5.2.1平行线课件ppt
合集下载
人教版七年级下册数学课件第5章5.2.1平行线及其基本事实
![人教版七年级下册数学课件第5章5.2.1平行线及其基本事实](https://img.taocdn.com/s3/m/0ac9429a01f69e31423294bf.png)
精彩一题 17.问题:两条直线可以将平面分成几部分?
解:如图 a,两条直线平行时,它们将平面分成三部分; 如图 b,两条直线不平行时,它们将平面分成四部分.
【思路点拨】 根据三条直线的交点个数情况(0 个、1 个、2 个、 3 个)进行分类讨论.
精彩一题 根据上述内容,解答下面的问题. (1)上面问题的解题过程应用了__分__类____的数学思想(填“转 化”“分类”或“整体处理”); (2)三条直线可以将平面分成几部分? 解:如图所示.
【答案】A
课堂导练
4.如果线段 AB 与线段 CD 没有交点,则( C ) A.线段 AB 与线段 CD 一定平行 B.线段 AB 与线段 CD 一定不平行 C.线段 AB 与线段 CD 可能平行 D.以上说法都不正确
课堂导练 5.如图,将一张长方形纸对折三次,产生的折痕间的位置关系
是( C )
A.平行
B.垂直
C.平行和垂直 D.无法确定
课堂导练 6.如图,经过点 P 画一条直线使它与直线 l 平行.
画法:(1)一落:把三角尺的一边落在__直__线__l____上; (2)二____靠____:紧靠三角尺的另一边放一直尺 AB;
课堂导练
(3)三____移____:把三角尺沿直尺的边移到三角尺的第一边恰 好经过点 P 的位置;
经 (1)过直直线线l 外(2一)靠点,(3有)移且只(有4)画
D.不存在或者只有一条
提一示条: 直点线击与这条进直入线习平题行
【点拨】 当点 第一五条章 直线相与交这线条与直平线行平线行
(第1)1直课线时l 平(2行)靠线及(3其)移基本(事4)画实
P
在直线
AB
上时,这样的直线不存在;当点
5.2.1平行线的判定课件
![5.2.1平行线的判定课件](https://img.taocdn.com/s3/m/a102337f0b4e767f5acfcebd.png)
5.2.2平行线的判定
观察:∠1和∠2的大小关系?
∠1≠∠2 a
1
b 2
c
∠1=∠ 2 a
1
b 2
c
猜测:
两直线被第三条直线所截, 什么情况下互相平行?
学习目标:
1. 理解两直线平行的三种判定方法。 2. 会用同位角相等判定两直线平行。 3. 会用内错角相等判定两直线平行。 4. 会用同旁内角互补判定两直线平行。
我学会了…… 我知道了…… 我掌握了……
测试:
1.能判定DE∥BC的是( )
A 、∠1=∠5
B、∠2=∠4
C、∠3=∠5
D、∠2+∠5=180°
A
D
1
3
E
2
4
B
5C
测试:
2.直线a, b, c被直线l所截,∠1=∠2= ∠3.
(1)从∠1=∠2可知:
l
哪两条直线平行?根据?
(2)从∠2=∠3可知:
活动2 思考:
如果∠1=∠2,能得出a ∥b吗?
判定两直线平行 a 你还有别的方法吗?
1
小组讨论:
2
b
c
判定方法2
两直线被第三条直线所截,如果内错角相 等,那么这两条直线平行。
即: 内错角相等,两直线平行。
(3)如图: BE是AB的延长线
(1)由∠CBE=∠A可以判定哪两条直线平 行。根据?
活动1 画一画
(1)用直尺和三角尺
过已知直线a外一点A画它的平行线b。
A●
a
●
一、放 二、靠
三、推 四、画
0 1 2 3 4 5 6 7 8 9 10
00 11 22 33 44 55 66 77 88 99 1100
观察:∠1和∠2的大小关系?
∠1≠∠2 a
1
b 2
c
∠1=∠ 2 a
1
b 2
c
猜测:
两直线被第三条直线所截, 什么情况下互相平行?
学习目标:
1. 理解两直线平行的三种判定方法。 2. 会用同位角相等判定两直线平行。 3. 会用内错角相等判定两直线平行。 4. 会用同旁内角互补判定两直线平行。
我学会了…… 我知道了…… 我掌握了……
测试:
1.能判定DE∥BC的是( )
A 、∠1=∠5
B、∠2=∠4
C、∠3=∠5
D、∠2+∠5=180°
A
D
1
3
E
2
4
B
5C
测试:
2.直线a, b, c被直线l所截,∠1=∠2= ∠3.
(1)从∠1=∠2可知:
l
哪两条直线平行?根据?
(2)从∠2=∠3可知:
活动2 思考:
如果∠1=∠2,能得出a ∥b吗?
判定两直线平行 a 你还有别的方法吗?
1
小组讨论:
2
b
c
判定方法2
两直线被第三条直线所截,如果内错角相 等,那么这两条直线平行。
即: 内错角相等,两直线平行。
(3)如图: BE是AB的延长线
(1)由∠CBE=∠A可以判定哪两条直线平 行。根据?
活动1 画一画
(1)用直尺和三角尺
过已知直线a外一点A画它的平行线b。
A●
a
●
一、放 二、靠
三、推 四、画
0 1 2 3 4 5 6 7 8 9 10
00 11 22 33 44 55 66 77 88 99 1100
平行线ppt课件
![平行线ppt课件](https://img.taocdn.com/s3/m/8fc3f18d9fc3d5bbfd0a79563c1ec5da51e2d640.png)
02
平行线判定方法的 误用
提醒学生注意不同判定方法的使 用条件和限制,避免误用或混淆。
03
忽略平行线的存在 性
提醒学生在解题时,不要忽略题 目中可能存在的平行线,否则可 能导致解题错误。
拓展延伸内容推荐
平行线与相似三角形的关系
探讨平行线与相似三角形之间的联系,以及如 何利用平行线的性质解决相似三角形的问题。
交通信号灯
交通信号灯中的红灯、绿灯、黄灯等灯光的排列 也遵循平行线的原则,使得驾驶员和行人能够清 晰地辨认交通信号。
导向标志 道路两侧的导向标志牌上的文字、图案等也采用 平行线排列,方便驾驶员快速获取道路信息。
日常生活用品设计美学体现
家居用品
家居用品中的桌子、椅子、床等家具的设计中经常运用到平行线, 使得家具外观简洁大方,符合现代审美。
图形示例
判定步骤
首先确定两条被截直线和截线,然后 找出同旁内角并测量其角度之和是否 为180度,如果是,则两条直线平行。
在图形中,画出两条被第三条直线所 截的直线,并标出同旁内角。
实际应用场景分析
建筑设计中
在建筑设计中,平行线的概念经常被用来确保建筑物的稳定性和美观性。例如,在设计墙壁、 地板和天花板时,需要确保它们是平行的,以避免出现倾斜或不平整的情况。
在物理学中,平行线的概念被广泛应用于光 学、力学等领域的研究中,如光的反射、折 射等现象都与平行线密切相关。
计算机图形学
工程测量与建设
在计算机图形学中,平行线的绘制和处理是 图形渲染、图像处理等任务中的重要环节之 一。
在工程测量与建设中,平行线的运用可以确 保建筑物的精确度和稳定性,提高工程质量。
05
预备工作
建议学生提前预习相关知识点,回顾平行线的定义、性质及判 定方法,并尝试思考一些与平行线相关的实际问题,为下一讲 的学习做好准备。
《5.2平行线的判定》课件(人教版)
![《5.2平行线的判定》课件(人教版)](https://img.taocdn.com/s3/m/1022634f69eae009581bec32.png)
知识要点
平行线的判定方法3:
两条直线被第三条直线所截,如果同旁内角 互补,那么两条直线平行. 简单说成:同旁内角互补,两直线平行.
平行线的判定
同 位 角 内 错 角 同 旁 内 角
a b 图形 1 2 c 2 c 42 c 条件 结论 理由 同位角相等 ∠1=∠2 a//b 两直线平行 内错角相等 ∠2=∠3 a//b 两直线平行 ∠2+ a//b 同旁内角互补 ∠4=180° 两直线平行
90°
如下图,木工用角尺的一边紧靠 工件边缘,另一边画条直线a,b.这 两条直线平行吗?为什么?
直线a与b平行.
同位角相等,两直线平行.
b a
能否利用内错角和同旁内角来 判定两直线平行呢?
如果2= 3,m//n?写出你的推导过 程. 解: ∵ 2=3(已知) 且1=2(对顶角相等) ∴1= 3 ∴m//n(同位角相等,两直 线平行)
a 3 b a b
平行线的判定 例1 ① ∵ ∠2 =___(已知) ∠6 ∴___∥___(同位角相等,两直线平行) 2 1 AB CD A B ② ∵ ∠3 = ∠5(已知) 3 4 6 5 ∴___∥___(内错角相等,两直线平行) AB CD C D o 7 8 ③∵ ∠4 +___=180 (已知) ∠5 ∴___∥___( 同旁内角互补,两直线平行) AB CD1 2m Nhomakorabea3
n l
知识要点
平行线的判定方法2:
两条直线被第三条直线所截,如果内错角 相等,那么两条直线平行. 简单说成:内错角相等,两直线平行.
如果1+2=1800 能判定m//n吗? 写出你的推导过程.
解: ∵1+2=180°
3 m
衡中教学课件:5.2.1 平行线
![衡中教学课件:5.2.1 平行线](https://img.taocdn.com/s3/m/3d20b90a647d27284b7351cb.png)
语文
小魔方站作品 盗版必究
谢谢您下载使用!
更多精彩内容,微信扫描二维码获取
扫描二维码获取更多资源
附赠 中高考状元学习方法
前 言高考状元是一个特殊的群体,在
许多人的眼中,他们就如浩瀚宇宙里璀璨 夺目的星星那样遥不可及。但实际上他们 和我们每一个同学都一样平凡而普通,但 他们有是不平凡不普通的,他们的不平凡 之处就是在学习方面有一些独到的个性, 又有着一些共性,而这些对在校的同学尤 其是将参加高考的同学都有一定的借鉴意 义。
(1)如果它们没有公共点,则
a∥b
.
a∥b .
(2)如果它们都平行于第三条直线,则
(3)如果它们有且只有一个公共点,则 a和b相交 . (4)过平面内的同一点画它们的平行线,能画出两条, 则 a和b相交 .
(5)过平面内的不在a,b上的一点画它们的平行线,只能 a∥b 画出一条,则 .
3.在下列4个说法中正确的有
.
①在同一平面内,不相交也不重合的两条线段一定平行; ②在同一平面内, 不相交也不重合的两条直线一定平行; ③在同一平面内,不平行也不重合的两条线段一定相交; ④在同一平面内,不平行也不重合的两条直线一定相交. 【解析】平行线概念中强调的是“两条直线”而不是线段 或射线.两条线段平行是指两条线段所在的直线平行. 答案:② ④
1个 4.在同一平面内,两条相交直线公共点的个数是______; 0个 两条直线重合, 两条平行直线的公共点的个数是_____; 无数个 公共点有_________.
1.平行线的定义. 2.生活中充满了“平行”. 3.画平行线的方法. 4.平行线的表示. 5.平行线的性质.
对人以诚信,人不欺我; 对事以诚信,事无不成.
(1)过点C能画出几条与直线AB平行的直线? (2)过点D与直线AB平行的直线,与(1)中所画的直线 平行吗? (3)由(2)你发现了什么结论? 答案:(1)一条.(2)平行. (3)如果两条直线都和第三条直线
人教版七年级下册数学:5.2.1 平行线(定义、平行公理及推论) (共19张PPT)
![人教版七年级下册数学:5.2.1 平行线(定义、平行公理及推论) (共19张PPT)](https://img.taocdn.com/s3/m/6bb90b98690203d8ce2f0066f5335a8102d2663e.png)
答: 可以.可以画无数条.
n
m
直线n就是直 线m的平行线.
无数条
A
B
平行线画法❷:如图,已知直线 a 和 a 外一点 P,过点 P 作 a 的平行线.
第一步: 放 第二步: 靠 第三步: 推 第四步: 画
P
n
问题: 过点 P 还可以再 画直线 a 的平行线吗? 这样 的平行线能画多少条?
答: 不可以. 只能画一条.
转动a,在这个过程中,有没有直线a与直线b不相交的位置呢?
A、0 B、1 C、2 D、4
(5)两直线的位置关系只有相交与平行 转动a,在这个过程中,有没有直线a与直线b不相交的位置呢?
A、0 B、1 C、2 D、4
如果两条直线都和第三条直线平行,
A、因为a // d,b // c,所以c // d;
合作探 究
3、完成下列推理,并在括号内注明理由。
(1)如图1所示,因为AB // DE,BC // DE(已知)。所以
A,B,C三点_在__同__一__直__线__上( 经过直线外一点,有且只有一条 ) 直线与这条直线平行
A··B ·C
D 图1E
3、完成下列推理,并在括号内注明理由。
(2)如图2所示,因为AB // CD,CD // EF(已知),所以 ____A_B___ // ____E_F____( 如果两条直线都和第三条直线平行),
A、0 B、1 C、2 D、4 下列各图中,AB∥CD, 先分别过点E画直线EF∥AB,然后判断EF会不会平行于CD.
2、下列推理正确的是( C )
A、因为a // d,b // c,所以c // d; B、因为a // c,b // d,所以c // d; C、因为a // b,a // c,所以b // c; D、因为a // b,c // d,所以a // c。
n
m
直线n就是直 线m的平行线.
无数条
A
B
平行线画法❷:如图,已知直线 a 和 a 外一点 P,过点 P 作 a 的平行线.
第一步: 放 第二步: 靠 第三步: 推 第四步: 画
P
n
问题: 过点 P 还可以再 画直线 a 的平行线吗? 这样 的平行线能画多少条?
答: 不可以. 只能画一条.
转动a,在这个过程中,有没有直线a与直线b不相交的位置呢?
A、0 B、1 C、2 D、4
(5)两直线的位置关系只有相交与平行 转动a,在这个过程中,有没有直线a与直线b不相交的位置呢?
A、0 B、1 C、2 D、4
如果两条直线都和第三条直线平行,
A、因为a // d,b // c,所以c // d;
合作探 究
3、完成下列推理,并在括号内注明理由。
(1)如图1所示,因为AB // DE,BC // DE(已知)。所以
A,B,C三点_在__同__一__直__线__上( 经过直线外一点,有且只有一条 ) 直线与这条直线平行
A··B ·C
D 图1E
3、完成下列推理,并在括号内注明理由。
(2)如图2所示,因为AB // CD,CD // EF(已知),所以 ____A_B___ // ____E_F____( 如果两条直线都和第三条直线平行),
A、0 B、1 C、2 D、4 下列各图中,AB∥CD, 先分别过点E画直线EF∥AB,然后判断EF会不会平行于CD.
2、下列推理正确的是( C )
A、因为a // d,b // c,所以c // d; B、因为a // c,b // d,所以c // d; C、因为a // b,a // c,所以b // c; D、因为a // b,c // d,所以a // c。
5.2.1平行线(新人教版七年级下)PPT课件
![5.2.1平行线(新人教版七年级下)PPT课件](https://img.taocdn.com/s3/m/6f3c35d00740be1e640e9a0a.png)
❖ (2)平行线指的是“两条直线”,而不是 两条射线或线段;
❖ (3)“不相交”,就是说两条直线没有交 点。
❖ (4)平行线是指在同一平面内的具有特殊 位置关系的两条直线,- 特殊在这两条直线 8
平行线的表示:
我们通常用“//”表示平行。
· · A
B
AB ∥ CD
· · C
D
CD ∥AB
m∥n m
n ∥m -
n
9
做一做
给你一条直线AB,如何画出它的平行线呢?
A
B
可以画多少条平行线呢?
-
10
平行线的画法:
一、放 二、靠 三、推
四、画
-
11
做一做
A
B
可以画多少条平行线呢? 无数条
-
12
(1)经过点P能画出几条直 线与直线AB平行?
.P
A
BB
① 性质:(平行公理)
经过直线外一点,有且只有一条直 线与这条直线平行。
如果两条直线都和第三条直线平行,那么这两条
直线也互相平行
-
19
1、判断正误:
(1)两条不相交的直线叫做平行线。
(×)
(2)有且只有一个公共点的两直线
是相交直线。
( √)
(3)在同一平面内的两条直线一定
平行。
(× )
(4)一个平面内的两条直线,必把
这个平面分为四部分。 ( × )
-
20
2.下列命题:其中正确的个数是( C ) (1)长方形的对边所在的直线平行;
E
因为AB//EF,CD//EF 于是过点P就有两条直线AB CD都与EF平行。 根据平行公理,这是不可能的
也就是说,AB与CD不能相交,
❖ (3)“不相交”,就是说两条直线没有交 点。
❖ (4)平行线是指在同一平面内的具有特殊 位置关系的两条直线,- 特殊在这两条直线 8
平行线的表示:
我们通常用“//”表示平行。
· · A
B
AB ∥ CD
· · C
D
CD ∥AB
m∥n m
n ∥m -
n
9
做一做
给你一条直线AB,如何画出它的平行线呢?
A
B
可以画多少条平行线呢?
-
10
平行线的画法:
一、放 二、靠 三、推
四、画
-
11
做一做
A
B
可以画多少条平行线呢? 无数条
-
12
(1)经过点P能画出几条直 线与直线AB平行?
.P
A
BB
① 性质:(平行公理)
经过直线外一点,有且只有一条直 线与这条直线平行。
如果两条直线都和第三条直线平行,那么这两条
直线也互相平行
-
19
1、判断正误:
(1)两条不相交的直线叫做平行线。
(×)
(2)有且只有一个公共点的两直线
是相交直线。
( √)
(3)在同一平面内的两条直线一定
平行。
(× )
(4)一个平面内的两条直线,必把
这个平面分为四部分。 ( × )
-
20
2.下列命题:其中正确的个数是( C ) (1)长方形的对边所在的直线平行;
E
因为AB//EF,CD//EF 于是过点P就有两条直线AB CD都与EF平行。 根据平行公理,这是不可能的
也就是说,AB与CD不能相交,
5.2.1平行线的性质(课时2)课件(新人教版七年级数学下)
![5.2.1平行线的性质(课时2)课件(新人教版七年级数学下)](https://img.taocdn.com/s3/m/564359d83186bceb19e8bb90.png)
5. 如图,A.B.C三点在一条直线上. 如果∠3 =∠6, 那么 ∥ .( 如果∠6 =∠9, 那么 ∥ .( 如果∠1 +∠2 +∠3 =180°,那么 ∥ .( 如果∠ =∠ ,那么BE∥CD.( )
) )
)
6.如图 ,已知CD是∠ACB的平分线,DE∥BC, ∠B= 70o ,∠ACB= 50o,求∠ADE,∠DEC, ∠EDC的度数.
【课中探究】
数学活动一 活动一:探索平行线判定的应用 1.如图,看图填空: ∵∠1 =∠2(已知) ∴ ∥ .( ) 又∵∠2 =∠3(已知) ∴___∥____.( )
活动二: 探索平行线性质的应用
2. 已知:BE是AB的延长线,AD//BC,AB//CD, 若 D 100 , C, A, EBC 的度 求 行
活动三:探索方位角的应用
3.在A.B两地之间要修一条公路(如图).从A地测得公路 的走向是北偏东60°.如果A.B两地同时开工,那么在 B地公路按∠α= 度施工,能使公路准确接通.
活动四:探索平行线判定和性质的综合应用
4. 已知,如图 中,AC⊥AB,EF⊥BC,AD⊥BC, ∠1=∠2,试问:AC⊥DG吗?请写出推理过程
5.2.1平行线 的性质(2)
【学习目标】
1.学生了解平行线的性质和判定的区别.掌握平行线的性质和判定, 并且会运用它们进行简单推理和计算. 2.能区分平行线的性质和判定,平行线的性质与判定的混合应用.
【重点难点】
重点:平行线性质和判定的综合应用 难点:平行线性质和判定的灵活运用
创设情景
1.平行线的判定方法有哪些? 2.平行线的性质有哪些. 本节课我们利用平行线的性质和判定解决一些问题?
• 【学习体会】 • 1.本节课你有哪些收获?还有那些疑惑? • 2.在课上你参与了多少问题的讨论,哪些问
人教版七年级数学下册《平行线及其判定 第二课时》课件ppt
![人教版七年级数学下册《平行线及其判定 第二课时》课件ppt](https://img.taocdn.com/s3/m/ffeb987fa200a6c30c22590102020740be1ecdb6.png)
1 如图,用直尺和三角尺作直线AB,CD,从图 中可知,直线AB 与直线CD 的位置关系为 _A_B__∥_C__D_,理由是 同位角相等,两直线平行 .
2 如图,直线AB,CD 被直线EF 所截,∠1=55°, 下列条件中能判定AB∥CD的是( C )
A.∠2=35° B.∠2=45° C.∠2=55° D.∠2=125°
3 如图,点B 在DC上,BE 平分∠ABD, ∠ABE=∠C,试说明:BE∥AC. 解:因为BE 平分∠ABD, 所以∠ABE=∠DBE (__角__平___分__线__的__定___义___). 因为∠ABE=∠C, 所以∠DBE=∠C. 所以BE∥AC (_同__位___角__相__等__,___两__直__线__平___行__).
易错点:填错理由而致错.
1 如图,CD 平分∠ACE,且∠B=∠ACD,可以得出的结论是( B ) A.AD∥BC B.AB ∥ CD C.CA平分∠BCD D.AC平分∠BAD
2 三条直线a,b,c,若a∥c,b∥c,则a 与b 的位置关系是( B )
A.a⊥b
B.a∥b
C.a⊥b或a∥b
D.无法确定
请按下图所示方法画两条平行线,然后讨论下面的问题:
(1)上面的画法可以看做是怎样的
A
图形变换?
平移变换
(2)把图中的直线l1,l2看成被尺边 AB 所截,那么在画图过程中,什么
角始终保持相等?
同位角
由此你能发现判定两直线平行的方法吗?
l1 l2 B
一般地,判断两直线平行有下面的方法:
两条直线被第三条直线所截,如果同位角相等, 那么这两条直线平行. 简单地说,同位角相等,两直线平行.
解:(1)在同一条直线上.理由:因为直线AB,BC 都经过点B,且都与直线l 平行,而过直线外一点有且只有一条直线与这条直线平行,所以AB,BC 为同一条直线,所以A,B,C 三点在同一条直线上. (2)在同一条直线上.理由:因为直线AB,BC 都经过点B,且都与直线l
《平行线》相交线与平行线PPT精品课件
![《平行线》相交线与平行线PPT精品课件](https://img.taocdn.com/s3/m/c387b5a69fc3d5bbfd0a79563c1ec5da50e2d6b3.png)
人教版 数学 七年级 下册
5.2 平行线及其判定 5.2.1 平行线
导入新知 生活中好多事物给我们线的感觉,那么下列这些线给我们
什么印象呢? 如图,电梯的扶手给我们
什么印象?
电梯扶手所在直线会相交吗?
导入新知
那么铁轨给我们什么印象?
还有什么地方给我们相同的印
象呢?
铁轨所在直线会相交吗?
导入新知
课堂检测
2.在同一平面内,下列说法:
①过两点有且只有一条直线;②两条不相同的直线有且只有一个
公共点;③经过直线外一点有且只有一条直线与已知直线垂直;
④经过直线外一点有且只有一条直线与已知直线平行,其中正确
的个数为( C )
A.1个
B.2个
C.3个
D.4个
课堂检测
3.完成下列推理,并在括号内注明理由.
因为 AD∥BC,PQ∥AD,所以PQ∥BC(如果两条直线都与第
三条直线平行,那么这两条直线也互相平行);
(3)经测量DQ=CQ,AD+BC=2PQ成立.
课堂检测 拓广探索题
如图,直线a ∥b,b∥c,c∥d,那么a ∥d吗?为什么? a bc d
解: a ∥d ,理由如下: 因为 a ∥b,b∥c,所以 a ∥c (如果两条直线都与第三条直线平行,那么这两条直线互相平行) 因为 c∥d,所以 a ∥d (如果两条直线都与第三条直线平行,那么这两条直线互相平行)
下列说法正确的是( B ) A.两条不相交的直线一定相互平行 B.在同一平面内,两条不平行的直线一定相交 C.在同一平面内,两条不相交的线段一定平行 D.在同一平面内,两条不相交的射线互相平行
巩固练习
下列说法中,正确的个数有( B) (1)在同一平面内不相交的两条线段必平行 × (2)在同一平面内不相交的两条直线必平行 √ (3)在同一平面内不平行的两条线段必相交 × (4)在同一平面内不平行的两条直线必相交 √
5.2 平行线及其判定 5.2.1 平行线
导入新知 生活中好多事物给我们线的感觉,那么下列这些线给我们
什么印象呢? 如图,电梯的扶手给我们
什么印象?
电梯扶手所在直线会相交吗?
导入新知
那么铁轨给我们什么印象?
还有什么地方给我们相同的印
象呢?
铁轨所在直线会相交吗?
导入新知
课堂检测
2.在同一平面内,下列说法:
①过两点有且只有一条直线;②两条不相同的直线有且只有一个
公共点;③经过直线外一点有且只有一条直线与已知直线垂直;
④经过直线外一点有且只有一条直线与已知直线平行,其中正确
的个数为( C )
A.1个
B.2个
C.3个
D.4个
课堂检测
3.完成下列推理,并在括号内注明理由.
因为 AD∥BC,PQ∥AD,所以PQ∥BC(如果两条直线都与第
三条直线平行,那么这两条直线也互相平行);
(3)经测量DQ=CQ,AD+BC=2PQ成立.
课堂检测 拓广探索题
如图,直线a ∥b,b∥c,c∥d,那么a ∥d吗?为什么? a bc d
解: a ∥d ,理由如下: 因为 a ∥b,b∥c,所以 a ∥c (如果两条直线都与第三条直线平行,那么这两条直线互相平行) 因为 c∥d,所以 a ∥d (如果两条直线都与第三条直线平行,那么这两条直线互相平行)
下列说法正确的是( B ) A.两条不相交的直线一定相互平行 B.在同一平面内,两条不平行的直线一定相交 C.在同一平面内,两条不相交的线段一定平行 D.在同一平面内,两条不相交的射线互相平行
巩固练习
下列说法中,正确的个数有( B) (1)在同一平面内不相交的两条线段必平行 × (2)在同一平面内不相交的两条直线必平行 √ (3)在同一平面内不平行的两条线段必相交 × (4)在同一平面内不平行的两条直线必相交 √
华师版七年级数学上册课件《平行线》
![华师版七年级数学上册课件《平行线》](https://img.taocdn.com/s3/m/b721f302492fb4daa58da0116c175f0e7cd119cd.png)
新课讲解
例1 判断下列说法是否正确,并说明理由. (1)不相交的两条直线是平行线; (2)在同一平面内,两条不相交的线段是平行线.
导引:(1)没有强调两条直线在同一平面内; (2)两条线段平行应该是这两条线段所在的直线 平行.
新课讲解
解:(1)不正确; 理由:根据定义,它缺少了“在同一平面内” 这一条件.
(2)不正确; 理由:定义中指出的是两条不相交的“直线”, 而不是“线段”.
新课讲解
归纳
平行线的定义有三个特征:一是在同一平面内; 二是不相交;三是都是直线;三者缺一不可.
新课讲解
例2 如图,在长方体中,与棱 AD 平行的棱有哪 些?与棱D′C′平行的棱呢?用符号把它们表
示出来.
导引:根据平行线的定义,结合生活常识,观察图形 可解此题.
新课讲解
解:与棱AD平行的棱有A′D′,B′C′,BC, 记作AD∥A′D′,AD∥B′C′,AD∥BC. 与棱D′C′平行的棱有DC,AB,A′B′, 记作D′C′∥DC, D′C′∥AB, D′C′∥A′B′.
新课讲解
归纳
找平行线要注意两点: (1)在同一平面内; (2)不相交(无限延伸).
于180°,你能说明其中的道理吗?
新课讲解
导引:在(1)中,按照过直线外一点画已知直线的平行线
的方法画图即可.在(2)中,要说明∠MPN=180°, 可转化为说明点M,P,N在同一条直线上.
解:(1)画出的射线PM,PN,如上页图.
(2)因为射线PM∥BC,射线PN∥BC, 所以直线PM∥BC,直线PN∥BC. 所以直线PM与直线PN是同一条直线(过直线外一
A
AC交AB于M.
导引:过直线外一点画已知
直线的平行线,要按一 B
平行线ppt课件
![平行线ppt课件](https://img.taocdn.com/s3/m/3e70021c15791711cc7931b765ce05087632753d.png)
a
于是过点S就有两条直线b
和c都与a平行。
根据平行公理,这是不可能的
也就是说,b与c不能相交,
只能平行。
2平行公理的推论:
如果两条直线都和第三条直线平行, 那么这两条直线也互相平行
几何语言表达:
bac
∵b∥a, c∥a (已知) ∴b∥c(平行公理的推论)
课堂练习5:完成下列推理,并在括号内注明理由。
(1)放 C
·
D
(2)靠 (3)移
A
B
(4)画
动手实践
过直线a外一点P作直线a的平行线,看 看你能作出吗?能作出几条?
·P
b
A
a
三、平行公理和推论 1平行公理
经过直线外一点,有且只有一条直线 与这条直线平行.
说明:人们在长期实践中总结出来的结论叫基本 事实,也称为公理,它可以作为以后推理的依据.
D
C
A
B
2)A1B1与BC所在的直线是两条不相交的直线,他们 _不_是__平行线(填“是”或“不是”)。由此可知,
只有在_同__一__平__面__内__,两条不相交的直线才能叫平行
线。
3)在同一平面内,两条不重合的直线位置关系只有 ___2__种,即__相__交__和__平__行___。
课堂练习2: 判断正误
D′
C ′
它们表示出来。
A′
B′
和AA′平行的棱有3条:
BB′∥AA′,CC′∥AA′,DD′∥AA′。
和AB平行的棱有3条:
ቤተ መጻሕፍቲ ባይዱ
A′B′∥AB,C′D′∥AB,CD∥AB。
判定两直线平行的方法
1定义
同一平面内,不相交的两条直线互相 平行
5.2.1平行线课件(新人教版七年级数学下)
![5.2.1平行线课件(新人教版七年级数学下)](https://img.taocdn.com/s3/m/554a0836376baf1ffc4fad90.png)
C B
归纳
平行公理:经过直线外一点,有且只有一条直线与这条直线平行. 平行公理推论:结果两条直线都与第三条直线平行,那么这条直线 也互相平行. 结合图形教师引导学生用符号语言表达平行公理推论: 如果b∥a,c题. 平行和相交 1.在同一平面内,两条直线的位置关系有_________. 2.在同一平面内,一条直线和两条平行线中一条直线相交,那么这条直线与平 相交 行线中的另一边必__________. 3.同一平面内,两条相交直线不可能与第三条直线都平行,这是因为 过直线外一点有且只有一条直线与已知直线平行 _____________________________________. 0 4.两条直线相交,交点的个数是________, 两条直线平行,交点的个数是_____ 一个 个. 二、判断题. 1.不相交的两条直线叫做平行线.(错) 2.如果一条直线与两条平行线中的一条直线平行, 那么它与另一条直线也互 相平行.(错) 3.过一点有且只有一条直线平行于已知直线.( 错 ) 三、解答题. 1.读下列语句,并画出图形后判断. (1)直线a、b互相垂直,点P是直线a、b外一点,过P点的直线c垂直于直线b. (2)判断直线a、c的位置关系,并借助于三角尺、直尺验证. 2.试说明三条直线的交点情况,进而判定在同一平面内三条直线的位置情况.
数学活动二 总结平行线定义,学习平行线的表示法
结合演示的结论,师生用数学语言描述平行定义:同一平面内,存在一条直线a 与直线b不相交的位置,这时直线a与b互相平行.换言之,同一平面内,不相交 的两条直线叫做平行线. 直线a与b是平行线,记作“a∥b”,这里“∥”是平行符号. 教师应强调平行线定义的本质属性,第一是同一平面内两条直线,第二是设 有交点的两条直线.
5.2.1平行线
归纳
平行公理:经过直线外一点,有且只有一条直线与这条直线平行. 平行公理推论:结果两条直线都与第三条直线平行,那么这条直线 也互相平行. 结合图形教师引导学生用符号语言表达平行公理推论: 如果b∥a,c题. 平行和相交 1.在同一平面内,两条直线的位置关系有_________. 2.在同一平面内,一条直线和两条平行线中一条直线相交,那么这条直线与平 相交 行线中的另一边必__________. 3.同一平面内,两条相交直线不可能与第三条直线都平行,这是因为 过直线外一点有且只有一条直线与已知直线平行 _____________________________________. 0 4.两条直线相交,交点的个数是________, 两条直线平行,交点的个数是_____ 一个 个. 二、判断题. 1.不相交的两条直线叫做平行线.(错) 2.如果一条直线与两条平行线中的一条直线平行, 那么它与另一条直线也互 相平行.(错) 3.过一点有且只有一条直线平行于已知直线.( 错 ) 三、解答题. 1.读下列语句,并画出图形后判断. (1)直线a、b互相垂直,点P是直线a、b外一点,过P点的直线c垂直于直线b. (2)判断直线a、c的位置关系,并借助于三角尺、直尺验证. 2.试说明三条直线的交点情况,进而判定在同一平面内三条直线的位置情况.
数学活动二 总结平行线定义,学习平行线的表示法
结合演示的结论,师生用数学语言描述平行定义:同一平面内,存在一条直线a 与直线b不相交的位置,这时直线a与b互相平行.换言之,同一平面内,不相交 的两条直线叫做平行线. 直线a与b是平行线,记作“a∥b”,这里“∥”是平行符号. 教师应强调平行线定义的本质属性,第一是同一平面内两条直线,第二是设 有交点的两条直线.
5.2.1平行线
《平行线的判定》相交线与平行线PPT精品课件(第1课时)
![《平行线的判定》相交线与平行线PPT精品课件(第1课时)](https://img.taocdn.com/s3/m/2e50526bf68a6529647d27284b73f242326c315a.png)
探究新知
判定方法1:
两条直线被第三条直线所截,如果同位角相等,那么这两
条直线平行.
简单说成:同位角相等,两直线平行.
几何语言:
A
1
∵∠1=∠2 (已知),
∴l1∥l2 (同位角相等,两直线平行).
l2
2
l1
B
探究新知 考 点 1 利用同位角相等判定两直线平行 下图中,如果∠1=∠7,能得出AB∥CD吗?写出你的推理过程.
21
A34
B
65
C
D
78
③∵ ∠4 +∠__5_=180o(已知),
F
∴ _A__B∥C__D_( 同旁内角互补,两直线平行 ) .
链接中考
结合图,用符号语言表达定理“同旁内角互补,
两直线平行”的推理形式:∵__∠__1_+__∠__3_=__1_8_0_°_____,
∴a∥b.
c
a
2
43
b
1
课堂检测
理由是___内__错__角__相__等__,__两__直__线__平__行___.
(2)从∠ABC +∠ BCD=180°,可以推出AB∥CD ,
理由是 同旁内角互补,两直线平行 .
A
3
D
1
4
B
2
5
C
课堂检测
(3)从∠ 3 =∠ 2 ,可以推出AD∥BC,理由是
___内__错__角__相__等__,__两__直__线__平行
∴AB∥CD( 内错角相等,两直线平行_).
巩固练习
已知∠3=45 °,∠1与∠2互余,试说明AB//CD ?
解:∵∠1=∠2(对顶角相等), ∠1与∠2互余,
平行线教学课件
![平行线教学课件](https://img.taocdn.com/s3/m/c3905a3eee06eff9aef8075a.png)
A、因为a // d,b // c,所以c // d; B、因为a // c,b // d,所以c // d; C、因为a // b,a // c,所以b // c; D、因为a // b,c // d,所以a // c。
5、完成下列推理,并在括号内注明理由。 (1)如图1所示,因为AB // DE,BC // DE(已知)。所以 在同一直线上 A,B,C三点___________( 经过直线外一点,有且只有一 ) 条直线与这条直线平行 (2)如图2所示,因为AB // CD,CD // EF(已知),所以 AB EF ________ // _________( 如果两条直线都和第三条直线平行, ) 那么这两条直线也互相平行
在同一平面内,两条直线有 几种位置关系?动手画一画?
同一平面内两直线的位置关系: a 平行 a ∥b b 垂直 a a⊥b b 相交 a 相交但不垂直 b
一放 二靠 三推
●
四画
怎样画平行线?动 手画一画吧! 这种方法你会 了吗?
在转动木条a的过程中,有几个 位置使得a与b平行?如图,过点B画 直线a的平行线,能画出几条?再过 点C画直线a的平行线,它和前面过 点B画出的直线平行吗?
3、下列说法正确的个数是( B ) (1)两条直线不相交就平行。 (2)在同一平面内,两条平行的直线有且只有一个交点 (3)过一点有且只有一条直线与已知直线平行 (4)平行于同一直线的两条直线互相平行 (5)两直线的位置关系只有相交与平行 A、0 B、1 C、2 D、4
4、下列推理正确的是( C )
P17页第8题。
2.相应练习册
如何用几何语 言描述平行呢?
A B
a
b
C
D
A C
B
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
5 .2.1 平行线
如图,分别将木条a、b与木条c钉在一起, 并把它们想象成两端可以无限延伸的三条直线。 转动a,直线a从在c的左侧与直线b相交逐步变 为在右侧与b相交。想象一下,在这个过程中, 有没有直线a与直线b不相交的位置呢? c a b c a b c a
b
生活中好多事物给我们线的感觉,那么下列这些线 给我们什么印象呢?
A
D
B
C
D′ A′ B′
C ′
和AA′平行的棱有3条: BB′∥AA′,CC′∥AA′,DD′∥AA′。 和AB平行的棱有3条: A′B′∥AB,C′D′∥AB,CD∥AB。
课堂练习:
1)观察如图所示的长方体后填空 ①用符号表示下列两棱的位置关系:
A1
D1
B1 D A B
C1
∥ AA ⊥ A1B1____AB 1____AB ,
②在同一平面内,两条不相交的线段是平行线。 (╳)
③过一点可以而且只可以画一条直线与已知直线 (╳) 平行。 D 2、用符号“∥”表示图中平行四 边形的两组对边分别平行。 A B AB∥ CD,AD∥ BC。
C
3.
4、
5、完成下列推理,并在括号内注明理由。 (1)如图1所示,因为AB // DE,BC // DE(已知)。所以 A,B,C三点在同一直线上 ___________( 经过直线外一点,有且只有一 ) 条直线与这条直线平行 (2)如图2所示,因为AB // CD,CD // EF(已知),所以 AB // _________( EF 如果两条直线都和第三条直线平行, ________ ) 那么这两条直线也互相平行 A B C A B
b
a b b a
a平行于b
b平行于a
思考:在同一平面内,两条直线有几 种位置关系?
• 相交 • 平行
垂直
2、平行线的画法:
(1)放 (2)靠
(3)推 (4)画
·
动手实践
过直线AB外一点P作直线AB的平行 线,看看你能作出吗?能作出几条?
·
A
B
P
例:已知直线AB和直线外一点P,过点P画一 条直线和已知直线 AB平行。
·· ·
D 图1 E
C
D
E 图2
F
巩固练习
1.下列说法正确的是(D 垂直,平行三种。
B、在同一平面内,不垂直的两直线必平行。 C、在同一平面内,不平行的两直线必垂直。 D、在同一平面内,不相交的两直线一定不垂直。
)
A、在同一平面内,两条直线的位置关系有相交,
做一做
2.一个长方体如图, 和AA′平行的棱有多 少条?和AB平行的棱 有多少条?请用符号 把它们表示出来。
平行公理的推论:
如果两条直线都和第三条直线平行, 那么这两条直线也互相平行
几何语言表达:
a c
b
∵a∥c, b∥c (已知) ∴a∥b(如果两条直线都和 第三条直线平行,那么这两 条直线也互相平行)
1、平行线的定义: 2、平行线的表示法
小结:
同一平面内,不相交的两条直线叫做平行线
通常用符号“//”表示平行。AB//CD或a//b
3、平行线的两条性质 平行公理: (唯一性) 平面内,经过直线外一点,有且只有一条直线 与这条直线平行。 推论:如果两条直线都平行于第三条直线,那么这两 条直线也互相平行. 如果a//c, b//c; 那么a//b (平行线的传递性)
课内练习
1、判断下列说法是否正确,并说明理由。
①不相交的两条直线是平行线。 (╳)
⊥ 1D1 , AD____BC A1D1____C ∥
C
2)A1B1与BC所在的直线是两条不相交的直线,他们 不是 ____平行线(填“是”或“不是”)。由此可知, 同一平面内 ,两条不相交的直线才能叫平行 只有在___________ 线。
3)在同一平面内,两条不重合的直线位置关系只有 相交和平行 。 _____ 2 种,即_____________
二、平行线的表示法:
我们通常用“//”表示平行。
A
· ·
C
B
· ·
D
AB ∥ CD
读作: “AB 平行于 CD”
m∥n
m
n
读作: n ”
“
m平行于
平行线的表示
我们通常用符号“//”表示平行。
定义 A 在同一平 C 面内,不 相交的两 条直线。 a 图形 符号 读法
B AB CD AB平行于CD D CD AB CD平行于AB
说明:人们在长期实践中总结出来的结论叫基本 事实,也称为公理,它可以作为以后推理的依据.
如图:三条直线AB、CD、EF。如果AB//EF ,CD//EF, 那么直线AB与CD可能相交吗?
B P
假设AB与CD相交, 设AB与CD相交于P
A C E
D F
因为AB//EF,CD//EF 于是过点P就有两条直线AB CD都与EF平行。 根据平行公理,这是不可能的 也就是说,AB与CD不能相交, 只能平行。
如图,电梯的扶手给 我们什么印象?源自电梯扶手所在直线会相交吗?
那么铁轨给我 们什么印象? 还有什么地方 给我们相同的 印象呢?
铁轨所在直线 会相交吗?
双杠的两个握杠给 我们什么印象?哪 些地方也给我们这 种印象?
生活中许多事 物都给我们平 行线的印象。
平行线的定义:
同一平面内,不相交的两条直线 叫做平行线
P
●
一、放
A 二、贴
推平行线法
B
三、推
四、画
练一练
读下列语句,并画出图形: 点C是直线AB外一点,过点C画直线CD//AB
想一想
问题:经过点C能画出几条直线与直线 AB平行?
C A
〃
B
B 平行公理: (存在且唯一)
平面内经过直线外一点,有且只有一条 直线与这条直线平行。
(垂直)
结论: 经过直线外一点,有且只有一条直线 与这条直线平行.(平行公理)
如图,分别将木条a、b与木条c钉在一起, 并把它们想象成两端可以无限延伸的三条直线。 转动a,直线a从在c的左侧与直线b相交逐步变 为在右侧与b相交。想象一下,在这个过程中, 有没有直线a与直线b不相交的位置呢? c a b c a b c a
b
生活中好多事物给我们线的感觉,那么下列这些线 给我们什么印象呢?
A
D
B
C
D′ A′ B′
C ′
和AA′平行的棱有3条: BB′∥AA′,CC′∥AA′,DD′∥AA′。 和AB平行的棱有3条: A′B′∥AB,C′D′∥AB,CD∥AB。
课堂练习:
1)观察如图所示的长方体后填空 ①用符号表示下列两棱的位置关系:
A1
D1
B1 D A B
C1
∥ AA ⊥ A1B1____AB 1____AB ,
②在同一平面内,两条不相交的线段是平行线。 (╳)
③过一点可以而且只可以画一条直线与已知直线 (╳) 平行。 D 2、用符号“∥”表示图中平行四 边形的两组对边分别平行。 A B AB∥ CD,AD∥ BC。
C
3.
4、
5、完成下列推理,并在括号内注明理由。 (1)如图1所示,因为AB // DE,BC // DE(已知)。所以 A,B,C三点在同一直线上 ___________( 经过直线外一点,有且只有一 ) 条直线与这条直线平行 (2)如图2所示,因为AB // CD,CD // EF(已知),所以 AB // _________( EF 如果两条直线都和第三条直线平行, ________ ) 那么这两条直线也互相平行 A B C A B
b
a b b a
a平行于b
b平行于a
思考:在同一平面内,两条直线有几 种位置关系?
• 相交 • 平行
垂直
2、平行线的画法:
(1)放 (2)靠
(3)推 (4)画
·
动手实践
过直线AB外一点P作直线AB的平行 线,看看你能作出吗?能作出几条?
·
A
B
P
例:已知直线AB和直线外一点P,过点P画一 条直线和已知直线 AB平行。
·· ·
D 图1 E
C
D
E 图2
F
巩固练习
1.下列说法正确的是(D 垂直,平行三种。
B、在同一平面内,不垂直的两直线必平行。 C、在同一平面内,不平行的两直线必垂直。 D、在同一平面内,不相交的两直线一定不垂直。
)
A、在同一平面内,两条直线的位置关系有相交,
做一做
2.一个长方体如图, 和AA′平行的棱有多 少条?和AB平行的棱 有多少条?请用符号 把它们表示出来。
平行公理的推论:
如果两条直线都和第三条直线平行, 那么这两条直线也互相平行
几何语言表达:
a c
b
∵a∥c, b∥c (已知) ∴a∥b(如果两条直线都和 第三条直线平行,那么这两 条直线也互相平行)
1、平行线的定义: 2、平行线的表示法
小结:
同一平面内,不相交的两条直线叫做平行线
通常用符号“//”表示平行。AB//CD或a//b
3、平行线的两条性质 平行公理: (唯一性) 平面内,经过直线外一点,有且只有一条直线 与这条直线平行。 推论:如果两条直线都平行于第三条直线,那么这两 条直线也互相平行. 如果a//c, b//c; 那么a//b (平行线的传递性)
课内练习
1、判断下列说法是否正确,并说明理由。
①不相交的两条直线是平行线。 (╳)
⊥ 1D1 , AD____BC A1D1____C ∥
C
2)A1B1与BC所在的直线是两条不相交的直线,他们 不是 ____平行线(填“是”或“不是”)。由此可知, 同一平面内 ,两条不相交的直线才能叫平行 只有在___________ 线。
3)在同一平面内,两条不重合的直线位置关系只有 相交和平行 。 _____ 2 种,即_____________
二、平行线的表示法:
我们通常用“//”表示平行。
A
· ·
C
B
· ·
D
AB ∥ CD
读作: “AB 平行于 CD”
m∥n
m
n
读作: n ”
“
m平行于
平行线的表示
我们通常用符号“//”表示平行。
定义 A 在同一平 C 面内,不 相交的两 条直线。 a 图形 符号 读法
B AB CD AB平行于CD D CD AB CD平行于AB
说明:人们在长期实践中总结出来的结论叫基本 事实,也称为公理,它可以作为以后推理的依据.
如图:三条直线AB、CD、EF。如果AB//EF ,CD//EF, 那么直线AB与CD可能相交吗?
B P
假设AB与CD相交, 设AB与CD相交于P
A C E
D F
因为AB//EF,CD//EF 于是过点P就有两条直线AB CD都与EF平行。 根据平行公理,这是不可能的 也就是说,AB与CD不能相交, 只能平行。
如图,电梯的扶手给 我们什么印象?源自电梯扶手所在直线会相交吗?
那么铁轨给我 们什么印象? 还有什么地方 给我们相同的 印象呢?
铁轨所在直线 会相交吗?
双杠的两个握杠给 我们什么印象?哪 些地方也给我们这 种印象?
生活中许多事 物都给我们平 行线的印象。
平行线的定义:
同一平面内,不相交的两条直线 叫做平行线
P
●
一、放
A 二、贴
推平行线法
B
三、推
四、画
练一练
读下列语句,并画出图形: 点C是直线AB外一点,过点C画直线CD//AB
想一想
问题:经过点C能画出几条直线与直线 AB平行?
C A
〃
B
B 平行公理: (存在且唯一)
平面内经过直线外一点,有且只有一条 直线与这条直线平行。
(垂直)
结论: 经过直线外一点,有且只有一条直线 与这条直线平行.(平行公理)