转动惯量的测定
1.转动惯量的测定
转动惯量的测定一、实验内容:1)测量圆盘的转动惯量; 2)测量圆环的转动惯量; 3)验证平行轴定理。
二、实验仪器:ZKY-ZS 转动惯量实验仪 ; ZKY-J1通用记时器;三、实验原理:1. 空实验台的转动惯量1J 为: 由ββJ M R g m T ma T mg =-==-)( 得(1)式中m 、R 分别为砝码的质量、塔轮半径,1β、2β分别为砝码落地后匀减速、砝码落地前匀加速运动的角加速度。
2. 加试样后实验台的转动惯量2J 为:(2)3β、4β分别为砝码落地后、砝码落地前实验台的角加速度。
3. 试样的转动惯量为:12J J J -= (3)4. 角加速度的测量表达式:采用逐差法处理数据:(4) 式中θ、t 为圆盘转过的角度和相应的时间。
四、实验步骤:1. 实验准备在桌面上放置ZKY-ZS转动惯量实验仪,并利用基座上的三颗调平螺钉,将仪器调平。
将滑轮支架固定在实验台面边缘,调整滑轮高度及方位,使滑轮槽与选取的绕线塔轮槽等高,且其方位相互垂直。
2. 测量并计算实验台的转动惯量选择塔轮半径R及砝码质量,将1端打结的细线沿塔轮上开的细缝塞入,并且不重叠的密绕于所选定半径的轮上,细线另1通过滑轮扣连接砝码托上的挂钩,用于将载物台稳住;按“复位”键,进入设置状态后再按“待测/+”键,使计时器进入工作等待状态;释放载物台,砝码重力产生的恒力矩使实验台产生匀加速转动;落地后,载物盘在摩擦阻力矩作用下作匀减速运动。
电脑计时器记录数据后停止测量。
查阅、记录数据于表1中,采用逐差法处理数据并计算β1、β2的测量值。
由(1)式即可算出J1的值。
3. 测量并计算实验台放上试样后的转动惯量将待测试样放上载物台并使试样几何中心轴与转轴中心重合,按与测量J1同样的方法可分别测量加砝码后的角加速度β4和砝码落地后匀减速转动的角加速度β3由(2)式可计算J2,由(3)式可计算试样的转惯量J。
计算试样的转动惯量并与理论值比较,计算测量值的相对误差。
转动惯量的测定实验报告
转动惯量的测定实验报告转动惯量的测定实验报告引言:转动惯量是物体在转动过程中抵抗改变其转动状态的性质。
在物理学中,转动惯量是描述物体转动惯性大小的物理量。
本实验旨在通过测量不同物体的转动惯量,探究物体的形状、质量分布对转动惯量的影响,并验证转动惯量的计算公式。
实验装置和方法:1. 实验装置:转动惯量测量装置、计时器、质量秤、直尺、物体样品。
2. 实验方法:a. 将转动惯量测量装置固定在水平台上。
b. 选择不同形状的物体样品,如圆柱体、长方体和球体,并测量其质量和尺寸。
c. 将物体样品放置在转动惯量测量装置的转轴上,并使其旋转。
d. 通过计时器测量物体样品旋转一定圈数所需的时间。
e. 根据测量结果计算物体样品的转动惯量。
实验结果与分析:1. 圆柱体样品:a. 质量:m = 100gb. 高度:h = 10cmc. 半径:r = 3cmd. 转动惯量:I = 1/2 * m * r^2 = 1/2 * 0.1kg * (0.03m)^2 = 4.5 * 10^-5kg·m^22. 长方体样品:a. 质量:m = 150gb. 长度:l = 15cmc. 宽度:w = 5cmd. 高度:h = 2cme. 转动惯量:I = 1/12 * m * (l^2 + w^2) = 1/12 * 0.15kg * ((0.15m)^2 +(0.05m)^2) = 4.375 * 10^-4 kg·m^23. 球体样品:a. 质量:m = 200gb. 半径:r = 4cmc. 转动惯量:I = 2/5 * m * r^2 = 2/5 * 0.2kg * (0.04m)^2 = 2.56 * 10^-4 kg·m^2通过实验测量得到的转动惯量结果显示,不同形状的物体样品具有不同的转动惯量。
圆柱体样品的转动惯量最小,长方体样品的转动惯量次之,球体样品的转动惯量最大。
这是因为转动惯量与物体的质量分布和形状有关。
转动惯量的量测
转 动 惯 量 的 量 测一、复摆原理简介转动惯量是反映物体质量分布的一个特征参数,是描述物体动力特性的重要物理量。
对于均质规则物体,其对于点或轴的转动惯量可以用数学工具直接计算得到。
而对于非均质或非规则的物体,要计算其转动惯量就不那么简单了,一般应借助于实验的手段。
下面介绍一个利用复摆运动测量物体转动惯量,并确定其惯性主轴的实验。
1 复摆对转轴的转动惯量图1为一复摆的示意图,首先测定复摆(架子)对于转轴OO ’的转动惯量J o 。
设复摆架子重量为F w ,重心到转轴的距离为a (这两个参数的确定方法参见“重量与重心的量测”实验)。
复摆绕轴微幅摆动的运动微分方程为:图1 复摆示意图0=+ϕϕow J aF && OO’C图2 板与复摆示意图I运动周期为: aF J T w oπ2= 测量n 个运动周期,设时间为t 1,则复摆架子的转动惯量为: a F nt J w o 21)2(π= (1) 2 任意形状非均质板的转动惯量下面我们用此装置来量测任意形状非均质板的转动惯量。
首先,测定板的重量F p 和重心的位置c 。
然后把板铅直地置于复摆上,并用螺丝固定,放置时板的重心与架子的重心尽可能在同一铅直线上,这可通过水平仪来校正。
如图2所示,质心到转轴的距离为b ,过质心建立固定于板上的直角坐标系cxy 。
先测定板对过质心且垂直于板的轴的转动惯量J c 。
让摆作微幅运动,测得n 次振动的时间t 2,则整个系统对转轴的转动惯量为)()2(221b F a F nt J p w +=π (2) 由平行轴定理,得: 21b gF J J J p o c −−= (3)3 主惯性轴位置的测定现在来确定板在xy 平面内的主惯性轴的位置。
首先测定板对x 、y 轴的转动惯量J x ,J y 。
把板水平放置如图3示(重心与架子的重心尽可能在同一铅直线上),x 、y 轴先后平行于转轴,作n 次微幅振动,测得的时间分别为t 3和t 4。
转动惯量测量实验报告(共7篇)
篇一:大学物理实验报告测量刚体的转动惯量测量刚体的转动惯量实验目的:1.用实验方法验证刚体转动定律,并求其转动惯量;2.观察刚体的转动惯量与质量分布的关系3.学习作图的曲线改直法,并由作图法处理实验数据。
二.实验原理:1.刚体的转动定律具有确定转轴的刚体,在外力矩的作用下,将获得角加速度β,其值与外力矩成正比,与刚体的转动惯量成反比,即有刚体的转动定律:m = iβ (1)利用转动定律,通过实验的方法,可求得难以用计算方法得到的转动惯量。
2.应用转动定律求转动惯量图片已关闭显示,点此查看如图所示,待测刚体由塔轮,伸杆及杆上的配重物组成。
刚体将在砝码的拖动下绕竖直轴转动。
设细线不可伸长,砝码受到重力和细线的张力作用,从静止开始以加速度a下落,其运动方程为mg – t=ma,在t时间内下落的高度为h=at/2。
刚体受到张力的力矩为tr和轴摩擦力力矩mf。
由转动定律可得到刚体的转动运动方程:tr - mf = iβ。
绳与塔轮间无相对滑动时有a = rβ,上述四个方程得到:22m(g - a)r - mf = 2hi/rt (2)mf与张力矩相比可以忽略,砝码质量m比刚体的质量小的多时有a<<g,所以可得到近似表达式:2mgr = 2hi/ rt (3)式中r、h、t可直接测量到,m是试验中任意选定的。
因此可根据(3)用实验的方法求得转动惯量i。
3.验证转动定律,求转动惯量从(3)出发,考虑用以下两种方法:2a.作m – 1/t图法:伸杆上配重物位置不变,即选定一个刚体,取固定力臂r和砝码下落高度h,(3)式变为:2m = k1/ t (4)2式中k1 = 2hi/ gr为常量。
上式表明:所用砝码的质量与下落时间t的平方成反比。
实验中选用一系列的砝码质量,可测得一组m与1/t的数据,将其在直角坐标系上作图,应是直线。
即若所作的图是直线,便验证了转动定律。
222从m – 1/t图中测得斜率k1,并用已知的h、r、g值,由k1 = 2hi/ gr求得刚体的i。
刚体转动惯量测定实验
四.实验方法和步骤
5.用手轻微转动上部圆盘,使三线摆产生一个初扭转 角,然后释放圆盘,三线摆发生扭转振动 6.点击“复位”按钮,再点击“开始”按钮,系统自 动记录扭转20次所需时间,取平均即为振动周期
7.重新稳定圆盘,按“开始”按钮连续测量6次 8.重新调整摆长约为700mm和500mm,重复3-7步骤,分 析不同摆长对转动惯量测试值的影响
刚体转动惯量测定实验刚体转动惯量的测定刚体转动惯量实验报告刚体转动惯量实验仪刚体转动惯量刚体的转动惯量三线摆测刚体转动惯量刚体转动惯量数据处理测量刚体的转动惯量刚体转动惯量误差分析
工程中常见非均质物体
一.实验目的
1.了解并掌握用“三线摆”测取物体转
动惯量的原理与方法 2.掌握用“等效法”简化并解决实际工
四.实验方法和步骤
(二)非均质物体转动惯量测定
1. 点击“非均质物体转动惯量测试”按钮,进入测试界 面 2.松开三线摆顶部固定螺栓,转动手轮,使三线摆长为 600mm,调整圆盘至水平状态 3.输入等效圆柱质量m=80g,直径d=16mm、摆长l=600mm 4.将非均质物体放入圆盘,使其转动中心与盘心重合, 转动上部圆盘产生扭转振动,记录振动周期
r B’
R
三.实验原理
设圆盘最大转角为θmax,当圆盘转
角为θ 时,有
A
C
B
r l , r max l max
设三线摆作初始转角等于0、转动角 速度等于ωn的简谐振动,则有:
d max sin n t , n max dt max
四.实验方法和步骤
(二)非均质物体转动惯量测定
6.使两等效圆柱中心间距s为30、40、50、60mm,测出 其扭转振动周期,并用平行移轴定理计算转动惯量 7.用插入法求得非均质物体转动惯量
刚体转动惯量测定
θ=ω0t+1/2βt2
同一次转动过程中,时间分别为t1、t2的角位移可以表示为:
θ1=ω0t1+1/2βt12
(5)
θ2=ω0t2+1/2βt22
(6)
取θ1 =2π, θ2=6π并消去ω0,可以得到:
2 (6t1 2t2 )
t1t2 (t2 t1)
(7)
(二)验证平行轴定理
J=JC+md2
(2)
Mμ—阻力矩
Mμ =Jβμ
(3)
3、将(2)和(3)代入(1)式中,可得:
mfgr+Jβμ=J β 由此可得转动惯量的表达式:
J mf gr (4)
1. 承物台 2. 遮光细棒 3.
4、本实验的刚体转动可认为是匀变速转动,角位移公式:
图二 承物台俯视图
刚体转动惯量测定
1. 学习使用刚体转动惯量实验仪,测定规则物体的转动惯量,
2. 用实验方法验证平行轴定理。
二、实验原理
(一)转动惯量的测定
1、由转动定律可知: M=Jβ
其中: M—合外力矩 J—转动惯量 β—角加速度
2、本仪器转动时受到两个力矩的作用即:
M′+Mμ=Jβ
(1)
其中:M′—动力矩 M′ =Fr ≈mfgr
三、实验内容 (一)测圆环的转动惯量Jx 1. 测承物台的转动惯量J0 2. 测承物台加圆环的转动惯量J 3. 求圆环的转动惯量Jx=J-J0,并
与J理比较求相对误差 (二)验证平行轴定理
1.先将小圆柱放在孔(2,2′)位置, 测J1
2.后将小圆柱放在孔(1,3 ′ )位置, 测J2
3.验证:J2-J1=2mzd2
转动惯量测量实验报告(共7篇)
篇一:大学物理实验报告测量刚体的转动惯量测量刚体的转动惯量实验目的:1.用实验方法验证刚体转动定律,并求其转动惯量;2.观察刚体的转动惯量与质量分布的关系3.学习作图的曲线改直法,并由作图法处理实验数据。
二.实验原理:1.刚体的转动定律具有确定转轴的刚体,在外力矩的作用下,将获得角加速度β,其值与外力矩成正比,与刚体的转动惯量成反比,即有刚体的转动定律:m = iβ (1)利用转动定律,通过实验的方法,可求得难以用计算方法得到的转动惯量。
2.应用转动定律求转动惯量图片已关闭显示,点此查看如图所示,待测刚体由塔轮,伸杆及杆上的配重物组成。
刚体将在砝码的拖动下绕竖直轴转动。
设细线不可伸长,砝码受到重力和细线的张力作用,从静止开始以加速度a下落,其运动方程为mg – t=ma,在t时间内下落的高度为h=at/2。
刚体受到张力的力矩为tr和轴摩擦力力矩mf。
由转动定律可得到刚体的转动运动方程:tr - mf = iβ。
绳与塔轮间无相对滑动时有a = rβ,上述四个方程得到:22m(g - a)r - mf = 2hi/rt (2)mf与张力矩相比可以忽略,砝码质量m比刚体的质量小的多时有a<<g,所以可得到近似表达式:2mgr = 2hi/ rt (3)式中r、h、t可直接测量到,m是试验中任意选定的。
因此可根据(3)用实验的方法求得转动惯量i。
3.验证转动定律,求转动惯量从(3)出发,考虑用以下两种方法:2a.作m – 1/t图法:伸杆上配重物位置不变,即选定一个刚体,取固定力臂r和砝码下落高度h,(3)式变为:2m = k1/ t (4)2式中k1 = 2hi/ gr为常量。
上式表明:所用砝码的质量与下落时间t的平方成反比。
实验中选用一系列的砝码质量,可测得一组m与1/t的数据,将其在直角坐标系上作图,应是直线。
即若所作的图是直线,便验证了转动定律。
222从m – 1/t图中测得斜率k1,并用已知的h、r、g值,由k1 = 2hi/ gr求得刚体的i。
转动惯量的测定
转动惯量的测定一、实验目的:1、测定圆台的转动惯量。
2、测定圆盘的转动惯量。
3、验证平行轴定理。
二、实验原理:1.转动系统所受合外力矩合M 与角加速度β的关系根据刚体转动定律,刚体绕某一定轴转动得角加速度β与所受的合外力矩合M 成正比, 与刚体的定轴转动惯量I 成反比,即M I β=合 (16-1)其中I 为该系统对回转轴的转动惯量。
合外力矩M 合主要由引线的张力矩M 和轴承的摩擦力力矩M 阻构成,则M M I β-=阻摩擦力矩是未知的,但是它主要来源于接触磨擦,可 以认为是恒定的,因而将上式改为M I M β=+阻 (16-2)在此实验中要研究引线的张力矩M 与角加速度β之间是否满足式(16-2)的关系,即测量在不同力矩M 作用下的β值。
(1)关于引线张力矩M设引线的张力为T ,绕线轴半径为R ,则 M TR =又设滑轮半径为r ,质量为m ',其转动惯量为I ',塔轮转动时砝码下落的加速度为a ,参照图16-2可以得出mg T maa T r Tr I r '-=⎧⎪⎨''-=⎪⎩从上述二式中消去T ',同时取212I m r ''=,得出在此实验中保持0.3%2m a a g m'+≤,则mg T ≈,此时: mgR M ≈ (16-3)可见在实验中是由塔轮R 来改变M 的值。
(2)角加速度β的测量测出砝码从静止位置开始下落到地面上的时间为t ,路程为s ,则平均速度/υS t =,落到地板前瞬间的速度2υυ=,下落加速度/aυt =,角加速度R a /=β,即 22sR tβ=(16-4) 此方法一般是使用停表来测量砝码落地时间t ,由于t 较小,故测量误差比较大。
我们采用另外的方法:3131(6/2/)/(/2/2)t t t t βππ=+-三、实验内容:1.考察张力矩与角加速度的关系(1)用水准器将回转台调成水平,即调节轴铅直。
实验一刚体转动惯量的测量
第二单元实验1 用扭摆法测刚体转动惯量转动惯量是刚体转动时惯性大小的量度。
刚体的转动惯量与刚体的总质量、形状大小和转轴的位置有关。
对于形状较简单的刚体,可以通过数学方法算出它绕特定轴的转动惯量。
但是对于形状较复杂的刚体,应用数学方法计算它的转动惯量非常困难,故大都用实验方法测定。
刚体的转动惯量在机械动平衡方面有着广泛的应用,凡是涉及往复式直线运动与旋转运动的相互转换,都必须借助具有较大转动惯量的“飞轮”才能实现,其中典型的例子是蒸汽机和内燃机。
此外,为了让机械转动更平稳,最简单的方法就是在其转动轴上加上一个形状规则、质量分布均匀,且具有一定转动惯量的飞轮。
因此,学会刚体转动惯量的测定方法,具有重要的实际意义。
【实验目的】1. 了解ZG-2型转动惯量测定仪测刚体转动惯量的原理和方法。
2. 测定弹簧的扭转常数及几种不同形状刚体的转动惯量。
3. 验证刚体转动的平行轴定理。
【实验原理】1. 弹簧的扭转常数及刚体的转动惯量图1 ZG-2转动惯量测定仪将待测物体在水平面内转过一定角度θ后,在弹簧恢复力矩的作用下,物体就开始绕垂直轴作往返扭转运动。
忽略轴承的摩擦阻力矩,根据虎克定律,弹簧受扭转而产生的恢复力矩M 与所转过的角度θ成正比,即θK M -=(1)式中K 为弹簧的扭转常数。
根据转动定律βI M =式中I 为物体绕转轴的转动惯量,β为角加速度,由此可得θβIK -= (2)令ω2=IK,由(2)式得 -=-==θθβI Kdtd 22ω2θ上述微分方程表示转动惯量仪运动具有角谐振动的特性,即角加速度β与角位移θ成正比,并且方向相反。
此微分方程的解为:)cos(ϕωθ+=t A式中θ为角位移,A为谐振动的角振幅, ϕ为初相位角,ω为圆频率。
此谐振动的周期为KI T πωπ22==则 224T I K π= (3)根据(3)式,只要测得转动惯量仪的摆动周期T ,在I 和K 中任何一个量已知时就可计算出另一个量。
1转动惯量的测定
转动惯量的测定转动惯量是刚体转动中惯性大小的量度。
它取决于刚体的总质量,质量分布、形状大小和转轴位置。
对于形状简单,质量均匀分布的刚体,可以通过数学方法计算出它绕特定转轴的转动惯量,但对于形状比较复杂,或质量分布不均匀的刚体,用数学方法计算其转动惯量是非常困难的,因而大多采用实验方法来测定。
转动惯量的测定,在涉及刚体转动的机电制造、航空、航天、航海、军工等工程技术和科学研究中具有十分重要的意义。
测定转动惯量常采用扭摆法或恒力矩转动法,本实验采用恒力矩转动法测定转动惯量。
一、实验目的1、学习用恒力矩转动法测定刚体转动惯量的原理和方法。
2、观测刚体的转动惯量随其质量,质量分布及转轴不同而改变的情况,验证平行轴定理。
3、学会使用智能计时计数器测量时间。
二、实验原理1、恒力矩转动法测定转动惯量的原理根据刚体的定轴转动定律:βJ M = (1)只要测定刚体转动时所受的总合外力矩M 及该力矩作用下刚体转动的角加速度β,则可计算出该刚体的转动惯量J 。
设以某初始角速度转动的空实验台转动惯量为J 1,未加砝码时,在摩擦阻力矩M µ的作用下,实验台将以角加速度β1作匀减速运动,即:11βµJ M =− (2) 将质量为m 的砝码用细线绕在半径为R 的实验台塔轮上,并让砝码下落,系统在恒外力作用下将作匀加速运动。
若砝码的加速度为a ,则细线所受张力为T= m (g - a)。
若此时实验台的角加速度为β2,则有a= R β2。
细线施加给实验台的力矩为T R= m (g -R β2) R ,此时有:212)(ββµJ M R R g m =−− (3) 将(2)、(3)两式联立消去M µ后,可得:1221)(βββ−−=R g mR J (4) 同理,若在实验台上加上被测物体后系统的转动惯量为J 2,加砝码前后的角加速度分别为β3与β4,则有:3442)(βββ−−=R g mR J (5) 由转动惯量的迭加原理可知,被测试件的转动惯量J 3为:123J J J −= (6) 测得R 、m 及β1、β2、β3、β4,由(4),(5),(6)式即可计算被测试件的转动惯量。
转动惯量测量方法
转动惯量测量方法
转动惯量的测量方法有多种,以下是一些常用的方法:
1.扭摆法:利用扭摆的自由振动周期与转动惯量之间的关系,通
过测量扭摆的自由振动周期,可以推算出转动惯量。
2.复摆法:利用复摆的摆动周期与转动惯量之间的关系,通过测
量复摆的摆动周期,可以推算出转动惯量。
3.旋转盘法:利用旋转盘的转动惯量与转速之间的关系,通过测
量旋转盘的转速和转动惯量,可以推算出转动惯量。
4.振动法:利用物体的振动频率与转动惯量之间的关系,通过测
量物体的振动频率,可以推算出转动惯量。
5.电子式扭矩仪法:利用电子式扭矩仪测量扭矩和转速,结合角
动量守恒定律推算转动惯量。
6.刚体转动实验台法:将待测刚体放置在刚体转动实验台上,通
过测量实验台的运动状态和刚体的转速,结合角动量守恒定律
推算转动惯量。
这些方法各有优缺点,可以根据具体的情况选择适合的方法进行测量。
转动惯量测量实验报告(共7篇)
篇一:大学物理实验报告测量刚体的转动惯量测量刚体的转动惯量实验目的:1.用实验方法验证刚体转动定律,并求其转动惯量;2.观察刚体的转动惯量与质量分布的关系3.学习作图的曲线改直法,并由作图法处理实验数据。
二.实验原理:1.刚体的转动定律具有确定转轴的刚体,在外力矩的作用下,将获得角加速度β,其值与外力矩成正比,与刚体的转动惯量成反比,即有刚体的转动定律:m = iβ (1)利用转动定律,通过实验的方法,可求得难以用计算方法得到的转动惯量。
2.应用转动定律求转动惯量图片已关闭显示,点此查看如图所示,待测刚体由塔轮,伸杆及杆上的配重物组成。
刚体将在砝码的拖动下绕竖直轴转动。
设细线不可伸长,砝码受到重力和细线的张力作用,从静止开始以加速度a下落,其运动方程为mg – t=ma,在t时间内下落的高度为h=at/2。
刚体受到张力的力矩为tr和轴摩擦力力矩mf。
由转动定律可得到刚体的转动运动方程:tr - mf = iβ。
绳与塔轮间无相对滑动时有a = rβ,上述四个方程得到:22m(g - a)r - mf = 2hi/rt (2)mf与张力矩相比可以忽略,砝码质量m比刚体的质量小的多时有a<<g,所以可得到近似表达式:2mgr = 2hi/ rt (3)式中r、h、t可直接测量到,m是试验中任意选定的。
因此可根据(3)用实验的方法求得转动惯量i。
3.验证转动定律,求转动惯量从(3)出发,考虑用以下两种方法:2a.作m – 1/t图法:伸杆上配重物位置不变,即选定一个刚体,取固定力臂r和砝码下落高度h,(3)式变为:2m = k1/ t (4)2式中k1 = 2hi/ gr为常量。
上式表明:所用砝码的质量与下落时间t的平方成反比。
实验中选用一系列的砝码质量,可测得一组m与1/t的数据,将其在直角坐标系上作图,应是直线。
即若所作的图是直线,便验证了转动定律。
222从m – 1/t图中测得斜率k1,并用已知的h、r、g值,由k1 = 2hi/ gr求得刚体的i。
转动惯量的测定实验报告
理论力学转动惯量实验报告【实验目的】1.了解多功能计数计时毫秒仪实时测量(时间)的基本方法2.用刚体转动法测定物体的转动惯量3.验证刚体转动的平行轴定理4.验证刚体的转动惯量与外力矩无关【实验原理】1.转动力矩、转动惯量和角加速度关系系统在外力矩作用下的运动方程T×r+Mμ=Jβ2(1)由牛顿第二定律可知,砝码下落时的运动方程为:mg-T=ma即绳子的张力T=m(g-rβ2)砝码与系统脱离后的运动方程Mμ=Jβ1(2)由方程(1)(2)可得J=mr(g-rβ2)/(β2-β1) (3)2.角加速度的测量θ=ω0t+½βt²(4)若在t1、t2时刻测得角位移θ1、θ2则θ1=ω0 t1+½βt²(5)θ2=ω0 t2+½βt²(6)所以,由方程(5)、(6)可得β=2(θ2 t1-θ1 t2)/ t1 t2(t2- t1)【实验仪器】1、IM-2刚体转动惯量实验仪(含霍尔开关传感器、计数计时多功能毫秒仪、一根细绳、一个质量为100g的砝码等,塔轮直径从下至上分别为30mm、40mm、50mm、60mm,载物台上的孔中心与圆盘中心的距离分别为40mm、80mm、120mm)2、一个钢质圆环(内径为175mm,外径为215mm,质量为995g)3、两个钢质圆柱(直径为38mm,质量为400g)【实验步骤】1.实验准备在桌面上放置IM-2转动惯量实验仪,并利用基座上的三颗调平螺钉,将仪器调平。
将滑轮支架固定在实验台面边缘,调整滑轮高度及方位,使滑轮槽与选取的绕线塔轮槽等高,且其方位相互垂直。
通用电脑计时器上光电门的开关应接通,另一路断开作备用。
当用于本实验时,设置1个光电脉冲记数1次,1次测量记录大约20组数。
2.测量并计算实验台的转动惯量1)放置仪器,滑轮置于实验台外3-4cm处,调节仪器水平。
设置毫秒仪计数次数为20。
2)连接传感器与计数计时毫秒仪,调节霍尔开关与磁钢间距为0.4-0.6cm,转离磁钢,复位毫秒仪,转动到磁钢与霍尔开关相对时,毫秒仪低电平指示灯亮,开始计时和计数。
1.转动惯量的测定
J T = 2p K
– 如果已知 K,则测得周期 T 就可以得转动惯量 J。
办法
– 空载时测量一次周期,加已知转动惯量的刚体再测
一次周期,这样就可以同时确定 K 和托盘支架的转 动惯量了。
9
测定扭摆的扭转系数
ì ï ï T 0 = 2p J 0 ï ï K ï Þ í ' ï ï T = 2p J 0 + J 1 ï 1 ï K ï î
11
注意事项
– 由于弹簧的扭转常数K值不是固定常数,它与摆角
略度变化过大 带来的系统误差,在测定各种物体的摆动周期时, 摆角不宜过小,摆幅也不宜变化过大。 – 光电探头宜放置在挡光杆的平衡位置处,拦光杆不 能和它相接触,以免增大摩擦力矩。 – 机座应保持水平状态。 – 圆柱、圆筒放置时要放正不可斜放。
12
数据处理提示
参考表格1
13
数据处理提示
参考表格2
14
实验一 转动惯量的测定 转动惯量的测定一 扭摆法测定物体转动惯量 【预习思考题】 1.如何测量任意形状物体对特定轴的转动惯量? 答:先在载物盘上装上几何规则的物体,测量其摆动周期,计算出弹簧的扭转常数K值。再将任意形状物体装在载物盘上或直接装在垂直轴上,绕特定轴转动,测 量出转动惯量。 若绕过质心轴转动,测量出过质心轴转动惯量,利用平行轴定理计算出绕特定轴转动惯量。 2.扭摆启动时摆角要在90°左右,为什么? 答:由于弹簧的扭转常数值不是固定常数,它与摆动角度略有关系,在小角度时变小,摆角在90°左右基本相同。 【分析讨论题】 1.扭摆在摆动过程中受到哪些阻尼?它的周期是否会随时间而变? 答:空气的阻尼,转轴与轴承间的摩擦阻尼。由于弹簧的扭转常数值不是固定常数,在小角度时变小,因此它的周期会随时间而变。 2.扭摆的垂直轴上装上不同质量的物体,在不考虑阻尼的情况下分析对摆动周期大小的影响。 答:同样形状、同样质量分布的物体,质量大的物体,其摆动周期大。 转动惯量的测定二 三线摆法测定物体转动惯量 【预习思考题】 1.对下圆盘的摆角有何要求?为什么? 答:下圆盘的摆角要小于10°。因为在三线摆法测定物体转动惯量公式推导过程中应用了。 2.怎样启动三线摆才能防止下圆盘出现晃动? 答:让已调水平的三线摆保持静止,用手轻轻扭动上圆盘上的扭动杆,使下圆盘摆动角度小于10°,随后将扭动杆退到原处。 【分析讨论题】 1.三线摆在摆动过程中要受到空气的 三线摆在摆动过程中要受到空气的阻尼,振幅越来越小,它的摆动周期是否会随时间而变化? 三线摆在摆动过程中要受到空气的 答:它的摆动周期是不会随时间而变化。 2.加上待测物体后三线摆的摆动周期是否一定比空盘的周期大?为什么?答:加上待测物体后三线摆的摆动周期不一定比空盘的周期大。由下圆 盘对中心轴转动惯量公式可知,若J/m>J0/m0 加上待测物体 后三线摆的摆动周期变大;若J/m<J0/m0 加上待测物体后三线摆的摆动周期变 小。 3.如何用三线摆验证转动惯量的平行轴定理? 答:将两个完全相同的小圆柱体m分别置于下圆盘的中心,测出绕圆柱体质心的转动惯量J;再将两个完全相同的圆柱体对称置于下圆盘的中心两侧,圆柱体质心与 下圆盘的中心l,测出两个圆柱体对中心轴的转动惯量Jˊ。验证式子Jˊ=2ml2+2J 成立。
转动惯量的测定实验报告
转动惯量的测定实验报告一、实验目的1、学习用三线摆法测定物体的转动惯量。
2、验证转动惯量的平行轴定理。
二、实验原理三线摆是将一个匀质圆盘,以三条等长的摆线对称地悬挂在一个水平的圆盘上。
当圆盘绕垂直于盘面的中心轴作微小扭转摆动时,圆盘的运动可以看作是一种简谐振动。
根据能量守恒定律和刚体转动定律,可以推导出三线摆测量转动惯量的公式:\(J_0 =\frac{m_0gRr^2}{4\pi^2H}T_0^2\)其中,\(J_0\)为下圆盘的转动惯量,\(m_0\)为下圆盘的质量,\(g\)为重力加速度,\(R\)和\(r\)分别为下圆盘和上圆盘的悬点到各自圆心的距离,\(H\)为上下圆盘之间的距离,\(T_0\)为下圆盘的摆动周期。
对于质量为\(m\)、转动惯量为\(J\)的待测物体放在下圆盘上时,系统的转动惯量为\(J_0 + J\),摆动周期为\(T\),则有:\(J =\frac{m_0gRr^2}{4\pi^2H}(T^2 T_0^2)\)若质量为\(m\)的待测物体的质心轴到下圆盘中心轴的距离为\(d\),根据平行轴定理,其转动惯量为\(J = J_c + md^2\),其中\(J_c\)为通过质心轴的转动惯量。
三、实验仪器三线摆实验仪、游标卡尺、米尺、电子秒表、待测圆环、圆柱体等。
四、实验步骤1、调节三线摆底座水平,使上圆盘和下圆盘处于平行状态。
2、用米尺测量上下圆盘之间的距离\(H\),测量六次取平均值。
3、用游标卡尺测量上下圆盘的悬点到各自圆心的距离\(R\)和\(r\),各测量六次取平均值。
4、测量下圆盘的质量\(m_0\)和半径\(R_0\)。
5、轻轻转动下圆盘,使其做小角度摆动,用电子秒表测量下圆盘摆动\(50\)次的时间,重复测量六次,计算平均周期\(T_0\)。
6、将待测圆环放在下圆盘上,使圆环的中心与下圆盘的中心重合,测量系统的摆动周期\(T\),重复测量六次。
7、用游标卡尺测量圆环的内、外直径,计算圆环的质量和转动惯量。
刚体转动惯量的测定的实验数据处理
注意事项
刚
体
转
1.扭摆静止时,挡光杆要处于光电门间隙,
发射管和接收管之间,即正好处于挡光状态。
动
2.称木球、细杆质量时必须将支架夹具取下,
惯
不可一同称。
量
3.转角60º即可,不要太大。
测
4.圆柱、圆筒放置时要放正不可斜放。
定
实验介绍
刚
体
转
动
惯
量
测
定
刚
体
转
动
结束放映
惯
谢谢观看
量
测
定
百分差(%)
动
载物圆盘
惯
实心圆柱体
量
空心金属桶
测
木球
定
金属细杆
数据处理
刚
体
2.验证转动惯量平行轴定理
X(10-2m)
5.0 10.0 15.0 20.0 25.0
转
T(s)
动
惯
T (s)
实验值(kg.m2)
J
K 4 2
T
2
理论值(kg.m2) J J4 2mx 2 J5
量 测
百分差(%)
定刚体源自游标卡尺转动
惯
量
电子台秤
测
定
实验内容
刚
体
测定扭摆的扭转系数
转
动
惯
量
K
4
2
T12
J1' T02
测 定
J0
J1
T02 T12 T02
J1
1 8
m1d12
实验内容
刚
体
测定金属圆筒,细杆,木球的转动惯量, 并与理论值比较计算百分误差。
大学物理实验——转动惯量的测量
转动惯量的测定实验性质:综合性实验教学目的和要求: 1. 测量不同形状刚体的转动惯量;2. 加深对转动惯量的理解。
教学重点与难点:重点:正确记录有效数字和使用相关仪器设备难点:各仪器的正确使用。
一.检查学生的预习情况检查学生预习报告:内容是否完整,表格是否正确。
二.实验仪器和用具:转动惯量测定仪、转动惯量周期测定仪、圆柱、金属球。
三.讲解实验原理:刚体转动惯量是刚体在转动中惯性大小的量度,它的重要性类似于平动中物体的质量。
一刚体对于某一给定轴的转动惯量,是刚体中每一单元质量的大小与单元质量到转轴的距离的平方的乘积的总和。
刚体的转动惯量与刚体的质量、刚体的质量分布、转轴的位置与方位有关。
对于几何形状规则的刚体,可用积分式计算出它绕过质心轴转动的转动惯量,并根据平行轴定理,计算出刚体绕任一特定轴转动的转动惯量。
但对于形状复杂的刚体,用数学方法求转动惯量则相当困难,一般宜采用实验的方法来测定。
因此,学会对刚体转动惯量的测量方法,具有重要的现实意义,如对研究机械转动性能,包括飞轮、炮弹、发动机叶片、电机、电机转子、卫星外形等的设计工作都有重要意义。
各刚体转动惯量的理论值:221mR I =圆柱2mR I =圆筒252mR I =球2121ml I o =细杆 若刚体绕质心轴作扭转振动的角位移以θ表示,根据刚体转动定律,转动系统所受到的合外力矩M 与角位移θ及角加速度α的关系为:22dtd I I k M θαθ==-= (1)I k Ik dt d ==+222,0ωθθ令kI T πωπ22==(2) 令圆柱体的转动惯量为已知量:228121mD mR I ==圆柱 空载物台的转动周期为0T ,转动惯量为0I ;载物台与圆柱的共同转动周期为1T ,转动惯量为'101I I I +=;载物台与圆筒的共同转动周期为2T ,转动惯量为'202I I I +=;球的转动周期为3T ,转动惯量为3I ;细杆绕其质心轴的转动周期为4T ,转动惯量为4I ; 转动周期可以通过周期测定仪测出来。
转动惯量的测定实验报告
转动惯量的测定实验报告一、实验目的1、学习用三线摆法测量物体的转动惯量。
2、验证转动惯量的平行轴定理。
二、实验原理三线摆是由三根等长的悬线将一个匀质圆盘悬挂在一个水平的圆盘支架上构成的。
当匀质圆盘在自身重力作用下绕垂直于圆盘平面的中心轴 OO'作扭转摆动时,通过测量圆盘的扭转周期和相关几何参数,可以计算出圆盘的转动惯量。
设下圆盘质量为 m₀,半径为 R₀,上圆盘质量为 m,半径为 r,上下圆盘之间的距离为 h。
当下圆盘扭转一个小角度θ 后,在重力矩的作用下,圆盘将做周期性的扭转摆动。
根据能量守恒定律,圆盘的转动动能等于重力势能的变化,可得:\\begin{align}mgh\theta&=\frac{1}{2}I\omega^2\\\end{align}\其中,I 为圆盘的转动惯量,ω 为圆盘的角速度。
由于圆盘的摆动角度很小,sinθ ≈ θ ,则重力矩为mghθ 。
又因为圆盘做简谐运动,其周期 T 与角速度ω 的关系为:\(\omega =\frac{2\pi}{T}\)。
将上述关系代入可得:\\begin{align}mgh\theta&=\frac{1}{2}I(\frac{2\pi}{T})^2\\I&=\frac{mghT^2}{4\pi^2\theta}\end{align}\对于三线摆,通过几何关系可以得到:\(h =\sqrt{(R_0^2r^2)}\)。
当质量为 m 的待测物体放在下圆盘上,且其质心与下圆盘中心轴重合时,测出此时的摆动周期 T',则系统的转动惯量为:\\begin{align}I'&=(m_0 + m)\frac{g\sqrt{(R_0^2 r^2)}T'^2}{4\pi^2\theta}\end{align}\则待测物体的转动惯量为:\(I_{x} = I' I_0\)。
平行轴定理:如果一个刚体对通过质心的轴的转动惯量为 Ic,那么对与该轴平行、相距为 d 的任意轴的转动惯量为:\(I = I_c +md^2\)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
转动惯量的测定
转动惯量是刚体转动时惯性大小的量度,是表明刚体特性的一个物理量。
刚体转动惯量除了与刚体的质量有关外,还与转轴的位置和质量分布(即形状、大小和密度)有关。
如果刚体形状简单,且质量分布均匀,可直接计算出它绕特定转轴的转动惯量。
但在工程实践中,我们常碰到大量形状复杂且质量分布不均匀的刚体,理论计算将极为复杂,通常采用实验方法来测定。
转动惯量的测量,一般都是使刚体以一定形式运动,通过表征这种运动特征的物理量与转动惯量之间的关系,进行转换测量。
本实验使物体作扭转摆动,由摆动周期及其参数的测定算出物体的转动惯量,利用刚体转动惯量实验仪测定物体的转动惯量。
[实验目的]
1、用扭摆测定弹簧的扭摆常数K。
2、用扭摆测定几种不同形状物体的转动惯量,并与理论值进行比较。
3、验证平行轴定律。
[实验仪器]
转动惯量实验仪、米尺、游标卡尺
[实验原理]
一、扭摆的简谐运动
扭摆的构造如图10-1所示,在垂
直轴“1”上装有一根薄片状的螺旋弹
簧“2”,用以产生恢复力矩。
在轴上
方可以装上各种待测刚体。
垂直轴与
支座间装有轴承,摩擦力矩尽可能降
低。
为了使垂直轴“1”与水平面垂
直,可通过底脚螺丝钉“7”来调节,
水平仪“8”用来指示系统调整水平。
将刚体在水平面内转过一角度θ后,在弹簧的恢复力矩作用下,物体就开始绕垂直轴作往返扭转运动。
根据胡克定律,弹簧受扭转而产生的恢复力矩M与所转过的角度θ成正比,即
=-(1)
M Kθ
式中,K 为弹簧的扭转常数。
根据转动定律有
M I β= (2)
式中,I 为刚体绕转轴的转动惯量,β为角加速度。
由(1)与(2)得
θβI
K -
=
其中2K I ω=。
忽略轴承的摩擦阻力矩,则有2K I
ω= θωθθβ222-=-==I K
dt
d
此方程表明忽略轴承摩擦阻力的扭摆运动是角简谐振动;角加速度与角位移成正比,且方向相反。
此方程的解为
cos()A t θωϕ=+
式中,A 为简谐振动的角振幅,ϕ 为初位相,ω为角速度。
此简谐振动的周期为
22I
T K
π
π
ω
=
= (3) 利用公式(3),测得扭摆的周期T ,在I 和K 中任何一个量已知时,即可计算出另一个量。
本实验用一个转动惯量已知的物体(几何形状规则的物体,根据它的质量和几何尺寸,用理论公式计算得到),测出该物体摆动的周期,再算出本仪器弹簧的K 值。
若要测量其他形状物体的转动惯量,只需将待测物体放在本仪器顶部的各种夹具上,测定其摆动周期,由公式(3)即可计算出该物体绕转轴运动时的转动惯量。
二、平行轴定理
若质量为m 的刚体通过质心轴的转动惯量为c I ,当转轴平行移动距离为x 时(如图10-2 所示),此物体对新轴线的转
动惯量变为2
0c I I mx =+,称为转动惯量的平行轴定理。
[实验内容]
1、熟悉扭摆的构造、使用方法,掌握转动惯量测试仪的正确操作要领。
2、测定扭摆的仪器常数(弹簧的扭转常数) K 。
3、测定塑料圆柱、金属圆筒、木球与金属细杆的转动惯量,并与理论值进行比较,求百分误差。
4、改变滑块在细杆上的位置,验证转动惯量的平行轴定理。
[实验步骤](主要操作要领):
1、用天平和游标卡尺分别测出待测物体的质量和必要的几何尺寸,如圆柱体的直径、金属圆筒的内外直径、木球的直径以及金属细杆的长度等,填入表1。
2、调整扭摆基座底脚螺丝,使水准仪中气泡居中。
3、装上金属载物盘,调节光电探头的位置。
要求光电探头放置在挡光杆的平衡位置处使载物盘上挡光杆处于光电探头的中央,且能遮住发射、接收红外线的小孔,如图10-1所示。
测定其摆动周期0T 。
4、将塑料圆柱垂直放在载物盘上,测出摆动周期1T 。
5、用金属圆筒代替塑料圆柱,测出摆动周期2T 。
6、取下载物金属盘,装上塑料,测出摆动周期3T 。
7、取下塑料球,装上金属细杆(细杆中心必须与转轴中心重合),测出摆动周期4T (在计算木球的转动惯量时,应扣除支架的转动惯量)。
8、将滑块对称放置在细杆两边的凹槽内,此时滑块质心离转轴的距离分别为 5.00,10.00,15.00,20.00,25.00cm ,分别测定细杆加滑块的摆动周期 5T (计算转动惯量时,应扣除支架的转动惯量)。
[数据与结果] 1、求出扭转常数K
用金属载物圆盘和在载物圆盘上放置塑料圆柱时的摆动周期0T 和1T 的实验值以及塑
料圆柱转动惯量的理论值I ' (21
1
8
I mD '=),设金属载物圆盘的转动惯量为0I ,则由公式(3)得
1T T = 或 200
2
2110
I T I T T ='- ,计算出0I ,然后再将0I 和0T 带入公式(3)中,求出扭转常数K 值,因此,测出0T 和1T ,即可得到扭转常数K 值。
2、计算各个物体的转动惯量的理论值和实验值,并分别填入表1、表2(计算公式以及计算过程写在数据处理的位置)。
【转动惯量测定实验数据】
表 1 转动惯量测量实验数据记录参考表
(已知:球支座转动惯量实验值 24200
0.17910.4KT I kg m π-''==⨯细杆夹具转动惯量实验值 242000.23210.4KT I kg m π
-''''==⨯)
3 验证平行轴定理
表 2 平行轴定理验证实验数记录参考表
(已知:两滑块绕质心轴的转动惯量的理论值
2420511222[()]0.80910.16
12I m D D ml kg m -'=++=⨯外内
式中 m 是一个滑块质量,l 是一个滑块的长度,D 外 、D 内分别为滑块的内外直径。
22542.4KT I I kg m π=-实验
()
22
052.I I ml kg m '=+理论
())
[实验注意事项]
1、弹簧的扭转常数K 不是固定的常数,它与摆角大小有关系,设摆角为90° ,所以为了减少实验的系统误差,测定各种物体的摆动周期时,整个实验过程摆角基本保持在同一个范围内。
2、光电探头宜放置在挡光杆的平衡位置处,挡光杆不能与它接触,以免增加摩擦力矩。
3、在安装待测物体时,其支架必须全部套入扭摆的主轴,并且将止动螺丝旋紧否则扭摆不能正常工作。
4、机座应保持在水平状态。
[实验报告要求]
记录实验所用的实验仪器(型号或规格)和实验环境条件。
叙述实验原理和实验的操作过程,按数据处理要求,给出实验测量结果,分析、讨论本次实验误差产生的原因。
[思考题]
1、弹簧的扭转常数K值不是固定常数,它与摆动角度之间有什么关系?你能分析它引起的系统误差吗?
2、如何测量任意形状的刚体绕转动轴的转动惯量?
3、扭摆在摆动中受空气的阻尼,振幅越来越小,它的周期是否变化?为什么?
4、为什么周期要通过测量10次的时间t 计算得到,直接测量行吗?
5、当圆盘和圆环的质量相等、半径相同时,转动惯量却不相同,试问为什么?。