹣x +m 与y =x +5的交点的横坐标为﹣2,则关于x 的不等式﹣x +m >x +5>0的整数解为_____.17.某社区计划对面积为1600m 2的区域进行绿化.经投标,由甲、乙两个工程队来完成,若甲队每天能完成绿化的面积是乙队每天能完成绿化面积的2倍,并且在独立完成面积为400m 2区域的绿化时,甲队比乙队少用5天.若甲队每天绿化费用是0.6万元,乙队每天绿化费用为0.25万元,规定甲乙两队单独施工的总天数不超过25天完成,且施工总费用最低,则最低费用为__________万元.18.如图,矩形纸片ABCD 中,5AD =,3AB =.若M 为射线AD 上的一个动点,将ABM ∆沿BM 折叠得到NBM ∆.若NBC ∆是直角三角形.则所有符合条件的M 点所对应的AM 长度的和为__.19.如图,已知等腰直角△ABC 中,∠BAC =90°,AD ⊥BC 于点D ,AB =5,点E 是装…………线…………※※要※※在※※装…………线…………接EF ,点H 在线段AD 上,且DH =14AD ,连接EH ,HF ,记图中阴影部分的面积为S 1,△EHF 的面积记为S 2,则S 2的取值范围是_______.三、解答题20.(1)分解因式:5m (2x ﹣y )2﹣5mn 2(2)解不等式组2151132513(1)x x x x -+⎧-≤⎪⎨⎪-<+⎩ 21.(1)先化简,再求值:2336a a a --÷(242a a --﹣52a -),其中a 2+3a ﹣1=0.(2)若关于x 的分式方程2122x mx x -=--+1的解是正数,求m 的取值范围. 22.如图,在▱ABCD 中,点E ,F 在对角线AC 上,且AE=CF .求证: (1)DE=BF ;(2)四边形DEBF 是平行四边形.23.如图,△ABC 三个顶点的坐标分别为A (2,4),B (1,1),C (4,3). (1)请画出△ABC 关于x 轴对称的△A 1B 1C 1,并写出点A 1的坐标; (2)请画出△ABC 绕点B 逆时针旋转90°后的△A 2BC 2;(3)求出(2)中C 点旋转到C 2点所经过的路径长(结果保留根号和π); (4)求出(2)△A 2BC 2的面积是多少.………○…………装………线…………○……学校:___________姓………○…………装………线…………○……24.对x ,y 定义一种新运算T ,规定(,)2ax byx y x y+T =+(其中a ,b 均为非零常数),这里等式右边是通常的四则运算,例:1(0,1)201a b b b ⨯+⨯T ==⨯+ .已知(1,1)2T -=-,(4,2)1T =. (1)求a ,b 的值;(2)若关于m 的不等式组(2,54)4,(,32)m m m m pT -≤⎧⎨T ->⎩恰好有3个整数解,求实数p 的取值范围.25.如图,已知∠DAC =90°,△ABC 是等边三角形,点P 为射线AD 上任意一点(点P 与点A 不重合),连结CP ,将线段CP 绕点C 顺时针旋转60°得到线段CQ ,连结QB 并延长交直线AD 于点E . (1)如图,求∠QEP 的度数;(2)如图,若∠DAC =135°,∠ACP =15°,且AC =4,求BQ 的长.26.已知实数a ,b ,c 满足222()810410a b b c b c -++--+=.()1分别求a ,b ,c 的值;()2若实数x ,y ,z 满足xya x y =-+,yz cy z a =+,zx cz x b=-+,求xyz xy yz zx ++的值.27.由于受到手机更新换代的影响,某手机店经销的甲型号手机二月份售价比一月份售…………○…………装……※※请※※不※※要※※在…………○…………装……售额只有8万元.(1)求二月份甲型号手机每台售价为多少元?(2)为了提高利润,该店计划三月份加入乙型号手机销售,已知甲型每台进价为3500元,乙型每台进价为4000元,预计用不多于7.6万元且不少于7.5万元的资金购进这两种手机共20台,请问有几种进货方案?(3)对于(2)中刚进货的20台两种型号的手机,该店计划对甲型号手机在二月份售价基础上每售出一台甲型手机再返还顾客现金a 元,乙型手机按销售价4400元销售,若要使(2)中所有方案获利相同,a 应取何值? 28.已知直线l 1:y =﹣x+b 与x 轴交于点A ,直线l 2:y =43x ﹣163与x 轴交于点B ,直线l 1、l 2交与点C ,且C 点的横坐标为1.(1)如图,过点A 作x 轴的垂线,若点P (x ,2)为垂线上的一个点,Q 是y 轴上一动点,若S △CPQ =5,求此时点Q 的坐标;(2)若P 在过A 作x 轴的垂线上,点Q 为y 轴上的一个动点,当CP+PQ+QA 的值最小时,求此时P 的坐标;(3)如图,点E 的坐标为(﹣2,0),将直线l 1绕点C 旋转,使旋转后的直线l 3刚好过点E ,过点C 作平行于x 轴的直线l 4,点M 、N 分别为直线l 3、l 4上的两个动点,是否存在点M 、N ,使得△BMN 是以M 点为直角顶点的等腰直角三角形,若存在, 求出N 点的坐标;若不存在,请说明理由.参考答案1.D【解析】【分析】根据中心对称图形的概念求解.【详解】解:A、不是中心对称图形,不符合题意;B、不是中心对称图形,不符合题意;C、不是中心对称图形,不符合题意;D、是中心对称图形,符合题意.故选D.【点睛】本题考查中心对称图形的概念.中心对称图形是要寻找对称中心,旋转180度后两部分重合.2.D【解析】试题解析:当a=0时,a2=0,故A、B中分式无意义;当a=-1时,a+1=0,故C中分式无意义;无论a取何值时,a2+1≠0,故选D.考点:分式有意义的条件.3.B【解析】【分析】根据数轴的表示方法表示即可.(注意等于的时候是实心的原点.)【详解】根据题意不等式x≤-1的解集是在-1的左边部分,包括-1.故选B.【点睛】本题主要考查实数的数轴表示,注意有等号时应用实心原点表示.4.BA 选项中,因为2(1)x xy x x x y -+=-+,所以A 中分解错误;B 选项中,因为3222222(2)()a a b ab a a ab b a a b ++=++=+,所以B 中分解正确;C 选项中,因为2224(1)3x x x -+=-+不属于因式分解,所以C 中分解错误;D 选项中,因为29ax -在实数范围内不能分解因式,所以D 中分解错误; 故选B. 5.C 【解析】分析:根据不等式的基本性质进行判断.详解:A .在不等式a >b 的两边同时加3,不等式仍成立,即a +3>b +3.故A 正确; B .在不等式a >b 的两边同时乘以13,不等式仍成立,即13a >13b .故B 正确;C .在不等式a <b 的两边同时乘以﹣1,不等号方向改变,即﹣a >﹣b .故C 错误;D .在不等式a <b 的两边同时乘以﹣2,不等式仍成立,即-2a >-2b .故D 正确; 由于该题选择错误的. 故选C .点睛:主要考查了不等式的基本性质:(1)不等式两边加(或减)同一个数(或式子),不等号的方向不变. (2)不等式两边乘(或除以)同一个正数,不等号的方向不变. (3)不等式两边乘(或除以)同一个负数,不等号的方向改变 6.B 【解析】 【分析】根据分式方程有增根可得出x=2是方程1+3(x-2)=a+1的根,代入x=2即可求出a 值. 【详解】 解:∵分式方程12x -+3=12a x +-有增根, ∴x=2是方程1+3(x-2)=a+1的根, ∴a=0.【点睛】本题考查分式方程的增根,熟记分式方程增根的定义是解题的关键. 7.C 【解析】 【分析】根据一次函数y=x-1,可得图象与y 轴交点B 的坐标以及增减性,再结合图象即可得出结论. 【详解】 解:∵y=x-1,∴x=0时,y=-1,且y 随x 的增大而增大, ∴若x 1<0<x 2,则y 1<-1<y 2. 故选C . 【点睛】本题考查一次函数图象上点的坐标特征:一次函数y=kx+b ,(k≠0,且k ,b 为常数)的图象是一条直线,直线上任意一点的坐标都满足函数关系式y=kx+b .也考查了一次函数的增减性. 8.A 【解析】 【分析】先根据线段垂直平分线的性质得出AE=CE ,故CE+BE=AB ,再由△EBC 的周长=BC+CE+BE=BC+AB ,即可得出结论. 【详解】DE Q 是ABC V 中AC 边的垂直平分线, AE CE ∴=,CE BE AB 8cm ∴+==, BC 6cm =Q ,EBC ∴V 的周长()BC CE BE BC AB 6814cm =++=+=+=,故选A . 【点睛】本题考查的是线段垂直平分线的性质,熟知垂直平分线上任意一点,到线段两端点的距离相等是解答此题的关键. 9.D 【解析】 【分析】以①④作为条件能够判定四边形ABCD 是平行四边形,根据平行得出全等三角形,即可求出OB=OD ,根据平行四边形的判定推出即可; 【详解】以①④作为条件,能够判定四边形ABCD 是平行四边形. 理由:∵AB//CD , ∴∠OAB=∠OCD , 在△AOB 和△COD 中,AO COAOB COD ⎧⎪=⎨⎪=⎩∠OAB=∠OCD ∠∠ ∴△AOB ≌△COD(ASA), ∴OB=OD ,∴四边形ABCD 是平行四边形. 故选:D .【点睛】本题考查平行四边形的全等条件,熟练掌握平行四边形的性质的解题关键 10.B 【解析】 【分析】想办法证明S 阴=S △ADE +S △DEC =S △AEC ,再由EF ∥AC ,可得S △AEC =S △ACF 解决问题.连接AF、EC.∵BC=4CF,S△ABC=12,∴S△ACF=14×12=3,∵四边形CDEF是平行四边形,∴DE∥CF,EF∥AC,∴S△DEB=S△DEC,∴S阴=S△ADE+S△DEC=S△AEC,∵EF∥AC,∴S△AEC=S△ACF=3,∴S阴=3.故选B.【点睛】本题考查平行四边形的性质、三角形的面积、等高模型等知识,解题的关键是熟练掌握等高模型解决问题,学会用转化的思想思考问题,属于中考常考题型.11.1 3【解析】【分析】根据分式的值为零的条件可以求出x的值.【详解】解:由分式的值为零的条件得3x-1=0,x+3≠0,由3x-1=0,得x=13,且13+3≠0,综上,得x的值为13.故答案为:13.【点睛】本题考查分式的值为零的条件.若分式的值为零,需同时具备两个条件:(1)分子为0;(2)分母不为0.这两个条件缺一不可.【解析】【分析】首先提公因式ab进行分解,再代入a-b=3,ab=-2即可.【详解】解:a2b-ab2=ab(a-b)=-2×3=-6,故答案为-6.【点睛】本题考查提公因式法分解因式,解题关键是正确分解因式.13.84【解析】【分析】根据正三角形和正五边形的内角即可证明.【详解】解:设图形的交点为A,B,C,如下图,∵正三角形的内角=60°,正五边形的内角=108°,∴∠1=180°-∠BAC-60°,∠2=180°-∠ABC-108°,∠3=180°-∠BCA-108°,∠+∠+∠=540°-(∠BAC+∠ABC+∠BCA)-(60°+108°+108°)=84°.∴123【点睛】本题考查了正多边形的内角,三角形内角和,中等难度,熟悉正多边形概念,是解题关键. 14.(1,2)【解析】根据横坐标,右移加,左移减;纵坐标,上移加,下移减可得线段AB向右平移1个单位,向上平移1个单位,进而可得a、b的值.【详解】解:∵A、B两点的坐标分别为(2,0)、(0,1),平移后A1(3,1),∴线段AB向右平移1个单位,向上平移1个单位,∴a=0+1=1,b=1+1=2,点B1的坐标为(1,2),故答案为(1,2),【点睛】本题考查坐标与图形的变化--平移,解题关键是掌握点的坐标的变化规律.15.0或﹣6【解析】【分析】利用完全平方公式的结构特征判断即可确定出m的值.【详解】解:∵x2+2(m+3)x+9是关于x的完全平方式,∴m+3=±3,解得:m=0或-6,故答案为:0或-6【点睛】本题考查完全平方式,熟练掌握完全平方公式是解题关键.16.﹣3,﹣4【解析】【分析】满足不等式-x+m>x+5>0就是直线y=-x+m位于直线y=x+5的上方且位于x轴的上方的图象,据此求得自变量的取值范围即可求得整数解.【详解】解:∵直线y=-x+m与y=x+5的交点的横坐标为-2,∴关于x的不等式-x+m>x+5的解集为x<-2,∵y=x+5=0时,x=-5,∴x+5>0的解集是x>-5,∴-x+m>x+5>0的解集是-5<x<-2,∴整数解为-3,-4.故答案为-3,-4.【点睛】本题考查一次函数的图象和性质以及与一元一次不等式的关系,关键是根据不等式-x+m>x+3>0就是直线y=-x+m位于直线y=x+3的上方且位于x轴的上方的图象来分析.17.11.5【解析】【分析】先设出两队的每天绿化的面积,以两队工作时间为等量构造分式方程;然后在两队效率的基础上表示甲乙两队分别工作x天、y天的工作总量,工作总量和为1600;再用甲乙两队施工的总天数不超过25天确定自变量x取值范围,用x表示总施工费用,根据一次函数增减性求得最低费用.【详解】解:设乙队每天能完成绿化面积为am2,则甲队每天能完成绿化面积为2am2根据题意得:400400=52a a解得a=40经检验,a=40为原方程的解则甲队每天能完成绿化面积为80m2即甲、乙两工程队每天能完成绿化的面积分别为80m2、40m2;设甲工程队施工x天,乙工程队施工y天,刚好完成绿化任务,总费用为W万元.根据题意得:80x+40y=1600整理得:y=-2x+40∵规定甲乙两队单独施工的总天数不超过25天完成,∴y+x≤25∴-2x+40+x≤25解得x≥15总费用W=0.6x+0.25y=0.6x+0.25(-2x+40)=0.1x+10∵k=0.1>0∴W随x的增大而增大∴当x=15时,W最低=1.5+10=11.5,故答案为11.5.【点睛】本题为代数综合题,考查分式方程、一元一次不等式、列一次函数关系式及其增减性,找到等量关键是解题的关键.18.10【解析】【分析】根据四边形ABCD为矩形以及折叠的性质得到∠A=∠MNB=90°,由M为射线AD上的一个动点可知若△NBC是直角三角形,∠NBC=90°与∠NCB=90°都不符合题意,只有∠BNC=90°.然后分 N在矩形ABCD内部与 N在矩形ABCD外部两种情况进行讨论,利用勾股定理求得结论即可.【详解】解:∵四边形ABCD为矩形,∴∠BAD=90°,∵将△ABM沿BM折叠得到△NBM,∴∠MAB=∠MNB=90°.∵M为射线AD上的一个动点,△NBC是直角三角形,∴∠NBC=90°与∠NCB=90°都不符合题意,∴只有∠BNC=90°.①当∠BNC=90°,N在矩形ABCD内部,如图1.∵∠BNC=∠MNB=90°,∴M、N、C三点共线,∵AB=BN=3,BC=5,∠BNC=90°,∴NC=4.设AM=MN=x,∵MD=5-x,MC=4+x,∴在Rt△MDC中,CD2+MD2=MC2,32+(5-x)2=(4+x)2,解得x=1;②当∠BNC=90°,N在矩形ABCD外部时,如图2.∵∠BNC=∠MNB=90°,∴M、C、N三点共线,∵AB=BN=3,BC=5,∠BNC=90°,∴NC=4,设AM=MN=y,∵MD=y-5,MC=y-4,∴在Rt△MDC中,CD2+MD2=MC2,32+(y-5)2=(y-4)2,解得y=9,则所有符合条件的M点所对应的AM和为1+9=10.故答案为10.【点睛】本题考查翻折变换(折叠问题),矩形的性质以及勾股定理,利用数形结合与分类讨论的数学思想是解题关键.19.2516≤S2<7516【解析】【分析】作EM⊥BC于M,作FN⊥AD于N,根据题意可证△ADF≌△BED,可得△DFE是等腰直角三角形.可证△BME≌△ANF,可得NF=BM.所以S1=12HD×BD,代入可求S1,由点E是边AB上的动点(不与A,B点重合),可得DE垂直AB时DE最小,即52≤DE,且S2=S△DEF-S1,代入可求S2的取值范围【详解】解:作EM⊥BC于M,作FN⊥AD于N,∵EM⊥BD,AD⊥BC∴EM∥AD∵△ABC是等腰直角三角形,AD⊥BC,AB=5∴∠B=∠C=45°=∠BAD=∠DAC,BD=CD=AD=52 2∵DF⊥DE∴∠ADF+∠ADE=90°且∠ADE+∠BDE=90°∴∠ADF=∠BDE且AD=BD,∠B=∠DAF=45°∴△ADF≌△BDE,∴AF=BE,DE=DF∴△DEF是等腰直角三角形,∵AF=BE,∠B=∠DAF=45°,∠EMB=∠ANF=90°∴△BME≌△ANF∴NF=BM∵S1=S△EHD+S△DHF=12HD×MD+12HD×FN=12×14AD×(BM+MD)=18AD2=2516∵点E是边AB上的动点∴52≤DE<522,∵S 2=S △DEF -S 1=12DE 2-2516 ∴2516≤S 2<7516故答案为:2516≤S 2<7516. 【点睛】本题考查全等三角形的判定和性质,等腰直角三角形的性质,关键是证△DEF 是等腰直角三角形.20.(1)5m (2x ﹣y+n )(2x ﹣y ﹣n );(2)﹣1≤x <2.【解析】【分析】(1)通过提取公因式5m 和平方差公式进行因式分解.(2)先求出两个不等式的解集,再求其公共解.【详解】(1)原式=5m (2x ﹣y+n )(2x ﹣y ﹣n ).(2)()21511? { 325131? x x x x ①②-+-≤-<+ , 解不等式①,2(2x-1)-3(5x+1)≤6,4x-2-15x-3≤6,4x-15x≤6+2+3,-11x≤11,x≥-1,解不等式②,5x-1<3x+3,5x-3x <3+1,2x <4.x <2,所以不等式组的解集是-1≤x <2.【点睛】本题考查提公因式法与公式法分解因式,要求灵活使用各种方法对多项式进行因式分解,一般来说,如果可以先提取公因式的要先提取公因式,再考虑运用公式法分解;本题还考查了一元一次不等式组解集的求法.21.(1)13;(2)m>1且m≠3.【解析】【分析】(1)根据分式混合运算顺序和运算法则化简原式,再将a2+3a-1=0,即a2+3a=1整体代入可得;(2)解分式方程得出x=m-1,由分式方程的解为正数得m-1>0且m-1≠2,解之即可.【详解】(1)原式=33(2)aa a--÷292aa--=33(2)aa a--•2+3a-3)aa-()(=13(+3)a a=213(+3a)a,当a2+3a﹣1=0,即a2+3a=1时,原式=131⨯=13.(2)解方程212xx--=2mx-+1,得:x=m﹣1,根据题意知m﹣1>0且m﹣1≠2,解得:m>1且m≠3.【点睛】本题考查分式的混合运算、解分式方程,解题关键是熟练掌握分式的混合运算顺序和运算法则.22.详见解析.【解析】试题分析:(1)根据全等三角形的判定方法,判断出△ADE≌△CBF,即可推得DE=BF.(2)首先判断出DE∥BF;然后根据一组对边平行且相等的四边形是平行四边形,推得四边形DEBF是平行四边形即可.试题解析:(1)∵四边形ABCD是平行四边形,∴AD∥CB,AD=CB,∴∠DAE=∠BCF,在△ADE和△CBF中,{AD=CB ∠DAE=∠BCF AE=CF∴△ADE≌△CBF,∴DE=BF.(2)由(1),可得∴△ADE≌△CBF,∴∠ADE=∠CBF,∵∠DEF=∠DAE+∠ADE,∠BFE=∠BCF+∠CBF,∴∠DEF=∠BFE,∴DE∥BF,又∵DE=BF,∴四边形DEBF是平行四边形.考点:平行四边形的判定与性质;全等三角形的判定与性质.23.(1)画图见解析,点A1的坐标为(2,﹣4);(2)画图见解析;π;(4)3.5. 【解析】【分析】(1)根据关于x轴对称的点的坐标特征,写出点A、B、C的对应点A1、B1、C1的坐标,然后描点即可得到△A1B1C1;(2)利用网格特点和旋转的性质,画出点A、C的对应点A2、C2,则可得到△A2BC2;(3)C点旋转到C2点所经过的路径是以B点为圆心,BC为半径,圆心角为90°的弧,然后根据弧长公式计算即可;(4)利用一个矩形的面积分别减去三个三角形的面积可计算出△A2BC2的面积.【详解】(1)如图,△A1B1C1为所作,点A1的坐标为(2,﹣4);(2)如图,△A2BC2为所作;(3)BC==所以C 点旋转到C 2点所经过的路径长,== (4)△A 2BC 2的面积111733121323.2222=⨯-⨯⨯-⨯⨯-⨯⨯= 【点睛】 本题考查了作图-旋转变换:根据旋转的性质可知,对应角都相等都等于旋转角,对应线段也相等,由此可以通过作相等的角,在角的边上截取相等的线段的方法,找到对应点,顺次连接得出旋转后的图形.也考查了轴对称变换.24.(1)a ,b 的值分别为1,3;(2)123p -≤<-.【解析】试题分析:(1)已知T 的两对值,分别代入T 中计算,求出a 与b 的值即可;(2)根据题中新定义化简已知不等式,根据不等式组恰好有3个整数解,求出p 的范围即可;由T (x ,y )=T (y ,x )列出关系式,整理后即可确定出a 与b 的关系式.试题解析:(1)由,()4,21T =,得()112211a b ⨯+⨯-=-⨯-,421242a b ⨯+⨯=⨯+, 即2,4210,a b a b -=-⎧⎨+=⎩解得1,3.a b =⎧⎨=⎩即a ,b 的值分别为1,3. (2)由(1)得()3,2x y x y x y +T =+,则不等式组()()2,544,,32m m m m p ⎧T -≤⎪⎨T ->⎪⎩可化为105,539,m m p -≤⎧⎨->-⎩ 解得19325p m --≤<. ∵不等式组()()2,544,,32m m m m p ⎧T -≤⎪⎨T ->⎪⎩恰好有3个整数解, ∴93235p -<≤,解得123p -≤<-.25.(1)60°,理由见解析;(2)BQ =﹣.【解析】【分析】(1)先证明出△CQB ≌△CPA ,即可得出∠QEP=60°;(2)作CH ⊥AD 于H ,如图2,证明△ACP ≌△BCQ ,则AP=BQ ,由∠DAC=135°,∠ACP=15°,得出AH=3,,即可得出【详解】(1)如图1,∵PC =CQ ,且∠PCQ =60°,则△CQB 和△CPA 中,PC QC PCQ ACB AC BC ⎧⎪∠∠⎨⎪⎩=== ,∴△CQB ≌△CPA (SAS ),∴∠CQB =∠CPA ,又因为△PEM 和△CQM 中,∠EMP =∠CMQ , ∴∠QEP =∠QCP =60°.(2)作CH ⊥AD 于H ,如图2,∵△ABC 是等边三角形,∴AC=BC ,∠ACB=60°,∵线段CP 绕点C 顺时针旋转60°得到线段CQ ,∴CP=CQ ,∠PCQ=6O°,∴∠ACB+∠BCP=∠BCP+∠PCQ ,即∠ACP=∠BCQ ,在△ACP 和△BCQ 中,CA CB ACP BCQ CP CQ ⎧⎪∠∠⎨⎪⎩===∴△ACP ≌△BCQ (SAS ),∴AP =BQ ,∵∠DAC =135°,∠ACP =15°,∴∠APC =30°,∠PCB =45°,∴△ACH 为等腰直角三角形,∴AH =CH=2AC=2×4=,在Rt △PHC 中,PH=,∴PA =PH﹣AH =﹣,∴BQ =﹣【点睛】本题考查旋转的性质:对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角;旋转前、后的图形全等.也考查了全等三角形的判定与性质、等边三角形的性质和等腰直角三角形的性质.26.()1 4a b ==,5c =;()28-.【解析】【分析】(1)先利用完全平方公式进行配方,然后利用非负性求出a ,b ,c 的值即可;(2)将(1)求得的a ,b ,c 的值分别代入,求出11118x y z ++=-,再将原式变形成 1111x y z++后代入计算即可. 【详解】()1已知等式整理得:222()(4)(5)0a b b c -+-+-=,0a b ∴-=,40b -=,50c -=,解得:4a b ==,5c =;()2把4a b ==,5c =代入已知等式得:4xy x y =-+,即1114x y +=-;54yz y z =+,即1145y z +=; 54zx z x =-+,即1145x z +=-, 11118x y z ∴++=-, 则原式18111x y z==-++. 【点睛】解此题(1)的关键在于利用完全平方公式与其非负性来求解,再将(2)中原式变形后,用换元法求解.27.(1)二月份甲型号手机每台售价为4000元;(2)有三种购货方案:一、甲型手机8台,乙型手机12台;二、甲型手机9台,乙型手机11台;三、甲型手机10台,乙型手机10台;(3)a=100【解析】试题分析:(1)设二月份甲型号手机每台售价为x 元,则一月份甲型手机的每台售价为(x +500)元,根据题意建立方程就可以求出其值;(2)设购甲型手机y 台,则购乙型手机(20-y )台,根据题意建立不等式组,求出其解就可以得出结论;(3)求出每台的利润根据不同的购买方案求出表示出相应的利润,再由条件三种方案的利润相等就可以建立方程求出其值.试题解析:(1)设二月份甲型号手机每台售价为x 元,则一月份甲型手机的每台售价为(x +500)元,根据题意,得9000080000500x x=+, 解得:x =4000,经检验,x =4000是原方程的根,故原方程的根是x =4000.故二月份甲型号手机每台售价为4000元;(2)设购甲型手机y 台,则购乙型手机(20−y )台,由题意得:75000⩽3500y +4000(20−y )⩽76000,解得810y ≤≤,∵y 为整数,∴y =8,9,10,∴乙型手机的台数为:12,11,10.∴有三种购货方案:一、甲型手机8台,乙型手机12台;二、甲型手机9台,乙型手机11台;三、甲型手机10台,乙型手机10台;(3)根据题意,得500×8−8a +400×12=500×9−9a +400×11,解得:a =100.28.(1)Q 的坐标为(0,0)或(0,-5);(2)点P 的坐标为(﹣3,﹣125);(3)①点N 的坐标为(﹣16,﹣4),②点N 的坐标为(﹣247,﹣4)或(﹣16,﹣4). 【解析】【分析】(1)当x=1时,y=43x ﹣163,即点C 的坐标为(1,-4),将点C 的坐标代入直线l 1:y=-x+b 中,即可求直线l 1解析式;再根据P 点纵坐标为2,求出P 点坐标,然后求出直线AC 的解析式,因为直线AC 交y 轴于点M ,所以M 横坐标为0,再求出纵坐标,最后根据S △CPQ =12QM×(x C ﹣x P )=1y 2.542Q +⨯()=5,解得:y Q =0或-5,即可得出结果;(2)根据最短路径问题可得:作C 关于过A 垂线的对称点C′(﹣7,﹣4)、A 关于y 轴的对称点A′(3,0),连接A′C′交过A 点的垂线与点P ,交y 轴于点Q ,此时,CP+PQ+QA 的值最小,解得直线A′C′的表达式,从而求得点P 的坐标;(3)如图2,点E 的坐标为(-2,0),将直线l 1绕点C 逆时针旋转,使旋转后的直线l 3刚好过点E ,过点C 作平行于x 轴的直线l 4,点M 、N 分别为直线l 3、l 4上的两个动点,是否存在点M 、N ,使得△BMN 是以M 点为直角顶点的等腰直角三角形,若存在,直接写出N 点的坐标;若不存在,请说明理由.【详解】(1)直线l2:y=43x﹣163,令x=1,则y=﹣4,故C(1,﹣4),把C(1,﹣4)代入直线l1:y=﹣x+b,得:b=﹣3,则l1为:y=﹣x﹣3,所以A(﹣3,0),所以点P坐标为(﹣3,2),如图,设直线AC交y轴于点M,设y PC=mx+t得:2-3m4tm t=+⎧⎨-=+⎩,解得m-1.5t-2.5=⎧⎨=⎩,∴y PC=-1.5x-2.5,即M(0,-2.5).S△CPQ=12QM×(x C﹣x P)=1y 2.542Q+⨯()=5,解得:y Q=0或-5,∴Q的坐标为(0,0)或(0,-5)(2)确定C关于过A垂线的对称点C′(﹣7,﹣4)、A关于y轴的对称点A′(3,0),连接A′C′交过A点的垂线与点P,交y轴于点Q,此时,CP+PQ+QA的值最小,将点A′、C′点的坐标代入一次函数表达式:y=k′x+b′得:47+ 0=3+k bk b-=-''⎧⎨''⎩,解得:2=56=-5kb⎧'⎪⎪⎨⎪'⎪⎩,则直线A′C′的表达式为:y=25x﹣65,当x=﹣3时,y=﹣125,即点P的坐标为(﹣3,﹣125),(3)将E、C点坐标代入一次函数表达式,同理可得其表达式为48 y33x=--①当点M在直线l4上方时,设点N(n,﹣4),点M(s,﹣43s﹣83),点B(4,0),过点N、B分别作y轴的平行线交过点M与x轴的平行线分别交于点R、S,∵∠RMN+∠RNM=90°,∠RMN+∠SMR=90°,∴∠SMR=∠RNM,∠MRN=∠MSB=90°,MN=MB,∴△MSB≌△NRM(AAS),∴RN=MS,RM=SB,即4844334833s ss n s⎧--+=-⎪⎪⎨⎪-=--⎪⎩,解得816sn-⎧⎨-⎩==故点N的坐标为(﹣16,﹣4),②当点M在l4下方时,如图1,过点M作PQ∥x轴,与过点B作y轴的平行线交于Q,与过点N作y轴的平行线交于P,同①的方法得,N(﹣247,﹣4),即:点N的坐标为(﹣247,﹣4)或(﹣16,﹣4).【点睛】本题是一次函数图象的综合性问题,考察直线与坐标轴交点坐标,利用点的坐标求出直线的解析式,在判断是否存在点的时候,借助于全等三角形来转化相等的线段,进而得出数量关系,列方程组求解.。
2018-2019学年四川省成都市金牛区七年级(上)期末数学试卷(解析版)

2018-2019学年四川省成都市金牛区七年级(上)期末数学试卷一、选择题(本大题共10小题,共30.0分)1.2018的相反数是()A. B. 2018 C. D.2.如图所示的正六棱柱从上面所看见的平面图形是()A.B.C.D.3.经党中央批准、国务院批复自2018年起,将每年秋分日设立为“中国农民丰收节”,据国家统计局数据显示,2018年某省夏季粮食总产量达到2389000吨,将数据“2389000”用科学记数法表示为()A. B. C. D.4.下列计算正确的是()A. B. C. D.5.下列调查,比较适合使用普查方式的是()A. 乘坐地铁的安检B. 长江水质情况C. 某品牌灯泡使用寿命D. 中秋节期间市场上的月饼质量情况6.下列运用等式的性质变形错误的是()A. 若,则B. 若,则C. 若,则D. 若,则7.数轴上点A与数轴上表示3的点相距6个单位,点A表示的数是()A. 3B.C. 9D. 或98.如图,在A、B两处观测到C处的方位角分别是()A. 北偏东,北偏西B. 北偏东,北偏西C. 北偏东,北偏西D. 北偏东,北偏西9.如图,∠AOB=20°,∠BOC=80°,OE是∠AOC的角平分线,则∠COE的度数为()A.B.C.D.10.某班组每天需生产50个零件才能在规定的时间内完成一批零件任务,实际该班组每天比计划多生产了6个零件,结果比规定的时间提前3天完成.若设该班组要完成的零件任务为x个,则可列方程为()A. B. C. D.二、填空题(本大题共9小题,共36.0分)11.单项式的次数是______.12.已知x=3是方程2x-a=1的解,则a=______.13.若|x-1|+|y+2|=0,则5x-2y的值为______.14.如图,已知C是线段AB的中点,点D在线段BC上,若AD=8,BD=6,则CD的长为______.15.若a2+a=,则2a2+2a-2019的值为______.16.已知a、b互为相反数,c,d互为倒数,m的绝对值为2,那么(a+b)m3+5m+2019cd的值为______.17.已知a、b、c在数轴上对应的点如图所示,化简:|b+c|-|a-b|=______.18.规定:用{m}表示大于m的最小整数,例如{}=3,{4}=5,{-1.5}=-1等;用[m]表示不大于m的最大整数,例如[]=3,[2]=2,[-3.2]=-4,如果整数x满足关系式:3{x}+2[x]=13,则x=______.19.如图所示,将形状、大小完全相同的“●”和线段按照一定规律摆成下列图形.第1幅图形中“●”的个数为a1,第2幅图形中“●”的个数为a2,第3幅图形中“●”的个数为a3,……,以此类推,解决以下问题:则a6=______,若第n幅图中“●”的个数为______.(用含n的代数式表示)三、计算题(本大题共2小题,共18.0分)20.计算:(1)14-20+(-12)×(2)-13-23×[-3÷+(-3)2]21.已知代数式A=x2+xy-2y,B=2x2-2xy+x-1(1)求2A-B;(2)若2A-B的值与x的取值无关,求y的值.四、解答题(本大题共7小题,共66.0分)22.解方程:(1)3x+2(x-3)=8-(x+2)(2)=-123.先化简,再求值:5(3a2b-ab2)-2(-ab2+4a2b),其中a=2,b=-3.24.某商场将某种商品按原标价的八折出售,此时商品的利润率是10%,已知商品的进价为1200元,那么此商品的原标价是多少元?25.某校学生会准备调查七年级学生参加”武术类”,“书画类“、“棋牌类”“器乐类”四类校本课程的人数;他们采用了合理的调查方法收集数据,并绘制了如图所示的统计表和扇形统计图,请你根据以下图表提供的信息解答下列问题:①a=______,b=______;②在扇形统计图中棋牌类所对应扇形的圆心角的度数是______度;③若某校七年级有学生600人,请你估计大约有多少学生参加书画类校本课程.26.如图1,已知线AB=24,点C为线段AB上的一点,点D、E分别是AC和BC的中点.(1)若AC=8,则DE的长为______;(2)若BC=a,求DE的长;(3)动点P,Q分别从A,B两点同时出发,相向而行,点P以每秒3个单位长度沿线段AB向右匀速运动,Q点以P点速度的两倍,沿线段AB向左匀速运动,设运动时间为t秒,问当t为多少秒时P,Q之间的距离为6?27.成都市“滴滴快车中的优享型”计价规则如下:车费由里程费+时长费两部分构成:(1)小刘家的车周三限号,小刘早上在7:10乘坐“滴滴快车中的优享型”去上学,行车里程6公里,行车时间10分钟,则他应付车费多少元?(2)下晚自习后小刘乘坐“滴滴快车中的优享型”回家,21:10在学校上车,由于堵车,走另外一条路回家,平均速度是20公里/小时,共付了23.36元,请问从学校到家快车行驶了多少公里?28.如图1,点O为线段MN上一点,一副直角三角板的直角顶点与点O重合,直角边DO、BO在线段MN上,∠COD=∠AOB=90°.(1)将图1中的三角板COD绕着点O沿顺时针方向旋转到如图2所示的位置,若∠AOC=35°,则∠BOD=______;猜想∠AOC与∠BOD的数量关系为______;(2)将图1中的三角板COD绕着点O沿逆时针方向按每秒15°的速度旋转一周,三角板AOB不动,请问几秒后OD所在的直线平分∠AOB?(3)将图1中的三角板COD绕着点O沿逆时针方向按每秒15°的速度旋转两周,同时三角板AOB绕着点O沿逆时针方向按每秒5°的速度旋转(随三角板COD停止而停止),请直接写出几秒后OC所在直线平分∠AON.答案和解析1.【答案】A【解析】解:2018的相反数是:-2018.故选:A.直接利用相反数的定义分析得出答案.此题主要考查了相反数,正确把握相反数的定义是解题关键.2.【答案】D【解析】解:如图所示的正六棱柱从上面所看见的平面图形是故选:D.主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形.本题主要考查简单几何体的三视图,解题的关键是掌握常见几何体的三视图.3.【答案】B【解析】解:2 389000用科学记数法表示为2.389×106,故选:B.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n 是正数;当原数的绝对值<1时,n是负数.此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.4.【答案】C【解析】解:(A)原式=2b,故A错误;(B)原式=3a2-8a,故B错误;(D)原式=a2-a,故D错误;故选:C.根据合并同类项的法则即可求出答案.本题考查合并同类项,解题的关键宿熟练运用合并同类项法则,本题属于基础题型.5.【答案】A【解析】解:A.乘坐地铁的安检适合全面调查;B.调查长江水质情况适合抽样调查;C.调查某品牌灯泡使用寿命适合抽样调查;D.调查中秋节期间市场上的月饼质量情况适合抽样调查;故选:A.由普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似.本题考查了抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.6.【答案】D【解析】解:A、若a=b,则a+6=b+6,正确,不合题意;B、若-3x=-3y,则x=y,正确,不合题意;C、若n+3=m+3,则m=n,正确,不合题意;D、若x=y,则≠,故此选项错误,符合题意.故选:D.直接利用等式的基本性质分别分析得出答案.此题主要考查了等式的基本性质,正确掌握等式的基本性质是解题关键.7.【答案】D【解析】解:设A点表示的数为x当x>3时,应有x-3=6,解得,x=9.当x<3时,应有3-x=6,解得,x=-3.故选:D.因为A点在数轴上,且该点表示的数到数轴上表示数3 的点的距离是6个单位,但是A点表示的数与数轴上表示3的数大小未知,因此要考虑到A<3和A>3时两种情况.本题考查了数轴上的两数之间的距离用绝对值表示的方法与有理数的加减运算的能力8.【答案】B【解析】解:A处观测到的C处的方向角是:北偏东65°,B处观测到的C处的方向角是:北偏西50°.故选:B.根据方向角的定义即可判断.本题考查了方向角,方向角是表示方向的角;以正北,正南方向为基准,来描述物体所处的方向.9.【答案】A【解析】解:∵∠AOB=20°,∠BOC=80°,∴∠AOC=∠AOB+∠BOC=100°而OE是∠AOC的角平分线,∴∠COE=∠AOC=50°故选:A.根据∠COE=∠AOC,而∠AOC可以写在两个已知角的和,即可求出结果.本题考查的是角平分线的定义及角的相关计算,严格把握定义并进行计算是解决本题的关键.10.【答案】B【解析】解:设该班组要完成的零件任务为x个,依题意,得:-=3.故选:B.设该班组要完成的零件任务为x个,根据工作时间=工作总量÷工作效率结合时间比规定提前3天完成,即可得出关于x的一元一次方程,此题得解.本题考查了由实际问题抽象出一元一次方程,找准等量关系,正确列出一元一次方程是解题的关键.11.【答案】8【解析】解:该单项式的次数为:5+3=8,故答案为:8根据单项式的次数概念即可求出答案.本题考查单项式,解题的关键是熟练运用单项式的概念,本题属于基础题型.12.【答案】5【解析】解:把x=3代入方程得:6-a=1,解得:a=5,故答案为:5把x=3代入方程计算即可求出a的值.此题考查了一元一次方程的解,方程的解即为能使方程左右两边相等的未知数的值.13.【答案】9【解析】解:∵|x-1|+|y+2|=0,∴x-1=0,y+2=0,解得:x=1,y=-2,故5x-2y=5+4=9.故答案为:9.直接利用绝对值的性质得出x,y的值,进而得出答案.此题主要考查了非负数的性质,正确得出x,y的值是解题关键.14.【答案】1【解析】解:∵AD=8,BD=6,∴AB=AD+BD=14,∵C是AB的中点,∴AC=AB=7,∴CD=AD-AC=8-7=1.故答案为:1.根据已知可求得AB的长,从而可求得AC的长,已知AD的长则不难求得CD的长.本题考查的是两点间的距离的计算,掌握线段中点的定义、灵活运用数形结合思想是解题的关键.15.【答案】-2018【解析】解:当a2+a=时,原式=2(a2+a)-2019 =2×-2019=1-2019 =-2018,故答案为:-2018.将a2+a=代入原式=2(a2+a)-2019计算可得.本题主要考查代数式的求值,解题的关键是掌握整体代入思想的运用.16.【答案】2029或2009【解析】解:由题意得:a+b=0,cd=1,m=2或-2,当m=2时,原式=10+2019=2029;当m=-2时,原式=-10+2019=2009.故答案为:2029或2009.利用相反数,倒数以及绝对值的代数意义求出a+b,cd,m的值,代入原式计算即可得到结果.此题考查了有理数的混合运算,代数式求值,熟练掌握运算法则是解本题的关键.17.【答案】-c-a【解析】解:由图得,c<b<0<a.∴b+c<0,a-b>0∴:|b+c|-|a-b|=-(b+c)-(a-b)=-b-c-a+b=-c-a从图中易看出b+c的和小于0,则|b+c|=-(b+c),同理看出a-b的差大于0,则||a-b|=a-b.本题考察了有理数的计算法则以及去绝对值的技巧运用能力.18.【答案】2【解析】解:依题意,得[x]=x,3{x}=3(x+1)∴3{x}+2[x]=13可化为:3(x+1)+2x=13整理得3x+3+2x=13移项合并得:5x=10解得:x=2故答案为:2根据题意可将3{x}+2[x]=13化为:3(x+1)+2x=13,解出即可此题主要考查有理数的比较大小,根据题意的形式即可求解19.【答案】48 n(n+2)【解析】解:由图知a1=3=1×3,a2=8=2×4,a3=15=3×5,a4=24=4×6,…,∴a n=n(n+2),当n=6时,a6=6×8=48,故答案为:48,n(n+2).由点的分布情况得出a n=n(n+2),据此求解可得.本题主要考查图形的变化类,解题的关键是得出a n=n(n+2).20.【答案】解:(1)14-20+(-12)×=14-20-4=-10;(2)-13-23×[-3÷+(-3)2]=-1-8×(-9+9)=-1-8×0=-1-0=-1.【解析】(1)先算乘法,再算加减法;同级运算,应按从左到右的顺序进行计算;(2)先算乘方,再算乘除法,最后算加减法;同级运算,应按从左到右的顺序进行计算;如果有括号,要先做括号内的运算.考查了有理数的混合运算,有理数混合运算顺序:先算乘方,再算乘除,最后算加减;同级运算,应按从左到右的顺序进行计算;如果有括号,要先做括号内的运算.进行有理数的混合运算时,注意各个运算律的运用,使运算过程得到简化.21.【答案】解:(1)2A-B=2(x2+xy-2y)-(2x2-2xy+x-1)=2x2+2xy-4y-2x2+2xy-x+1=4xy-x-4y+1;(2)∵2A-B=4xy-x-4y+1=(4y-1)x-4y+1,且其值与x无关,∴4y-1=0,解得y=.【解析】(1)把A与B代入2A-B中,去括号合并即可得到结果;(2)由2A-B与x取值无关,确定出y的值即可.此题主要考查了整式的加减运算,正确合并同类项是解题关键.22.【答案】解:(1)去括号得:3x+2x-6=8-x-2,移项得:3x+2x+x=8-2+6,合并同类项得:6x=12,系数化为1得:x=2,(2)方程两边同时乘以12得:3(3+x)=4(2x-1)-12,去括号得:9+3x=8x-4-12,移项得:3x-8x=-4-12-9,合并同类项得:-5x=-25,系数化为1得:x=5.【解析】(1)依次去括号,移项,合并同类项,系数化为1,即可得到答案,(2)依次去分母,去括号,移项,合并同类项,系数化为1,即可得到答案.本题考查了解一元一次方程,正确掌握解一元一次方程的方法是解题的关键.23.【答案】解:原式=15a2b-5ab2+2ab2-8a2b=7a2b-3ab2,当a=2,b=-3时,原式=7×22×(-3)-3×2×(-3)2=-84-54=-138.【解析】先根据整式的加减混合运算顺序和运算法则化简原式,再将a和b的值代入计算可得.本题主要考查整式的加减-化简求值,解题的关键是掌握整式加减混合运算顺序和运算法则.24.【答案】解:设原价为x元,根据题意可得:80%x=1200(1+10%),解得:x=1650.答:所以该商品的原价为1650元.【解析】利用打折是在标价的基础之上,利润是在进价的基础上,进而得出等式求出即可.此题主要考查了一元一次方程的应用,根据题意得出售价是解题关键.25.【答案】100 0.15 54【解析】解:①∵样本容量a=24÷0.24=100,∴b=15÷100=0.15,故答案为:100,0.15;②在扇形统计图中棋牌类所对应扇形的圆心角的度数是360°×0.15=54°,故答案为:54;③估计参加书画类校本课程的学生约有600×0.21=126(人).①用武术类频数除以频率可得样本容量a的值,再用书画类人数除以总人数可得b的值;②用360°乘以棋牌类对应的频率即可得;③总人数乘以样本中书画类对应的频率即可得.本题考查的用样本估计总体和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.扇形统计图直接反映部分占总体的百分比大小.26.【答案】12【解析】解:(1)∵AB=24,AC=8,∴BC=16,∵点D、E分别是AC和BC的中点,∴DC=4,CE=8,∴DE=DC+CE=12,即DE的长是12;故答案为:12;(2)∵AB=24,BC=a,∴AC=24-a,∵点D、E分别是AC和BC的中点,∴DC=12-a,CE=a,∴DE=DC+CE=12,即DE的长是12;(3)∵AP=3t,BQ=6t,∴AP+PQ+BQ=24或AP+BQ-PQ=24,∴3t+6+6t=24或3t+6t-6=24,解得:t=或t=,∴当t为=秒或t=秒时,P,Q之间的距离为6.(1)由AB=24,AC=8,即可推出BC=8cm,然后根据点D、E分别是AC和BC的中点,即可推出DC=4,CE=8,即可推出DE的长度;(2)方法同(1);(3)根据题意列方程即可得到结论.本题考查的是两点间的距离的计算,掌握线段中点的定义、灵活运用数形结合思想是解题的关键.27.【答案】解:(1)由题意可得,小刘应付车费为:1.90×6+0.43×10=15.7(元),答:小刘应付车费15.7元;(2)设从学校到家快车行驶了x公里,1.90x+0.34×(×60)=23.36,解得,x=8,答:从学校到家快车行驶了8公里.【解析】(1)根据题意和表格中的数据可以计算出小刘应付的车费,本题得以解决;(2)根据题意和表格中的数据可以列出相应的方程,本题得以解决.本题考查一元一次方程的应用,解答本题关键是明确题意,列出相应的方程,注意单位要统一.28.【答案】145°180°【解析】解:(1)∵∠COD=90°,∠AOC=35°,∴∠AOD=∠COD-∠AOC=55°,∵∠AOB=90°,∴∠BOD=∠AOB+AOD=145°;∵∠BOD=∠AOD+∠AOC+BOC,∴∠AOC+∠BOD=∠AOC+∠AOD+∠AOC+∠BOC=∠COD+∠AOB=90°+90°=180°,∴∠AOC+∠BOD=∠=180°;故答案为:145°;180°.(2)根据题意可得,当旋转135°或315°时,OD所在的直线平分∠AOB,所以,旋转时间为:135°÷15°=9(秒),315°÷15°=21(秒),答:9秒或21秒后OD所在的直线平分∠AOB.(3)①当三角板AOB绕着点O沿逆时针方向旋转0°到90°,OC直线平分∠AON时,有(90°+5t)=180°-15t,解得t=(秒);②当三角板AOB绕着点O沿逆时针方向旋转90°到180°,OC直线平分∠AON时,有(270°-5t)=360°+90°-15t,解得,t=(秒);③当三角板AOB绕着点O沿逆时针方向旋转180°到240°,OC直线平分∠AON时,有(270°-5t)=360°+270°-15t,解得,t=(秒).综上,秒秒或秒或后OC所在直线平分∠AON.(1)根据互余关系先求出∠AOD,再由角的和差求出结果;(2)当旋转135°或315°时,OD所在的直线平分∠AOB,由此便可求得结果;(3)根据当三角板AOB绕着点O沿逆时针方向旋转0°到90°,90°到180°,180°到240°三种情况,满足OC直线平分∠AON时,列出关于t的方程进行解答.本题是一个图形旋转综合题,考查了旋转性质,互余角的性质,一元一次方程的应用,射线所在直线平分角,分为两种情况,射线在角内,射线在角外,应考虑全面.第(3)小题分三种情况研究平分角,从中找出t的方程,是解决难点的突破口,难度较大.。
四川省成都市高新区2022-2023学年九年级上学期数学期末试题(含解析)

C. D.
二、填空题
9.已知 ,则 的值 ______.
10.如图,在矩形ABCD中,对角线AC,BD相交于点O,若OA=2,则BD的长为_____.
11.已知点 与点 都在反比例函数 的图像上,且 ,那么 ______ (填“>”,“=”或“<”).
三、解答题
12.已知两条直线被三条平行线所截,截得线段的长度如图所示,求x的值.
四、填空题
13.如图,平面直角坐标系中,一点光源位于 ,线段BC的两个端点坐标分别为 与 ,则线段 在x轴上的影子 的长度为______.
五、解答题
14.(1)解方程 ;
(2)关于x的一元二次方程 有两个相等的实数根,求m的值.
15.某校同学参与“项目式学习”综合实践活动,小明所在的数学活动小组利用所学知识测量旗杆EF的高度,他在距离旗杆40米的D处立下一根3米高的竖直标杆CD,然后调整自己的位置,当他与标杆的距离BD为4米时,他的眼睛、标杆顶端和旗杆顶位于同一直线上,若小明的眼睛离地面高度AB为1.6米,求旗杆EF的高度.
(1)如图1,点D的横坐标为5.
①求直线 的函数表达式;
②连接 ,若 ,求线段 的长;
(2)如图2,若 ,在线段 上取点M,将线段 绕点P顺时针旋转 得到 ,点N恰好在直线 上,且 ,求线段 的长.
26.如图1,在 中,对角线 , 交于点O, 平分 .
(1)求证:四边形 为菱形;
(2)如图2,已知四边形 面积为20, ,点E在 的延长线上,点F在 的延长线上,连接 .
①若 ,连接 , ,求线段 的长及 的面积;
②过点C作 的垂线交 的延长线于点M,连接 ,点P为 的中点,若四边形 为菱形,求线段 的长.
参考答案:
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2018-2019学年四川省成都市高新区八年级(下)期末数学试卷一、选择题(本大题共10个小题,每小题3分,共30分,每小题均有四个选项,其中只有一项符合题目要求,答案涂在答题卡上)1.(3分)已知a<b,则下列不等式正确的是()A.a﹣3<b﹣3B.>C.﹣a<﹣b D.6a>6b2.(3分)下列图形中,既是轴对称图形又是中心对称图形的是()A.等边三角形B.等腰梯形C.正方形D.平行四边形3.(3分)如图,在△ABC中,点D,E分别是边AB,AC的中点,已知DE=3,则BC的长为()A.3B.4C.6D.54.(3分)若分式有意义,则x的取值应该该满足()A.x=B.x=C.x≠D.x≠5.(3分)计算()3÷的结果是()A.B.y2C.y4D.x2y26.(3分)如图,四边形ABCD是边长为5cm的菱形,其中对角线BD与AC交于点O,BD=6cm,则对角线AC 的长度是()A.8cm B.4cm C.3cm D.6cm7.(3分)一个多边形的内角和是1260°,这个多边形的边数是()A.6B.7C.8D.98.(3分)某商店销售一批服装,每件售价150元,可获利25%,求这种服装的成本价.设这种服装的成本价为x元,则得到方程()A.=25%B.150﹣x=25%C.x=150×25%D.25%x=1509.(3分)如图,正方形ABCD的边长是2,对角线AC、BD相交于点O,点E、F分别在边AD、AB上,且OE⊥OF,则四边形AFOE的面积是()A.4B.2C.1D.10.(3分)如图,已知直线11:y=﹣x+4与直线l2:y=3x+b相交于点P,点P的横坐标是2,则不等式﹣x+4≤3x+b的解集是()A.x<2B.x>2C.x≤2D.x≥2二、填空题(本大题共4个小题,每小题4分,共16分,答案写在答题卡上)11.(4分)因式分解:a2﹣4=.12.(4分)如图,Rt△ABC中,∠ACB=90°,∠A=30°,点D是AB的中点,BC=2cm,则CD=cm.13.(4分)已知,则的值是.14.(4分)如图,四边形ABCD是平行四边形,AE平分∠BAD交CD于点E,AE的垂直平分线交AB于点G,交AE于点F.若AD=4cm,BG=1cm,则AB=cm.三、解答题(本大题共6个小题,共54分,解答过程写在答题卡上)15.(12分)(1)因式分解:x2y﹣2xy2+y3(2)解不等式组:16.(6分)解方程:+=1.17.(8分)先化简,再求值:(﹣)•.其中a=3+.18.(8分)如图,正方形网格中,每个小正方形的边长都是一个单位长度,在平面直角坐标系中,已知△ABC的三个顶点坐标分别是A(﹣4,1),B(﹣1,1),C(﹣2,3).(1)将△ABC向右平移1个单位长度,再向下平移3个单位长度后得到△A1B1C1,请画出△A1B1C1;(2)将△ABC绕原点O顺时针旋转90°后得到△A2B2C2,请画出△A2B2C2;(3)直接写出以C1、B1、B2为顶点的三角形的形状是.19.(10分)2017年12月26日,成都至西安的高速铁路(简称西成高铁)全线正式运营,至此,从成都至西安有两条铁路线可选择:一条是普通列车行驶线路(宝成线),全长825千米;另一条是高速列车行驶线路(西成高铁),全长660千米,高速列车在西成高铁线上行驶的平均速度是普通列车在宝成线上行驶的平均速度的3倍,乘坐普通列车从成都至西安比乘坐高速列车从成都至西安多用11小时,则高速列车在西成高铁上行驶的平均速度是多少?20.(10分)在平行四边形ABCD中,点O是对角线BD中点,点E在边BC上,EO的延长线与边AD交于点F,连接BF、DE,如图1.(1)求证:四边形BEDF是平行四边形;(2)在(1)中,若DE=DC,∠CBD=45°,过点C作DE的垂线,与DE、BD、BF分别交于点G、H、R,如图2.①当CD=6,CE=4时,求BE的长.②探究BH与AF的数量关系,并给予证明.一、填空题(本大题共5个小题,每小题4分,共20分,答案写在答题卡上)21.(4分)已知xy=﹣1,x+y=2,则x3y+x2y2+xy3=.22.(4分)若不等式组的解集是x>3,则m的取值范围是.23.(4分)若关于x的方程﹣=m无解,则m的值为.24.(4分)如图,正方形ABCD的边长为2,点E、F分别是CD、BC的中点,AE与DF交于点P,连接CP,则CP=.25.(4分)如图所示,在菱形纸片ABCD中,AB=4,∠BAD=60°,按如下步骤折叠该菱形纸片:第一步:如图①,将菱形纸片ABCD折叠,使点A的对应点A′恰好落在边CD上,折痕EF分别与边AD、AB 交于点E、F,折痕EF与对应点A、A′的连线交于点G.第二步:如图②,再将四边形纸片BCA′F折叠使点C的对应点C′恰好落在A′F上,折痕MN分别交边CD、BC于点M、N.第三步:展开菱形纸片ABCD,连接GC′,则GC′最小值是.二、解答题(本大题共3个小题,共30分,解答过程写在答题卡上)26.(8分)某文具店准备购进A、B两种型号的书包共50个进行销售,两种书包的进价、售价如下表所示:书包型号进价(元/个)售价(元/个)A型200300B型100150购进这50个书包的总费用不超过7300元,且购进B型书包的个数不大于A型书包个数的.(1)该文具店有哪几种进货方案?(2)若该文具店购进的50个书包全部售完,则该文具店采用哪种进货方案,才能获得最大利润?最大利润是多少?(利润=售价﹣进价)27.(10分)等腰直角三角形OAB中,∠OAB=90°,OA=AB,点D为OA中点,DC⊥OB,垂足为C,连接BD,点M为线段BD中点,连接AM、CM,如图①.(1)求证:AM=CM;(2)将图①中的△OCD绕点O逆时针旋转90°,连接BD,点M为线段BD中点,连接AM、CM、OM,如图②.①求证:AM=CM,AM⊥CM;②若AB=4,求△AOM的面积.28.(12分)在平面直角坐标系xOy中,直线y=﹣x+2与x轴、y轴分别交于A、B两点,直线BC交x轴负半轴于点C,∠BCA=30°,如图①.(1)求直线BC的解析式.(2)在图①中,过点A作x轴的垂线交直线CB于点D,若动点M从点A出发,沿射线AB方向以每秒个单位长度的速度运动,同时,动点N从点C出发,沿射线CB方向以每秒2个单位长度的速度运动,直线MN 与直线AD交于点S,如图②,设运动时间为t秒,当△DSN≌△BOC时,求t的值.(3)若点M是直线AB在第二象限上的一点,点N、P分别在直线BC、直线AD上,是否存在以M、B、N、P 为顶点的四边形是菱形.若存在,请直接写出点M的坐标;若不存在,请说明理由.2018-2019学年四川省成都市高新区八年级(下)期末数学试卷参考答案与试题解析一、选择题(本大题共10个小题,每小题3分,共30分,每小题均有四个选项,其中只有一项符合题目要求,答案涂在答题卡上)1.【解答】解:A、在不等式a<b的两边同时减去3,不等式仍成立,即a﹣3<b﹣3,原变形正确,故本选项符合题意.B、在不等式a<b的两边同时除以2,不等式仍成立,即<,原变形错误,故本选项不符合题意.C、在不等式a<b的两边同时乘以﹣1,不等号方向改变,即﹣a>﹣b,原变形错误,故本选项不符合题意.D、在不等式a<b的两边同时乘以6,不等式仍成立,即6a<6b,原变形错误,故本选项不符合题意.故选:A.2.【解答】解:A、B都只是轴对称图形;C、既是轴对称图形,又是中心对称图形;D、只是中心对称图形.故选:C.3.【解答】解:∵D、E分别是AB、AC的中点.∴DE是△ABC的中位线,∴BC=2DE,∵DE=3,∴BC=2×3=6.故选:C.4.【解答】解:分式有意义,则2x﹣3≠0,解得,x≠,故选:C.5.【解答】解:原式=•=y2,6.【解答】解:∵四边形ABCD是菱形,∴BO=DO,AC⊥DB,AO=CO,∵BD=6cm,∴BO=3cm,∵AB=5cm,∴AO==4(cm),∴AC=8cm.故选:A.7.【解答】解:设这个多边形的边数为n,由题意可得:(n﹣2)×180°=1260°,解得n=9,∴这个多边形的边数为9,故选:D.8.【解答】解:利润为:150﹣x,利润率为:(150﹣x)÷x.所列方程为:=25%.故选A.9.【解答】解:∵四边形ABD是正方形,∴OA=OB,∠OAE=∠OBF=45°,AC⊥BD,∴∠AOB=90°,∵OE⊥OF,∴∠EOF=90°,∴∠AOE=∠BOF,在△AOE和△BOF中,,∴△AOE≌△BOF(ASA),∴△AOE的面积=△BOF的面积,∴四边形AFOE的面积=正方形ABCD的面积=×22=1;10.【解答】解:当x≥2时,﹣x+4≤3x+b,所以不等式﹣x+4≤3x+b的解集为x≥2.故选:D.二、填空题(本大题共4个小题,每小题4分,共16分,答案写在答题卡上) 11.【解答】解:a2﹣4=(a+2)(a﹣2).故答案为:(a+2)(a﹣2).12.【解答】解:∵Rt△ABC中,∠ACB=90°,∠A=30°,BC=2cm,∴AB=2BC=4cm,∵Rt△ABC中,∠ACB=90°,点D是AB的中点,∴CD=AB=2cm,故答案为:2.13.【解答】解:∵=,∴设a=3k,b=2k(k≠0),则==.故答案为:.14.【解答】解:∵AE的垂直平分线为DG∴AF=EF,∠AFG=∠EFD=90°,DA=DE∵四边形ABCD是平行四边形∴DC∥AB,AD∥BC,DC=AB,∴∠DEA=∠BAE∵AE平分∠BAD交CD于点E∴∠DAE=∠BAE∴在△DEF和△GAF中∴△DEF≌△GAF(ASA)又∵DE∥AG∴四边形DAGE为平行四边形又∵DA=DE∴四边形DAGE为菱形.∴AG=AD∵AD=4cm∴AG=4cm∵BG=1cm∴AB=AG+BG=4+1=5(cm)故答案为:5.三、解答题(本大题共6个小题,共54分,解答过程写在答题卡上) 15.【解答】解:(1)原式=y(x2﹣2xy+y2)=y(x﹣y)2;(2),由①得:x<2,由②得:x>﹣3,则不等式组的解集为﹣3<x<2.16.【解答】解:去分母得:3﹣x﹣1=x﹣4,移项合并得:2x=6,解得:x=3,经检验x=3是分式方程的解.17.【解答】解:原式=•﹣•=2(a﹣1)﹣(a+1)=2a﹣2﹣a﹣1=a﹣3,当a=3+时,原式=3+﹣3=.18.【解答】解:(1)如图,△A1B1C1为所作;点A1,B1,C1的坐标分别为(﹣3,﹣2),(0,﹣2),(﹣1,0)(2)如图,△A2B2C2为所作.(3)∵C1B12=5,C1B22=5,B1B22=10,∴C1B12+C1B22=B1B22,C1B1=C1B2,∴以C1、B1、B2为顶点的三角形的形状是等腰直角三角形.故答案为等腰直角三角形.19.【解答】解:设普通列车的平均速度为v km/h,∴高速列车的平均速度为3vkm/h,∴由题意可知:=+11,∴解得:v=55,经检验:v=55是原方程的解,∴3v=165,答:高速列车在西成高铁上行驶的平均速度为165 km/h.20.【解答】证明:(1)∵平行四边形ABCD中,点O是对角线BD中点,∴AD∥BC,BO=DO,∴∠ADB=∠CBD,且∠DOF=∠BOE,BO=DO,∴△BOE≌△DOF(ASA)∴DF=BE,且DF∥BE,∴四边形BEDF是平行四边形;(2)①如图2,过点D作DN⊥EC于点N,∵DE=DC=6,DN⊥EC,∴EN=CN=2,∴DN===4,∵∠DBC=45°,DN⊥BC,∴∠DBC=∠BDN=45°,∴DN=BN=4,∴BE=BN﹣EN=4﹣2;②AF=BH,理由如下:如图,过点H作HM⊥BC于点M,∵DN⊥EC,CG⊥DE,∴∠CEG+∠ECG=90°,∠DEN+∠EDN=90°,∴∠EDN=∠ECG,∵DE=DC,DN⊥EC,∴∠EDN=∠CDN,EC=2CN,∴∠ECG=∠CDN,∵∠DHC=∠DBC+∠BCH=45°+∠BCH,∠CDB=∠BDN+∠CDN=45°+∠CDN,∴∠CDB=∠DHC,∴CD=CH,且∠HMC=∠DNC=90°,∠ECG=∠CDN,∴△HMC≌△CND(AAS)∴HM=CN,∵HM⊥BC,∠DBC=45°,∴∠BHM=∠DBC=45°,∴BM=HM,∴BH=HM,∵AD=BC,DF=BE,∴AF=EC=2CN,∴AF=2HM=BH.一、填空题(本大题共5个小题,每小题4分,共20分,答案写在答题卡上)21.【解答】解:∵xy=﹣1,x+y=2,∴x3y+x2y2+xy3====﹣2.故答案为:﹣2.22.【解答】解:,解①得x>3,∵不等式组的解集为x>3,∴m≤3.故答案为m≤3.23.【解答】解:方程两边同时乘以(2x﹣3),得:x+4m=m(2x﹣3),整理得:(2m﹣1)x=7m①当2m﹣1=0时,整式方程无解,m=②当2m﹣1≠0时,x=,x=时,原分式方程无解;即=m=﹣故答案为:24.【解答】解:如图,作CG⊥CP交DF的延长线于G.则∠PCF+∠GCF=∠PCG=90°,∵四边形ABCD是边长为2的正方形,∴AD=CD=BC=AB=2,∠ADC=∠DCB=90°,∵E、F分别为CD、BC中点,∴DE=CE=CF=BF=1,∴AE=DF=,∴DP==,∴PE=,PF=,在△ADE和△DCF中:∴△ADE≌△DCF(SAS),∴∠AED=∠DFC,∴∠CEP=∠CFG,∵∠ECP+∠PCF=∠DCB=90°,∴∠ECP=∠FCG,在△ECP和△FCG中:∴△ECP≌△FCG(ASA),∴CP=CG,EP=FG,∴△PCG为等腰直角三角形,∴PG=PF+FG=PF+PE==CP,∴CP=.故答案为.25.【解答】解:如图,作GH⊥AB于H,DR⊥AB于R,GP⊥A'F于P,A'Q⊥AB于Q.∵四边形ABCD是菱形,∴DA=AB=BC=CD=4,AB∥CD,∴A'Q=DR,∵∠BAD=60°,∴A'Q=DR=AD=2,∵A'与A关于EF对称,∴EF垂直平分AA',∴AG=A'G,∠AFE=∠A'FE,∴GP=PH,又∵GH⊥AB,A'Q⊥AB∴GH∥A'B,∴GH=A'Q=DR=,所以GC'≥GP=,当且仅当C'与P重合时,GC'取得最小值.故答案为.二、解答题(本大题共3个小题,共30分,解答过程写在答题卡上)26.【解答】解:(1)设购进A型书包x个,则B型(50﹣x)个,由题意得:,解得:20≤x≤23.∴A型书包可以购进20,21,22,23个;B型书包可以购进(50﹣x)个,即30,29,28,27个.答:有4种进货方案,分别是:①A,20个,B,30个;②A,21个,B,29个;③A,22个,B28个;④A,23个,B27个.(2)设获利y元,由题意得:y=(300﹣200)x+(150﹣100)(50﹣x)=100x+50(50﹣x)=50x+2500.∵50>0,∴y随x的增大而增大.∴当x=23时,y最大,y最大值=50×23+2500=3650.答:购进A型23个,B型27个获利最大,最大利润为3650元.27.【解答】解:(1)证明:∵∠OAB=90°,∴△ABD是直角三角形,∵点M是BD的中点,∴AM=BD,∵DC⊥OB,∴∠BCD=90°,∵点M是BD的中点,∴CM=BD,∴AM=CM;(2)①如图②,在图①中,∵AO=AB,∠OAB=90°,∴∠ABO=∠AOB=45°,∵DC⊥OB,∴∠OCD=90°,∴∠ODC=∠AOB,∴OC=CD,延长CM交OB于T,连接AT,由旋转知,∠COB=90°,DC∥OB,∴∠CDM=∠TBM,∵点M是BD的中点,∴DM=BM,∵∠CMD=∠TMB,∴△CDM≌△TBM(ASA),∴CM=TM,DC=BT=OC,∵∠AOC=∠BOC﹣∠AOB=45°=∠ABO,∵AO=AB,∴△OAC≌△BAT(SAS),∴AC=AT,∠OAC=∠BAT,∴∠CAT=∠OAC+∠OAT=∠BAT+∠OAT=∠OAB=90°,∴△CAT是等腰直角三角形,∵CM=TM,∴AM⊥CM,AM=CM;②如图③,在Rt△AOB中,AB=4,∴OA=4,OB=AB=4,在图①中,点D是OA的中点,∴OD=OA=2,∵△OCD是等腰直角三角形,∴DC=CO==,由①知,BT=CD,∴BT=,∴OT=OB﹣TB=3,在Rt△OTC中,CT==2,∵CM=TM=CT==AM,∵OM是Rt△COT的斜边上的中线,∴OM=CT=,∴AM=OM,过点M作MN⊥OA于N,则ON=AN=OA=2,根据勾股定理得,MN==1,∴S△AOM=OA•MN=×4×1=2.28.【解答】解:(1)∵直线y=﹣x+2与x轴、y轴分别交于A、B两点,∴x=0时,y=2,y=0时,x=2,∴A(2,0),B(0,2),∴OB=AO=2,在Rt△COB中,∠BOC=90°,∠BCA=30°,∴OC=2,∴C(﹣2,0),设直线BC的解析式为y=kx+b,代入B,C两点的坐标得,,∴k=,b=2,∴直线BC的解析式为y=x+2;(2)分别过点M,N作MQ⊥x轴,NP⊥x轴,垂足分别为点Q,P.(Ⅰ)如图1,当点M在线段AB上运动时,∵CN=2t,AM=t,OB=OA=2,∠BOA=∠BOC=90°,∴∠BAO=∠ABO=45°,∵∠BCO=30°,∴NP=MQ=t,∵MQ⊥x轴,NP⊥x轴,∴∠NPQ=∠MQA=90°,NP∥MQ,∴四边形NPQM是矩形,∴NS∥x轴,∵AD⊥x轴,∴AS∥MQ∥y轴,∴四边形MQAS是矩形,∴AS=MQ=NP=t,∵NS∥x轴,AS∥MQ∥y轴,∴∠DNS=∠BCO,∠DSN=∠DAO=∠BOC=90°,∴当DS=BO=2时,△DSN≌△BOC(AAS),∵D(2,+2),∴DS=+2﹣t,∴+2﹣t=2,∴t=(秒);(Ⅱ)当点M在线段AB的延长线上运动时,如图2,同理可得,当DS=BO=2时,△DSN≌△BOC(AAS),∵DS=t﹣(+2),∴t﹣(+2)=2,∴t=+4(秒),综合以上可得,t=秒或t=+4秒时,△DSN≌△BOC.(3)存在以M、B、N、P为顶点的四边形是菱形:M(﹣2﹣2,2+4)或M(﹣2﹣4,2+6)或M(﹣2+2,2).∵M是直线AB在第二象限上的一点,点N,P分别在直线BC,直线AD上,∴设点M(a,﹣a+2),N(b,b+2),P(2,c),点B(0,2),(Ⅰ)当以BM,BP为邻边构成菱形时,如图3,∵∠CBO=60°,∠OBA=∠OAB=∠P AF=45°,∴∠DBA=∠MBN=∠PBN=75°,∴∠MBE=45°,∠PBF=30°,∴MB=ME,PF=AP,PB=2PF=AP,∵四边形BMNP是菱形,∴,解得,a=﹣2﹣2,∴M(﹣2﹣2,2+4)(此时点N与点C重合),(Ⅱ)当以BP为对角线,BM为边构成菱形时,如图4,过点B作EF∥x轴,ME⊥EF,NF⊥EF,同(Ⅰ)可知,∠MBE=45°,∠NBF=30°,由四边形BMNP是菱形和BM=BN得:,解得:a=﹣2﹣4,∴M(﹣2﹣4,2+6),(Ⅲ)当以BM为对角线,BP为边构成菱形时,如图5,作NE⊥y轴,BF⊥AD,∴∠BNE=30°,∠PBF=60°,由四边形BMNP是菱形和BN=BP得,,解得:a=﹣2+2,∴M(﹣2+2,2).综合上以得出,当以M、B、N、P为顶点的四边形是菱形时,点M的坐标为:M(﹣2﹣2,2+4)或M (﹣2﹣4,2+6)或M(﹣2+2,2).。