冷原子物理及应用
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
冷原子物理及研究方向
1. 冷原子物理的概念
冷原子物理学实际是一门交叉学科,目前研究者主要来自:原子与分子物理、光物理、理论物理、凝聚态物理等学科的研究者 。冷原子物理是研究超低温度下的原子(分子)的各种特性极其应用的物理学分支。冷原子具有如下的特征:1.运动很慢,碰撞减少,能级展宽急剧减小,适合更为精密的频率测量;2.德布罗意波长很大,相干长度很长,能够宏观观察到相干现象;3.大量原子具有几乎相同的频率和波长;4.能级宽度变窄,量子态更明显;5.原子速度降低,更容易被操控。
2. 实现原子冷却及俘获的方法
多普勒冷却机制,即利用原子运动所产生的多普勒频移来实现冷却效应。这种冷却机制受自然线宽限制,最低冷却温度可达到几十至几百微开(10-6K)。
偏振梯度激光冷却机制,是基于光抽运、光频移等物理效应,在多能级原子系统中产生的冷却效应。原子飞过激光偏振状态不断变化的场时,总在不断地“爬坡”,将动能转化为势能,经自发辐射出蓝移光子而被冷却。偏振梯度冷却可使原子气体温度冷却到小于多普勒冷却极限,达到几微K至几十微K。
速度选择相干粒子数囚禁冷却,是基于三能级原子在光的驱动下使原子处于相干叠加态,这时原子与光场脱耦,不再吸收光子,因而也无动量扩散。满足相干囚禁的原子速度接近于零,速度不为零的原子将吸收光子,原子动量将重新布居。只有当原子落入速度为零的相干叠加态时,原子才不再吸收光子而停留在相干叠加态上。这样,原子的动量可小于光子反冲动量,相应的气体温度可达10-11K。
与激光冷却技术同时发展起来的一种冷却原子的方法为蒸发冷却技术。这种方法是将平衡分布中的快速原子从陷阱中排除(蒸发),在原子间弹性碰撞的过程中,达到新的准平衡分布。这时,气体的温度降低而且低速原子的密度增大。这是实现玻色-爱因斯坦凝聚的重要步骤之一。
如何使这些低速原子聚集在固定的区域内呢?囚禁超冷原子的技术起到了关键作用。目前常用的捕获原子的陷阱有两类,一类是光陷阱,另一类是磁陷阱。光陷阱的势垒深度较浅,在玻色
-爱因斯坦凝聚实验中多使用磁陷阱。磁陷阱是由一对反向联接的赫姆霍兹线圈构成,其中心的磁场强度为零。对于寻找弱场的原子在磁势场中将受力而囚禁于陷阱中心。
在实现玻色-爱因斯坦凝聚的实验中,使用的是磁光陷阱,磁场用来束缚原子,而光场用来冷却和捕获原子。这种陷阱结构简单,造价低而且十分有效。囚禁的原子气体温度将小于1毫开(10-3K),原子的密度为1010/厘米3。限制原子密度增大的因素是原子间的碰撞,特别是基态原子与激发态原子的碰撞。为了提高原子密度,美国麻省理工学院提出了暗点磁光陷阱,即在磁光陷阱中心超冷原子积聚的地方,减弱光抽运光强,使原子处于激发态的概率降低,由此来减小限制原子密度增加的因素,从而可收集到更多的原子,以增加原子密度。利用这种方法原子密度可提高到1012/厘米3。
图. 德国慕尼黑大学的磁光阱原子冷却囚禁系统
3. 冷原子主要应用
原子干涉仪:微观世界的粒子都具有波粒二相性。德布罗意波(物质波)波长λ=h/mv,与粒子的动量呈反比。室温原子因为平均速度达到几百米每妙,其德布罗意波长为很小,大约为10-12米量级,原子大多处在不同的量子态上,相干长度很短,难以形成干涉。冷原子最低温度可达到几个纳K,平均速度可达到几厘米每秒,德布罗意波长约为10-7米量级,相干长度很长,能够宏观观测到相干现象。由于光子基本不受重力影响,难以用激光精确测量重力。原子受重力作用十分明显,因此原子干涉仪可以有效低测量重力微小变化,以及引力波等等,将是未来航空航天技术必不可少的设备。
原子钟:原子间的碰撞是原子能级的宽度增宽的主要因素。冷原子由于速度很小温度很低,原子间的碰撞远远少于热原子,因此能级宽度远小于热原子,具有更精确的原子能级结构和更窄的跃迁光谱,这对原子能级以及各种常数的精确测量具有重要意义。原子钟的精度取决于原子能级的精确程度。目前原子钟主要采用原子精细能级跃迁作为频率标准。由于冷原子的能级精度远远优于热原子,冷原子钟会输出更为精准的频率,因此会将人类的时间精度大幅度提高,对人类的时间标准和距离标准起到革命性的改进。
原子俘获及操控:在微观尺度上操纵原子分子,按人类的意愿改变原子分子间的排列组合,长久以来是人类的一个梦想。在凝聚态物理领域前沿的表面物理中,依靠扫描隧道显微镜技术可以移动和控制一些原子的位置,但无法脱离样品表面完成对原子分子的俘获。激光冷却技术恰恰弥补了这个缺陷。
量子计算机:冷原子由于运动速度很慢,能级结构稳定,因此相比热原子具有更为明确的量子态。更利于对它的量子态如外层电子自旋,原子磁矩等等进行控制。同时冷原子量子态的变化可以反过来控制光信号,完成信息处理过程。