热负荷及散热量计算..
暖气散热量计算方法
文档收集于互联网,已重新整理排版.word 版本可编辑,有帮助欢迎下载支持.首先,我们要了解,暖气片的购买单位是组,它是由多少片暖气片组成的,大多数暖气片厂 家都可以定制。
其次了解暖气片的高度,市面上常见的一般有 670mm、1500mm、1800mm 三种,不同高度的暖气片散热量也不一样,高度越高散热量越大。
暖气片片数需要根据房间面积来计算的。
首先选择一款性价比最高的暖气片,记住它每片的 散热量,用这个【散热量】除以 100 就得到【每平米需要的片数】,然后用【房间面积】 除以【每平米需要的片数】,就得到这个房间需要的【总片数】。
举个例子:小编客厅面积 为 20 平米,选中鲁本斯塞尚大水道 1800 高的暖气片,每片的散热量是 260W,算法是: 用散热量 260W 除以 100 等于 2.6(每平米需要的片数),(房间面积)20 除以 2.6 等于 7.7,所以 20 平房间需要 8 片一组的暖气片。
最后,建议房屋密封性不好的买家在此算法的基础上多买一到两片,这样能达到更好的采暖 效果。
1)影响散热量的因素可以归结为两个方面:一是散热器本身的特点,如它的材料、形状、壁厚、焊接质量 和表面处理等;二是它的使用条件,也就是外界条件,如流过散热器的热媒种类、温度、流量,进出水的 方式,房间里的空气温度和流速,四周墙面的颜色和温度,散热器的安装方式,组装片数等。
因此,不仅 不同的散热器散热性能不同,而且同一片或同一组散热器在不同外界条件下的散热性能也不相同。
散热器的散热量可用下式表示: Qs=KsFs(tp-tn)式中 Qs——散热器的散热量(W); Ks——散热器的传热系数[W/(m2•℃)]; Fs——散热器的散热面积(m2); tp——散热器内热媒的平均温度(℃); tn——散热器所在室内的空气温度(℃)。
由式中可见,温差 tp-tn 越大,散热量也越大。
如果它们成直线关系变化,则 Ks 就应该是常数。
供暖热耗量的估算公式
供暖热耗量的估算公式
供暖热耗量的估算可以使用热负荷计算公式来进行。
一般而言,热负荷是指建筑物或特定空间需要供暖的能量量,其计算方法可以通过以下公式进行估算:
热负荷= 建筑物的散热量+ 人员、设备、照明等的热负荷+ 空气变化热负荷+ 其他附加热负荷
这些要素的计算可以使用不同的方法,但总体考虑以下几个方面:
1.建筑物的散热量:建筑物的散热量是指在保持室内温度的情况下,建筑物因传导、
对流和辐射等方式失去的热量。
这个部分的计算通常需要考虑建筑物的尺寸、材料、隔热性能、窗户和门等因素。
2.人员、设备、照明等的热负荷:人员在室内活动、设备的运行以及照明等都会产生
热量。
这部分的计算通常基于人数、设备功率和照明的能耗等因素。
3.空气变化热负荷:这指的是因为室内外温度差异而进行通风换气引起的热量损失。
它的计算涉及到室内空气变化的频率、通风量和室内外温度差等因素。
4.其他附加热负荷:包括特殊需求下的附加热负荷,比如厨房、暖气设备的额外热量
需求等。
需要指出的是,计算热负荷是一个复杂的过程,涉及多个因素和变量。
最准确的方法是由专业的供暖、通风和空调(HVAC)工程师进行详细的热负荷计算,考虑到建筑物的具体特征和需求,使用专业的软件工具和标准公式来进行估算。
热负荷计算方法
风量后,再计算其耗热。
4. 外门开启冲入冷风耗热量 Q3(W)
请参考《实用供热空调设计手册》第二版
P314 。
5. 单层厂房的大门开启冲入冷风耗热量
Q3(W)
每班开启时间等于或者小于 15min 的大门,采用附加率法确定其大门冲入冷风耗热
附加在大门的基本耗热量上,附加率为 200% ~ 500%
每班开启时间大于 15min 的大门,按下面经验公式确定其大门开启冲入冷风量
V 的计算方法:
V = ∑(l ·L ·n )
(3.1.1)
式中:
l— 房间某朝向上的可开启门、窗缝隙的长度, m ;
L— 每米门窗缝隙的渗风量, m3/(m ? h) ;
n — 渗风量的朝向修正系数。
考虑热压与风压的联合作用, 且室外风速随高度递增时的计算方法 (暖通与空调设
计规范规定之方法) : V = l1 ·L0 ·pow(m, b) 式中:
式中:
Qj — 该围护物的基本耗热量, W ;
βch — 朝向修正;
βf — 风力修正;
βlang — 两面外墙修正;
βm —窗墙面积比过大修正;
βfg —房高修正;
βjian —间歇附加。
3. 通过门、窗缝隙的冷风渗透耗热量
Q2(W)
Q2 = 0.28 ·Cp ·V ·ρw·(tn - tw)
式中:
F—车间上部可能开启的排风窗或排气孔的面积,
m2
多层厂房大门开启冲入冷风耗热量可按民用多层建筑外门开启冲入冷风耗热量计算,
条
件是车间内无机械通风造成的余压(或正或负) ,无天窗,无大量余热。
3
G
( kg/s ): G=A+(a+N · vw) ·F 式中:
暖气散热量计算方法
图三
式中D——直径;
K——1.05;
N——法兰个数。
(5)设备和管道法兰翻边防腐蚀工程量计算式:(图四)
图4
S=π×(D+A)×A
式中D——直径;
A——法兰翻边宽。
(6)带封头的设备防腐(或刷油)工程量计算式:(图五)
图五
S=L×π×D+(D[]22)×π×1.5×N
式中N——封头个数;
总结一句,也就是说正常集中供暖,房间阳面,可按每平米80W散热量计算,要是阴面则需要按105W来计算.要是一楼、顶楼、端头户(也就是把边),则还需要加大散热量,独立供暖、别墅则阳面最少要按105W的散热量来计算,设计的以上因素还是要按比例加大。这才能达到国家标准温度。
第十一册 刷油、防腐蚀、绝热工程
采暖地点1 2 3 4 5 6
阳阴阳阴阳阴阳阴阳阴阳阴
居民住宅80 105 122 159 114 137 139 168 213 257 166 200
3、独立供暖楼房:按集中供暖状态热指标X110%
4、独立别墅:按集中供暖状态热指标X130%
5、联体别墅:按集中供暖状态热指标X120%
6、平房:按集中供暖状态热指标X150%:
2、集中供暖楼房常规状态单位面积热指标:
常规状态指进水温度80度,回水温度60度、室温18度(结合北京实际供暖情况)
单位面积热指标:
无保温层
采暖地点1 2 3 4 5 6
阳阴阳阴阳阴阳阴阳阴阳阴
居民住宅105 126 153 183 166 199 158 191 228 272 175 195
有保温层
首先,我们要了解,暖气片的购买单位是组,它是由多少片暖气片组成的,大多数暖气片厂家都可以定制。其次了解暖气片的高度,市面上常见的一般有670mm、1500mm、1800mm三种,不同高度的暖气片散热量也不一样,高度越高散热量越大。
机动车辆散热器的散热量计算和散热面积确定方法分析
机动车辆散热器的散热量计算和散热面积确定方法分析随着机动车辆的迅猛发展,散热器在汽车冷却系统中起着至关重要的作用。
散热器的设计和性能直接影响着发动机的工作效率和寿命。
因此,对于散热器的散热量计算和散热面积的确定方法进行分析是非常必要的。
一、散热量的计算方法1. 热负荷法计算散热量热负荷法是一种基于散热器接收单位面积热量的能力来计算散热量的方法。
该方法通过测量发动机在给定工况下产生的热量,并将其除以散热器可接受的最大热负荷,以得出所需的散热面积。
2. 温度差法计算散热量温度差法是一种基于冷却介质进出口温度差异来计算散热量的方法。
该方法通过测量冷却液在进入和离开散热器前后的温度差异,并结合冷却液的流量来计算散热量。
3. 水力法计算散热量水力法是一种基于冷却液在散热器内的流动状况来计算散热量的方法。
该方法通过测量冷却液在散热器内的流速和压降,并结合冷却液的流量来计算散热量。
二、散热面积的确定方法1. 经验公式法确定散热面积经验公式法是一种基于经验公式来确定散热面积的方法。
这些经验公式是根据大量实验和观测数据得出的,并可以根据不同的发动机和散热器类型进行调整。
使用经验公式法时,需要考虑到散热器的形状、材料以及工作条件等因素。
2. 数值模拟法确定散热面积数值模拟法是一种基于计算机模拟的方法来确定散热面积的方法。
通过建立散热器的数学模型,并利用计算流体力学(CFD)方法进行模拟计算,可以得到散热器的散热性能和效果。
数值模拟法可以提供更准确和可靠的散热面积确定结果。
3. 实验测试法确定散热面积实验测试法是一种通过实际测试和观测来确定散热面积的方法。
通过在实验室或测试场上进行不同工况下的散热器测试,并结合实际工况下的温度和压力数据,可以得到散热器的散热面积。
三、散热器性能的改进方法除了散热量计算和散热面积确定方法的分析之外,还可以通过以下方法来改进散热器的性能:1. 材料优化:选择导热性能好、耐腐蚀性强的材料可以提高散热器的散热效果。
散热量计算公式
一、标准散热量标准散热量是指供暖散热器按我国国家标准(GB/T13754-1992),在闭室小室内按规定条件所测得的散热量,单位是瓦(W)。
而它所规定条件是热媒为热水,进水温度95摄氏度,出水温度是70摄氏度,平均温度为(95+70)/2=82.5摄氏度,室温18摄氏度,计算温差△T=82.5摄氏度-18摄氏度=64.5摄氏度,这是散热器的主要技术参数。
散热器厂家在出厂或售货时所标的散热量一般都是指标准散热量。
那么现在我就要给大家讲解第二个问题,我想也是很多厂商和经销商存在疑问的地方。
二、工程上采用的散热量与标准散热量的区别标准散热量是指进水温度95摄氏度,出水温度是70摄氏度,室内温度是18摄氏度,即温差△T=64.5摄氏度时的散热量。
而工程选用时的散热量是按工程提供的热媒条件来计算的散热量,现在一般工程条件为供水80摄氏度,回水60摄氏度,室内温度为20摄氏度,因此散热器△T=(80摄氏度+60摄氏度)÷2-20摄氏度=50摄氏度的散热量为工程上实际散热量。
因此,在对工程热工计算中必须按照工程上的散热量来进行计算。
在解释完上面的术语以后,下面我介绍一下采暖散热器的欧洲标准(EN442)。
欧洲标准(EN442)是由欧洲标准化委员会/技术委员会CEN所编制.按照CEN内部条例,以下国家必须执行此标准,这些国家是:澳大利亚、比利时、丹麦、芬兰、法国、意大利、荷兰、西班牙、瑞典、英国等18个国家。
而欧洲标准(EN442)的标准散热量与我国标准散热量是不同的,欧洲标准所确定的标准工况为:进水温度80摄氏度,出水温度65摄氏度,室内温度20摄氏度,所对应的计算温差△T=50摄氏度。
欧洲标准散热量是在温差△T=50摄氏度的散热量。
那么怎么计算散热器在不同温差下的散热量呢?散热量是散热器的一项重要技术参数,每一个散热器出厂时都标有标准散热量(即△T=64.5摄氏度时的散热量)。
但是工程所提供的热媒条件不同,因此我们必须根据工程所提供的热媒条件,如进水温度,出水温度和室内温度,来计算出温差△T,然后计算各种温差下的散热量。
散热量计算公式
一、标准散热量标准散热量是指供暖散热器按我国国家标准(GB/T13754—1992),在闭室小室内按规定条件所测得的散热量,单位是瓦(W)。
而它所规定条件是热媒为热水,进水温度95摄氏度,出水温度是70摄氏度,平均温度为(95+70)/2=82.5摄氏度,室温18摄氏度,计算温差△T=82.5摄氏度—18摄氏度=64。
5摄氏度,这是散热器的主要技术参数。
散热器厂家在出厂或售货时所标的散热量一般都是指标准散热量。
那么现在我就要给大家讲解第二个问题,我想也是很多厂商和经销商存在疑问的地方。
二、工程上采用的散热量与标准散热量的区别标准散热量是指进水温度95摄氏度,出水温度是70摄氏度,室内温度是18摄氏度,即温差△T=64。
5摄氏度时的散热量。
而工程选用时的散热量是按工程提供的热媒条件来计算的散热量,现在一般工程条件为供水80摄氏度,回水60摄氏度,室内温度为20摄氏度,因此散热器△T=(80摄氏度+60摄氏度)÷2—20摄氏度=50摄氏度的散热量为工程上实际散热量.因此,在对工程热工计算中必须按照工程上的散热量来进行计算。
在解释完上面的术语以后,下面我介绍一下采暖散热器的欧洲标准(EN442).欧洲标准(EN442)是由欧洲标准化委员会/技术委员会CEN所编制.按照CEN内部条例,以下国家必须执行此标准,这些国家是:澳大利亚、比利时、丹麦、芬兰、法国、意大利、荷兰、西班牙、瑞典、英国等18个国家。
而欧洲标准(EN442)的标准散热量与我国标准散热量是不同的,欧洲标准所确定的标准工况为:进水温度80摄氏度,出水温度65摄氏度,室内温度20摄氏度,所对应的计算温差△T=50摄氏度。
欧洲标准散热量是在温差△T=50摄氏度的散热量。
那么怎么计算散热器在不同温差下的散热量呢?散热量是散热器的一项重要技术参数,每一个散热器出厂时都标有标准散热量(即△T=64.5摄氏度时的散热量)。
但是工程所提供的热媒条件不同,因此我们必须根据工程所提供的热媒条件,如进水温度,出水温度和室内温度,来计算出温差△T,然后计算各种温差下的散热量。
热负荷计算公式
热负荷计算公式在我们的日常生活和工业生产中,热负荷的计算是一项非常重要的工作。
热负荷指的是在某一特定条件下,为了维持室内或设备的温度,所需供应的热量。
准确计算热负荷对于合理设计供暖、空调、制冷等系统至关重要,它不仅能够保证系统的正常运行,还能有效地节约能源和降低成本。
热负荷的计算涉及到多个因素,包括室内外温度差、建筑物的围护结构特性、室内人员数量、设备的散热量等等。
下面我们就来详细介绍一下常见的热负荷计算公式及其应用。
一、围护结构传热引起的热负荷围护结构包括墙壁、屋顶、窗户、门等,它们的传热会导致热量的散失或增加。
围护结构传热引起的热负荷可以通过以下公式计算:Q1 = K × F ×(tn tw)其中,Q1 表示围护结构的传热热负荷(W);K 表示围护结构的传热系数 W/(m²·℃);F 表示围护结构的面积(m²);tn 表示室内计算温度(℃);tw 表示室外计算温度(℃)。
传热系数 K 取决于围护结构的材料和构造,不同的材料和构造具有不同的传热性能。
例如,砖墙的传热系数比保温材料的传热系数大,意味着热量更容易通过砖墙散失。
在实际计算中,需要分别计算不同朝向的墙壁、屋顶、窗户和门的传热热负荷,然后将它们相加得到总的围护结构传热热负荷。
二、冷风渗透引起的热负荷在建筑物中,由于门窗的缝隙等原因,室外的冷空气会渗入室内,从而带走热量。
冷风渗透引起的热负荷可以通过以下公式计算:Q2 =028 × cp × ρ × L × (tn tw)其中,Q2 表示冷风渗透热负荷(W);cp 表示空气的定压比热容kJ/(kg·℃),约为 101 kJ/(kg·℃);ρ 表示室外空气的密度(kg/m³);L 表示渗透冷空气量(m³/h)。
渗透冷空气量 L 的计算比较复杂,通常可以根据建筑物的类型、门窗的密封性等因素,采用经验公式或查表的方法来确定。
热负荷及散热器片数计算说明书
热负荷及散热器片数的计算1)各房间设计热负荷的计算:(1)围护结构传热耗热量是指当室内温度高于室外温度时,通过房间的墙、门、窗、屋顶、地面等围护结构由室内向室外传递的热量。
常分成两部分计算,即围护结构的基本耗热量和附加耗热量。
基本耗热量是指在设计的室内、外温度条件下通过房间各围护结构稳定传热量的总和。
附加(修正)耗热量是指考虑气象条件和建筑结构特点的影响而对基本耗热量的修正,包括朝向修正、风力附加、外门附加和高度附加等耗热量。
①围护结构的基本耗热量室内散热设备的散热量不稳定,而且室外空气温度随季节和昼夜不断变化,围护结构的传热实际上是一个不稳定的过程。
但不稳定传热的计算非常复杂,所以在工程设计中,对于室温允许有一定波动幅度的建筑物,围护结构的基本耗热量可以按一维稳定传热进行计算,即假设在计算时间内,室内外空气温度和其他传热过程参数都不随时间发生变化,这样可以简化计算,而且计算结果基本正确。
围护结构稳定传热时,基本传热量可按下式计算Q = a KF(t n – t wn)式中K——围护结构的传热系数(W/m2·℃);F——围护结构的面积(m2);t n——冬季室内计算温度(℃);t wn——供暖室外计算温度(℃);a——围护结构的温差修正系数。
将房间围护结构按材料、结构类型、朝向及室内外温差的不同,划分成不同的部分,整个房间的基本耗热量等于各部分围护结构耗热量的总和。
②围护结构基本耗热量的修正围护结构的基本耗热量是指在稳定传热条件下,由于室内外温差的作用,通过围护结构产生的热量损失。
实际传热时,气象条件和建筑物的结构特点都会影响基本耗热量使之增大或减小,这就需要对基本耗热量进行修正,包括朝向修正、风力附加、外门附加和高度附加等。
(2)冷风渗透耗热量在风压和热压共同作用下室内、外产生了压力差,室外冷空气从门窗缝隙渗入室内,被加热后逸出,使这部分冷空气被加热到室温所消耗的热量称为冷风渗透耗热量。
热负荷计算
1 室内供暖系统的设计热负荷供暖热负荷的估算对于只设供暖系统的建筑物,在进行方案初选或只做技术方案比较时,其供暖的供热量可采用下面方法之一进行估算。
1)单位面积热指标法当只知道总面积时,其供暖热指标可参考表2-6的数值。
表2-6 供暖指标(单位 W/m2)若建筑物总面积大,外围护结构热工性能好,窗户面积小,采用下限的指标;反之,采用较大的上限指标。
2)窗墙比公式法当已知外墙面积、窗墙比及建筑面积时,供暖指标也可按下式估算:q={(1.163κ(6a+1.5)A)}•(t N-t W)/F (W/m2)式中 q——建筑物供暖热负荷指标,W/m2,按表2-6选取;κ——新风系数,1.3~1.5;a——外窗面积与外墙面积(包括窗)之比;A——外墙总面积(包括窗),m2F——总建筑面积,m2t N——冬季空调室内计算温度,℃;t W——冬季空调室外计算温度,℃。
在冬季,人们为了满足正常活动和生产工艺的需要,要求室内具有一定的温度。
为此就得向房间供给一定的热量,以维持供暖房间在该温度下的热平衡。
所谓供暖系统的设计热负荷,是指在某一室外温度下,为了维持所要求的室内温度,供暖系统在单位时间内向建筑物供给的热量。
该热量随着房间失热量与得热量的变化而变化。
当室内能维持在一定温度时,必须保持供暖房间在该温度下的热平衡。
通过对供暖房间热平衡时得热量和失热量情况的分析和计算,就可以确定供暖系统的设计热负荷。
供暖系统的热负荷是指在某一室外温度下,为了达到要求的室内温度,供暖系统在单位时间内向建筑物供给的热量。
它随建筑物得失热量的变化而变化,是一个动态的概念[5]。
1.1供暖房间的热平衡冬季供热通风系统的热负荷应根据建筑物或房间的得、失热量确定,即根据(建筑物 或房间的)热平衡确定热负荷Q 。
(1)失热量失热量(sh Q )包括以下几部分: (1)围护结构传热耗热量Q1。
;(2)冷风渗透耗热量Q2(加热由门窗缝隙渗入的冷空气的耗热量);(3)冷风渗入耗热量Q3(加热由外门、孔洞及相邻房间侵入的冷空气的耗热量); (4)水分蒸发耗热量Q4;(5)加热外部进入的冷物料和运输工具的耗热量Q5;(6)通风耗热量Q6(通风系统将空气从室内排到室外所带走的热量)。
热负荷计算
热负荷计算地面辐射供暖是一种高效、节能、舒适的新型采暖方式。
随着人们生活水平和对采暖要求的提高,这几年地面辐射供暖系统得到了突飞猛进的发展,对地暖系统的设计也有了更高的要求。
本文将从建筑物能耗,地面散热量,地热电缆的功率这三方面同广大读者一起探讨地暖系统设计过程中的热负荷计算。
地暖系统的功能就在于弥补建筑物热量损失,维持房间温度,提供舒适、温暖的环境。
要使地暖系统实现这一功能,就必须准确了解建筑物的热量损失。
建筑物热量损失即建筑耗热量是指建筑物围护结构的传热量和空气渗透热损失。
据此定义建筑物耗热量按如下式1计算:Q=qH.T+qINF-qI.H式1Q-建筑物单位面积耗热量。
W/㎡qH.T-单位建筑面积通过围护结构的耗热量。
W/㎡qINF-单位建筑面积的空气渗透热量。
W/㎡qI.H-单位建筑面积的建筑物内部得热量。
(包括炊事,照明,家电和人体散热等)其中单位建筑面积的空气渗透热量qINF式中:qINF=(ti-te)(CP.ρ.N.V/S)式2qINF-单位建筑面积的空气渗透热量。
W/㎡ti-全部房间平均室内计算温度。
te-采暖期平均计算温度。
CP-空气比热容。
(寒冷地区参考值0.28w.h/(kg.k)ρ-温度为te时,空气密度。
N-单位时间房间换气次数。
S-建筑面积。
房间换气次数N参照表(次/h)(表1)一面有外窗房间两面有外窗房间三面有外窗房间门厅0.50.5-1.01.0-1.52单位面积通过围护结构的散热量qH.T按式3计算:式中:mqH.T=(ti-te)(∑ξi.ki.Fi)/S式3i=1qH.T-单位面积通过围护结构的散热量。
ti-全部房间平均室内计算温度。
te-采暖期平均计算温度。
-围护结构传热系数修正。
Ki-围护结构传热系数。
Fi-围护结构面积。
S-建筑面积。
建筑物的围护结构是指建筑物及房间各面的围护物,分为透明和不透明两种类型;不透明围护结构包括:墙、屋面、地板、顶棚等,透明围护结构包括:窗户、天窗、阳台门、玻璃幕墙等。
供热负荷如何计算?
供热负荷如何计算?热负荷计算,民建部分:以下图为例,该房间的散热量,由以下⼏个部分构成:1.外墙散热量;2.外窗散热量;3.户门传热量;4.隔墙传热量;5.屋顶散热量;6.地⾯散热量;7.冷风渗透耗热量;8.冷风侵⼊耗热量。
⼀、采暖负荷估算采暖热负荷的估算办法Qn=a*qn*V*(tn-tw)式中:Qn —采暖热负荷 Wtn —室内空⽓温度℃tw —室外供暖计算温度V—建筑的体积 m3qn —体积热指标根据建筑的保温情况宜取0.4-0.7a —修正系数。
请参考下表(⼀)独⽴分户供暖的负荷特点:1.独⽴控制,室温可调;2.间歇运⾏,短时间加热功率⼤;3.存在户间传热的问题。
基于以上原因,独⽴分户供热热源的加热功率要⾼于按照传统集中供热的计算所得的热负荷⼀般需要乘以 1.3~1.5 的系数。
(⼆)⽣活热⽔加热功率:热⽔加热的基本计算公式Q=C*m*(tr-tl)式中:tr/tl —热⽔/冷⽔温度℃m —热⽔流量 L/minQ —加热功率 kWC — 常数0.07常⽤热⽔参数表⽣活热⽔选型提⽰对于全⽇供应热⽔的住宅,每户设有浴盆时,仅计算浴盆的热⽔⽤⽔量,其他器具的热⽔⽤量不计,浴盆的同时使⽤百分数按下表选取。
⼆、壁挂炉的安装位置选择1.便于烟⽓的扩散和新鲜空⽓的吸⼊;2.靠近⽓源,⽔源,电源;3.有合适的排⽔接⼝;4.有充⾜的维修空间;5.能承受壁挂炉满⽔重量的垂直墙⾯;6.要考虑便于管道布置和系统的⽔⼒平衡;7.便于隐藏下部的管道以及空间的美观。
注意:⾮采暖空间内安装时, 要对⽔路管道做防冻保温处理。
民⽤建筑供暖设计热负荷⼀. 房间热负荷的组成:a.围护结构的耗热量b.加热由门、孔洞侵⼊的冷空⽓的耗热量c.加热由门窗缝隙渗⼊室内空⽓的耗热量围护结构的温差传热量Qj=Kf(tn-tw)aQj---通过供暖房间某⼀⾯围护结构的温差传热,WK---该⾯围护结构的传热系数,W/m2 .℃F---该⾯维护结构的散热⾯积,m2tn--室内空⽓计算温度,℃tw--室外采暖计算温度,℃a---温差修正系数附加耗热量附加耗热量是按基本耗热量的百分⽐计算,考虑各项附加后的耗热量Q1=Qj(1+βch+βf+ βli+ βm)(1+ βf.g)(1+ βj)βch– 朝向修正;βf– 风⼒修正;βli– 两⾯外墙修正;βm – 窗墙⾯积⽐过⼤修正;βf.g– 房⾼附加修正;βj – 间歇附加修正;通过门窗缝隙的冷风渗透耗热量V=∑( l L m)l---房间某朝向上的门窗缝隙长度,mL---每⽶门窗缝隙的基准渗风量,m3/h·mm---门窗缝隙的渗风量综合修正系数外门开启冲⼊的冷风耗热量可按照建筑的形式查表计算⼯业⼚房及辅助房间供暖设计热负荷1.基本耗热量及附加耗热量a. 室内空⽓温度的确定1)⼯作地带的设计温度 tg2)室内空⽓的计算温度 t n当车间⾼度 ≤4m时,tn=tg;当车间⾼度>4m时,对地⾯ tn=tg,对外墙、外窗和外门 tn=(tn+td)/2;对屋顶 tn=td=tg+Δt(H-2)Δt = 0.3~1.5℃/m (温度梯度)b .当 tn分别按照地⾯、外墙及屋顶取不同值时,房⾼附加修正率βf .g=0 ,两⾯外墙修正βli =0 ;窗墙⾯积⽐过⼤修正βm =02.⼚房的门窗缝隙冷风渗透耗热量3.⼚房的⼤门开启冲⼊的冷风耗热量a.每班开启时间≤15min的⼤门,附加率为200~500%;b.每班开启时间>15min的外门,按照下列经验公式计算:G=A +(a +Nνw ) FG--冲⼊的冷风量,kg/s; N—常数,0.15~0.25a, A—系数,查表 ;Vw---冬季室外平均风速,m /sF--车间上部可能开启的排⽓窗或排⽓孔的⾯积,m2建筑物热负荷可按建筑体积估算Q N =a q N.VV (t n .p- t w)Q f=a q f. V V (tn .p- t w. f)建筑物热负荷可按建筑⾯积估算(⽅案设计)Q N= q N.S S。
热负荷及散热量计算..
热负荷及散热量计算热负荷与散热量计算是建筑设计中非常重要的一部分,可以帮助建筑师和机械师设计出符合要求的暖通空调系统。
本文将介绍如何计算热负荷和散热量。
热负荷计算热负荷是指建筑内部需要空调系统将室内温度保持在合适的范围内所需要的能量。
计算热负荷需要考虑多个因素,包括室内外温差、太阳辐射、人员和设备等室内热源以及外部环境条件等。
下面是计算热负荷的基本步骤:1. 确定设计条件要计算热负荷,首先需要确定设计条件,包括室内设计温度、室内相对湿度、外部设计温度、太阳辐射等数据。
这些数据可以根据当地的气象数据和建筑内部设备使用需求来确定。
2. 计算換気量建筑内部要求进出空气的量也是一个影响热负荷的重要因素。
換气量的计算可以参考 ASHRAE 62.1 标准(北美建筑师和工程师协会-通风和空气调节工程师协会标准)。
3. 确定室内热负荷设计条件和換气量确定后,可以开始计算室内热负荷。
这个过程需要考虑室内空气传导、辐射、对流和关闭或遮盖群众设备的影响等多个因素。
4. 确定散热量最终,热负荷的计算结果应该能够决定空调系统的散热量需求,从而确定所需的冷却或加热设备的类型和大小。
散热量计算要计算空调系统的散热量需求,同样需要确定设计条件,如室内外温度等等。
接下来,需要确定以下两个因素:1. 室内环境需求首先,需要根据建筑设计和使用要求,确定所需的室内温度范围和相对湿度要求。
也需要考虑到室内使用设备等带来的额外散热负荷。
2. 设备散热量其次,需要考虑空调系统本身会产生多少热量,并根据空调系统的型号、功率和效率等多个因素来确定空调系统的散热量。
通常可以通过空调系统制造商提供的技术规格表来找到这些数据。
3. 热负荷和散热量计算实例以下是一个简单的热负荷和散热量计算实例:假设设计条件如下:•室内设计温度为 24°C;•外部设计温度为 37°C;•室内相对湿度为 50%;•外部太阳辐射量为 150W/m²。
散热器的计算方法
新型散热器的有关计算方法新型散热器的有关计算方法在讲到新型散热器的有关计算问题上,我们首先要明确儿个概念,我列成小标题,下面大家看大屏幕:一、标准散热量标准散热量是指供暖散热器按我国国家标准(GB/T13754-1992),在闭室小室内按规定条件所测得的散热量,单位是瓦(W)。
而它所规定条件是热媒为热水,进水温度95摄氏度,出水温度是70摄氏度,平均温度为(93+70)/2二82. 5摄氏度,室温18摄氏度,计算温差△*82. 5摄氏度-18摄氏度二64. 5摄氏度,这是散热器的主要技术参数。
散热器厂家在出厂或售货时所标的散热量一般都是指标准散热量。
那么现在我就要给大家讲解第二个问题,我想也是很多厂商和经销商存在疑问的地方。
二、工程上采用的散热量与标准散热量的区别标准散热量是指进水温度95摄氏度,出水温度是70摄氏度,室内温度是18摄氏度,即温差△*64. 5摄氏度时的散热量。
而工程选用时的散热量是按工程提供的热媒条件来计算的散热量,现在一般工程条件为供水80摄氏度,回水60摄氏度,室内温度为20摄氏度,因此散热器Z\T二(80摄氏度+60摄氏度)4-2-20摄氏度二50摄氏度的散热量为工程上实际散热量。
因此,在对工程热工计算中必须按照工程上的散热量来进行计算。
在解释完上面的术语以后,下面我介绍一下采暖散热器的欧洲标准(EN442) o欧洲标准(EN442)是山欧洲标准化委员会/技术委员会CEN所编制.按照CEN内部条例,以下国家必须执行此标准,这些国家是:澳大利亚、比利时、丹麦、芬兰、法国、意大利、荷兰、西班牙、瑞典、英国等18个国家。
而欧洲标准(EN442) 的标准散热量与我国标准散热量是不同的,欧洲标准所确定的标准丄况为:进水温度80摄氏度,出水温度65摄氏度,室内温度20摄氏度,所对应的汁算温差AT二50摄氏度。
欧洲标准散热量是在温差二50摄氏度的散热量。
那么怎么计算散热器在不同温差下的散热量呢?散热量是散热器的一项重要技术参数,每一个散热器出厂时都标有标准散热量 (即AT =64.5摄氏度时的散热量)。
第2讲供暖热负荷计算全
Q KF(tn tw' )
传热系数
供暖室外计算温度 供暖室内计算温度
第2讲 供暖设计热负荷的计算
(2)与非供暖房间或空间相邻的围护结构,两种计算方法:
供
tn
暖 房
间
q′
非
供 暖
th
房
间
t′w
不知道相邻房间温度时,按温差修正系数的方法
5、两面及两面以上外墙附加xlmwq 将外墙、外窗、外门的基本耗热量附加5%。
6、窗墙比附加xcqb 当窗墙比大于0.5,窗的基本耗热量附加10%。
第2讲 供暖设计热负荷的计算
7、间歇附加xjx 仅白天使用的建筑物,间歇附加率取20%; 对不经常使用的建筑物,间歇附加率可取30%。
8、与相邻房间的温差大于或等于5℃时,应计算通 过隔墙或楼板的传热量;与相邻房间的温差小于 5℃时,但通过隔墙或楼板的传热量大于该房间热 负荷的10%时,应计算其传热量。
第2讲 供暖设计热负荷的计算
五、围护结构耗热量Q1计算公式
Q1 (1 xjx)(1 xg ) [aKF(tn tw' )(1 xch xf xwm xchqb xlmwq )]
三、居住建筑对流供暖热负荷的计算 1、基本公式
Qn Qsh Qd Q1 Q2 Q1j Q1f Q2
Q1—围护结构传热耗热量(包括基本耗热量 Q1j和附加耗热量Q1 f)
Q2 —冷风渗透耗热量。
第2讲 供暖设计热负荷的计算
2、围护结构基本耗热量 基本耗热量是指在设计条件下通过房间各部分
第2讲 供暖设计热负荷的计算
1、朝向修正率xch 北、东北、西北向:0~10%; 东、西:-5%; 东南、西南:-10%~-15%; 南向:-15%~30%。 冬季日照率小于35%的地区,东南、西南和南 向的修正率宜采用-10%~0%,东西可不修正。
暖气散热量计算方法
首先,我们要了解,暖气片的购买单位是组,它是由多少片暖气片组成的,大多数暖气片厂家都可以定制。
其次了解暖气片的高度,市面上常见的一般有670mm、1500mm、1800mm 三种,不同高度的暖气片散热量也不一样,高度越高散热量越大。
暖气片片数需要根据房间面积来计算的。
首先选择一款性价比最高的暖气片,记住它每片的散热量,用这个【散热量】除以100就得到【每平米需要的片数】,然后用【房间面积】除以【每平米需要的片数】,就得到这个房间需要的【总片数】。
举个例子:小编客厅面积为20平米,选中鲁本斯塞尚大水道1800高的暖气片,每片的散热量是260W,算法是:用散热量260W除以100等于2.6(每平米需要的片数),(房间面积)20除以2.6 等于7.7,所以20平房间需要8片一组的暖气片。
最后,建议房屋密封性不好的买家在此算法的基础上多买一到两片,这样能达到更好的采暖效果。
1)影响散热量的因素可以归结为两个方面:一是散热器本身的特点,如它的材料、形状、壁厚、焊接质量和表面处理等;二是它的使用条件,也就是外界条件,如流过散热器的热媒种类、温度、流量,进出水的方式,房间里的空气温度和流速,四周墙面的颜色和温度,散热器的安装方式,组装片数等。
因此,不仅不同的散热器散热性能不同,而且同一片或同一组散热器在不同外界条件下的散热性能也不相同。
散热器的散热量可用下式表示:Qs=KsFs(tp-tn)式中Qs——散热器的散热量(W);Ks——散热器的传热系数[W/(m2•℃)];Fs——散热器的散热面积(m2);tp——散热器内热媒的平均温度(℃);tn——散热器所在室内的空气温度(℃)。
由式中可见,温差tp-tn越大,散热量也越大。
如果它们成直线关系变化,则Ks就应该是常数。
但是,事实上散热量的增大倍数要高于温差的增长倍数。
Ks值并不能直接测得,即便有了Qs、tp、tn的数值之后,Ks还和散热器的面积Fs有关。
准确测量Fs是十分困难的,而Fs的取值又影响到Ks值的大小。
典型散热负荷计算公式
典型散热负荷计算公式在建筑工程中,散热负荷的计算是非常重要的一部分,它直接关系到建筑物内部的舒适度和能源消耗。
散热负荷是指建筑物内部需要通过散热设备来排除的热量,包括来自外部环境的热量以及建筑物内部产生的热量。
因此,正确计算散热负荷对于设计和选择合适的散热设备至关重要。
在实际工程中,散热负荷的计算可以采用多种方法,其中最常用的是传统的公式法。
下面将介绍一种典型的散热负荷计算公式,以便工程师和设计师们在实际工程中能够更好地应用。
首先,我们需要了解一些基本的概念和参数。
在散热负荷计算中,需要考虑的主要参数包括建筑物的传热系数(U值)、室内外温差(ΔT)、建筑物的表面积(A)以及室内外温差变化的时间(t)。
这些参数将直接影响到散热负荷的计算结果。
根据传统的公式法,散热负荷的计算公式可以表示为:Q = U × A ×ΔT × t。
其中,Q表示散热负荷,U表示建筑物的传热系数,A表示建筑物的表面积,ΔT表示室内外温差,t表示室内外温差变化的时间。
在实际应用中,我们需要根据具体的建筑物情况和要求来确定这些参数的数值。
建筑物的传热系数可以通过建筑物材料的热传导系数和厚度来计算,室内外温差可以通过气象数据和建筑物的保温性能来确定,建筑物的表面积可以通过建筑物的平面图和立面图来测算,室内外温差变化的时间可以通过建筑物的使用情况和气象数据来估算。
在实际计算中,还需要考虑到建筑物内部产生的热量,例如人体代谢产生的热量、照明设备产生的热量、家用电器产生的热量等。
这些热量也需要加入到散热负荷的计算中,以确保计算结果的准确性。
除了传统的公式法,还可以采用计算机辅助设计软件来进行散热负荷的计算。
这些软件通常会结合建筑物的具体情况和要求,自动生成散热负荷的计算结果,并且可以进行多种参数的灵活调整和优化。
这种方法不仅可以提高计算的效率,还可以提高计算的准确性,是目前建筑工程中常用的计算方法之一。
总之,散热负荷的计算是建筑工程中非常重要的一部分,它直接关系到建筑物内部的舒适度和能源消耗。
负荷计算
分项负荷分析计算1、传导负荷传导热负荷(Kcal/hr)= 传热面积*热传导系数*温差传热面积:与相邻非空调房间之间面积热传导系数:Kcal/hr*m2*℃2、人体热负荷(显热及潜热)人体热负荷=人体发生显热量+人体发生潜热量3、照明负荷灯具热负荷(Kcal/hr)= 灯具耗电量(KW)*860*灯具每w发热量照明灯具每w发热量:白炽灯:1.0w日光灯:1.13~1.28w卤素灯:1.05~1.14w水银灯:1.15~1.24w4、设备热负荷a.设备发热量(Kcal/hr)=设备耗电量(KW)*使用率*860b.冷却水散热量(Kcal/hr)=冷却水量(LPM)*60*△tc.设备排气散热(Kcal/hr)=排气量(CMH)*0.29*△td.设备热负荷(Kcal/hr)= a - b - c5、外气负荷a.设备排气量Q1(CMH):按业主提供的设备排气量b.人员新风需求量Q2(CMH):工艺性生产厂房的空调新风量,应按每人不小于30CMH,洁净厂房不小于40CMH确定。
c.维持室内正压需求量Q3(CMH):一般按换气次数2~3次室内各区域正压值也可按5Pa,10Pa&15Pa,对应换气次数0.5次/hr, 1.0次/hr&1.5次/hr来选取d.总外气量(CMH)正压量与排气量之和与人员需求最小新风量取最大值为C/R需求外气风量。
即(1)当Q2>Q1+Q3,则总外气量Q取Q2(2)当Q2<Q1+Q3,则总外气量Q取Q1+Q3e.外气热负荷=外气显热SH+外气潜热LH外气显热SH(Kcal/hr)=外气量Q(CMH)*60*0.29*△t外气潜热LH(Kcal/hr)=外气量Q(CMH)*60*720*△d6、室内显热室内显热(Kcal/hr)=传导热负荷+灯具热负荷+人员显热负荷+设备热负荷7、室内潜热室内潜热(Kcal/hr)=人员潜热负荷+其他8、室内总热室内总热(Kcal/hr)=室内显热+室内潜热例题一个10K的无尘室,面积2800M2,天花板高度3M。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
热负荷及散热量计算所谓热负荷是指维持室内一定热湿环境所需要的在单位时间向室内补充的热量。
所谓得热量是指进入建筑物的总量,它们以导热、对流、辐射、空气间热交换等方式进入建筑。
系统热负荷应根据房间得、失热量的平衡进行计算,即 房间热负荷=房间失热量总和-房间得热量总和 房间的失热量包括: 1)围护结构传热量Q1;2)加热油门、窗缝隙渗入室内的冷空气的耗热量Q2;3)加热油门、孔洞和其他相邻房间侵入的冷空气的耗热量Q3; 4)加热由外部运入的冷物料和运输工具的耗热量Q4; 5)水分蒸发的耗热量Q5;6)加热由于通风进入室内冷空气的耗热量Q6; 7)通过其他途径散失的热量Q7; 房间的得热量包括:1)太阳辐射进入房间的热量Q8;2)非供暖系统的管道和其他热表面的散热量Q9; 3)热物料的散热量Q10;4)生产车间最小负荷班的工艺设备散热量Q11; 5)通过其他途径获得的散热量Q12; 1.1围护结构的基本耗热量a t t KF q w n )(''-= 式中 'q —围护结构的基本耗热量,W ;K —围护结构的传热系数,w/(㎡.℃);F —围护结构的面积,㎡; w t '—供暖室外计算温度,℃; n t—冬季室内计算温度,℃;a —围护结构的温差修正系数。
整个建筑物的基本耗热量等于各个部分围护结构的基本耗热量的总和:)(Q '''1w n t t KF q -==∑∑1.2围护结构的附加耗热量在实际中,气象条件和建筑物的结构特点都会影响基本耗热量使其发生变化,此时需要对基本耗热量加以修正,这些修正耗热量称为围护结构附加耗热量。
附加耗热量主要有朝向修正,风力附加和高度附加耗热量。
1.2.1朝向修正耗热量朝向修正耗热量是太阳辐射对建筑围护耗热量的修正。
表1-1朝向修正率朝向 修正率 朝向 修正率 北 0 西 -5% 东-5%南20%1.2.2风力附加耗热量《暖通规范》规定:在一般情况下不必考虑风力附加。
1.2.3高度附加耗热量《暖通规范》规定:民用建筑和工业辅助建筑(除楼梯间外) 的高度附加率,当房高超过四米时,每增加一米,为附加围护基本耗热量和其他修正量总和的2%,但总附加率不超过总附加率的15%。
所以,建筑物的总耗热量等于围护结构基本耗热量和朝向修正,风力附加和高度附加耗热量的总和,则)1()'(1Q '1f ch w n g x x t t aKF x ++-+=∑)(式中 ch x —朝向修正率,%;fx —风力附加率,%;gx —高度附加率,%;1.3冷风渗透耗热量在室内外风压和热压压差作用下,室外的冷空气通过门窗的缝隙渗入室内,被加热后又溢出室外。
把冷空气加热到室内温度所消耗的热量称为冷风渗透耗热量。
本设计采用百分数法计算冷风渗透耗热量。
根据建筑结构特点,本设计渗透热量占围护结构的总耗热量的30%。
1.4冷风侵入耗热量冬季在风压和热压的共同作用下,当外门开启时,会有大量的冷空气进入室内,把将这部分冷空气加热到室温时所消耗的热量称为冷风侵入耗热量。
采用外门附加的方法计算, 冷风侵入耗热量=外门基本耗热量×外门附加率 公共建筑工业产房中,其外门附加率为500%。
1.5工作工况下围护结构耗热量及其修正 以电炉变压室为例1)围护结构基本耗热量计算取定n t=12℃,耗热量包括基本耗热量和附加耗热量,计算全部列于附表1-1中,所得电炉变压室、电气间围护结构传热耗热量'1Q =3209.30(W ) 2)冷风渗透耗热量按百分数法计算,根据建筑物特点,查得百分率为30%。
=⨯='1'2%30Q Q 962.79(W )3)冷风侵入耗热量按短时间开启的外门计算,取外门基本耗热量的60%。
冷风侵入耗热量=1150.50×0.6=690.30(W )1.6工艺设备耗热量1)熔炼工段工频感应电炉的散热量ϕηcos )1(N 860Q -=e式中 Ne —感应电炉额定功率,KW ;η—感应电炉的总效率,%,根据工艺资料采取; cos φ—补偿后的功率因数,一般为0.9-0.95。
当工频感应电炉装有排烟罩时,散入室内的热量为其总散热量的30% 根据公式Q=860×125×(1-80%)×0.9×0.3=6449.2(KW ) 2)浇注工段的散热量浇注金属与落砂在同一房间进行时,金属至浇注温度至冷却至室温的全部热量,一部分热量由水分蒸发时吸收,其余全部散落车间内,每浇注一吨金属的散热量为:1000)](175.0)(605[-Q -Q Q 2121⨯---=n t t g d d g )(式中 Q1—浇注金属在熔化时的含热量,KW/吨;Q2—铸件落砂在离开本工段时的含热量,KW/吨; g —每浇注一吨金属所需的型砂重量,公斤; 1d —浇筑前型砂的含湿量,公斤/公斤; 2d —落砂后型砂含湿量,公斤/公斤; t —落砂时型砂温度,℃; n t—室内温度,℃;根据公式得,Q=(263200-187600)-[605×4.5(0.055-0.02)-0.175×4.5(43-12)]×1000 =4725(KW)(3)电动设备散热量清理工段,砂处理的工段有抛丸机,破碎机,所有的工艺设备都在室内,电动设备散热量公式为:ηηηηN1000Q 321=式中 Q —电动设备发热量,W ;N —电动设备安装功率(额定功率),KW ; η—电动机效率1η—电机容量利用系数,是电动机最大实效功率原装功率之比,一般取0.7-0.9; 2η—电动机负荷系数,电动机每小时平均时耗功率与机器设计时最大时耗功率之比一般取0.5-0.8;3η—同时使用系数,电动机同时使用的安装功率与总安装功率之比,一般取0.5-1.0;以清理工段的橡胶履带抛丸清理机为例计算电动设备散热量由设备参数知,橡胶履带抛丸清理机电动设备安装功率N=,电动机效率η=,η1=0.7,η2=0.6,η3=0.8则每台橡胶履带抛丸清理机电动设备散热量为:ηηηηN1000Q 321==1000×0.7×0.6×0.8×24.3÷0.8 =10206(W) (4)照明设备耗热量 Q=n1n2n3N式中 Q —散热量,W;N —灯具安装功率,KW ; n1—同时使用系数;n2—整流器散热系数,装在室内取1.2,装在棚顶取1.0;n3—安装系数,明装时取1.0,暗装灯罩上部穿有小孔时,取0.5-0.6,灯罩上无孔时取0.6-0.8;则根据公式得, Q=1000×1.0×1.2×1.0×100=120(KW) (5)人员散热量Q=φnq式中 Q —人体散热量,KJ/h;φ—考虑不同的工作场所性质,取φ=1.0; n —人数,个;q —每个人的平均散热量,KJ/h ,取q=1348KJ/h ; 则根据公式得, Q=1.0×16×1348=21568(KJ/h ) 数据汇总:表1-3车间电动设备的散热量汇总设备名称 台数 散热量(W/台)总散热量W 橡胶履带抛丸清理机机 3 10206 30618 金属履带抛丸机 1 3150 3150 颚式破碎机 2 6300 12600 混砂机 1 12600 12600 射芯机 12 5833.33 69999.96 造型机1275690722局部排风系统设计2.1排风量确定此车间为铸造车间,在型砂配制、制型、落砂、清砂等过程,都可使粉尘飞扬,特别是用喷砂工艺修整铸件时,粉尘浓度很高,所用的石英危害较大。
在机械加工过程中,对金属零件的磨光与抛光过程可产生金属和矿物性粉尘。
所以各工部采用局部排风,在需要排风部位加局部排风罩即可。
局部排风罩的一般形式有:密闭罩,柜式排风罩,外部吸气罩,接受式排风罩,吹吸式排风罩。
局部排风罩的设计原则:(1)局部排风罩应尽可能包围或靠近有害物,使有害物源局限于较小的局部空间。
应尽可能减小吸气范围,便于捕集与控制。
(2)排风罩的吸气气流方向应尽可能与污染气流运动方向一致。
(3)已被污染的吸入气流不允许进入人的呼吸区。
(4)排风罩力求结构简单,造价低,便于安装和维护。
(5)局部排风罩的配置应与生产工艺协调一致,力求不影响工艺操作。
(6)要尽可能避免干扰气流和过堂风,送风气流等对吸气气流的影响。
熔炼工段主要产生大量的烟尘和热,在炉口热源上部设置接受式排风罩。
清理工段主要产生扬尘,橡胶履带抛丸机和履带抛丸清理机采用伞型排风罩;破碎机采用局部密闭罩;混砂机采用整体密闭罩。
浇注工段主要产生大量的热,采用移动式排风罩。
热源上部接受式排风罩排风量的计算 接受罩罩口尺寸按下式计算:低悬圆形罩 D=d+0.5H 低悬矩形罩 A=a+0.5H B=b+0.5H 式中 D —罩口直径(m );A,B —罩口的长和宽(m ); d —热源水平投影直径(m ); a,b —热源水平投影长和宽(m ); 高悬罩 Hd g 8.0D +=低悬罩排风量按下式计算''0v v F q q v += 式中0v q —热源上部热射流起始流量(s m /3) ;V'—罩口扩大面积上空气的气流速度(m /s ),通常取0.5-0.75m /s ;F '—罩口扩大面积,即罩口面积减去热射流的断面面积(㎡); 高悬罩排风量按下式计算'',v v F q q z v +=式中 zq ,v 罩口所在断面上的热射流流量(s m /3);热源上部热射流起始流量,计算式为 3120)(381.0pv QhA q =式中0v q —热射流流量 s m /3;Q —对流散热量(KJ /s ); h —热源定性尺寸(m ),对垂直热表面是指高度,对水平则是指该投影的短边尺寸;Ap —在热源顶部热射流的横断面积(㎡); 热射流流量zq ,v (s m /3)3147.13,1026.7Qzq z v -⨯= 式中 Q —热源对流散热量(KJ /s );z -假想点热源距离计算断面的有效距离(m ),由下式计算 Z=H+2B 式中 H -热源距计算面的距离(m );B -热源水平投影直径或长边尺寸(m ); 对流散热量QQ=αF Δt 式中 F -热源的对流换热面积(㎡);Δt -热源表面与周围空气的温度差(℃); α-表面传热系数(KJ /㎡.s.℃); 表面传热系数α31A t ∆=∂ 式中 A 系数,对于水平散热面,A=1.7×10^(-3);对于垂直散热面,A=1.13×10^(-3)。