(第六部分)曲面积分习题解答
曲面积分习题解答
0
0
1 4r2 2 1 9 1 t 1 8 14
t dt
16
2 5
t5
2
2 3
t3
2
9
1
149
30
解: dS 1 zx2 z2y d 2d
由对称性, zxdS 2D x x2 y2 dxdy
2
2
d
3 42 2 8
7 证明面密度为1的圆锥体的侧面Σ1绕其对称轴的转动 惯量I1与其底面Σ2绕此轴的转动惯量I2之比为常数:
I1 I2 csc (θ是圆锥的半顶角)。
解 1 : z cot x2 y2 ,
dS 1 cot x
2
x2 y2 cot y
I 1 1 ,
1 11 2z 2dv
2
2 d
1
rdr
1 zdz 2
1
r r3
dr
0
0
r
0
2
因为Σ1在yoz,zox上的投影为零,所以
1 xdydz 1 ydzdx 0
0
0
83
03
解 Iz
x2 y2 0dS 0a
D
x2 y2 a2 x2 y2
d
0a
2
d
0
a 0
r2 rdr a2 r2
20a
0
2 a3 sin3 tdt
20a4
2 3
4 3
0
a
4
解
x2 y2 z2 dydz 2 xdv 0
曲线曲面积分部分难题解答
曲线、曲面积分部分难题解答1.(P201,第1题)计算下列标量函数的曲线积分(第一型曲线积分):解:(ⅰ)[]2,0,,21:2∈⎪⎩⎪⎨⎧==y y y y x l ,.1122dy y dy dy dx ds +=⎪⎪⎭⎫ ⎝⎛+=dy y y y xyds l 22201..21+=⎰⎰(令t y tan =)()()t td t sec sec .1sec 21222arctan 0-=⎰ |2arctan35sec 31sec 5121⎥⎦⎤⎢⎣⎡-=t t .151355+=(ⅱ)解:()⎰+l ds yx 22⎰⎰⎰++=OAABOB()()3801.022222222==++=+⎰⎰⎰dx x dx xds y xOA;.20,,0:≤≤⎩⎨⎧==x x x y OA()()[]()dy y y ds y xAB 210222221.22-++-=+⎰⎰().5354855102=+-=⎰dy y y.10,,22,:≤≤⎩⎨⎧-==y y x y y AB()().3101.212222=++=+⎰⎰dy yds y xBO,.10,,0:≤≤⎩⎨⎧==y y y x BO.3535+=++=⎰⎰⎰OAABOBI(ⅲ)解法一:.20,sin 2,cos 22:π≤≤⎪⎪⎩⎪⎪⎨⎧=+=t t a y t a a x l ()().2cos 2sin 22222dt a dt t a t a dt t y t x ds =⎪⎭⎫⎝⎛+⎪⎭⎫ ⎝⎛-='+'=所以,()dt at a t a s d y x l2sin 4cos 1420222222⎰⎰⎥⎦⎤⎢⎣⎡++=+πdt t a⎰=π20222sin2.24dt t a⎰=π2022sin2.22cos 22sin2202202|a t a t d t a=⎪⎭⎫ ⎝⎛-=⎪⎭⎫ ⎝⎛=⎰ππ解法二:化l 为极坐标表示:().2,2,cos :⎥⎦⎤⎢⎣⎡-∈=ππθθθa r l()().22,s i n .c o s s i n,c o s c o s :2πθπθθθθθθθ≤≤-⎩⎨⎧====a r y a r x l()()()().sin cos 2222θθθθθad dt a a dt r r ds =-+='+=所以,()()[]θθθθππad a a s d y x l⎰⎰-+=+2222222sin cos cosθθππd a a ⎰-=2222cos .2sin 2cos 2220222|a a d a===⎰ππθθθ(ⅳ) ()()()()()dt b a dt b t a t a dt t z t y t x ds22222222cos sin +=++-='+'+'=()()()()[]dt b a bt t a t a ds z y x l2220222222.sin cos +++=++⎰⎰π()|203222220222223ππ⎥⎦⎤⎢⎣⎡++=++=⎰t b t a b a dt t b aba[].433222222b a b a++=ππ2.(P201,第2题)设有某种物质分布在椭圆1:2222=+by ax l 上,其密度().,y y x =μ求它的总质量.解:不妨假设.b a >⎰⎰==14l lyds ds y M ,其中.2,0,sin ,cos ;1⎥⎦⎤⎢⎣⎡∈⎩⎨⎧==πt t b y t a x l ()()()().cos sincos sin 22222222dt t b t a dt t b t a dt t y t x ds +=+-='+'=dt t b t a t b yds M l 222220cos sinsin 441+==⎰⎰π()()t d t ba ab cos cos422222⎰---=π()du u b a a b 222214---=⎰()du u b a a b 222214--=⎰duu ba aba b ⎰---=22222224π(公式)|102222222222222arcsin .2.4⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡--+---=u ba au ba au ba ab a b.arcsin..222222⎥⎥⎦⎤⎢⎢⎣⎡+--=b ab a ba ab 3.(P202,第3题)设曲线l 的长度为L ,而函数f 在包含l 的某个区域内连续.证明:()().max .P f L dsP f lP l∈≤⎰证明:由第一型曲线积分的定义()()ini id ls P f ds P f ∆=∑⎰=→.lim1故()()ini id ls P f dsP f ∆=∑⎰=→.lim1()ini id s P f ∆=∑=→.lim1()ini id sP f ∆≤∑=→.lim1()ini lp d sP f ∆≤∑=∈→.m a x lim1().m a x .P f L lP ∈=4.(P202,第6题)计算沿逆时针方向的圆周()222a y x =+的曲线积分 ()().22⎰+--+lyx dyy x dxy x解:π2~0:,.sin ,cos :t t a y t a x l ⎩⎨⎧==,所以,()()⎰+--+lyx dyy x dxy x 22()()()()dtat a t a t a t a t a t a ⎰---+=π202cos .sin cos sin sin cos.22022ππ-=-=⎰dt aa5.(P202,第7题)(ⅱ)设点().0,1A 则()()dyyx dx y xL2222-++⎰()()dyyx dx y xOA2222-++=⎰()()dyyx dx y xAB2222-+++⎰.1~0:,,:x x x x y OA ⎩⎨⎧==()()()()[]321022222222=-++=-++⎰⎰dxxxxxdy yx dx y xOA;.2~1:,,2:x x x x y AB ⎩⎨⎧=-=()()()()()()()[]d xx xx xdy yx dx y xAB⎰⎰---+-+=-++21222222221.22()().3232222|213212=-=-=⎰x dx x原式.343232=+=(ⅲ)()dz x yzdydx zy l ⎰-+-2222 ()[]d t t t t t ttt⎰-+-=102232643.2 (2)[].351527323|10571046=⎪⎭⎫ ⎝⎛-=-=⎰t t dt t t6.(P202,第8题)设曲线l 的长度为L ,而函数()P f 在包含l 的某个区域内连续.证明: ()).max ...P L d P f lP l∈≤⎰证明:()()()().(.)|(||||c o s ((,)|lllf P d r fP d s f P f P d s τττ=≤⎰⎰⎰()()||max lP llf P ds f P ds ∈≤≤⎰⎰().m ax .P lL f P ∈≤7.(P209,第1题)求下列曲面块的面积:(ⅰ)球面2222a z y x =++包含在圆柱面()a b b y x ≤<=+0222内那部分面积;(ⅱ)圆锥面22yx z +=被圆柱面x y x 222=+截下的那一部分;(ⅲ)圆柱面222a y x =+被圆柱面222a z y =+截下的那一部分. 解:(ⅰ)222:b y x D xy ≤+.将曲面方程化为:z ∑=d S d x d d x d y==. dxdy yx a a S S xyD ⎰⎰--==22222上⎥⎦⎤⎢⎣⎡--=-=⎰⎰|022022202.2122bbra a ra a r d r d πθπ极().422b a a a --=π(ⅱ)x y x D xy 2:22≤+. 由曲面方程22:yx z +=∑,得,2122dxdy dxdy y z x z dS =⎪⎪⎭⎫ ⎝⎛∂∂+⎪⎭⎫⎝⎛∂∂+=.().222π===⎰⎰xy D D S dxdy S xy(ⅲ)利用对称性(仅在第一卦限内计算)18S S =,曲面1∑(1∑为∑在第一卦限的那部分,其面积设为1S )向yoz 面上的投影区域为222:a z y D yz ≤+. 将曲面1∑方程化为22ya x -=,则,22ya y yx --=∂∂,0=∂∂zx dydzya a dydz z x yx dS 22221-=⎪⎭⎫ ⎝⎛∂∂+⎪⎪⎭⎫ ⎝⎛∂∂+=.dydz ya a S S yzD ⎰⎰-==22188 ⎰⎰--=22228ya adz ya a dy .882a adz a ==⎰8.(P209,第2题)求下列曲面积分:(ⅰ)()⎰⎰++Sy x dS21,式中S 为四面体()1,0,0,0≤++≥≥≥z y x z y x 的表面;(ⅱ)()dS y x S⎰⎰+22,式中S 为圆柱体()h z a y x ≤≤≤+0,222的表面;(ⅲ)()dS z y x S⎰⎰++,式中S 为球面()2222a z y x =++的表面.解:(ⅰ).4321S S S S S +++=其中 ,0:1=z S d x d y dS =1,()()()dy y x dx dxdy y x y x dSxD S xy⎰⎰⎰⎰⎰⎰-++=++=++110222111111dx x dx y x x ⎰⎰⎪⎭⎫ ⎝⎛-+=⎥⎦⎤⎢⎣⎡++-=-10110211111| 212ln -=;,0:2=x S d y d z dS =2,()()()dz y dy dydz y y x dSyD S yz⎰⎰⎰⎰⎰⎰-+=++=++1102221101112()()dy y y dy y y⎰⎰⎪⎪⎭⎫⎝⎛+-+=+-=10212111211 ()2ln 11ln 12||110-=+-+-=y y;,0:3=y S d z d x dS =3,同上()321S dSx y =++⎰⎰1ln 2-;,1:4y x z S --= d x d y dS 34=,()()()dz y x dx dxdy y x y x dSxD S xy⎰⎰⎰⎰⎰⎰-++=++=++101022211311314dx x dx y x x ⎰⎰⎪⎭⎫ ⎝⎛-+=⎥⎦⎤⎢⎣⎡++-=-10101021113113|().212ln 33211ln 321113|1010⎪⎭⎫ ⎝⎛-=-+=⎪⎭⎫⎝⎛-+=⎰x dx x ; ()⎰⎰++Sy x dS21()+++=⎰⎰121S y x dS()+++⎰⎰221S y x dS()⎰⎰++321S y x dS ()⎰⎰++421S y x dS()()().32ln 2213212ln 32ln 12ln 1212ln +-=⎪⎭⎫ ⎝⎛-=-+-+⎪⎭⎫ ⎝⎛-=(ⅱ).321S S S S ++=其中 ,0:1=z S d x d y dS =1,()()r d r r d d x d y y xdS y xaD S xy.42222221⎰⎰⎰⎰⎰⎰=+=+πθ 24a π=;,:2h z S = d x d y dS =2,()()r d r r d d x d y y xdS y xaD S xy.420222222⎰⎰⎰⎰⎰⎰=+=+πθ24a π=;,:2223a yx S =+其向yoz面上的投影区域为⎩⎨⎧≤≤-≤≤.,0:a y a h z D yz . 将曲面3S 方程化为22y a x -±=,则,22ya yyx --=∂∂,0=∂∂zx ,所以,d y d z ya a d y d z z x yxdS 22221-=⎪⎭⎫ ⎝⎛∂∂+⎪⎪⎭⎫ ⎝⎛∂∂+=()()dydz ya a yya dS y xyzD S ⎰⎰⎰⎰-⎥⎦⎤⎢⎣⎡+-=+222222322.23⎰⎰-=-haadz ya dy a 022312..2arcsin433|h a ayh a aπ==或者()..22..32232233h a ah a dS a dS y xS S ππ===+⎰⎰⎰⎰()⎰⎰++Sy x dS21()++=⎰⎰122S dSyx()++⎰⎰222S yx()dSy xS ⎰⎰+322().22223344h a ah a a a+=++=ππππ (ⅲ)由积分区域的对称性,及被积函数的奇偶性知(对称性同三重积分)()dS z y x S⎰⎰+++=⎰⎰dSx SdS y S⎰⎰().0=+++⎰⎰dS z y x S9.(P210,第3题)证明泊松公式()()d uc b a uf dS cz by ax f S⎰⎰⎰-++=++112222π其中S 为球面0,1222222>++=++c b a z y x ,f 为连续函数.证明:取新的空间直角坐标系Ouvw ,其中原点不变,使坐标平面Ouvw 与平面=++cz by ax 重合,并使Ou 轴垂直于平面0=++cz by ax .则有其实根据坐标系Ouvw 选取方法的描述,我们不难看出Ou 轴上的单位向量就可取作平面=++cz by ax 的单位法线向量.则222cb a cz by ax u ++++=(注意到,显然222cb a cz by ax u ++++=为点()z y x P ,,到平面=++cz by ax 的距离). ()dS cz by ax f S⎰⎰++()d S c b a u f S⎰⎰++=222显然在新坐标系下,球面的形状并未改变(仍记为S ),且它的方程应为 1222=++w v u(因为在新的坐标系下,任何一个球面上的点到原点的距离仍然为1.) 得: ()22221u w v -=+当u 固定时,1222=++w v u 表示垂直于Ou 轴平面上的一个圆周. 进一步,我们把S 化为参数方程表示:.20,11,sin 1,cos 1,22πθθθ≤≤≤≤-⎪⎩⎪⎨⎧-=-==u u w u v u u,1='uu ,cos 12θuu v u --=';sin 12θuu w u--=',0='θu ,sin 12θθu v --='.cos 12θθu w -=';112222uw v u E u u u-='+'+'=;0...=''+''+''=θθθw w v v u u F u u u.12222u w v u G -='+'+'=θθθ因此, 曲面的元素dS =dudv =故()dS cz by ax f S⎰⎰++()d S c b a u f S⎰⎰++=222()d u c b a u f d ⎰⎰-++=πθ2011222().211222⎰-++=du cb a u f π10(P210,第4题)设某种物质均匀分布在球面2222a z y x =++上(认为分布密度1=ρ).求它对于oz 轴的转动惯量. 解:由对称性 ()dSy x J S ⎰⎰+=1228其中2221:yx a z S--=,则d S d x d d x d y==. 因此 ()d x d yyx a a y x S S xyD ⎰⎰--+==222221.88 r d r ra rd a a.8022220⎰⎰-=πθ极()r d r r a aara a.4022222⎰-+-=πr d r r a a a.4022⎰--=πr d rra aa.140223⎰-+π()22022.2ra d r a a a--=⎰π()220223.12ra d ra a a---⎰π.384a π=11(P217,第1题)沿圆锥面()122≤=+z yx S的下侧,求曲面积分S d r S.⎰⎰,其中{}.,,z y x r =解:⎰⎰⎰⎰++=SSzdxdyydzdx xdydz Sd r .''x y z z z ===,[(')(')0xyx y D x z y z dxdy =--+-+=⎰⎰12(P217,第2题)沿椭球面1222222=++cz by ax 的外侧,求曲面积分.⎰⎰⎪⎪⎭⎫ ⎝⎛++Sz dxdy y dzdx x dydz解:把S 分割为21,S S 两个部分.其中,222211:by ax c z S --=(上侧);222221:by ax c z S ---=(下侧).21,S S 向xoy 面上的投影区域均为.1:2222≤+by ax D xy故dxdyby ax c zdxdy xyD S ⎰⎰⎰⎰--=2222111变量代换:⎩⎨⎧==.s i n,c o sθθbr y ar x由二重积分的换元法drabrd rc dxdy by ax c D D xyθ⎰⎰⎰⎰'-=--222221111.其中 ()()abr br b ar a y ry xrx r y x J =-=∂∂∂∂∂∂∂∂=∂∂=θθθθθθθcos sin sin cos ,, ⎩⎨⎧≤≤≤≤'.20,10:πθr D所以=⎰⎰1S zdxdy drabrd rc dxdy by ax c D D xyθ⎰⎰⎰⎰'-=--222221111dr r rd cab ⎰⎰-=πθ201211dr r rd cab ⎰⎰-=πθ201211所以,().212111|12212πππcab rcabrd rcab =⎥⎦⎤⎢⎣⎡--=---=⎰由轮换对称性,知:πabc xdzdy S4=⎰⎰;.4πbac ydzdx S=⎰⎰故⎰⎰⎪⎪⎭⎫⎝⎛++Sz dxdy ydzdx xdydz +=⎰⎰Szdxdy +⎰⎰S xdzdy ⎰⎰S ydzdx+=πc ab4πabc4().44222222ac c b b a abc b ac ++=+ππ13(P217,第3题)沿球面()()()2222R c z b y a x =-+-+-的外侧,求曲面积分.222⎰⎰++Sdxdy z dzdx y dydz x解:把S 分割为21,S S 两个部分.其中,()()2221:b y a x R c z S ----+=(上侧);()()2222:b y a x R c z S -----=(下侧).21,S S 向xoy 面上的投影区域均为:xy D ()()222R b y a x ≤-+-()()dxdy b y a x R c dxdy zxyD S ⎰⎰⎰⎰⎥⎦⎤⎢⎣⎡----+=222221变量代换: ⎩⎨⎧+=+=.sin ,cos θθr b y r a x()()[]r d r rR c d x d y b y a x R c D D xy⎰⎰⎰⎰'-+=⎥⎦⎤⎢⎣⎡----+2222222.()()r r r y ry xr x r y x J =-=∂∂∂∂∂∂∂∂=∂∂=θθθθθθθcos sin sin cos ,, ⎩⎨⎧≤≤≤≤'.20,0:πθR r D=⎰⎰12S dxdy z[]rdr rR c D 222⎰⎰'-+()drr rR c d R⎰⎰-+=πθ20222()rdr rR c R2222⎰-+=π()r dr r R rR c c R⎰-+-+=02222222πrdr r R c rdr c RR⎰⎰-+=0222222ππ()rdr r RR⎰-+0222π()()|||0222023220222132.222RRR rR r R c r c ⎥⎦⎤⎢⎣⎡--⎥⎦⎤⎢⎣⎡--⎪⎪⎭⎫ ⎝⎛=πππ.2344322R cRRc πππ++= 同理()()dxdy b y a x R c dxdy z xyD S ⎰⎰⎰⎰⎥⎦⎤⎢⎣⎡------=222221.2344322R cR R c πππ-+-==⎰⎰Sdxdy z 2+⎰⎰12S dxdy z 32382cRdxdy z S π=⎰⎰;由轮换对称性,知:=⎰⎰Sdydz x 2338aRπ;=⎰⎰Sdzdx y 2.383bR π故.222⎰⎰++Sdxdy z dzdx y dydz x ⎰⎰=Sdydzx 2⎰⎰Sdzdxy 2⎰⎰Sdxdyz 2().383c b a R ++=π14(P217,第4题)设S 为长方体()c z b y a x ≤≤≤≤≤≤0,0,0的表面.沿外侧求曲面积分⎰⎰Sxyzdxdy解:把S 分割为654321,,,,,S S S S S S 六个部分. 其中 ()b y a x c z S ≤≤≤≤=0,0:1的上侧; ()b y a x z S ≤≤≤≤=0,00:2的下侧; ()c z b y a x S ≤≤≤≤=0,0:3的前侧; ()c z b y x S ≤≤≤≤=0,00:4的后侧; ()c z a x b y S ≤≤≤≤=0,0:5的右侧; ()c z a x y S ≤≤≤≤=0,00:6的左侧.注意到除21,S S 外,其余四片曲面在xoy 面上的投影为零,因此=⎰⎰Sxyzdxdy+⎰⎰1S xyzdxdy⎰⎰2S xyzdxdy⎰⎰=xyD xycdxdy⎰⎰-xyD dxdyxy 0. c b a ydy xdx c a b.422⎰⎰==(后可用奥高公式)15(P225第2题)求()()dy m y e dx my y eI xxL-+-=⎰cos sin ,(m 为常数)其中l 是自点()0,a A 经过圆周()022>=+a ax y x 的上半部分到点O(0,0)的半圆 周.(提示:作辅助线后用格林公式). 解:cos ,cos xxP Q e y m e y yx∂∂=-=∂∂.221...428A OO A D DQ P a dxdy m dxdy m m a x y ππ⋂⎡⎤∂∂+=-===⎢⎥∂∂⎣⎦⎰⎰⎰⎰⎰⎰. 所以,2220.888AOOAma ma ma I πππ⋂==-=-=⎰⎰(因为,⎰⎰==OAadx 0.00)16(P225第5题)设函数()x f 在正半轴()0>x 上有连续导数()x f '且().21=f 若 在右半平面内沿任意闭合光滑曲线l ,都有 ()043=+⎰dy x xf ydx xl求函数().x f解:()y x y x P 34,=,()()x xf y x Q =,都是右半平面上的连续函数,由于在右半平面内沿任意闭合光滑曲线l ,都有()043=+⎰dy x xf ydx xl故有12f f yx∂∂=∂∂即 ()()x f x x f x '+=34化简,得 ()()241xx f xx f =+'(1)为一阶线性微分方程,其通解为()⎥⎦⎤⎢⎣⎡+⎰⎰=⎰-c ex e x f dx xdx x 1214().1134xcx c xx+=+=代入条件()21=f ,得 .1=c ().13xx x f +=17(P226第6题)设D 是以光滑曲线l 为正向边界的有界闭区域,而函数()y x u u ,= 在闭区域D 上具有连续的二阶偏导数且记2222yu xu u ∂∂+∂∂=∆证明: ⎰⎰⎰∆=∂∂Dludxdyds nu()()y n yu x n xu nu ,cos ,cos ∂∂+∂∂=∂∂表示函数()y x u u ,=沿边界曲线l 外法线方向的方向导数.证明:设τ为曲线l 的正向的切线向量,其方向余弦为()x ,cos τ、()y ,cos τ,则 有 ()()y x n ,,τ=,()().,,x y n τπ-= 故 ()()y x n ,c o s ,c o s τ=,()().,cos ,cos x y n τ-=()()ds x y uy xu ds nul l⎰⎰⎪⎪⎭⎫ ⎝⎛∂∂-∂∂=∂∂,cos ,cos ττ(由两型曲线积分之间的联系)dx yu dyx ul⎰∂∂-∂∂=(格林公式) ⎰⎰⎥⎦⎤⎢⎣⎡⎪⎪⎭⎫ ⎝⎛∂∂-∂∂-⎪⎭⎫ ⎝⎛∂∂∂∂=Ddxdy y u y x u x=⎪⎪⎭⎫⎝⎛∂∂+∂∂=⎰⎰Ddxdy y u x u 2222.⎰⎰∆Dudxdy18(P226第7题)在第6题的假设和记号下,证明:.22ds nu uudxdy u dxdy y u x u D lD⎰⎰⎰⎰⎰∂∂+∆-=⎥⎥⎦⎤⎢⎢⎣⎡⎪⎪⎭⎫ ⎝⎛∂∂+⎪⎭⎫ ⎝⎛∂∂证明:仿上题 ()()ds x y uy xu u ds nu ul l⎰⎰⎪⎪⎭⎫ ⎝⎛∂∂-∂∂=∂∂,cos ,cos ττ(由两型曲线积分之间的联系) dx yu udy xu ul⎰∂∂-∂∂=(格林公式)⎰⎰⎥⎦⎤⎢⎣⎡⎪⎪⎭⎫ ⎝⎛∂∂-∂∂-⎪⎭⎫ ⎝⎛∂∂∂∂=Ddxdy y u u y x u u x ⎰⎰⎥⎦⎤⎢⎣⎡⎪⎪⎭⎫⎝⎛∂∂+∂∂∂∂+⎪⎪⎭⎫ ⎝⎛∂∂+∂∂∂∂=Ddxdy y u u y u y u x u u x u x u 2222....dxdy y ux u u dxdy y u x u DD⎪⎪⎭⎫⎝⎛∂∂+∂∂+⎥⎥⎦⎤⎢⎢⎣⎡⎪⎪⎭⎫ ⎝⎛∂∂+⎪⎭⎫ ⎝⎛∂∂=⎰⎰⎰⎰222222 udxdyu dxdy y u x u DD∆+⎥⎥⎦⎤⎢⎢⎣⎡⎪⎪⎭⎫ ⎝⎛∂∂+⎪⎭⎫ ⎝⎛∂∂=⎰⎰⎰⎰22移项,即得 .22ds nu uudxdy u dxdy y u x u D lD⎰⎰⎰⎰⎰∂∂+∆-=⎥⎥⎦⎤⎢⎢⎣⎡⎪⎪⎭⎫ ⎝⎛∂∂+⎪⎭⎫ ⎝⎛∂∂19(P227第9题)计算高斯(Gauss)积分 ()(b a I ⎰=,其中l 为简单(光滑)闭合曲线,r 为不在l 上的点()b a ,到l 上动点()y x ,的向量,而n 为l 上动点()y x ,处的法向量.解:设τ为曲线l 的正向的切线向量,其方向余弦为()x ,cos τ、()y ,cos τ,则 有 ()()y x n ,,τ=,()().,,x y n τπ-= 又设()(){}y n x n n ,cos ,,cos 0= ,{}b y a x r --=,,则()()()()()()().,c o s .,c o s.,c o s ,c o s 22b y a x y n b y x n a x n r n r -+--+-==⎪⎭⎫ ⎝⎛=故(()()()()()().,cos .,cos .22b y a x y n b y x n a x -+--+-=()()()()()()()[]ds y n b y x n a x b y a x b a I l ,cos ,cos .1,22-+--+-=⎰()()()()()()[]ds x b y y a x b y a x l,cos ,cos .122ττ----+-=⎰()()()().22⎰-+----=l b y a x dx b y dy a x记 ()()(),,22b y a x by y x P -+---=()()().,22b y a x ax y x Q -+--=则()()()(),2222b y a x a x b y yP -+-----=∂∂()()()().2222b y a x a x b y x Q -+-----=∂∂它们在xo y 平面内除点 ()b a ,外处处连续,且.0=∂∂-∂∂yP xQ(一)若点()b a ,在l 所包围的区域D 外,原式=0;(二)若点()b a ,在l 所包围的区域D 内,以点()b a ,为中心作一个充分小的圆()()).0(:222>=-+-εεεb y a x l 取逆时针方向,使之完全包含在l 为边界的区域内.记介于εl 和l 之间的区域为'εD .则在'εD 由格林公式可得:)()()()⎰-+----lb y a x dxb y dy a x 22()()()()⎰-+-----εl b y a x dx b y dy a x 22.0⎰⎰'=⎥⎦⎤⎢⎣⎡∂∂-∂∂=εD dxdy y P x Q所以,()()()()⎰-+----=l b y a x dx b y dya x I 22()()⎰---=εεl dxb y dy a x 2()()⎰---=εεl dx b y dy a x 21(格林公式)()()ππεεεεε2.22112222===⎥⎦⎤⎢⎣⎡∂-∂-∂-∂=⎰⎰⎰⎰DD dxdy dxdy y y b x a x .20(P227第10题)利用斯托克斯公式重新计算积分(例3) ()()(),⎰-+-+-=ldz y x dy z x dx y z I 其中l 是曲线⎩⎨⎧=+-=+.2,122z y x y x方向为从oz 轴正方向往负方向看去是顺时针方向.解一:由斯托克斯公式d x d y yx zx yz z y x d x d y d z d x d y d z 2=---∂∂∂∂∂∂.取∑为平面2=+-z y x 上由椭圆所围成的那一小块曲面.(取下侧),因此{}1,1,1-=n ,.31,33,330⎭⎬⎫⎩⎨⎧-=n ) ()()()dSdxdy dz y x dy z x dx y z I l⎰⎰⎰⎰⎰∑∑-=-=-+-+-=3122.2.23.312⎰⎰⎰⎰-=-=-=xyxyD D dxdy dxdy π解二:(直接计算)()()()⎰⎰⎰∑=-+-+-=dxdy dz y x dy z x dx y z I l2其中,.1:22≤+yx D xy所以,.22π-=-=⎰⎰dxdy I xyD .21(P238第2题)证明式(14-31),并由此求下面的曲线积分:()();).1(2,11,22⎰-xxdy ydx ()()⎰++1,1,63,2,1.).2(xydz zxdy yzdx解:(一)要证式(14-31)成立,即要证若平面区域D 内保守力场()(){}y x Q y x P f ,,,=有位势()y x u ,,则对D 内的任意两点()()222111,,,y x M y x M ,有 ()()()()()().,,,.1122,,2211y x u y x u dy y x Q dx y x P y x y x -=+⎰事实上,因为()(){}y x Q y x P f ,,,=为保守力场,故()()dy y x Q dx y x P l,.+⎰在D 内与路径无关,而只取决于路径的起点、终点.令 ()()()()()dy y x Q dx y x P y x v y x y x ,.,,,11+=⎰ (1)则可证明()y x v ,也是f 在D 内的一个势函数.故()()C y x v y x u ≡-,, ,对任意()D y x ∈,成立 (2)取()()11,,y x y x =,并注意到()0,11=y x v (因为沿闭合曲线的积分为零),得()()()111111,,,y x u y x v y x u C =-=(2)式中再取()()22,,y x y x =,并注意到(),0,11=y x v 得()()C y x v y x u =-2222,, 即 ()()()()().,,3,,11222222y x u y x u C y x u y x v --============又由(1)式,注意到()y x v ,的记号,得 ()()()()()().,,,.1122,,2211y x u y x u dy y x Q dx y x P y x y x -=+⎰(二)()()⎰-2,11,22).1(xxdy ydx中,()2,xy y x P =,().1,2xxx y x Q -=-=因为 xQ xyP ∂∂==∂∂21,().0,,2≠∈x R y x所以,2xxdyydx -是某一个函数()y x u ,的全微分.故可取()()()⎰-=y x xxdyydx y x u ,0,12,dy x dx yx⎰⎰⎪⎭⎫⎝⎛-+=110.x y -=所以()()()().2321121,22,12,11,22-=⎪⎭⎫⎝⎛---=-=-⎰u u xx d y yd x ()()⎰++1,1,63,2,1.).2(xydz zxdy yzdx 中,()()().,,,,,,,,xy z y x R zx z y x Q yz z y x P ===因为xQ z yP ∂∂==∂∂;yR x zQ ∂∂==∂∂;.zP y xR ∂∂==∂∂ ().,,3R z y x ∈所以,+yzdx xydz zxdy +是某一个函数()z y x u ,,的全微分. (二)现取()()()xydz zxdy dx yz z y x u z y x ++=⎰,,0,0,0,,取0M M 如图所示,从()0,0,00M 沿x 轴到点()0,0,1x M 再沿平行于y 轴的直线到点()0,,2y x M最后沿平行于z 轴的直线到点(),,.M x y z 于是()⎰⎰⎰++=zyxxydz dy x dx z y x u 0.00,, .xyz =所以()()()().03,2,11,1,61,1,63,2,1=-=++⎰u u x y d z z x d y y z d x22(P238第5题)验证下列方程我全微分方程,并求通解:()();04332).1(=-++dy y x dx y x ()().03223).2(2222=+-++-dyyxy xdx yxy x解:()();04332).1(=-++dy y x dx y x这里,()()y x y x Q y x y x P 43,,32,-=+=.因为,xQ yP ∂∂==∂∂3,是全微分方程.故:()()()()()dyy x dx y x y x u y x 4332,,0,0-++=⎰()()dyy x dxx yx⎰⎰-++=04302[]||020223yx yxy x-+=.2322y xy x -+=通解为:cyxy x =-+2223.()().03223).2(2222=+--+-dyyxy xdx yxy x这里,()().32,,23,2222y xy x y x Q y xy x y x P -+-=+-=. 因为,xQ y x yP ∂∂=+-=∂∂22,所以方程是全微分方程.故:()()()()()dy yxy x dx y xy x y x u y x 22,0,0223223,+--+-=⎰()()dy y xy x dx xyx⎰⎰-+-+=22023203[]||03223yxyxy y x x-+-+=.3223y xyy x x -+-=因此,所求方程的通解为:.3223c y xy y x x =-+-.23(P238第6题)设函数()y x u u ,=在凸区域(即包含区域内任意两点间的连线)2R ⊂Ω内连续可微分且K gradu ≤(常数).证明:对于Ω内任意两点B A ,,都有 ()()().,.B A d K B u A u ≤- 其中()B A d ,表示点B A ,之间的距离.证明:由于Ω为凸区域,故线段AB 整个属于Ω.设点B 的坐标为()000,,z y x ,点A 的坐标为()111,,z y x ,且令.,,010101z z z y y y x x x -=∆-=∆-=∆ 考虑一元函数()()z t z y t y x t x u t f ∆+∆+∆+=000,, ().10≤≤t (1)显然, ()()()().1,0A u f B u f == (2) 且()t f 在[]1,0上可微,并且 ()()x z t z y t y x t x u t f x ∆∆+∆+∆+'='.,,000 ()y z t z y t y x t x u y ∆∆+∆+∆+'+.,,000()z z t z y t y x t x u z ∆∆+∆+∆+'+.,,000 (3) 于是,由微分学中值定理知()()()()()ξf f f B u A u '=-=-01 ()()=3 ()x z z y y x x u x ∆∆+∆+∆+'.,,000ξξξ ()y z z y y x x u y ∆∆+∆+∆+'+.,,000ξξξ ()z z z y y x x u z ∆∆+∆+∆+'+.,,000ξξξ()..,,000BA z z y y x x gradu ∆+∆+∆+=ξξξ (4) 由(4)式可知 ()()(z z y y x x gradu B u A u ,,000∆+∆+∆+=-ξξξ ()().,..,,000B A d K z z y y x x gradu ≤∆+∆+∆+≤ξξξ 24(P238第7题)求向量场⎪⎭⎫⎝⎛=x y grad f arctan沿下列曲线l 的环量:(ⅰ)l 为圆周()()12222=-+-y x ;l 为圆周422=+y x (分为左、右半圆周分别计算).解: ⎭⎬⎫⎩⎨⎧⎪⎭⎫ ⎝⎛∂∂⎪⎭⎫ ⎝⎛∂∂=⎪⎭⎫ ⎝⎛=x y y x y x x y grad f arctan ,arctan arctan.,2222⎭⎬⎫⎩⎨⎧++-=y x xyx y(ⅰ)2222.yx xdy yx ydx r d f ll+++-=⎰⎰(格林公式)d x d y y x y y y x x x D⎰⎰⎥⎦⎤⎢⎣⎡⎪⎪⎭⎫ ⎝⎛+-∂∂-⎪⎪⎭⎫ ⎝⎛+∂∂=2222()().02222222222=⎥⎥⎦⎤⎢⎢⎣⎡+--+-=⎰⎰dxdy yxxy yx x y D(ⅱ)⎰⎰+-=llyx ydx xdy r d f 22.[].22.241412ππ==-=⎰lydx xdy25(P238第9题)证明: ()f gradu f urot f u rot ⨯+=. 解:设()()(){}z y x R z y x Q z y x P f ,,,,,,,,=,则()()(){}.,,,,,.,,,z y x uR z y x Q u z y x uP uf =()()()()()()⎭⎬⎫⎩⎨⎧∂∂-∂∂∂∂-∂∂∂∂-∂∂=y uP x uQ x uR z uP z uQ yuR f rot ,, ,,{⎪⎭⎫⎝⎛∂∂+∂∂-⎪⎭⎫ ⎝⎛∂∂+∂∂⎪⎭⎫⎝⎛∂∂+∂∂-⎪⎪⎭⎫ ⎝⎛∂∂+∂∂=x u R x R u z u P zPu z uQ zQ u y u R y R u },⎪⎪⎭⎫⎝⎛∂∂+∂∂-⎪⎭⎫ ⎝⎛∂∂+∂∂y u P y P u x u QxQ u⎭⎬⎫⎩⎨⎧∂∂-∂∂∂∂-∂∂∂∂-∂∂=y P x Q x R z P z Q y R u ,,⎭⎬⎫⎩⎨⎧⎪⎪⎭⎫ ⎝⎛∂∂-∂∂+⎪⎭⎫ ⎝⎛∂∂-∂∂-⎪⎪⎭⎫ ⎝⎛∂∂-∂∂+y u P x u Q z u P x u R z u Q yu R ,.f gradu f urot ⨯+= 26(P246第1题)利用奥-高公式计算下列各曲面积分:(ⅰ)⎰⎰++Szdxdy ydzdx xdydz ,沿球面()()()2222R c z b y a x =-+-+-外侧;(ⅱ)⎰⎰++Sdxdy z dzdx y dydz x 333,沿正方体()10,10,10≤≤≤≤≤≤z y x 外表面;(ⅲ)()()()[]d S z n z y n y x n x S⎰⎰++,cos ,cos ,cos 222,沿锥面()hz yx S≤=+22的下侧;(ⅳ),3dxdy z S⎰⎰沿上半球面222yx a z --=的上侧.解:(ⅰ)⎰⎰++Szdxdy ydzdx xdydz (奥-高公式)()()()⎰⎰⎰Ω⎥⎦⎤⎢⎣⎡∂∂+∂∂+∂∂=dv z z y y xx .434.3333R R dv ππ===⎰⎰⎰Ω(ⅱ)⎰⎰++Sdxdy z dzdx y dydz x 333(奥-高公式)()()()x d y d zd z z y y x x ⎰⎰⎰Ω⎥⎦⎤⎢⎣⎡∂∂+∂∂+∂∂=333()⎰⎰⎰Ω++=d x d y d zzy x 2223=3 (ⅲ)若取h z S =:1(上侧).则S 与1S 一起构成一个封闭曲面.记它们所围成的空间闭区域为Ω.在Ω上利用奥-高公式,便得:()()()[]d S z n z y n y x n xS S ⎰⎰+++1,cos ,cos ,cos 222dxdyz dzdx y dydz x S S 2221++=⎰⎰+ (奥-高公式)()()()x d y d z d z z y y x x ⎰⎰⎰Ω⎥⎦⎤⎢⎣⎡∂∂+∂∂+∂∂=222 ()⎰⎰⎰Ω++=dxdydz z y x 2⎰⎰⎰Ω=zdxdydz 2(=⎰⎰⎰Ωxdxdydz0=⎰⎰⎰Ωydxdydz)dz z rdrd hhr⎰⎰⎰=πθ202()drrhrd h⎰⎰-=πθ2022212 .24πh=所以 ()()()[]d Sz n z y n y x n xS⎰⎰++,cos ,cos ,cos 222d x d yz d z d x y d y d z xhS 222212++-=⎰⎰π =-=⎰⎰dxdy hhxyD 222π.2.22222πππhh h h=-=(ⅳ),3dxdy z S⎰⎰沿上半球面222yx a z --=的上侧.若取0:1=z S (下侧).则S 与1S 一起构成一个封闭曲面.记它们所围成的空间闭区域为Ω.在Ω上利用奥—高公式,便得:dxdyz S S ⎰⎰+13x d y d z d z ⎰⎰⎰Ω=23()ρρϕρϕϕθππd d d a⎰⎰⎰=20222c o s s i n 3.5251.cos 31.655203|a a πϕππ=⎥⎦⎤⎢⎣⎡-=dxdyz S⎰⎰3dxdya S ⎰⎰-=10525π .525a π=27(P246第2题)设S 为光滑封闭曲面,c 为常向量.证明:().0,c o s=⎰⎰dS c n S()P n n =为S 上点P 处的单位外法向量证明:设{},cos ,cos ,cos γβα=n {}.,,321c c c c =()232221321cos cos cos .,cos c c c c c c c n ++++==γβα()⎰⎰⎰⎰++++=SSdxdy c dzdx c dydzc c c c dS c n 3212322211,cos (奥-高公式).0=28(P246第3题)证明等式().,c o s 21dS n r rdxdydz S⎰⎰⎰⎰⎰=Ω其中S 为包围空间有界区域3R ⊂Ω的光滑封闭曲面,n 为曲面S 上动点()z y x P ,,处的单位外法向量,r 为连接定点()()S M c b a M ∉00,,与动点P 处的向量,0r P M =证明:设{},cos ,cos ,cos γβα=n {}.,,c z b y a x r ---=()()()()()()()222cos cos cos ..,cos c z b y a x c z b y a x n r n r -+-+--+-+-==γβα()()()()()()()⎰⎰⎰⎰-+-+--+-+-=S Sc z b y a x dxdyc z dzdx b y dydz a x dS n r 22221,cos 21()()()()()[];23222221c z b y a x c z b y xf -+-+--+-=∂∂()()()()()[];23222222c z b y a x c z a x yf -+-+--+-=∂∂()()()()()[].23222223c z b y a x b y a x zf -+-+--+-=∂∂()()()[]()()()[]232222223212c z b y a x c z b y a x zf yf xf -+-+--+-+-=∂∂+∂∂+∂∂()()().22222rc z b y a x =-+-+-=。
第九章--曲线积分与曲面积分习题解答(详解)
为了便于计算,利用 的参数方程
于是
习题9-2
1设 为 面内一直线 ( 为常数),证明
。
证明:设 是直线 上从点 到点 的一段,其参数方程可视为
,( ),
于是
。
2计算下列对坐标的曲线积分:
(1) ,其中 为上半椭圆 ,其方向为顺时针方向;
解
.
(2) ,其中 为抛物线 上从点 到点 的一段弧。
解将曲线 的方程 视为以 为参数的参数方程 ,其中参数 从 变到 。因此
。
习题9-6
1.求曲线积分 ,其中 是圆 的上半圆周,取顺时针方向.
解令 , ,则 在整个 面内恒成立,因此,曲线积分 在整个 面内与路线无关。故可取沿 轴上的线段 (如右图所示)积分,即 ,于是, ,有
.
2证明下列曲线积分在整个 面内与路径无关,并计算积分值:
(1) ;
解令 , ,则 在整个 面内恒成立,因此,曲线积分 在整个 面内与路径无关。为了计算该曲线积分,取如右图所示的积分路径,则有
解由高斯公式, ,于是
其中 是由平面 及三个坐标面围成的立方体区域。则
。
(2) ,其中 为柱面 及平面 及 所围成的空间闭区域 的整个边界曲面的外侧。
解这里 , , ,由高斯公式得
。
(3) ,其中 为曲面 及平面 ﹑ 所围成的空间区域的整个边界的外侧。
解这里 , , ,用高斯公式来计算,得
,
其中 是曲面 及平面 所围成的空间闭区域.
解容易求得法向量: ,又速度场为 ,故
.
这里 .
习题9-5
1.利用曲线积分求下列平面曲线所围成图形的面积:
(1)星形线 ( );)
解
。
(2)圆 ,( );
曲线曲面积分部分难题解答
曲线曲面积分部分难题解答1.(P201,第1题)计算下列标量函数的曲线积分(第一型曲线积分): (ⅰ)⎰lxyds ,l 为抛物线x y 22=上从原点)0,0(O 到点)2,2(A 的弧⋂OA ;(ⅱ)()⎰+l ds yx 22,l 为联结点)0,0(O 、)0,2(A 和)1,0(B 的三角形围线;(ⅲ)⎰+lsd y x 22,l 为圆周()022>=+a ax y x ;(ⅳ)()⎰++l ds zy x 222,l 为螺线()0,sin ,cos >===b bt z t a y t a x 的 一段弧()π20≤≤t ;(ⅴ)⎰l zds ,l 为曲线()⎩⎨⎧>===0,2222a ax y z y x 上从点)0,0,0(O 到)2,,(a a a A 的一段弧.解:(ⅰ)[]2,0,,21:2∈⎪⎩⎪⎨⎧==y y y y x l ,.1122dy y dy dy dx ds +=⎪⎪⎭⎫⎝⎛+=所以dy y y y xyds l2221..21+=⎰⎰(令t y tan =) tdtt 332arctan 0sec .tan21⎰= ()t td t sec sec .tan21222arctan 0⎰=()()t td t sec sec .1sec21222arctan 0-=⎰()()⎥⎦⎤⎢⎣⎡+---=⎥⎦⎤⎢⎣⎡-=315153155121sec 31sec 5121352arctan35|t t.15135515255315521+=⎥⎦⎤⎢⎣⎡+-=(ⅱ)解:()⎰+l ds yx 22⎰⎰⎰++=OAABOB()()3801.022222222==++=+⎰⎰⎰dx x dx xds y xOA;,其中:.20,,0:≤≤⎩⎨⎧==x xx y OA()()[]()dy y y ds y xAB21222221.22-++-=+⎰⎰().5354855102=+-=⎰dy y y其中:.10,,22,:≤≤⎩⎨⎧-==y y x y y AB()().3101.22212222==++=+⎰⎰⎰dy y dy yds y xBO,其中:.10,,0:≤≤⎩⎨⎧==y y y x BO所以.3535+=++=⎰⎰⎰OAABOBI(ⅲ)解法一:.20,sin 2,cos 22:π≤≤⎪⎪⎩⎪⎪⎨⎧=+=t t a y t a a x l()().2cos 2sin 22222dt a dt t a t a dt t y t x ds =⎪⎭⎫⎝⎛+⎪⎭⎫ ⎝⎛-='+'=所以,()dt at a t a s d y x l2sin 4cos 1420222222⎰⎰⎥⎦⎤⎢⎣⎡++=+π()dt t a⎰+=π202cos 124dt t a⎰=π20222sin2.24dt t a⎰=π2022sin2.22cos 22sin2202202|a t a t d t a=⎪⎭⎫ ⎝⎛-=⎪⎭⎫ ⎝⎛=⎰ππ解法二:化l 为极坐标表示:().2,2,cos :⎥⎦⎤⎢⎣⎡-∈=ππθθθa r l 则()().22,s i n .c o s s i n,c o s c o s :2πθπθθθθθθθ≤≤-⎩⎨⎧====a r y a r x l ()()()().sin cos 2222θθθθθad dt a a dt r r ds =-+='+=所以,()()[]θθθθππad a a s d y x l⎰⎰-+=+2222222sin cos cosθθππd a a ⎰-=2222cos .2sin 2cos 2220222|a a d a===⎰ππθθθ(ⅳ) ()()()()()dt b a dt b t a t a dt t z t y t x ds22222222cos sin +=++-='+'+'=()()()()[]dt b a bt t a t a ds z y x l2220222222.sin cos +++=++⎰⎰π()|203222220222223ππ⎥⎦⎤⎢⎣⎡++=++=⎰t b t a b a dt t b aba[].433222222b a b a++=ππ2.(P201,第2题)设有某种物质分布在椭圆1:2222=+by ax l 上,其密度().,y y x =μ求它的总质量.解:不妨假设.b a >⎰⎰==14l lydsds y M ,其中.2,0,sin ,cos ;1⎥⎦⎤⎢⎣⎡∈⎩⎨⎧==πt t b y t a x l ()()()().cos sincos sin 22222222dt t b t a dt t b t a dt t y t x ds +=+-='+'=所以dt t b t a t b yds M l 222220cos sinsin 441+==⎰⎰π()dt t b a a t b 222220cos sin 4--=⎰π()()t d t b a a b cos cos 4202222⎰---=π()du u b a a b 222214---=⎰()du u b a a b 222214--=⎰duu ba aba b ⎰---=22222224π(公式)|102222222222222arcsin .2.4⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡--+---=u ba au ba au ba ab a b ()⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡--+---=21arcsin .2.42222222222ba aab a b a a b a b.arcsin..222222⎥⎥⎦⎤⎢⎢⎣⎡+--=b ab a ba ab 3.(P202,第3题)设曲线l 的长度为L ,而函数f 在包含l 的某个区域内连续.证明:()().max .P f L dsP f lP l∈≤⎰证明:由第一型曲线积分的定义()()ini id ls P f dsP f ∆=∑⎰=→.lim1故()()ini id ls P f dsP f ∆=∑⎰=→.lim1()ini id s P f ∆=∑=→.lim1()ini id sP f ∆≤∑=→.lim1()ini lp d sP f ∆≤∑=∈→.m a x lim1().m a x .P f L lP ∈=4.(P202,第4题)从原点()0,0O 到点()2,1A 沿下列不同路径分别计算第二型曲线积分.⎰⋂-OAydx xdy(1).⋂OA 为直线段;(2).⋂OA 为抛物线22x y =上的弧;(3).⋂OA 为从点()0,0O 经点()0,1B 到点()2,1A 的折线⋂OBA . 解: (1) .1~0:,,2:x xx x y OA ⎩⎨⎧==⋂[].022.1=-=-⎰⎰⋂dxx x ydx xdy OA(2).1~0:,,2:2x x x x y OA ⎩⎨⎧==⋂[].323224.|10312==-=-⎰⎰⋂xdxx x x ydx xdy OA(3).220=+=+=+⎰⎰⎰⋂OBBAOAydx xdy其中,.1~0:,.,0:x x x y OB ⎩⎨⎧==();000.1=-=-⎰⎰dxx ydx xdy OB其中,.2~0:,.,1:y y y x BA ⎩⎨⎧== ().20.12=-=-⎰⎰dyy ydx xdy BA5.(P202,第5题)计算曲线积分 .⎰+lxdy ydx(1).l 为从点()0,a 点()0,a -的上半圆周()022>-=a xa y ;(2). l 为从点()0,a 点()0,a -的直线段()0>a ; (3). l 为逆时针方向的圆周.222a y x =+ 解: (1).~0:,sin ,cos :πt t a y t a x l ⎩⎨⎧==()()()()[]dt t a t a t a t a xdy ydx l⎰⎰+-=+πcos .cos sin .sin ==⎰dt t aπ22cos 02sin 2|02=πt a.(2).~:,,0:a a x x x y l -⎩⎨⎧==().00.0=+=+⎰⎰-dxx xdy ydxaal(3).2~0:,sin ,cos :πt ta y t a x l ⎩⎨⎧==()()()()[]dt t a t a t a t a xdy ydx l⎰⎰+-=+π20cos .cos sin .sin ==⎰dt t aπ2022cos 02sin 2|202=πt a.6.(P202,第6题)计算沿逆时针方向的圆周()222a y x =+的曲线积分 ()().22⎰+--+lyx dyy x dxy x解:π2~0:,.sin ,cos :t t a y t a x l ⎩⎨⎧==,所以,()()⎰+--+lyx dyy x dxy x 22()()()()dtat a t a t a t a t a t a ⎰---+=π202cos .sin cos sin sin cos.22022ππ-=-=⎰dt aa7.(P202,第7题)计算下列曲线积分,曲线的方向与参数增加方向: (ⅰ)()()dy xy y dx xy x l⎰-+-2222,l 为抛物线()112≤≤-=x x y ;(ⅱ)()()dy y x dx yx l ⎰-++2222,l 为折线()2011≤≤--=x x y ;(ⅲ)()dz x yzdy dx zy l ⎰-+-2222,l 的参数方程为().10,,3,2≤≤⎪⎩⎪⎨⎧===t t z t y t x ;解:(ⅰ).1~1:,:2-⎩⎨⎧==x xy x x l()()dy xy y dx xy xl⎰-+-2222()()[]d x x x x xxx x⎰--+-=1124222..2.2[].151454324|10531142-=⎥⎦⎤⎢⎣⎡-=-=⎰-x x dx x x (ⅱ)设点().0,1A 则()()dyyx dx y xL2222-++⎰()()dyyx dx y xOA2222-++=⎰()()dyyx dx y xAB2222-+++⎰其中 .1~0:,,:x x x x y OA ⎩⎨⎧==故()()()()[]d x xxxxdy yx dx y xOA⎰⎰-++=-++1022222222.32322|10312===⎰x dx x ;其中.2~1:,,2:x x x x y AB ⎩⎨⎧=-=故()()()()()()()[]d x x xx xdy yx dx y xAB⎰⎰---+-+=-++21222222221.22()().3232222|213212=-=-=⎰x dx x所以原式.343232=+=(ⅲ)()dz x yzdydx zy l ⎰-+-2222()[]d t t t t t ttt⎰-+-=102232643.2 (2)[].351527323|1571046=⎪⎭⎫ ⎝⎛-=-=⎰t t dttt8.(P202,第8题)设曲线l 的长度为L ,而函数()P f 在包含l 的某个区域内连续.证明:()).max ...P L d P f lP l∈≤⎰证明:设()()(){}.,21P f P f P f =由第二型曲线积分的定义及柯西不等式()()()[]∑⎰=→∆+∆=ni i i iid ly P f xP f rd P f 121..lim.故()()()[]∑⎰=→∆+∆=ni i i iid ly P f xP f d P f 121..lim.()()[]∑=→∆+∆≤ni i i iid y P f xP f 121..lim()()()()2212221.limi i ni i i d y x P f P f ∆+∆+≤∑=→)()()221.limi ini id y x P ∆+∆=∑=→)()())⎰∑=→=∆+∆≤li ini d ds P y x P .max .max lim221)P L =m a .9.(P209,第1题)求下列曲面块的面积:(ⅰ)球面2222a z y x =++包含在圆柱面()a b b y x ≤<=+0222内的那部分面积;(ⅱ)圆锥面22yx z +=被圆柱面x y x 222=+截下的那一部分;(ⅲ)圆柱面222a y x =+被圆柱面222a z y =+截下的那一部分.解:(ⅰ)画出示意图222:b y x D xy ≤+. 将曲面方程化为:z ∑=2z zx y∂∂=-=-∂∂,所以,d S d x d d x d y==. 因此d x d yyx a a S S xyD ⎰⎰--==22222上 ⎥⎦⎤⎢⎣⎡--=-=⎰⎰|022022202.2122bbra a ra a r d r d πθπ极().422b a a a --=π(ⅱ)画出示意图x y x D xy 2:22≤+. 由曲面方程22:yx z +=∑,得,22yx x xz +=∂∂,22yx y yz +=∂∂,所以,,2122d x d y d x d y y z x z dS =⎪⎪⎭⎫ ⎝⎛∂∂+⎪⎭⎫⎝⎛∂∂+=.因此().222π===⎰⎰xy D D S dxdy S xy(ⅲ)利用对称性(仅在第一卦限内计算)18S S =,曲面1∑(1∑为∑在第一卦限的那部分,其面积设为1S )向yoz 面上的投影区域为222:a z y D yz ≤+. 将曲面1∑方程化为22ya x -=,则,22ya y yx --=∂∂,0=∂∂zx ,所以,d y d zya a d y d z z x yx dS 22221-=⎪⎭⎫ ⎝⎛∂∂+⎪⎪⎭⎫ ⎝⎛∂∂+=.因此d y d zya a S S yzD ⎰⎰-==22188 ⎰⎰--=22228ya a dz ya a dy .882a a d z a==⎰10.(P209,第2题)求下列曲面积分:(ⅰ)()⎰⎰++Sy x dS21,式中S 为四面体()1,0,0,0≤++≥≥≥z y x z y x 的表面;(ⅱ)()dS y x S⎰⎰+22,式中S 为圆柱体()h z a y x ≤≤≤+0,222的表面;(ⅲ)()dS z y x S⎰⎰++,式中S 为球面()2222a z y x =++的表面.解:(ⅰ).4321S S S S S +++= 其中,0:1=z S dxdy dS =1,()()()dy y x dx dxdy y x y x dSxD S xy⎰⎰⎰⎰⎰⎰-++=++=++110222111111dx x dx y x x ⎰⎰⎪⎭⎫ ⎝⎛-+=⎥⎦⎤⎢⎣⎡++-=-101010211111|()212ln 211ln 2111|1010-=-+=⎪⎭⎫ ⎝⎛-+=⎰x dx x ;,0:2=x S d y d z dS =2,()()()dz y dy dydz y y x dSyD S yz⎰⎰⎰⎰⎰⎰-+=++=++1102221101112()()dy y y dy y y⎰⎰⎪⎪⎭⎫⎝⎛+-+=+-=102102111211()2ln 11ln 12||110-=+-+-=y y;,0:3=y Sd z d x dS =3,()()()dzx dx dzdx x y x dSxD S zx⎰⎰⎰⎰⎰⎰-+=++=++1102221101113()()dx x x dx x x⎰⎰⎪⎪⎭⎫ ⎝⎛+-+=+-=10212111211 ()2ln 11ln 12||1010-=+-+-=x x;,1:4y x z S --= d x d ydS 34=,()()()dz y x dx dxdy y x y x dSxD S xy⎰⎰⎰⎰⎰⎰-++=++=++101022211311314dx x dx y x x ⎰⎰⎪⎭⎫ ⎝⎛-+=⎥⎦⎤⎢⎣⎡++-=-1011021113113|().212ln 33211ln 321113|110⎪⎭⎫ ⎝⎛-=-+=⎪⎭⎫⎝⎛-+=⎰x dx x;所以()⎰⎰++Sy x dS21()+++=⎰⎰121S y x dS()+++⎰⎰221S y x dS()⎰⎰++321S y x dS ()⎰⎰++421S y x dS()()().32ln 2213212ln 32ln 12ln 1212ln +-=⎪⎭⎫ ⎝⎛-=-+-+⎪⎭⎫ ⎝⎛-=(ⅱ).321S S S S ++=其中,0:1=z S d x d y dS =1,()()r d r r d d x d y y xdS y xaD S xy.420222221⎰⎰⎰⎰⎰⎰=+=+πθ24a π=;,:2h z S = d x d y dS =2,()()r d r r d d x d y y xdS y xaD S xy.420222222⎰⎰⎰⎰⎰⎰=+=+πθ24a π=;,:2223a yx S =+其向yoz面上的投影区域为⎩⎨⎧≤≤-≤≤.,0:a y a h z D yz . 将曲面3S 方程化为22y a x -±=,则,22ya y yx --=∂∂,0=∂∂zx ,所以,d y d z ya a d y d z z x yx dS 22221-=⎪⎭⎫ ⎝⎛∂∂+⎪⎪⎭⎫ ⎝⎛∂∂+=.因此()()d y d zya a yya dS y xyzD S ⎰⎰⎰⎰-⎥⎦⎤⎢⎣⎡+-=+222222322.23⎰⎰-=-haadz ya dy a22312..2arcsin433|h a ayh a aπ==或者()..22..32232233h a ah a dS a dS y xS S ππ===+⎰⎰⎰⎰所以()⎰⎰++Sy x dS21()++=⎰⎰122S dSyx()++⎰⎰222S yx()dSy xS ⎰⎰+322().22223344h a ah a a a+=++=ππππ (ⅲ)由积分区域的对称性,及被积函数的奇偶性知,显然()dS z y x S⎰⎰+++=⎰⎰dSx SdS y S⎰⎰().0=+++⎰⎰dS z y x S11.(P210,第3题)证明泊松公式()()d uc b a uf dS cz by ax f S⎰⎰⎰-++=++112222π其中S 为球面0,1222222>++=++c b a z y x ,f 为连续函数.证明:取新的空间直角坐标系Ouvw ,其中原点不变,使坐标平面Ouvw 与平面=++cz by ax 重合,并使Ou 轴垂直于平面0=++cz by ax .则有其实根据坐标系Ouvw 选取方法的描述,我们不难看出Ou 轴上的单位向量就可取作平面0=++cz by ax 的单位法线向量.则 222cb a cz by ax u ++++=(1)(注意到,显然222cb a cz by ax u ++++=为点()z y x P ,,到平面0=++cz by ax 的距离).则()dS cz by ax f S⎰⎰++()d S c b a u f S⎰⎰++=222显然在新坐标系下,球面的形状并未改变(仍记为S ),且它的方程应为 1222=++w v u (2) (因为在新的坐标系下,任何一个球面上的点到原点的距离仍然为1.)由(2)式可得: ()22221u w v -=+ (3)当u 固定时,(3)式其实就表示垂直于Ou 轴平面上的一个圆周. 进一步,我们把S 化为参数方程表示:.20,11,sin 1,cos 1,22πθθθ≤≤≤≤-⎪⎩⎪⎨⎧-=-==u u w u v u u,1='uu ,cos 12θuu v u --=';sin 12θuu w u--=',0='θu ,sin 12θθu v --='.cos 12θθu w -='于是,;112222uw v u E u u u-='+'+'=;0...=''+''+''=θθθw w v v u u F u u u.12222u w v u G -='+'+'=θθθ因此, 曲面的元素dS =dudv = (4)故()dS cz by ax f S⎰⎰++()d S c b a u f S⎰⎰++=222()d u c b a u f d ⎰⎰-++=πθ2011222().211222⎰-++=du cb a u f π12(P210,第4题)设某种物质均匀分布在球面2222a z y x =++上(认为分布密度1=ρ).求它对于oz 轴的转动惯量. 解:由公式 ()dSy xJ S⎰⎰+=22由对称性()dSy x J S ⎰⎰+=1228其中2221:yx a z S--=,则2z z x y∂∂=-=-∂∂,所以,d S d x d d x d y==. 因此()d x d yy x a a y x S S xyD ⎰⎰--+==222221.88 r d r ra rd a a.8022220⎰⎰-=πθ极()r d r r a aara a.4022222⎰-+-=πr d r r a a a.4022⎰--=πr d rra aa.140223⎰-+π()22022.2ra d r a a a--=⎰π()220223.12ra d ra a a---⎰π()|232232.2araa -=π|2232.2ara a --π434aπ-=44aπ+ .384a π=13(P217,第1题)沿圆锥面()122≤=+z yx S的下侧,求曲面积分S d r S.⎰⎰,其中{}.,,z y x r =解:⎰⎰⎰⎰++=SSzdxdyydzdx xdydzS d r .化为第一型曲面积分计算.S 的向下的法向量{}⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧-++=-''=1,,1,,2222yx y yx x z z n y x,所以{}.c o s ,c o s ,c o s21,2,22222γβα=⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧-++==yx yyx x n 故⎰⎰⎰⎰++=SSzdxdyydzdx xdydzSd r . ()⎰⎰++=SdSz y x γβαcos .cos .cos .⎰⎰⎪⎪⎪⎭⎫⎝⎛-+++=SdSz yx y yx x222222222⎰⎰⎪⎪⎭⎫ ⎝⎛-+=SdS z y x 2222(根据第一型曲面积分的计算方法) ⎰⎰=⎪⎪⎭⎫⎝⎛+-+=xy D dxdy y x y x .0222222214(P217,第2题)沿椭球面1222222=++cz by ax 的外侧,求曲面积分.⎰⎰⎪⎪⎭⎫ ⎝⎛++Sz dxdy y dzdx xdydz解:把S 分割为21,S S 两个部分.其中,222211:by ax c z S --=(上侧);222221:by ax c z S ---=(下侧).21,S S 向xoy 面上的投影区域均为.1:2222≤+by ax D xy故dxdyby ax c zdxdy xyD S ⎰⎰⎰⎰--=2222111作变量代换: ⎩⎨⎧==.s i n,c o s θθbr y ar x由二重积分的换元法drabrd rc dxdy by ax c D D xyθ⎰⎰⎰⎰'-=--222221111.其中 ()()abr br b ar a y ry xrx r y x J =-=∂∂∂∂∂∂∂∂=∂∂=θθθθθθθcos sin sin cos ,,⎩⎨⎧≤≤≤≤'.20,10:πθr D所以=⎰⎰1S zdxdy drabrd rc dxdy by ax c D D xyθ⎰⎰⎰⎰'-=--222221111dr r r d cab ⎰⎰-=πθ201211dr r rd cab ⎰⎰-=πθ201211所以,().212111|12212πππcab rcabrd rcab =⎥⎦⎤⎢⎣⎡--=---=⎰(1)同理 dxdy by ax c zdxdy xyD S ⎰⎰⎰⎰----=2222112.2112222πcab dxdy by ax c xyD =--=⎰⎰(2)所以=⎰⎰Szdxdy +⎰⎰1S zdxdy .42πcab zdxdy S =⎰⎰(3)由轮换对称性,知:πa bc x dzdy S4=⎰⎰;.4πbac ydzdx S=⎰⎰故⎰⎰⎪⎪⎭⎫ ⎝⎛++Sz dxdy y dzdx xdydz +=⎰⎰Szdxdy +⎰⎰Sxdzdy ⎰⎰Sydzdx+=πc ab4πabc4().44222222ac c b b a abc b ac ++=+ππ15(P217,第3题)沿球面()()()2222R c z b y a x =-+-+-的外侧,求曲面积分.222⎰⎰++Sdxdy z dzdx y dydz x解:把S 分割为21,S S 两个部分.其中,()()2221:b y a x R c z S ----+=(上侧);()()2222:b y a x R c z S -----=(下侧).21,S S 向xoy 面上的投影区域均为:xy D ()()222R b y a x ≤-+-故()()dxdy b y a x R c dxdy zxyD S ⎰⎰⎰⎰⎥⎦⎤⎢⎣⎡----+=222221作变量代换:⎩⎨⎧+=+=.s i n ,c o sθθr b y r a x由二重积分的换元法()()[]r d r rR c d x d y b y a x R c D D xy⎰⎰⎰⎰'-+=⎥⎦⎤⎢⎣⎡----+2222222.其中 ()()r r r y ry xrx r y x J =-=∂∂∂∂∂∂∂∂=∂∂=θθθθθθθcos sin sin cos ,,⎩⎨⎧≤≤≤≤'.20,0:πθR r D所以=⎰⎰12S dxdy z[]rdr rR c D 222⎰⎰'-+()drr rR c d R⎰⎰-+=πθ20222()rdr rR c R2222⎰-+=π()r dr r R rR c c R⎰-+-+=02222222πrdr r R c rdr c RR⎰⎰-+=0222222ππ()rdr r RR⎰-+0222π()()|||0222023220222132.222R RR r R r R c r c ⎥⎦⎤⎢⎣⎡--⎥⎦⎤⎢⎣⎡--⎪⎪⎭⎫ ⎝⎛=πππ.2344322R cRRc πππ++=(1)同理()()dxdy b y a x R c dxdy z xyD S ⎰⎰⎰⎰⎥⎦⎤⎢⎣⎡------=222221[]rdr rR c D 222⎰⎰'---=()dr r rR c d R⎰⎰⎥⎦⎤⎢⎣⎡---=πθ20222()rdr rR c R2222⎰---=π()r dr r R rR c c R⎰-+---=02222222πrdr r R c rdr cR R⎰⎰-+-=0222222ππ()rdr r RR⎰--0222π()()|||0222023220222132.222R RR r R r R c r c ⎥⎦⎤⎢⎣⎡-+⎥⎦⎤⎢⎣⎡--⎪⎪⎭⎫ ⎝⎛-=πππ.2344322R cRRc πππ-+-=(2)所以=⎰⎰Sdxdy z 2+⎰⎰12S dxdy z 32382cRdxdy z S π=⎰⎰; (3)由轮换对称性,知:=⎰⎰Sdydz x 2338aRπ;=⎰⎰Sdzdx y 2.383bR π故.222⎰⎰++Sdxdy z dzdx y dydz x⎰⎰=Sdydzx2⎰⎰Sdzdxy 2⎰⎰Sdxdyz2().383c b a R ++=π16(P217,第4题)设S 为长方体()c z b y a x ≤≤≤≤≤≤0,0,0的表面.沿外侧求曲面积分⎰⎰Sxyzdxdy解:把S 分割为654321,,,,,S S S S S S 六个部分. 其中()b y a x c z S ≤≤≤≤=0,0:1的上侧; ()b y a x z S ≤≤≤≤=0,00:2的下侧; ()c z b y a x S ≤≤≤≤=0,0:3的前侧; ()c z b y x S ≤≤≤≤=0,00:4的后侧; ()c z a x b y S ≤≤≤≤=0,0:5的右侧; ()c z a x y S ≤≤≤≤=0,00:6的左侧.注意到除21,S S 外,其余四片曲面在xoy 面上的投影为零,因此=⎰⎰Sxyzdxdy+⎰⎰1S xyzdxdy⎰⎰2S xyzdxdy⎰⎰=xyD xycdxdy⎰⎰-xyD dxdyxy 0.c b a yd y x d x c ab.422⎰⎰==17(P225第1题)利用格林公式计算下面的曲线积分(l 的方向为正方向): (ⅰ)()dy xy dx y x l22+-⎰,l 为圆周()222a y x =+;(ⅱ)()()dy y x dx y x l--+⎰,l 为椭圆⎪⎪⎭⎫ ⎝⎛=+12222b ya x ; (ⅲ)()xdy dx y l+-⎰,l 为曲线()1=+y x ;(ⅳ)()()dy y y e dx y e x lx sin cos 1---⎰,l 为区域().sin 0,0x y x D <<<<π;18(P225第2题)求()()dy m y e dx my y eI xxL-+-=⎰cos sin ,(m 为常数)其中l 是自点()0,a A 经过圆周()022>=+a ax y x 的上半部分到点O(0,0)的半圆 周.(提示:作辅助线后用格林公式).解:cos ,cos xxP Q e y m e y yx∂∂=-=∂∂.所以,由格林公式:221...428A OO A D DQ P a dxdy m dxdy m m a x y ππ⋂⎡⎤∂∂+=-===⎢⎥∂∂⎣⎦⎰⎰⎰⎰⎰⎰. 所以,2220.888AOOAma ma ma I πππ⋂==-=-=⎰⎰(因为,⎰⎰==OAadx 0.00)19(P225第5题)设函数()x f 在正半轴()0>x 上有连续导数()x f '且().21=f 若 在右半平面内沿任意闭合光滑曲线l ,都有 ()043=+⎰dy x xf ydx x l求函数().x f解:()y x y x P 34,=,()()x xf y x Q =,都是右半平面上的连续函数,由于在右半平面内沿任意闭合光滑曲线l ,都有 ()043=+⎰dy x xf ydx xl故有xQ yP ∂∂=∂∂即()()x f x x f x '+=34 化简,得()()241xx f xx f =+' (1)(1)为一阶线性微分方程,其通解为()⎥⎦⎤⎢⎣⎡+⎰⎰=⎰-c e x e x f dx xdx x 1214[]()cdx xx c e x e x x +=+=⎰⎰-3ln 2ln 414().1134xcx c xx+=+=(2)代入条件()21=f ,得 .1=c故().13x x x f +=20(P226第6题)设D 是以光滑曲线l 为正向边界的有界闭区域,而函数()y x u u ,= 在闭区域D 上具有连续的二阶偏导数且记 2222yu xuu ∂∂+∂∂=∆证明:⎰⎰⎰∆=∂∂Dludxdy ds nu其中()()y n yu x n xu nu ,cos ,cos ∂∂+∂∂=∂∂表示函数()y x u u ,=沿边界曲线l 外法线方向的方向导数.证明:设τ为曲线l 的正向的切线向量,其方向余弦为()x ,cos τ、()y ,cos τ,则 有()()y x n ,,τ=,()().,,x y n τπ-= 故()()y x n ,c o s ,c o s τ=,()().,cos ,cos x y n τ-=()()ds x y u y xu ds nul l⎰⎰⎪⎪⎭⎫ ⎝⎛∂∂-∂∂=∂∂,cos ,cos ττ(由两型曲线积分之间的联系)dx yu dy xul⎰∂∂-∂∂=(格林公式)⎰⎰⎥⎦⎤⎢⎣⎡⎪⎪⎭⎫ ⎝⎛∂∂-∂∂-⎪⎭⎫⎝⎛∂∂∂∂=Ddxdy y u y x u x=⎪⎪⎭⎫⎝⎛∂∂+∂∂=⎰⎰Ddxdy y u x u 2222.⎰⎰∆Dudxdy21(P226第7题)在第6题的假设和记号下,证明:.22ds nu uudxdy u dxdy y u x u D lD⎰⎰⎰⎰⎰∂∂+∆-=⎥⎥⎦⎤⎢⎢⎣⎡⎪⎪⎭⎫ ⎝⎛∂∂+⎪⎭⎫ ⎝⎛∂∂证明:仿上题 ()()ds x y uy xu u ds nu ul l⎰⎰⎪⎪⎭⎫ ⎝⎛∂∂-∂∂=∂∂,cos ,cos ττ(由两型曲线积分之间的联系) dx yu udy xu ul⎰∂∂-∂∂=(格林公式)⎰⎰⎥⎦⎤⎢⎣⎡⎪⎪⎭⎫ ⎝⎛∂∂-∂∂-⎪⎭⎫ ⎝⎛∂∂∂∂=Ddxdy y u u y x u u x ⎰⎰⎥⎦⎤⎢⎣⎡⎪⎪⎭⎫⎝⎛∂∂+∂∂∂∂+⎪⎪⎭⎫ ⎝⎛∂∂+∂∂∂∂=Ddxdy y u u y u y u x u u x u x u 2222....dxdy y ux u u dxdy y u x u DD⎪⎪⎭⎫⎝⎛∂∂+∂∂+⎥⎥⎦⎤⎢⎢⎣⎡⎪⎪⎭⎫ ⎝⎛∂∂+⎪⎭⎫ ⎝⎛∂∂=⎰⎰⎰⎰222222udxdyu dxdy y u x u DD∆+⎥⎥⎦⎤⎢⎢⎣⎡⎪⎪⎭⎫ ⎝⎛∂∂+⎪⎭⎫ ⎝⎛∂∂=⎰⎰⎰⎰22移项,即得 .22ds nu uudxdy u dxdy y u x u D lD⎰⎰⎰⎰⎰∂∂+∆-=⎥⎥⎦⎤⎢⎢⎣⎡⎪⎪⎭⎫ ⎝⎛∂∂+⎪⎭⎫ ⎝⎛∂∂22(P227第8题)格林第二公式 若函数()y x u u ,=和()y x v v ,=都满足第6题中的假设,证明: dsvun v n udxdy vuv u lD⎰⎰⎰∂∂∂∂=∆∆证明:我们有 ()()ds x y u y xu v ds nu vl l⎰⎰⎪⎪⎭⎫ ⎝⎛∂∂-∂∂=∂∂,cos ,cos ττ (由两型曲线积分之间的联系)dx yu vdy xu vl⎰∂∂-∂∂=(格林公式)⎰⎰⎥⎦⎤⎢⎣⎡⎪⎪⎭⎫ ⎝⎛∂∂-∂∂-⎪⎭⎫ ⎝⎛∂∂∂∂=Ddxdy y u v y x u v x ⎰⎰⎥⎦⎤⎢⎣⎡⎪⎪⎭⎫⎝⎛∂∂+∂∂∂∂+⎪⎪⎭⎫ ⎝⎛∂∂+∂∂∂∂=Ddxdy y u v y u y v x u v x u x v 2222....⎰⎰⎰⎰⎥⎥⎦⎤⎢⎢⎣⎡⎪⎪⎭⎫ ⎝⎛∂∂+⎪⎭⎫ ⎝⎛∂∂+⎪⎪⎭⎫ ⎝⎛∂∂∂∂+∂∂∂∂=DDdxdy y u x u v dxdy y v y u x v x u 22.. ...⎰⎰⎰⎰∆+⎪⎪⎭⎫ ⎝⎛∂∂∂∂+∂∂∂∂=DDudxdy v dxdy y v y u x v x u (1)由轮换对称性,知 dsnv ul⎰∂∂ ...⎰⎰⎰⎰∆+⎪⎪⎭⎫⎝⎛∂∂∂∂+∂∂∂∂=DDvdxdy u dxdy y v y u x v x u (2)于是ds n v u n uv ds vun v n ul l⎰⎰⎪⎭⎫ ⎝⎛∂∂-∂∂=∂∂∂∂⎥⎦⎤⎢⎣⎡∆+⎪⎪⎭⎫ ⎝⎛∂∂∂∂+∂∂∂∂=⎰⎰⎰⎰DDudxdy v dxdy y v y u x v x u ..⎥⎦⎤⎢⎣⎡∆+⎪⎪⎭⎫ ⎝⎛∂∂∂∂+∂∂∂∂-⎰⎰⎰⎰DD vdxdy u dxdy y v y u x v x u ..()⎰⎰∆-∆=Ddxdyv u u v .dxdy vuv u D⎰⎰∆∆=23(P227第9题)计算高斯(Gauss)积分 ()(b a I ⎰=,其中l 为简单(光滑)闭合曲线,r 为不在l 上的点()b a ,到l 上动点()y x ,的向量,而n 为l 上动点()y x ,处的法向量.解:设τ为曲线l 的正向的切线向量,其方向余弦为()x ,cos τ、()y ,cos τ,则 有()()y x n ,,τ=,()().,,x y n τπ-= 又设()(){}y n x n n ,cos ,,cos 0= ,{}b y a x r --=,,则()()()()()()().,c o s .,c o s .,c o s ,c o s 2200b y a x y n b y x n a x n r n r -+--+-==⎪⎭⎫ ⎝⎛= 故(()()()()()().,cos .,cos .22b y a x y n b y x n a x -+--+-=()()()()()()()[]ds y n b y x n a x b y a x b a I l ,cos ,cos .1,22-+--+-=⎰()()()()()()[]ds x b y y a x b y a x l,cos ,cos .122ττ----+-=⎰()()()().22⎰-+----=l b y a x dx b y dya x记 ()()(),,22b y a x by y x P -+---=()()().,22b y a x ax y x Q -+--=则()()()(),2222b y a x a x b y yP -+-----=∂∂()()()().2222b y a x a x b y x Q -+-----=∂∂它们在xo y 平面内除点 ()b a ,外处处连续,且.0=∂∂-∂∂yP xQ(一)若点()b a ,在l 所包围的区域D 外,原式=0;(二)若点()b a ,在l 所包围的区域D 内,以点()b a ,为中心作一个充分小的圆()()).0(:222>=-+-εεεb y a x l 取逆时针方向,使之完全包含在l 为边界的区域内.记介于εl 和l 之间的区域为'εD . 则在'εD 由格林公式可得:)()()()⎰-+----lb y a x dxb y dy a x 22()()()()⎰-+-----εl b y a x dx b y dy a x 22.0⎰⎰'=⎥⎦⎤⎢⎣⎡∂∂-∂∂=εD dxdy y P x Q所以,()()()()⎰-+----=l b y a x dx b y dya x I 22()()⎰---=εεl dxb y dy a x 2()()⎰---=εεl dx b y dy a x 21(格林公式)()()ππεεεεε2.22112222===⎥⎦⎤⎢⎣⎡∂-∂-∂-∂=⎰⎰⎰⎰DD dxdy dxdy y y b x a x .24(P227第10题)利用斯托克斯公式重新计算积分(例3) ()()(),⎰-+-+-=ldz y x dy z x dx y z I 其中l 是曲线⎩⎨⎧=+-=+.2,122z y x y x方向为从oz 轴正方向往负方向看去是顺时针方向. 解一:由斯托克斯公式d x d y yx zx yz z y x d x d y d z d x d y d z 2=---∂∂∂∂∂∂.取∑为平面2=+-z y x 上由椭圆所围成的那一小块曲面.(取下侧),因此{}1,1,1-=n ,.31,33,33⎭⎬⎫⎩⎨⎧-=n ) ()()()dSdxdy dz y x dy z x dx y z I l⎰⎰⎰⎰⎰∑∑-=-=-+-+-=3122.2.23.312⎰⎰⎰⎰-=-=-=xyxyD D dxdy dxdy π解二:(直接计算)()()()⎰⎰⎰∑=-+-+-=dxdydz y x dy z x dx y z I l2其中,.1:22≤+y x D xy所以,.22π-=-=⎰⎰dxdy I xyD .25(P238第1题)下面的向量场是否为保守场?若是,并求位势:u(){};sin cos 2,sin cos 2122y x x y x y y x f --=解:(1)这里()x y y x y x P sin cos 2,2-=,().sin cos 2,2y x x y y x Q -=因为xQ x y y x yP ∂∂=--=∂∂sin 2sin 2,()2,R y x ∈所以{}y x x y x y y x f sin cos 2,sin cos 222--=是定义在全平面上的保守场.所以,()+-dx x y y x sin cos22()dyy x x y sin cos 22-是某一个函数()y x u ,的全微分.故可取()()()()()dyy x x y dx x y y x y x u y x sin cos 2sin cos 2,2,0,02-+-=⎰()()dyy xx y dx x x yx⎰⎰-+-=0202sin cos 2sin 00cos 2[]||0222c o s c o s yx yx x y x++=()[]2222c o s c o s xy x x yx -++=.cos cos 22y x x y +=则,所求的位势为().cos cos ,22c y x x y c y x u ++=+(){}.sin ,cos ,222z y ex z xef yy--=--解:这里()()().sin ,,,cos ,,,2,,2z y z y x R e x z z y x Q xez y x P yy-=-==--。
§10_曲线积分和曲面积分习题与答案
第十章 曲线积分和曲面积分(A )1、计算下列对弧长的曲线积分 1)ds y x n L)(22+⎰,其中:)20(sin ,cos :π≤≤==t t a y t a x L2),xds L⎰其中围成及为由2x y x y L == 3),2yzds x T⎰其中T 为折线ABCD ,这里A ,B ,C ,D 依次为点(0,0,0),(0,0,2),(1,0,2),(1,3,2) 4),)(22ds y x L+⎰其中L :)20(),cos (sin ),sin (cos π≤≤-=+=t t t t a y t t t a x2 、计算下列对坐标的曲线积分 1),)(22dx y x L-⎰其中L 是2x y =上从(0,0)到(2,4)的一段弧2),xydx L⎰其中L 是222)(a y a x =+-及x 轴围成的在第一象限内的区域的整个边界(逆时针向) 3),ydz dy dx T+-⎰其中T 为有向闭折线ABCA ,这里A ,B ,C 依次为点(1,0,0),(0,1,0),(0,0,1) 4)dy xy y dx xy x L)2()2(22-+-⎰,其中L 是2x y =上从点(-1,1)到(1,1)的一段弧3、利用格林公式,计算下列曲线积分 1),)635()42(dy x y dx y x L-+++-⎰其中L 为三顶点分别为(0,0),(3,0)和(3,2)的三角形正向边界 2),)2sin ()sin 2cos (222dy ye x x dx e y x xy x y x x x L -+-+⎰其中L 为正向星形线)0(323232>=+a a y x3),)3sin 21()cos 2(2223dy y x x y dx x y xy L+-+-⎰其中L 为抛物线22y x π=上由(0,0)到()1,2π的一段弧4、验证下列dy y x Q dx y x P ),(),(+在整个xoy 面内是某个),(y x u 的全微分,并求这样的),(y x u1)dy y x dx y x )2()2(+++2)dy y x x y dx x y y x )sin sin 2()cos cos 2(22-++5 、计算下列对面积的曲面积分 1)⎰⎰∑++,)342(ds z y x 其中∑为平面1432=++zy x 在第一卦限中的部分 2)⎰⎰∑++,)(ds xz yz xy 其中∑为锥面22y x z +=被柱面ax y x 222=+所截得的有限部分6 、计算下列对坐标的曲面积分 1)⎰⎰∑,22zdxdy y x 其中∑是球面2222R z y x =++的下半部分的下侧 2)⎰⎰∑++,yzdzdx xydydz xzdxdy 其中∑是平面1,0,0,0=++===z y x z y x 围成区域的整个边界曲面的外侧7 、利用高斯公式计算曲面积分 1)⎰⎰∑++,333dxdy z dzdx y dydz x 其中∑为球面2222a z y x =++的外侧 2)⎰⎰∑++,zdxdy ydzdx xdydz 其中∑为界于3,0==z z 之间的圆柱体922≤+y x 的整个表面的外侧8 、 求下列向量的散度1)k xy z j xz y i yz x A )()()(222+++++=ϖ 2)k xz j xy i e A xy)cos()cos(2++=ϖ9、求下列向量场A 的旋度1)k x y j z x i y z A )2()3()32(-+-+-=ϖ2)j y x z i y z A )cos ()sin (--+=ϖ(B)1、一段铁丝成半圆形22x a y -=,其上任一点处的线密度的大小等于该点的纵坐标,求其质量. 2、 把xdy ydx x L-⎰2化为对弧长的曲线积分,其中L 为2x y =从点A (-1,1)到B (1,1)的弧段. 3、把xzdz yzdy xyzdx ++⎰Γ化成对弧长的曲线积分,其中Γ为曲线32,,t z t y t x ===0()1≤≤t 一段弧.4、求心形线t a t a y t a t a x 2sin sin 2,2cos cos 2-=-=所围图形的面积.5、求dy y xy x ye dx y xy x e y x x L)322()23(22222-++++++⎰,其中:L 为21x y -=从A (1,0)到B (0,1).6、 把⎰⎰∑++Rdxdy Qdzdx Pdydz 化为对面积的曲面积分,其中1)∑是平面632=+-z y x 在第二卦限部分上侧2)∑是222y x a z --=上侧7 、,2)()(22 zdxdy dzdx zx y dydz yz x +-+-⎰⎰∑其中∑为锥面)0(122≥+-=z y x z 的上侧. 8、dz y x dy x z dx z y )()()(222222-+-+-⎰Γ,其中Γ为柱面122=+y x 与平面1=++z y x 的交线,从z 轴正向看Γ为逆时针方向.(C )1、 计算,)()()(dz y x dy x z dx z y I L -+-+-=⎰其中:L :⎪⎩⎪⎨⎧=+=+,1222hz a x a y x (),0,0>>h a从X 轴正向看去L 为逆时针. 2、 已知曲线积分,)3(33dy x x dx y I L-+=⎰其中L 为)0(222>=+R R y x 正向,求(1) R 为何值时0=I ; (2) 求I 的最大值. 3 、计算=I [][][]dxdy z z y x f dzdx y z y x f dydz x z y x f +++++⎰⎰∑),,(),,(2),,(,其中:),,(z y x f 连续,∑为1=+-z y x 在第Ⅳ卦限部分的上侧.第十章 曲线积分和曲面积分习 题 答 案(A )1、1)122+n aπ 2))12655(121-+ 9)3( )21(2)4(232ππ+a 2、1)1556- 2)32a π- 3)21 4)1514-3、 12)1 0)2 4)32π 4、2221221)1y xy x ++ y x x y cos sin )222+ 5 、614)1 421564)2a 6 、71052)1R π 81)2 7、 5512)1a π π81)2 8、 z y x divA 222)1++= )sin(2)sin()22xz xz xy x yedivA xy--=9、k j i rotA 642)1++= j i rotA +=)2(B )1、提示:222:,2x a y L a yds m L-===⎰,上半圆22a2、提示:222412sin ,411cos ,2tan ,2,:xx xx x y x y L +=+==='=αααds xx y ds xx xxyx xdy ydx x LL L22222241)2()412411(+-=+-+=-⎰⎰⎰3、提示:,3,2,1,,,232t z t y x t z t y t x t t t ='='='===42342429413cos ,9412cos ,9411cos t t t tt t tt ++=++=++=γβα,⎰⎰⎰++=++++=++Γds tt xyzds tt xz t tyz xyz xzdz yzdy xyzdx 424229416941324、2621a ydx xdy s L π=-=⎰ 5、连OA ,OB ,(O (0,0)),使OA ,OB ,L 构成41圆周,τ于是⎰⎰⎰∂∂-∂∂=Dd y P x Q στ)(=0而1,1)3(,13210210-=∴-=-===⎰⎰⎰⎰⎰L B O AO dy y dx x 6、{},3,2,1)1-=h ϖ143cos ,142cos ,141cos =-==γβαds R Q P ds R Q P )32(141)cos cos cos (⎰⎰⎰⎰∑∑+-=++=γβα 2),,2222z y z z x yx a xz y x -=-=---=,1,,⎭⎬⎫⎩⎨⎧=z y z x h ϖ,,,cos 222222222⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧++++++=z y x z z y x y z y x x α ⎰⎰⎰⎰∑∑++++=ds zy x R Q P z y x 222(。
第十章(第六部分)曲面积分习题解答
第十章 曲线积分与曲面积分(第六部分)曲面积分习题解答一、对面积的曲面积分1.计算曲面积分⎰⎰∑++dS y x z )342(,其中∑为平面1432=++zy x 在第一卦限中的部分. 分析 因为∑:1432=++z y x ,可恒等变形为∑:y x z 3424--=,又因被积函数y x z 342++与∑形式相同,故可利用曲面方程来简化被积函数,即将4342=++y x z 代入,从而简化计算。
解 平面∑方程的为)321(4yx z --=(如图), ∑在xoy 面上的投影区域xy D :0,0,132≥≥≤+y x yx ;34,2-=∂∂-=∂∂y z x z ,面积元素 dxdy dxdy y z x z dS 361122=⎪⎪⎭⎫⎝⎛∂∂+⎪⎭⎫ ⎝⎛∂∂+= 从而⎰⎰⎰⎰⋅=++∑xyD dxdy dS y x z 3614)342( 61432213614=⋅⋅⋅=. 2. 计算曲面积分⎰⎰∑+dS y x |)|(,其中∑为1||||||=++z y x .解 由对称性可知,0=⎰⎰∑xd S ,由轮换对称性和代入技巧知,⎰⎰⎰⎰⎰⎰∑∑∑=++=dS dS z y x dS y 31|)||||(|31||,再由曲面积分的几何意义知,34238=⋅=⎰⎰∑dS ,所以,334|)|(=+⎰⎰∑dS y x .y二、对坐标的曲面积分1.计算曲面积分⎰⎰∑dydz x 2.其中∑为球面2222R z y x =++在第一卦限部分的上侧。
分析 由于∑不是封闭曲面,且只是对坐标z y ,的曲面积分,故直接计算即可。
解 因∑:222z y R x --=取前侧,且∑在yoz 面上的投影区域为0 ,0 , :222≥≥≤+z y R z y D yz .于是得 ⎰⎰∑dydz x 2dydz z y R yzD ⎰⎰--=)(222⎰⎰⋅-θ=πRrdr r R d 02220 )(402228141212R r r R Rπ=⎥⎦⎤⎢⎣⎡-π=. 2. 计算曲面积分⎰⎰∑++=ydzdx xdydz zdxdy I .其中∑是柱面122=+y x 被平面0=z 及3=z 所截得的在第一卦限内的部分的前侧。
曲面积分-习题课2共35页文档
解 设(X,Y,Z)为上任意,一 则点 得 出的方程为
xX yYzZ1 22 由点O到平面的距离公式,得
(x, y,z)
1 x2 y2 z2 44
设 S为椭球 x2面 y2z21的上半部 22
由z 1 x2 y2
22
一、教学要求
1. 了解两类曲面积分的概念及高斯 Gauss) 斯托克斯(Stokes)公式, 并会 、 计算两类曲面积分.
2.了解散度、旋度的概念及其计算 方法.
3. 会用曲面积分求一些几何量与物 理量.
理论上的联系
1.定积分与不定积分的联系
b
a f ( x ) d F x ( b ) F ( a )( F ( x ) f ( x ))
牛顿--莱布尼茨公式
2.二重积分与曲线积分的联系
D( Q x P y)dx d L Py dQ xd (沿 y L 的)正向
格林公式
3.三重积分与曲面积分的联系
( P x Q y R z)d v P d Q yd d R zzd dx xd
高斯公式
4.曲面积分与曲线积分的联系
z
x
,
x
x2 y2
2 1
22
得
z
y
y 2 1 x2 y2
22
dS 1x z2 yz2dxdy 4 x2 y2 dxdy 2 1 x2 y2 22
所以
dS 4x2 y2 dxdy
z dS
S (x, y,z)
1 (4x2y2)dxdy
4 Dxy
2 1 x2 y2
22
(x, y,z)
(1 ) 若P,Q,R在闭曲面 所围成的空间 中域
曲线积分与曲面积分习题答案.pdf
解: Dxy {( x, y) | x y 1, x 0, y 0} , z 1 x y , dS 3dxdy
原式 = (2 x y 2(1 x y)) 3dxdy
D xy
13 3(
x
1 x2)dx
53
02
2
6
1
1x
3 dx (2 y) dy
1.利用斯托克斯公式计算下列曲线积分:
(1) x 2 y3dx dy zdz , 为 xOy 面内圆周 x2 y 2 a 2 逆时针方向;
解:取 为平面 z 0的下侧被 围成的部分, D 为 在 xOy 面上的投影
区域。 由 Stokes 公式,得
dydz dzdx dxdy
原式 =
x
y
z
x2 y3 1
x 2 ydx xy2 dy ,其中 L 为 x2 y 2 6x 的上半圆周从点 A(6,0)
L
到点 O (0,0) 及 x 2 y 2 3x 的上半圆周从点 O(0,0) 到点 B(3,0) 连成的弧
AOB;
uuur 解:连直线段 AB,使 L 与 BA 围成的区域为 D,由 Green 公式,得
第十一章 曲线积分与曲面积分
第三节 Green 公式及其应用
1.利用 Green 公式,计算下列曲线积分:
(1) xy 2dy x2 ydx ,其中 L 为正向圆周 x2 y 2 9 ;
L
解:由 Green 公式,得
?xy2dy x2 ydx
L
(x2
y2 )dxdy
2
2d
0
D
3 r 3dr
第六章--习题课(曲面积分)
dzdx dxdy
=
cos dS
cosγdS
=
zy 1
dzdx
=
z y dxdy.
所以 dydz = zxdxdy, dzdx = z ydxdy
因此有 Pdydz + Qdzdx + Rdxdy = (Pcosα + Qcosβ + Rcosγ)dS
Σ
Σ
= zx P zyQ + Rdxdy.
(y z) Dyz{(y z)| 0 y1 0 z 3} 故
o 1y
x1
xdyz
1
y2dydz
31
0 dz 0
1 y2dy
D yz
1
30
1 y2dy
= 3 π. 4
可表示为: y 1 x2
z
(z x)Dzx{(z x)|0z3 0x1} 故
2
ydzdx 1 x2dzdx
用重心公式
利用对称性
(曲面关于xoz面对称)
2(x z) d S 0
逐个投影法计算二型面积分
例 7 zdxdy xdydz ydzdx 其中∑是柱面 x2y21 被平面
z0 及 z3 所截得的第一卦限内的部分的前侧.
z
解 在xOy面的投影为零 故 zdxdy 0
3
: x 1 y2
Dyz
2. 利用对称性计算一型面积分
设f x, y,z在闭区域D上连续,I = f(x, y,z)dS
1)若曲面∑关于yoz面对称,∑1 是∑∑的x ≥ 0 的部分, 则
(1)当f x, y,z = f x, y,z时, I 0.
(2)当f x, y,z = f x, y,z时, I = 2 f x, ydσ. 1
曲线曲面积分部分难题解答43页word文档
曲线、曲面积分部分难题解答1.(P201,第1题)计算下列标量函数的曲线积分(第一型曲线积分): (ⅰ)⎰lxyds ,l 为抛物线x y 22=上从原点)0,0(O 到点)2,2(A 的弧⋂OA ;(ⅱ)()⎰+lds y x 22,l 为联结点)0,0(O 、)0,2(A 和)1,0(B 的三角形围线;(ⅲ)⎰+l s d y x 22,l 为圆周()022>=+a ax y x ;(ⅳ)()⎰++lds z y x 222,l 为螺线()0,sin ,cos >===b bt z t a y t a x 的 一段弧()π20≤≤t ;(ⅴ)⎰lzds ,l 为曲线()⎩⎨⎧>===0,2222a ax y z y x 上从点)0,0,0(O 到)2,,(a a a A 的一段弧.解:(ⅰ)[]2,0,,21:2∈⎪⎩⎪⎨⎧==y y y y x l ,.1122dy y dy dy dx ds +=⎪⎪⎭⎫ ⎝⎛+=dy y y y xyds l 22201..21+=⎰⎰(令t y tan =)()()t td t sec sec .1sec 21222arctan 0-=⎰|2arctan 035sec 31sec 5121⎥⎦⎤⎢⎣⎡-=t t .151355+=(ⅱ)解:()⎰+lds y x 22⎰⎰⎰++=OAABOB()()3801.022222222==++=+⎰⎰⎰dx x dx x ds y x OA;.20,,0:≤≤⎩⎨⎧==x xx y OA ()()[]()dy y y ds y x AB 210222221.22-++-=+⎰⎰().5354855102=+-=⎰dy y y .10,,22,:≤≤⎩⎨⎧-==y y x y y AB()().3101.02102222=++=+⎰⎰dy y ds y xBO,.10,,0:≤≤⎩⎨⎧==y y y x BO .3535+=++=⎰⎰⎰OA AB OB I (ⅲ)解法一:.20,sin 2,cos 22:π≤≤⎪⎪⎩⎪⎪⎨⎧=+=t t a y t a a x l()().2cos 2sin 22222dt a dt t a t a dt t y t x ds =⎪⎭⎫⎝⎛+⎪⎭⎫ ⎝⎛-='+'=所以,()dt a t a t a s d y x l 2sin 4cos 1420222222⎰⎰⎥⎦⎤⎢⎣⎡++=+πdt t a ⎰=π20222sin 2.24dt t a ⎰=π2022sin 2.22cos 22sin 2202202|a t a t d t a =⎪⎭⎫ ⎝⎛-=⎪⎭⎫ ⎝⎛=⎰ππ解法二:化l 为极坐标表示:().2,2,cos :⎥⎦⎤⎢⎣⎡-∈=ππθθθa r l ()().22,sin .cos sin ,cos cos :2πθπθθθθθθθ≤≤-⎩⎨⎧====a r y a r x l()()()().sin cos 2222θθθθθad dt a a dt r r ds =-+='+=所以,()()[]θθθθππad a a s d y x l⎰⎰-+=+2222222sin cos cosθθππd a a ⎰-=2222cos .2sin 2cos 2220222|a a d a===⎰ππθθθ(ⅳ) ()()()()()dt b a dt b t a t a dt t z t y t x ds 22222222cos sin +=++-='+'+'=()()()()[]dt b a bt t a t a ds z y x l 2220222222.sin cos +++=++⎰⎰π()|203222220222223ππ⎥⎦⎤⎢⎣⎡++=++=⎰t b t a b a dt t b a b a[].433222222b a b a ++=ππ2.(P201,第2题)设有某种物质分布在椭圆1:2222=+by a x l 上,其密度().,y y x =μ求它的总质量. 解:不妨假设.b a >⎰⎰==14l lyds ds y M ,其中.2,0,sin ,cos ;1⎥⎦⎤⎢⎣⎡∈⎩⎨⎧==πt t b y t a x l()()()().cos sin cos sin 22222222dt t b t a dt t b t a dt t y t x ds +=+-='+'=dt t b t a t b yds M l 222220cos sin sin 441+==⎰⎰π()()t d t b a a b cos cos 4202222⎰---=π()du u b a a b 2222014---=⎰()du u b a a b 222214--=⎰du u ba a ba b ⎰---=202222224π(公式) |102222222222222arcsin .2.4⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡--+---=u b a a u b a au b a a b a b .arcsin ..222222⎥⎥⎦⎤⎢⎢⎣⎡+--=b a b a b a a b 3.(P202,第3题)设曲线l 的长度为L ,而函数f 在包含l 的某个区域内连续.证明: ()().max .P f L ds P f lP l ∈≤⎰证明:由第一型曲线积分的定义()()i ni i d l s P f ds P f ∆=∑⎰=→.lim 1故 ()()i n i i d ls P f ds P f ∆=∑⎰=→.lim 1()i ni i d s P f ∆=∑=→.lim 1()i n i i d s P f ∆≤∑=→.lim 1()i ni lp d s P f ∆≤∑=∈→.max lim 1().max .P f L lP ∈=4.(P202,第4题)从原点()0,0O 到点()2,1A 沿下列不同路径分别计算第二型曲线积分 .⎰⋂-OAydx xdy(1).⋂OA 为直线段;(2).⋂OA 为抛物线22x y =上的弧; (3).⋂OA 为从点()0,0O 经点()0,1B 到点()2,1A 的折线⋂OBA . 解:(1) .1~0:,,2:x xx x y OA ⎩⎨⎧==⋂[].022.10=-=-⎰⎰⋂dx x x ydx xdy OA(2).1~0:,:x xx OA ⎩⎨=[].323224.|10312==-=-⎰⎰⋂x dx x x x ydx xdy OA(3).220=+=+=+⎰⎰⎰⋂OB BAOAydx xdy.1~0:,.,0:x x x y OB ⎩⎨⎧== ();000.10=-=-⎰⎰dx x ydx xdy OB.2~0:,.,1:y y y x BA ⎩⎨⎧== ().20.120=-=-⎰⎰dy y ydx xdy BA5.(P202,第5题)计算曲线积分 .⎰+lxdy ydx(1).l 为从点()0,a 点()0,a -的上半圆周()022>-=a x a y ; (2). l 为从点()0,a 点()0,a -的直线段()0>a ; (3). l 为逆时针方向的圆周.222a y x =+ 解:(1) .~0:,sin ,cos :πt ta y t a x l ⎩⎨⎧==()()()()[]dt t a t a t a t a xdy ydx l ⎰⎰+-=+π0cos .cos sin .sin ==⎰dt t aπ22cos 02sin 2|02=πt a .(2).~:,,0:a a x xx y l -⎩⎨⎧== ().00.0=+=+⎰⎰-dx x xdy ydx a al(3).2~0:,sin ,cos :πt t a y t a x l ⎩⎨⎧==()()()()[]dt t a t a t a t a xdy ydx l⎰⎰+-=+π20cos .cos sin .sin ==⎰dt t aπ2022cos 02sin 2|202=πt a .6.(P202,第6题)计算沿逆时针方向的圆周()222a y x =+的曲线积分 ()().22⎰+--+ly x dy y x dx y x解:π2~0:,.sin :t t a y l ⎩⎨=,所以,()()⎰+--+l y x dy y x dx y x 22()()()()dt a t a t a t a t a t a t a ⎰---+=π202cos .sin cos sin sin cos .22022ππ-=-=⎰dt aa 7.(P202,第7题)计算下列曲线积分,曲线的方向与参数增加方向: (ⅰ)()()d y xy y dx xy x l⎰-+-2222,l 为抛物线()112≤≤-=x x y ;(ⅱ)()()d y y x dx y x l ⎰-++2222,l 为折线()2011≤≤--=x x y ;(ⅲ)()dz x yzdy dx z y l⎰-+-2222,l 的参数方程为().10,,3,2≤≤⎪⎩⎪⎨⎧===t t z t y t x ;解:(ⅰ).1~1:,:2-⎩⎨⎧==x xy x x l ()()d y xy y dx xy x l⎰-+-2222 ()()[]d x x x x x x x x⎰--+-=1124222..2.2 [].151454324|10531142-=⎥⎦⎤⎢⎣⎡-=-=⎰-x x dx x x (ⅱ)设点().0,1A 则()()dy y x dx y xL2222-++⎰()()dy y x dx y xOA2222-++=⎰()()dy y x dx y xAB2222-+++⎰.1~0:,,:x x x x y OA ⎩⎨⎧==()()()()[]321022222222=-++=-++⎰⎰dx x x x x dy y x dx y x OA;.2~1:,,2:x x x x y AB ⎩⎨⎧=-=()()()()()()()[]d xx x x x dy y x dx y xAB⎰⎰---+-+=-++21222222221.22()().3232222|213212=-=-=⎰x dx x 原式.343232=+=(ⅲ)()dz x yzdy dx z y l⎰-+-2222 ()[]d t t t t t t t t ⎰-+-=102232643.2 (2)[].351527323|10571046=⎪⎭⎫ ⎝⎛-=-=⎰t t dt t t 8.(P202,第8题)设曲线l 的长度为L ,而函数()P f 在包含l 的某个区域内连续.证明: ())....P L P f lP l ∈≤⎰证明:设()()(){}.,21P f P f P f = 由第二型曲线积分的定义及柯西不等式()()()[]∑⎰=→∆+∆=ni i i i i d l y P f x P f d P f 1210..lim .故 ()()()[]∑⎰=→∆+∆=ni i i i i d ly P f x P f P f 1210..lim .()()[]∑=→∆+∆≤n i i i i i d y P f x P f 1210..lim ()()()()22122210.lim i i ni i i d y x P f P f ∆+∆+≤∑=→)()()221.lim i i ni i d y x P ∆+∆==→)()())⎰∑=→=∆+∆≤li i ni d ds P y x P ..lim 221)P L =.9.(P209,第1题)求下列曲面块的面积:(ⅰ)球面2222a z y x =++包含在圆柱面()a b b y x ≤<=+0222内的那部分面积;(ⅱ)圆锥面22y x z +=被圆柱面x y x 222=+截下的那一部分; (ⅲ)圆柱面222a y x =+被圆柱面222a z y =+截下的那一部分.解:(ⅰ)画出示意图222:b y x D xy ≤+. 将曲面方程化为:z ∑=则dS dxdy ==.dxdy yx a a S S xyD ⎰⎰--==22222上 ⎥⎦⎤⎢⎣⎡--=-=⎰⎰|022022202.2122b br a a ra ardrd πθπ极().422b a a a --=π(ⅱ)画出示意图x y x D xy 2:22≤+. 由曲面方程22:y x z +=∑,得,2122dxdy dxdy y z x z dS =⎪⎪⎭⎫⎝⎛∂∂+⎪⎭⎫ ⎝⎛∂∂+=.().222π===⎰⎰xy D D S dxdy S xy(ⅲ)利用对称性(仅在第一卦限内计算)18S S =,曲面1∑(1∑为∑在第一卦限的那部分,其面积设为1S )向yoz面上的投影区域为222:a z y D yz ≤+. 将曲面1∑方程化为22y a x -=,则,22y a y yx--=∂∂,0=∂∂zx,所以,dydzya a dydz z x y x dS 22221-=⎪⎭⎫⎝⎛∂∂+⎪⎪⎭⎫ ⎝⎛∂∂+=.dydz y a a S S yzD ⎰⎰-==22188 ⎰⎰--=2202208y a a dz y a a dy .8820a adz a==⎰10.(P209,第2题)求下列曲面积分:(ⅰ)()⎰⎰++Sy x dS21,式中S 为四面体()1,0,0,0≤++≥≥≥z y x z y x 的表面; (ⅱ)()d S y x S⎰⎰+22,式中S 为圆柱体()h z a y x ≤≤≤+0,222的表面;(ⅲ)()dS z y x S⎰⎰++,式中S 为球面()2222a z y x =++的表面.解:(ⅰ).4321S S S S S +++=其中 ,0:1=z S dxdy dS =1, ()()()dy y x dx dxdy y x y x dSxD S xy⎰⎰⎰⎰⎰⎰-++=++=++1010222111111dx x dx y x x ⎰⎰⎪⎭⎫⎝⎛-+=⎥⎦⎤⎢⎣⎡++-=-101010211111| 212ln -=; ,0:2=x S dydz dS =2,()()()dz y dy dydz y y x dSyD S yz⎰⎰⎰⎰⎰⎰-+=++=++10102221101112()()dy y y dy y y⎰⎰⎪⎪⎭⎫ ⎝⎛+-+=+-=10212111211 ()2ln 11ln 12||1010-=+-+-=y y ; ,0:3=y S dzdx dS =3,()()()dz x dx dzdx x y x dSxD S zx⎰⎰⎰⎰⎰⎰-+=++=++10102221101113()()dx x x dx x x⎰⎰⎪⎪⎭⎫⎝⎛+-+=+-=10212111211 ()2ln 11ln 12||101-=+-+-=x x ;,1:4y x z S --= dxdy dS 34=,()()()dz y x dx dxdy y x y x dSxD S xy⎰⎰⎰⎰⎰⎰-++=++=++101022211311314dx x dx y x x ⎰⎰⎪⎭⎫⎝⎛-+=⎥⎦⎤⎢⎣⎡++-=-10101021113113| ().212ln 33211ln 321113|1010⎪⎭⎫ ⎝⎛-=-+=⎪⎭⎫⎝⎛-+=⎰x dx x ;()⎰⎰++S y x dS 21()+++=⎰⎰121S y x dS()+++⎰⎰221S y x dS()⎰⎰++321S y x dS ()⎰⎰++421S y x dS()()().32ln 2213212ln 32ln 12ln 1212ln +-=⎪⎭⎫ ⎝⎛-=-+-+⎪⎭⎫ ⎝⎛-=(ⅱ).321S S S S ++=其中 ,0:1=z S dxdy dS =1,()()rdr r d dxdy y x dS y x aD S xy.420222221⎰⎰⎰⎰⎰⎰=+=+πθ 24a π=;,:2h z S = dxdy dS =2,()()rdr r d dxdy y x dS y x aD S xy.420222222⎰⎰⎰⎰⎰⎰=+=+πθ24a π=;,:2223a y x S =+其向yoz 面上的投影区域为⎩⎨⎧≤≤-≤≤.,0:a y a h z D yz . 将曲面3S 方程化为22y a x -±=,则,22y a y yx --=∂∂,0=∂∂zx,所以, dydz ya a dydz z x y x dS 22221-=⎪⎭⎫⎝⎛∂∂+⎪⎪⎭⎫ ⎝⎛∂∂+= ()()dydz ya a y y a dS y x yz D S ⎰⎰⎰⎰-⎥⎦⎤⎢⎣⎡+-=+222222322.23⎰⎰-=-haadz y a dy a 022312..2arcsin4303|h a a y h a aπ== 或者()..22..32232233h a ah a dS a dS y x S S ππ===+⎰⎰⎰⎰()⎰⎰++S y x dS21()++=⎰⎰122S dS y x ()++⎰⎰222S y x()d S y xS ⎰⎰+322().22223344h a a h a a a +=++=ππππ(ⅲ)由积分区域的对称性,及被积函数的奇偶性知,显然()dS z y x S⎰⎰+++=⎰⎰dS x SdS y S ⎰⎰().0=+++⎰⎰dS z y x S11.(P210,第3题)证明泊松公式()()d uc b a u f dS cz by ax f S⎰⎰⎰-++=++112222π其中S 为球面0,1222222>++=++c b a z y x ,f 为连续函数.证明:取新的空间直角坐标系Ouvw ,其中原点不变,使坐标平面Ouvw 与平面0=++cz by ax 重合,并使Ou 轴垂直于平面0=++cz by ax .则有 其实根据坐标系Ouvw 选取方法的描述,我们不难看出Ou 轴上的单位向量就可取作平面0=++cz by ax 的单位法线向量.则222cb a cz by ax u ++++=(注意到,显然222cb a cz by ax u ++++=为点()z y x P ,,到平面0=++cz by ax 的距离).则 ()dS cz by ax f S⎰⎰++()d S c b a u f S⎰⎰++=222显然在新坐标系下,球面的形状并未改变(仍记为S ),且它的方程应为1222=++w v u(因为在新的坐标系下,任何一个球面上的点到原点的距离仍然为1.)得: ()22221uw v -=+当u 固定时,1222=++w v u 表示垂直于Ou 轴平面上的一个圆周. 进一步,我们把S 化为参数方程表示:.20,11,sin 1,cos 1,22πθθθ≤≤≤≤-⎪⎩⎪⎨⎧-=-==u u w u v u u,1='uu ,cos 12θuu v u --=';sin 12θuu w u--=',0='θu ,sin 12θθu v --='.cos 12θθu w -=' ;112222u w v u E u u u-='+'+'= ;0...=''+''+''=θθθw w v v u u F u u u.12222u w v u G -='+'+'=θθθ因此, 曲面的元素dS =dudv =故()dS cz by ax f S⎰⎰++()d S c b a u f S⎰⎰++=222()d u c b a u f d ⎰⎰-++=πθ2011222().211222⎰-++=du c b a u f π12(P210,第4题)设某种物质均匀分布在球面2222a z y x =++上(认为分布密度1=ρ).求它对于oz 轴的转动惯量.解:由公式 ()d Sy x J S⎰⎰+=22由对称性 ()d S y x J S ⎰⎰+=1228其中 2221:y x a z S --=,则z z x y ∂∂==∂∂,所以,dS ==.因此 ()dxdy yx a a y x S S xyD ⎰⎰--+==222221.88rdr ra r d a a.8022220⎰⎰-=πθ极()rdr ra a a ra a .4022222⎰-+-=πrdr r a a a.4022⎰--=πrdr ra a a.140223⎰-+π()22022.2r a d r a a a--=⎰π()220223.12r a d ra a a ---⎰π()|232232.2a r a a -=π|02232.2ar a a --π434a π-=44a π+ .384a π=13(P217,第1题)沿圆锥面()122≤=+z y x S 的下侧,求曲面积分d S.⎰⎰,其中{}.,,z y x =解:⎰⎰⎰⎰++=SSzdxdy ydzdx xdydz S d r .化为第一型曲面积分计算.S 的向下的法向量{}⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧-++=-''=1,,1,,2222y x y y x x z z yx ,所以{}.cos ,cos ,cos 21,2,222220γβα=⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧-++==y x y y x x n 故⎰⎰⎰⎰++=SSzdxdy ydzdx xdydz d .()⎰⎰++=SdS z y x γβαcos .cos .cos .⎰⎰⎪⎪⎪⎭⎫⎝⎛-+++=S dS z y x y yx x 222222222 ⎰⎰⎪⎪⎭⎫ ⎝⎛-+=S dS z y x 2222(根据第一型曲面积分的计算方法) ⎰⎰=⎪⎪⎭⎫⎝⎛+-+=xy D dxdy y x y x .02222222 14(P217,第2题)沿椭球面1222222=++cz b y a x 的外侧,求曲面积分.⎰⎰⎪⎪⎭⎫⎝⎛++S z dxdy y dzdx x dydz解:把S 分割为21,S S 两个部分.其中,222211:b y a x c z S --=(上侧);222221:by a x c z S ---=(下侧).21,S S 向xoy 面上的投影区域均为.1:2222≤+by a x D xy故 dxdy b ya x c z dxdyxyD S ⎰⎰⎰⎰--=2222111作变量代换: ⎩⎨⎧==.sin ,cos θθbr y ar x由二重积分的换元法 dr abrd rc dxdy b y a x c D D xyθ⎰⎰⎰⎰'-=--222221111.其中 ()()abr br b ar a y r yxrxr y x J =-=∂∂∂∂∂∂∂∂=∂∂=θθθθθθθcos sin sin cos ,,⎩⎨⎧≤≤≤≤'.20,10:πθr D 所以=⎰⎰1S zdxdy dr abrd rc dxdy b y a x c D D xyθ⎰⎰⎰⎰'-=--222221111dr r r d c ab ⎰⎰-=πθ2010211dr r rd c ab ⎰⎰-=πθ2010211所以, ().212111|1022102πππcab r c ab r d r c ab =⎥⎦⎤⎢⎣⎡--=---=⎰ 由轮换对称性,知: πa bc x dzdy S4=⎰⎰; .4πb ac y dzdx S=⎰⎰ 故⎰⎰⎪⎪⎭⎫⎝⎛++Sz dxdy y dzdx x dydz +=⎰⎰S z dxdy +⎰⎰S x dzdy⎰⎰Sy dzdx+=πc ab 4πa bc 4().44222222a c c b b a abcb ac ++=+ππ15(P217,第3题)沿球面()()()2222R c z b y a x =-+-+-的外侧,求曲面积分.222⎰⎰++Sdxdy z dzdx y dydz x解:把S 分割为21,S S 两个部分.其中,()()2221:b y a x R c z S ----+=(上侧);()()2222:b y a x R c z S -----=(下侧).21,S S 向xoy 面上的投影区域均为:xy D ()()222R b y a x ≤-+-故 ()()dxdy b y a x R c dxdy z xyDS ⎰⎰⎰⎰⎥⎦⎤⎢⎣⎡----+=222221作变量代换: ⎩⎨⎧+=+=.sin ,cos θθr b y r a x由二重积分的换元法()()[]rdr r R c dxdy b y a x R c D D xy⎰⎰⎰⎰'-+=⎥⎦⎤⎢⎣⎡----+2222222.其中 ()()r r r y r yxrx r y x J =-=∂∂∂∂∂∂∂∂=∂∂=θθθθθθθcos sin sin cos ,,⎩⎨⎧≤≤≤≤'.20,0:πθR r D 所以=⎰⎰12S dxdy z[]rdr rR c D 222⎰⎰'-+()dr r rR c d R⎰⎰-+=πθ20222()rdr rR c R2222⎰-+=π()r dr r R r R c c R⎰-+-+=02222222πrdr r R c rdr c R R ⎰⎰-+=02202222ππ()rdr r R R⎰-+0222π()()|||0222023220222132.222RR R r R r R c r c ⎥⎦⎤⎢⎣⎡--⎥⎦⎤⎢⎣⎡--⎪⎪⎭⎫ ⎝⎛=πππ.2344322R cR R c πππ++=(1)同理()()dxdy b y a x R c dxdy z xyDS ⎰⎰⎰⎰⎥⎦⎤⎢⎣⎡------=222221()dr r r R c d R⎰⎰⎥⎦⎤⎢⎣⎡---=πθ200222()rdr r R c R 20222⎰---=πrdr r R c rdr cRR⎰⎰-+-=0222222ππ()r dr r R R⎰--0222π()()|||0222023220222132.222RR R r R r R c r c ⎥⎦⎤⎢⎣⎡-+⎥⎦⎤⎢⎣⎡--⎪⎪⎭⎫ ⎝⎛-=πππ.2344322R cR R c πππ-+-= =⎰⎰Sdxdy z 2+⎰⎰12S dxdy z 32382cR dxdy z S π=⎰⎰ ; 由轮换对称性,知: =⎰⎰Sdydz x 2338aR π; =⎰⎰Sdzdx y 2.383bR π 故.222⎰⎰++Sdxdy z dzdx y dydz x ⎰⎰=Sdydz x 2⎰⎰Sdzdxy 2⎰⎰Sdxdy z2().383c b a R ++=π16(P217,第4题)设S 为长方体()c z b y a x ≤≤≤≤≤≤0,0,0的表面.沿外侧求曲面积分 ⎰⎰Sxyzdxdy解:把S 分割为654321,,,,,S S S S S S 六个部分. 其中 ()b y a x c z S ≤≤≤≤=0,0:1的上侧; ()b y a x z S ≤≤≤≤=0,00:2的下侧; ()c z b y a x S ≤≤≤≤=0,0:3的前侧; ()c z b y x S ≤≤≤≤=0,00:4的后侧; ()c z a x b y S ≤≤≤≤=0,0:5的右侧; ()c z a x y S ≤≤≤≤=0,00:6的左侧.注意到除21,S S 外,其余四片曲面在xoy 面上的投影为零,因此 =⎰⎰Sxyzdxdy +⎰⎰1S xyzdxdy ⎰⎰2S xyzdxdy⎰⎰=xyD xycdxdy ⎰⎰-xyD dxdy xy 0.c b a ydy xdx c ab.40022⎰⎰==17(P225第1题)利用格林公式计算下面的曲线积分(l 的方向为正方向): (ⅰ)()dy xy dx y x l22+-⎰,l 为圆周()222a y x =+;(ⅱ)()()dy y x dx y x l--+⎰,l 为椭圆⎪⎪⎭⎫⎝⎛=+12222b y a x ; (ⅲ)()xdy dx y l+-⎰,l 为曲线()1=+y x ;(ⅳ)()()dy y y e dx y e x lx sin cos 1---⎰,l 为区域().sin 0,0x y x D <<<<π;18(P225第2题)求()()dy m y e dx my y eI x xL-+-=⎰cos sin ,(m 为常数) 其中l 是自点()0,a A 经过圆周()022>=+a ax y x 的上半部分到点O(0,0)的半圆周.(提示:作辅助线后用格林公式). 解:cos ,cos x x P Qe y m e y y x∂∂=-=∂∂. 所以,由格林公式:221...428AO OA D DQ P a dxdy mdxdy m ma x y ππ⋂⎡⎤∂∂+=-===⎢⎥∂∂⎣⎦⎰⎰⎰⎰⎰⎰.所以,2220.888AO OAma ma ma I πππ⋂==-=-=⎰⎰ (因为,⎰⎰==OAadx 0.00)19(P225第5题)设函数()x f 在正半轴()0>x 上有连续导数()x f '且().21=f 若在右半平面内沿任意闭合光滑曲线l ,都有 ()043=+⎰dy x xf ydx x l求函数().x f解:()y x y x P 34,=,()()x xf y x Q =,都是右半平面上的连续函数,由于在右半平面内沿任意闭合光滑曲线l ,都有()043=+⎰dy x xf ydx x l故有xQ y P ∂∂=∂∂即 ()()x f x x f x '+=34 化简,得 ()()241x x f xx f =+' (1)为一阶线性微分方程,其通解为()⎥⎦⎤⎢⎣⎡+⎰⎰=⎰-c e x e x f dx xdx x 1214().1134xc x c x x +=+=代入条件()21=f ,得 .1=c故 ().13xx x f +=20(P226第6题)设D 是以光滑曲线l 为正向边界的有界闭区域,而函数()y x u u ,=在闭区域D 上具有连续的二阶偏导数且记2222yux u u ∂∂+∂∂=∆证明: ⎰⎰⎰∆=∂∂Dl udxdy ds n u其中()()yu x u n u ,cos ,cos ∂∂+∂∂=∂∂ 表示函数()y x u u ,=沿边界曲线l 外法线方向的方向导数.证明:设τ为曲线l 的正向的切线向量,其方向余弦为()x ,cos 、()y ,cos ,则有 ()()y x ,,τ=,()().,,x y τπ-=故 ()()y x ,cos ,cos τ=,()().,cos ,cos x y τ-=()()ds x y uy xu ds n u l l ⎰⎰⎪⎪⎭⎫ ⎝⎛∂∂-∂∂=∂∂,cos ,cos ττ(由两型曲线积分之间的联系)dx y udy x u l ⎰∂∂-∂∂=(格林公式) ⎰⎰⎥⎦⎤⎢⎣⎡⎪⎪⎭⎫ ⎝⎛∂∂-∂∂-⎪⎭⎫ ⎝⎛∂∂∂∂=D dxdy y u y x u x =⎪⎪⎭⎫⎝⎛∂∂+∂∂=⎰⎰D dxdy y u x u 2222.⎰⎰∆Dudxdy21(P226第7题)在第6题的假设和记号下,证明:.22ds n uu udxdy u dxdy y u x u D l D ⎰⎰⎰⎰⎰∂∂+∆-=⎥⎥⎦⎤⎢⎢⎣⎡⎪⎪⎭⎫ ⎝⎛∂∂+⎪⎭⎫ ⎝⎛∂∂ 证明:仿上题 ()()ds xy uy x u u ds n u ul l⎰⎰⎪⎪⎭⎫ ⎝⎛∂∂-∂∂=∂∂,cos ,cos ττ(由两型曲线积分之间的联系)dx yuu dy x u ul ⎰∂∂-∂∂=(格林公式) ⎰⎰⎥⎦⎤⎢⎣⎡⎪⎪⎭⎫ ⎝⎛∂∂-∂∂-⎪⎭⎫ ⎝⎛∂∂∂∂=Ddxdy y u u y x u u x ⎰⎰⎥⎦⎤⎢⎣⎡⎪⎪⎭⎫ ⎝⎛∂∂+∂∂∂∂+⎪⎪⎭⎫ ⎝⎛∂∂+∂∂∂∂=D dxdy y u u y u y u x u u x u x u 2222....dxdy y u x u u dxdy y u x u D D ⎪⎪⎭⎫ ⎝⎛∂∂+∂∂+⎥⎥⎦⎤⎢⎢⎣⎡⎪⎪⎭⎫ ⎝⎛∂∂+⎪⎭⎫ ⎝⎛∂∂=⎰⎰⎰⎰222222 udxdy u dxdy y u x u D D ∆+⎥⎥⎦⎤⎢⎢⎣⎡⎪⎪⎭⎫ ⎝⎛∂∂+⎪⎭⎫ ⎝⎛∂∂=⎰⎰⎰⎰22 移项,即得 .22ds n uu udxdy u dxdy y u x u D l D ⎰⎰⎰⎰⎰∂∂+∆-=⎥⎥⎦⎤⎢⎢⎣⎡⎪⎪⎭⎫ ⎝⎛∂∂+⎪⎭⎫ ⎝⎛∂∂ 22(P227第8题)格林第二公式 若函数()y x u u ,=和()y x v v ,=都满足第6题中的假设,证明: ds vu n v n u dxdy vuv u lD⎰⎰⎰∂∂∂∂=∆∆证明: ()()ds x y u y xu v ds n u vl l⎰⎰⎪⎪⎭⎫ ⎝⎛∂∂-∂∂=∂∂,cos ,cos ττ (由两型曲线积分之间的联系)dx yuv dy x u vl ⎰∂∂-∂∂=(格林公式) ⎰⎰⎥⎦⎤⎢⎣⎡⎪⎪⎭⎫ ⎝⎛∂∂-∂∂-⎪⎭⎫ ⎝⎛∂∂∂∂=Ddxdy y u v y x u v x ⎰⎰⎥⎦⎤⎢⎣⎡⎪⎪⎭⎫ ⎝⎛∂∂+∂∂∂∂+⎪⎪⎭⎫ ⎝⎛∂∂+∂∂∂∂=D dxdy y u v y u y v x u v x u x v 2222....⎰⎰⎰⎰⎥⎥⎦⎤⎢⎢⎣⎡⎪⎪⎭⎫ ⎝⎛∂∂+⎪⎭⎫ ⎝⎛∂∂+⎪⎪⎭⎫⎝⎛∂∂∂∂+∂∂∂∂=D D dxdy y u x u v dxdy y v y u x v x u 22.....⎰⎰⎰⎰∆+⎪⎪⎭⎫⎝⎛∂∂∂∂+∂∂∂∂=DD udxdy v dxdy y v y u x v x u (1)由轮换对称性,知 ds nv ul⎰∂∂...⎰⎰⎰⎰∆+⎪⎪⎭⎫ ⎝⎛∂∂∂∂+∂∂∂∂=DD vdxdy u dxdy y v y u x v x u(2)于是ds n v u n uv ds vun vnul l ⎰⎰⎪⎭⎫ ⎝⎛∂∂-∂∂=∂∂∂∂ ⎥⎦⎤⎢⎣⎡∆+⎪⎪⎭⎫ ⎝⎛∂∂∂∂+∂∂∂∂=⎰⎰⎰⎰D D udxdy v dxdy y v y u x v x u ..⎥⎦⎤⎢⎣⎡∆+⎪⎪⎭⎫ ⎝⎛∂∂∂∂+∂∂∂∂-⎰⎰⎰⎰D D vdxdy u dxdy y v y u x v x u .. ()⎰⎰∆-∆=Ddxdy v u u v .dxdy vuv u D⎰⎰∆∆=23(P227第9题)计算高斯(Gauss)积分()(b a I =,其中l 为简单(光滑)闭合曲线,为不在l 上的点()b a ,到l 上动点()y x ,的向量,而为l 上动点()y x ,处的法向量.解:设为曲线l 的正向的切线向量,其方向余弦为()x ,cos τ、()y ,cos τ,则 有 ()()y x ,,τ=,()().,,x y τπ-= 又设()(){}y x n ,cos ,,cos 0= ,{}b y a x --=,,则()()()()()()().,cos .,cos .,cos ,cos 2200b y a x y b y x a x n r n r -+--+-==⎪⎭⎫ ⎝⎛= 故(()()()()()().,cos .,cos .22b y a x y n b y x n a x -+--+-=()()()()()()()[]d s y b y x a x b y a x b a I l,cos ,cos .1,22-+--+-=⎰()()()()()()[]d s x b y y a x b y a x l,cos ,cos .122----+-=⎰ ()()()().22⎰-+----=lb y a x dx b y dy a x 记 ()()(),,22b y a x b y y x P -+---=()()().,22b y a x ax y x Q -+--=则()()()(),2222b y a x a x b y y P-+-----=∂∂()()()().2222b y a x a x b y x Q -+-----=∂∂它们在xoy 平面内除点 ()b a ,外处处连续,且.0=∂∂-∂∂yP xQ(一)若点()b a ,在l 所包围的区域D 外,原式=0;(二)若点()b a ,在l 所包围的区域D 内,以点()b a ,为中心作一个充分小的圆()()).0(:222>=-+-εεεb y a x l 取逆时针方向,使之完全包含在l 为边界的区域内.记介于εl 和l 之间的区域为'εD .则在'εD 由格林公式可得:()()()()⎰-+----l b y a x dx b y dy a x 22()()()()⎰-+-----εl b y a x dx b y dy a x 22.0⎰⎰'=⎥⎦⎤⎢⎣⎡∂∂-∂∂=εD dxdy y P x Q所以,()()()()⎰-+----=l b y a x dx b y dy a x I 22()()⎰---=εεldx b y dy a x 2()()⎰---=εεl dx b y dy a x 21(格林公式)()()ππεεεεε2.22112222===⎥⎦⎤⎢⎣⎡∂-∂-∂-∂=⎰⎰⎰⎰DD dxdy dxdy y y b x a x . 24(P227第10题)利用斯托克斯公式重新计算积分(例3) ()()(),⎰-+-+-=ldz y x dy z x dx y z I 其中l 是曲线⎩⎨⎧=+-=+.2,122z y x y x方向为从oz 轴正方向往负方向看去是顺时针方向. 解一:由斯托克斯公式dxdy yx zx yz z y x dxdy dzdx dydz2=---∂∂∂∂∂∂.取∑为平面2=+-z y x 上由椭圆所围成的那一小块曲面.(取下侧),因此{}1,1,1-=,.31,33,330⎭⎬⎫⎩⎨⎧-=n )()()()dS dxdy dz y x dy z x dx y z I l ⎰⎰⎰⎰⎰∑∑-=-=-+-+-=3122.2.23.312⎰⎰⎰⎰-=-=-=xyxyD D dxdy dxdy π解二:(直接计算)()()()⎰⎰⎰∑=-+-+-=dxdy dz y x dy z x dx y z I l2其中,.1:22≤+y x D xy所以,.22π-=-=⎰⎰dxdy I xyD .25(P238第1题)下面的向量场是否为保守场?若是,并求位势:u (){};sin cos 2,sin cos 2122y x x y x y y x f --=解:(1)这里()x y y x y x P sin cos 2,2-=,().sin cos 2,2y x x y y x Q -= 因为xQx y y x y P ∂∂=--=∂∂sin 2sin 2,()2,R y x ∈ 所以{}y x x y x y y x f sin cos 2,sin cos 222--=是定义在全平面上的保守场.所以,()+-dx x y y x sin cos 22()dy y x x y sin cos 22-是某一个函数()y x u ,的全微分. 故可取()()()()()dyy x x y dx x y y x y x u y x sin cos 2sin cos 2,2,0,02-+-=⎰()()dy y x x y dx x x yx ⎰⎰-+-=0202sin cos 2sin 00cos 2.cos cos 22y x x y +=则,所求的位势为 ().cos cos ,22c y x x y c y x u ++=+(){}.sin ,cos ,222z y e x z xe f y y --=--解:这里()()().sin ,,,cos ,,,2,,2z y z y x R e x z z y x Q xe z y x P y y -=-==--x Q xe y P y ∂∂=-=∂∂-2;y R z z Q ∂∂=-=∂∂sin ;.0zP x R ∂∂==∂∂ ().,,3R z y x ∈ 所以,{}z y e x z xe f y y sin ,cos ,22--=--为定义在全空间上的保守场.所以,+-dx xe y 2()zdz y dy e x z y sin cos 2---是某一个函数()z y x u ,,的全微分.(二)现取()()()()zdz y dy e x z dx xe z y x u y z y x y sin cos 2,,2,,0,0,0--+=--⎰取0M M 如图所示,从()0,0,00M 沿x 轴到点()0,0,1x M 再沿平行于y 轴的直线到点()0,,2y x M 最后沿平行于z 轴的直线到点(),,.M x y z 于是()()⎰⎰⎰-+-+=--z yyxzdz y dy ex dx xe z y x u 00200sin 0cos 2,,[]|||022cos zy yx z y e x y x+++=-()[]()y z y x e x y x y-+-++=-cos 222.cos 2z y e x y +=-则,所求的位势为 ().cos ,,2c z y e x c z y x u y ++=+- 26(P238第2题)证明式(14-31),并由此求下面的曲线积分: ()();).1(2,11,22⎰-xxdyydx ()()⎰++1,1,63,2,1.).2(xydz zxdy yzdx解:(一)要证式(14-31)成立,即要证若平面区域D 内保守力场()(){}y x Q y x P f ,,,=有位势()y x u ,,则对D 内的任意两点()()222111,,,y x M y x M ,有 ()()()()()().,,,.1122,,2211y x u y x u dy y x Q dx y x P y x y x -=+⎰事实上,因为()(){}y x Q y x P f ,,,=为保守力场,故()()dy y x Q dx y x P l ,.+⎰在D 内与路径无关,而只取决于路径的起点、终点.令()()()()()dy y x Q dx y x P y x v y x y x ,.,,,11+=⎰(1)则可证明()y x v ,也是f 在D 内的一个势函数.故 ()()C y x v y x u ≡-,, ,对任意()D y x ∈,成立(2)取()()11,,y x y x =,并注意到()0,11=y x v (因为沿闭合曲线的积分为零),得()()()111111,,,y x u y x v y x u C =-=(2)式中再取()()22,,y x y x =,并注意到(),0,11=y x v 得()()C y x v y x u =-2222,, 即 ()()()()().,,3,,11222222y x u y x u C y x u y x v --============Θ又由(1)式,注意到()y x v ,的记号,得 ()()()()()().,,,.1122,,2211y x u y x u dy y x Q dx y x P y x y x -=+⎰(二)()()⎰-2,11,22).1(x xdyydx 中,()2,x y y x P =,().1,2x xx y x Q -=-= 因为 xQx y P ∂∂==∂∂21,().0,,2≠∈x R y x 所以,2xxdyydx -是某一个函数()y x u ,的全微分. 故可取()()()⎰-=y x x xdy ydx y x u ,0,12,dy x dx y x ⎰⎰⎪⎭⎫ ⎝⎛-+=0110.x y -=所以 ()()()().2321121,22,12,11,22-=⎪⎭⎫ ⎝⎛---=-=-⎰u u x xdyydx()()⎰++1,1,63,2,1.).2(xydz zxdy yzdx 中,()()().,,,,,,,,xy z y x R zx z y x Q yz z y x P ===因为x Q z y P ∂∂==∂∂;y R x z Q ∂∂==∂∂;.zPy x R ∂∂==∂∂ ().,,3R z y x ∈ 所以,+yzdx xydz zxdy +是某一个函数()z y x u ,,的全微分. (二)现取()()()xydz zxdy dx yz z y x u z y x ++=⎰,,0,0,0,,取0M M 如图所示,从()0,0,00M 沿x 轴到点()0,0,1x M 再沿平行于y 轴的直线到点()0,,2y x M 最后沿平行于z 轴的直线到点(),,.M x y z 于是 ()⎰⎰⎰++=zyxxydz dy x dx z y x u 000.00,, .xyz =所以 ()()()().03,2,11,1,61,1,63,2,1=-=++⎰u u xydz zxdy yzdx 27(P238第5题)验证下列方程我全微分方程,并求通解:()();04332).1(=-++dy y x dx y x ()().03223).2(2222=+-++-dy y xy x dx y xy x解:()();04332).1(=-++dy y x dx y x这里,()()y x y x Q y x y x P 43,,32,-=+=.因为,xQy P ∂∂==∂∂3,是全微分方程.故:()()()()()dyy x dx y x y x u y x 4332,,0,0-++=⎰ ()()dy y x dx x yx ⎰⎰-++=004302[]||02223yx y xy x-+=.2322y xy x -+=通解为:c y xy x =-+2223.()().03223).2(2222=+--+-dy y xy x dx y xy x这里,()().32,,23,2222y xy x y x Q y xy x y x P -+-=+-=. 因为,xQ y x y P ∂∂=+-=∂∂22,所以方程是全微分方程. 故:()()()()()dy y xy x dx y xy x y x u y x 22,0,0223223,+--+-=⎰()()dy y xy x dx x yx⎰⎰-+-+=022023203[]||03223yx yxy y xx-+-+=.3223y xy y x x -+-=因此,所求方程的通解为:.3223c y xy y x x =-+-.28(P238第6题)设函数()y x u u ,=在凸区域(即包含区域内任意两点间的连线)2R ⊂Ω内连续可微分且K gradu ≤(常数).证明:对于Ω内任意两点B A ,,都有 ()()().,.B A d K B u A u ≤- 其中()B A d ,表示点B A ,之间的距离.证明:由于Ω为凸区域,故线段AB 整个属于Ω.设点B 的坐标为()000,,z y x ,点A 的坐标为()111,,z y x ,且令.,,010101z z z y y y x x x -=∆-=∆-=∆ 考虑一元函数()()z t z y t y x t x u t f ∆+∆+∆+=000,, ().10≤≤t (1) 显然,()()()().1,0A u f B u f ==(2)且()t f 在[]1,0上可微,并且 ()()x z t z y t y x t x u t f x ∆∆+∆+∆+'='.,,000 ()y z t z y t y x t x u y ∆∆+∆+∆+'+.,,000()z z t z y t y x t x u z ∆∆+∆+∆+'+.,,000 (3)于是,由微分学中值定理知()()()()()ξf f f B u A u '=-=-01()()=3Θ()x z z y y x x u x ∆∆+∆+∆+'.,,000ξξξ ()y z z y y x x u y ∆∆+∆+∆+'+.,,000ξξξ()z z z y y x x u z ∆∆+∆+∆+'+.,,000ξξξ ()..,,000z z y y x x gradu ∆+∆+∆+=ξξξ (4)由(4)式可知 ()()(z z y y x x gradu B u A u ,,000∆+∆+∆+=-ξξξ()().,..,,000B A d K z z y y x x gradu ≤∆+∆+∆+≤ξξξ29(P238第7题)求向量场⎪⎭⎫ ⎝⎛=x y grad f arctan 沿下列曲线l 的环量: (ⅰ)l 为圆周()()12222=-+-y x ;l 为圆周422=+y x (分为左、右半圆周分别计算).解: ⎭⎬⎫⎩⎨⎧⎪⎭⎫ ⎝⎛∂∂⎪⎭⎫ ⎝⎛∂∂=⎪⎭⎫ ⎝⎛=x y y x y x x y grad f arctan ,arctan arctan.,2222⎭⎬⎫⎩⎨⎧++-=y x x y x y (ⅰ) 2222.y x xdyy x ydx d f l l +++-=⎰⎰(格林公式)dxdy y x y y y x x x D⎰⎰⎥⎦⎤⎢⎣⎡⎪⎪⎭⎫⎝⎛+-∂∂-⎪⎪⎭⎫ ⎝⎛+∂∂=2222()().022********=⎥⎥⎦⎤⎢⎢⎣⎡+--+-=⎰⎰dxdy y x x y y x x y D (ⅱ)⎰⎰+-=ll y x ydx xdy d f 22.[].22.241412ππ==-=⎰l ydx xdy 30(P238第8题)求,f rot 其中().2,3,32x y z x y z f ---= 解:⎭⎬⎫⎩⎨⎧∂∂-∂∂∂∂-∂∂∂∂-∂∂=y P x Q x R z P z Q y R f rot ,,{}.6,4,2= 31(P238第9题)证明: ()f gradu f urot f u rot ⨯+=. 解:设()()(){}z y x R z y x Q z y x P f ,,,,,,,,=,则()()(){}.,,,,,.,,,z y x uR z y x Q u z y x uP uf =()()()()()()⎭⎬⎫⎩⎨⎧∂∂-∂∂∂∂-∂∂∂∂-∂∂=y uP x uQ x uR z uP z uQ y uR f rot ,, ,,{⎪⎭⎫ ⎝⎛∂∂+∂∂-⎪⎭⎫ ⎝⎛∂∂+∂∂⎪⎭⎫ ⎝⎛∂∂+∂∂-⎪⎪⎭⎫ ⎝⎛∂∂+∂∂=x u R x R u z u P z P u z u Q z Q u y u R y R u },⎪⎪⎭⎫ ⎝⎛∂∂+∂∂-⎪⎭⎫ ⎝⎛∂∂+∂∂y u P y P u x u Q xQu⎭⎬⎫⎩⎨⎧∂∂-∂∂∂∂-∂∂∂∂-∂∂=y P x Q x R z P z Q y R u ,,⎭⎬⎫⎩⎨⎧⎪⎪⎭⎫ ⎝⎛∂∂-∂∂+⎪⎭⎫ ⎝⎛∂∂-∂∂-⎪⎪⎭⎫ ⎝⎛∂∂-∂∂+y u P x u Q z u P x u R z u Q y u R ,.f gradu f urot ⨯+= 31(P246第1题)利用奥-高公式计算下列各曲面积分:(ⅰ)⎰⎰++Szdxdy ydzdx xdydz ,沿球面()()()2222R c z b y a x =-+-+-外侧;(ⅱ)⎰⎰++Sdxdy z dzdx y dydz x 333,沿正方体()10,10,10≤≤≤≤≤≤z y x 外表面;(ⅲ)()()()[]d S z z y y x x S⎰⎰++,cos ,cos ,cos 222,沿锥面()h z y x S ≤=+22的下侧;(ⅳ),3dxdy z S⎰⎰沿上半球面222y x a z --=的上侧.解:(ⅰ)⎰⎰++Szdxdy ydzdx xdydz (奥-高公式)()()()⎰⎰⎰Ω⎥⎦⎤⎢⎣⎡∂∂+∂∂+∂∂=dv z z y y x x .434.3333R R dv ππ===⎰⎰⎰Ω(ⅱ)⎰⎰++Sdxdy z dzdx y dydz x 333(奥-高公式)()()()xdydz d z z y y x x ⎰⎰⎰Ω⎥⎦⎤⎢⎣⎡∂∂+∂∂+∂∂=333()⎰⎰⎰Ω++=dxdydz z y x 2223=3(ⅲ)若取h z S =:1(上侧).则S 与1S 一起构成一个封闭曲面.记它们所围成的空间闭区域为Ω.在Ω上利用奥-高公式,便得:()()()[]d S z n z y n yx n x S S ⎰⎰+++1,cos ,cos ,cos 222dxdy z dzdx y dydz xS S 2221++=⎰⎰+ (奥-高公式)()()()xdydz d z z y y x x ⎰⎰⎰Ω⎥⎦⎤⎢⎣⎡∂∂+∂∂+∂∂=222()⎰⎰⎰Ω++=dxdydz z y x 2⎰⎰⎰Ω=zdxdydz 2(=⎰⎰⎰Ωxdxdydz 0=⎰⎰⎰Ωydxdydz )dz z rdr d h h r⎰⎰⎰=πθ202()dr r h r d h⎰⎰-=πθ20022212 .24πh = 所以 ()()()[]d S z n z y n y x n x S⎰⎰++,cos ,cos ,cos 222dxdy z dzdx y dydz x h S 222212++-=⎰⎰π=-=⎰⎰dxdy h h xyD 222π.2.22222πππh h h h =-=(ⅳ),3dxdy z S⎰⎰沿上半球面222y x a z --=的上侧.若取0:1=z S (下侧).则S 与1S 一起构成一个封闭曲面.记它们所围成的空间闭区域为Ω.在Ω上利用奥—高公式,便得:。
曲线积分与曲面积分习题及答案
第十章 曲线积分与曲面积分(A)1.计算()⎰+Ldx y x ,其中L 为连接()0,1及()1,0两点的连直线段。
2.计算⎰+Lds y x 22,其中L 为圆周ax y x =+22。
3.计算()⎰+Lds y x 22,其中L 为曲线()t t t a x sin cos +=,()t t t a y cos sin -=,()π20≤≤t 。
4.计算⎰+Ly x ds e22,其中L 为圆周222a y x =+,直线x y =及x 轴在第一角限内所围成的扇形的整个边界。
5.计算⎰⎪⎪⎭⎫ ⎝⎛+L ds y x 3434,其中L 为内摆线t a x 3cos =,t a y 3sin =⎪⎭⎫ ⎝⎛≤≤20πt 在第一象限内的一段弧。
6.计算⎰+Lds yx z 222,其中L 为螺线t a x c o s =,t a y sin =,at z =()π20≤≤t 。
7.计算⎰Lxydx ,其中L 为抛物线x y =2上从点()1,1-A 到点()1,1B 的一段弧。
8.计算⎰-+Lydz x dy zy dx x 2233,其中L 是从点()1,2,3A 到点()0,0,0B 的直线段AB 。
9.计算()⎰-+++Ldz y x ydy xdx 1,其中L 是从点()1,1,1到点()4,3,2的一段直线。
10.计算()()⎰---Ldy y a dx y a 2,其中L 为摆线()t t a x sin -=,()t a y cos 1-=的一拱(对应于由t 从0变到π2的一段弧):11.计算()()⎰-++Ldy x y dx y x ,其中L 是:1)抛物线x y =2上从点()1,1到点()2,4的一段弧;2)曲线122++=t t x ,12+=t y 从点()1,1到()2,4的一段弧。
12.把对坐标的曲线积分()()⎰+Ldy y x Q dx y x P ,,化成对弧和的曲经积分,其中L 为:1)在xoy 平面内沿直线从点()0,0到()4,3; 2)沿抛物线2x y =从点()0,0到点()2,4; 3)沿上半圆周x y x 22=+2从点()0,0到点()1,1。
(完整版)高等数学-微积分下-习题册答案-华南理工大学(6)
《高等数学》(下册)测试题一一、选择题(每小题3分,本大题共15分)(在括号中填上所选字母)1.设有直线3210:21030x y z L x y z +++=⎧⎨--+=⎩ 及平面:4220x y z π-+-=,则直线L ( A )A .平行于平面π;B .在平面π上;C .垂直于平面π;D .与平面π斜交.2.二元函数22,(,)(0,0)(,)0, (,)(0,0)xyx y x y f x y x y ⎧≠⎪+=⎨⎪=⎩在点(0,0)处( C )A .连续、偏导数存在;B .连续、偏导数不存在;C .不连续、偏导数存在;D .不连续、偏导数不存在.3.设()f x 为连续函数,1()d ()d ttyF t y f x x =⎰⎰,则(2)F '=( B )A .2(2)f ;B .(2)f ;C .(2)f -D .0.4.设∑是平面132=++z yx 由0≥x ,0≥y ,0≥z 所确定的三角形区域,则曲面积分(326)d x y z S ∑++⎰⎰=( D )A .7;B .221; C .14; D .21. 5.微分方程e 1x y y ''-=+的一个特解应具有形式( B )A .e x a b +;B .e x ax b +;C .e x a bx +;D .e x ax bx +.二、填空题(每小题3分,本大题共15分)1.设一平面经过原点及点(6,3,2)-,且与平面428x y z -+=垂直,则此平面方程为2230x y z +-=; 2.设arctan1x yz xy-=+,则d |z =24dx dy-; 3.设L 为122=+y x 正向一周,则2e d x Ly =⎰ 0 ;4.设圆柱面322=+y x ,与曲面xy z =在),,(000z y x 点相交,且它们的交角为π6,则正数=0Z 32; 5.设一阶线性非齐次微分方程)()(x Q y x P y =+'有两个线性无关的解21,y y ,若12y y αβ+也是该方程的解,则应有=+βα 1 .三、(本题7分)设由方程组e cos e sin uux vy v⎧=⎪⎨=⎪⎩确定了u ,v 是x ,y 的函数,求x u ∂∂及xv∂∂与y v ∂∂.解:方程两边取全微分,则e cos e sin e sin e cos u uu udx vdu vdvdy vdu vdv⎧=-⎪⎨=+⎪⎩ 解出2222cos e sin ,,e sin e cos u uu u xdx ydy du e vdx vdy x y du dv xdy ydx dv vdx vdy x y ----+⎧=+=⎪+⎪⎨-⎪=-+=⎪+⎩从而222222,,u x v y v x x x y x x y y x y∂∂-∂===∂+∂+∂+ 四、(本题7分)已知点)1,1,1(A 及点)1,2,3(-B ,求函数()3ln 32u xy z =-在点A 处沿AB 方向的方向导数.解:{}2122,1,2,,,333AB AB ⎧⎫=-=-⎨⎬⎩⎭2333336,,323232y x z gradu xy z xy z xy z ⎧⎫-=⎨⎬---⎩⎭,{}3,3,6A gradu =- 从而{}212,,3,3,62147333u AB∂⎧⎫=-⋅-=++=⎨⎬∂⎩⎭五、(本题8分)计算累次积分 24112211d e d d e dx xyy x x y x y y y+⎰⎰⎰).解:依据上下限知,即分区域为1212,:12,1:24,2xD D D D x y D x y =⋃≤≤≤≤≤≤≤≤作图可知,该区域也可以表示为2:12,2D y y x y ≤≤≤≤ 从而()2242222112112111d e d d e d d e d e e d xxxy y y y yx y x y x y y x y y y y +==-⎰⎰⎰⎰⎰⎰()()2222211e e2e e e e yy e =-=---=六、(本题8分)计算d d d I z x y z Ω=⎰⎰⎰,其中Ω是由柱面122=+y x 及平面1,0==z z 围成的区域.解:先二后一比较方便,111220122zD z I zdz dxdy z dz πππ⋅==⋅⋅==⎰⎰⎰⎰七.(本题8分)计算32()d x y z S ++∑⎰⎰,其中∑是抛物面222y x z +=被平面2=z 所截下的有限部分.解:由对称性322d 0,d d x S y S x S ==∑∑∑⎰⎰⎰⎰⎰⎰从而223222()d()d ()d 2xy x y z Sz S x y S +++=+=+∑∑∑⎰⎰⎰⎰⎰⎰ 222220(2D x y drr πθπ=+==⎰⎰⎰⎰⎰(4041115t ππ⎫=+-=+⎪⎪⎝⎭⎰八、(本题8分)计算22222(4cos )d cos d L x x x x x x y y y y y +-⎰,L 是点ππ(,)22A 到点(π,2π)B 在上半平面)0(>y 上的任意逐段光滑曲线.解:在上半平面)0(>y 上2223222322cos cos sin Q x x x x x x x x y y y y y y⎛⎫∂∂=-=-+ ⎪∂∂⎝⎭223223222(4cos )0cos sin P x x x x x x Qx y y y y y y y y x∂∂∂=+=-+=∂∂∂且连续, 从而在上半平面)0(>y 上该曲线积分与路径无关,取π(π,)2C22222222424415(4cos )d cos d 12L AC CB x x x x y y y πππππππππ=+=+-=-⎰⎰⎰⎰⎰ 九、(本题8分)计算222()d d ()d d ()d d x y y z y z z x z x x y +++++∑⎰⎰,其中∑为半球面221y x z --=上侧.解:补1:0z ∑=取下侧,则构成封闭曲面的外侧11222()d d ()d d ()d d x y y z y zz x z x x y ∑+∑∑+++++=-∑⎰⎰⎰⎰⎰⎰()122223211133132D Dx y dv x dxdy dv x dxdy dxdy πΩ∑Ω+=++-=+=⋅⋅+⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰2113400011922244d r dr r πππθππ=+=+⋅=⎰⎰ 十、(本题8分)设二阶连续可导函数)(x f y =,t sx =适合042222=∂∂+∂∂sy t y ,求)(x f y =.解:21,y s y f f t t s t∂-∂''=⋅=⋅∂∂222223222211,y s s s y f f f f f t t t t t s s t t ∂∂--∂∂⎛⎫⎛⎫⎛⎫'''''''==+⋅== ⎪ ⎪ ⎪∂∂∂∂⎝⎭⎝⎭⎝⎭ 由已知222223222440,0,y y s s f f f t s t t t∂∂-⎛⎫'''''+=⇒+⋅+= ⎪∂∂⎝⎭即()()()()()()()2221420,40,4x f x xf x x f x x f x c '⎡⎤'''''++=+=+=⎣⎦()()1122,arctan 422c c xf x f x c x '==++ 十一、(本题4分)求方程的x y y 2cos 4=+''通解. 解:解:对应齐次方程特征方程为21,240,2r r i +==±非齐次项()cos2,f x x =,与标准式()()()cos sin x m l f x e P x x P x x αββ=+⎡⎤⎣⎦ 比较得{}max ,0,2n m l i λ===,对比特征根,推得1k =,从而特解形式可设为()()*12cos sin cos2sin 2,k xn n y x Q x x Q x x e ax x bx x αββ=+=+⎡⎤⎣⎦**(2)cos2(2)sin 2,(44)sin 2(44)cos2y a bx x b ax x y a bx x b ax x '''=++-=--+-代入方程得14sin 24cos 2cos 2,0,4a xb x x a b -+=⇒==121cos 2sin 2sin 24y c x c x x x =+++十二、(本题4分)在球面2222a z y x =++的第一卦限上求一点M ,使以M 为一个顶点、各面平行于坐标面的球内接长方体的表面积最小. 解:设点M 的坐标为(),,x y z ,则问题即8V xyz =在22220x y z a ++-=求最小值。
曲线曲面积分部分难题解答
曲线、曲面积分部分难题解答1.(P201,第1题)计算下列标量函数的曲线积分(第一型曲线积分): (ⅰ)⎰lxyds ,l 为抛物线x y 22=上从原点)0,0(O 到点)2,2(A 的弧⋂OA ;(ⅱ)()⎰+l ds y x 22,l 为联结点)0,0(O 、)0,2(A 和)1,0(B 的三角形围线; (ⅲ)⎰+l s d y x 22,l 为圆周()022>=+a ax y x ;(ⅳ)()⎰++l ds z y x 222,l 为螺线()0,sin ,cos >===b bt z t a y t a x 的 一段弧()π20≤≤t ;(ⅴ)⎰l zds ,l 为曲线()⎩⎨⎧>===0,2222a ax y z y x 上从点)0,0,0(O 到)2,,(a a a A 的一段弧.解:(ⅰ)[]2,0,,21:2∈⎪⎩⎪⎨⎧==y y y y x l ,.1122dy y dy dy dx ds +=⎪⎪⎭⎫ ⎝⎛+=dy y y y xyds l 22201..21+=⎰⎰(令t y tan =)()()t td t sec sec .1sec 21222arctan 0-=⎰|2arctan 035sec 31sec 5121⎥⎦⎤⎢⎣⎡-=t t .151355+= (ⅱ)解:()⎰+l ds y x 22⎰⎰⎰++=OA AB OB()()3801.022222222==++=+⎰⎰⎰dx x dx x ds y xOA; .20,,0:≤≤⎩⎨⎧==x x x y OA()()[]()dy y y ds y xAB21222221.22-++-=+⎰⎰().535485512=+-=⎰dy y y .10,,22,:≤≤⎩⎨⎧-==y y x y y AB()().3101.02102222=++=+⎰⎰dy y ds y xBO,.10,,0:≤≤⎩⎨⎧==y y y x BO .3535+=++=⎰⎰⎰OA AB OB I(ⅲ)解法一:.20,sin 2,cos 22:π≤≤⎪⎪⎩⎪⎪⎨⎧=+=t t a y t a a x l ()().2cos 2sin 22222dt a dt t a t a dt t y t x ds =⎪⎭⎫⎝⎛+⎪⎭⎫ ⎝⎛-='+'=所以,()dt a t a t a s d y x l2sin 4cos 1420222222⎰⎰⎥⎦⎤⎢⎣⎡++=+πdt t a ⎰=π20222sin 2.24dt t a ⎰=π2022sin 2.22cos 22sin 2202202|a t a t d t a =⎪⎭⎫ ⎝⎛-=⎪⎭⎫ ⎝⎛=⎰ππ解法二:化l 为极坐标表示:().2,2,cos :⎥⎦⎤⎢⎣⎡-∈=ππθθθa r l()().22,s i n .c o s s i n ,c o s c o s :2πθπθθθθθθθ≤≤-⎩⎨⎧====a r y a r x l()()()().sin cos 2222θθθθθad dt a a dt r r ds =-+='+=所以,()()[]θθθθππad a a s d y x l⎰⎰-+=+2222222sin cos cosθθππd a a ⎰-=2222cos .2sin 2cos 2220222|a a d a===⎰ππθθθ(ⅳ) ()()()()()dt b a dt b t a t a dt t z t y t x ds 22222222cos sin +=++-='+'+'=()()()()[]dt b a bt t a t a ds z y x l2220222222.sin cos +++=++⎰⎰π()|203222220222223ππ⎥⎦⎤⎢⎣⎡++=++=⎰t b t a b a dt t b a b a[].433222222b a b a ++=ππ2.(P201,第2题)设有某种物质分布在椭圆1:2222=+by a x l 上,其密度().,y y x =μ求它的总质量.解:不妨假设.b a >⎰⎰==14l l yds ds y M ,其中.2,0,sin ,cos ;1⎥⎦⎤⎢⎣⎡∈⎩⎨⎧==πt t b y t a x l()()()().cos sin cos sin 22222222dt t b t a dt t b t a dt t y t x ds +=+-='+'=dt t b t a t b yds M l 222220cos sin sin 441+==⎰⎰π()()t d t b a a b cos cos 4202222⎰---=π()du u b a a b 222214---=⎰()du u b a a b 222214--=⎰du u ba a ba b ⎰---=202222224π(公式) |102222222222222arcsin .2.4⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡--+---=u b a a u b a a u b a a b a b .arcsin ..222222⎥⎥⎦⎤⎢⎢⎣⎡+--=b a b a b a a b 3.(P202,第3题)设曲线l 的长度为L ,而函数f 在包含l 的某个区域内连续.证明:()().max .P f L ds P f lP l∈≤⎰证明:由第一型曲线积分的定义()()i ni i d ls P f ds P f ∆=∑⎰=→.lim 1故()()ini id lsP f ds P f ∆=∑⎰=→.lim 10()i ni i d s P f ∆=∑=→.lim 1()i ni i d s P f ∆≤∑=→.lim 1()i ni lp d s P f ∆≤∑=∈→.m a x lim 1().m a x .P f L lP ∈=4.(P202,第4题)从原点()0,0O 到点()2,1A 沿下列不同路径分别计算第二型曲线积分 .⎰⋂-OAydx xdy(1).⋂OA 为直线段;(2).⋂OA 为抛物线22x y =上的弧; (3).⋂OA 为从点()0,0O 经点()0,1B 到点()2,1A 的折线⋂OBA .解:(1) .1~0:,,2:x xx x y OA ⎩⎨⎧==⋂[].022.1=-=-⎰⎰⋂dx x x ydx xdy OA(2).1~0:,,2:2x xx x y OA ⎩⎨⎧==⋂[].323224.|10312==-=-⎰⎰⋂x dx x x x ydx xdy OA(3).220=+=+=+⎰⎰⎰⋂OBBAOAydx xdy.1~0:,.,0:x x x y OB ⎩⎨⎧==();000.10=-=-⎰⎰dx x ydx xdy OB.2~0:,.,1:y y y x BA ⎩⎨⎧==().20.12=-=-⎰⎰dy y ydx xdy BA5.(P202,第5题)计算曲线积分 .⎰+lxdy ydx(1).l 为从点()0,a 点()0,a -的上半圆周()022>-=a x a y ; (2). l 为从点()0,a 点()0,a -的直线段()0>a ; (3). l 为逆时针方向的圆周.222a y x =+解:(1) .~0:,sin ,cos :πt t a y t a x l ⎩⎨⎧==()()()()[]dt t a t a t a t a xdy ydx l⎰⎰+-=+πcos .cos sin .sin ==⎰dt t aπ22cos 02sin 2|02=πt a .(2).~:,,0:a a x x x y l -⎩⎨⎧==().00.0=+=+⎰⎰-dx x xdy ydx aal(3).2~0:,sin ,cos :πt ta y t a x l ⎩⎨⎧==()()()()[]dt t a t a t a t a xdy ydx l⎰⎰+-=+π20cos .cos sin .sin==⎰dt t aπ2022cos 02sin 2|202=πt a .6.(P202,第6题)计算沿逆时针方向的圆周()222a y x =+的曲线积分()().22⎰+--+ly x dy y x dx y x解:π2~0:,.sin ,cos :t t a y t a x l ⎩⎨⎧==,所以,()()⎰+--+ly x dyy x dx y x 22()()()()dt a t a t a t a t a t a t a ⎰---+=π202cos .sin cos sin sin cos.22022ππ-=-=⎰dt a a 7.(P202,第7题)计算下列曲线积分,曲线的方向与参数增加方向: (ⅰ)()()d y xy y dx xy x l⎰-+-2222,l 为抛物线()112≤≤-=x x y ;(ⅱ)()()d y y x dx y x l ⎰-++2222,l 为折线()2011≤≤--=x x y ; (ⅲ)()dz x yzdy dx z y l ⎰-+-2222,l 的参数方程为().10,,3,2≤≤⎪⎩⎪⎨⎧===t t z t y t x ;解:(ⅰ).1~1:,:2-⎩⎨⎧==x xy x x l ()()d y xy y dx xy xl⎰-+-2222()()[]d x x x x x x x x⎰--+-=1124222..2.2 [].151454324|10531142-=⎥⎦⎤⎢⎣⎡-=-=⎰-x x dx x x (ⅱ)设点().0,1A 则()()dy y x dx y xL2222-++⎰()()d y y x d x y xOA2222-++=⎰()()d y y x d x y xAB2222-+++⎰.1~0:,,:x x x x y OA ⎩⎨⎧==()()()()[]321022222222=-++=-++⎰⎰dx x x x x dy y x dx y x OA;.2~1:,,2:x x x x y AB ⎩⎨⎧=-=()()()()()()()[]d xx x x x dy y x dx y xAB⎰⎰---+-+=-++21222222221.22()().3232222|213212=-=-=⎰x dx x 原式.343232=+=(ⅲ)()dz x yzdy dx z y l ⎰-+-2222 ()[]d t t t t t t t t ⎰-+-=102232643.2 (2)[].351527323|10571046=⎪⎭⎫ ⎝⎛-=-=⎰t t dt t t8.(P202,第8题)设曲线l 的长度为L ,而函数()P f 在包含l 的某个区域内连续.证明:())....P L P f lP l∈≤⎰证明:设()()(){}.,21P f P f P f = 由第二型曲线积分的定义及柯西不等式()()()[]∑⎰=→∆+∆=ni i i iid ly P f xP f r d P f 121..lim .故()()()[]∑⎰=→∆+∆=ni i i iid ly P f xP f P f 121..lim .()()[]∑=→∆+∆≤ni i i i i d y P f x P f 1210..lim ()()()()22122210.lim i i ni i i d y x P f P f ∆+∆+≤∑=→)()()221.lim i i ni i d y x P ∆+∆==→)()())⎰∑=→=∆+∆≤li i ni d ds P y x P ..lim 221)P L =m a .9.(P209,第1题)求下列曲面块的面积:(ⅰ)球面2222a z y x =++包含在圆柱面()a b b y x ≤<=+0222内的那部分面积;(ⅱ)圆锥面22y x z +=被圆柱面x y x 222=+截下的那一部分; (ⅲ)圆柱面222a y x =+被圆柱面222a z y =+截下的那一部分.解:(ⅰ)画出示意图222:b y x D xy ≤+. 将曲面方程化为:z ∑=d S d x d d x d y==. dxdy yx a a S S xyD ⎰⎰--==22222上 ⎥⎦⎤⎢⎣⎡--=-=⎰⎰|022022202.2122b br a a ra a r d rd πθπ极().422b a a a --=π(ⅱ)画出示意图x y x D xy 2:22≤+. 由曲面方程22:y x z +=∑,得,2122d x d y d x d y y z x z dS =⎪⎪⎭⎫⎝⎛∂∂+⎪⎭⎫ ⎝⎛∂∂+=.().222π===⎰⎰xy D D S dxdy S xy(ⅲ)利用对称性(仅在第一卦限内计算)18S S =,曲面1∑(1∑为∑在第一卦限的那部分,其面积设为1S )向yoz 面上的投影区域为222:a z y D yz ≤+. 将曲面1∑方程化为22y a x -=,则,22y a y yx --=∂∂,0=∂∂zx,所以,d y d zya a d y d z z x y x d S 22221-=⎪⎭⎫⎝⎛∂∂+⎪⎪⎭⎫ ⎝⎛∂∂+=.dydz y a a S S yzD ⎰⎰-==22188 ⎰⎰--=2202208y a a dz y a a dy .8820a adz a==⎰10.(P209,第2题)求下列曲面积分:(ⅰ)()⎰⎰++Sy x dS21,式中S 为四面体()1,0,0,0≤++≥≥≥z y x z y x 的表面;(ⅱ)()d S y x S⎰⎰+22,式中S 为圆柱体()h z a y x ≤≤≤+0,222的表面;(ⅲ)()dS z y x S⎰⎰++,式中S 为球面()2222a z y x =++的表面.解:(ⅰ).4321S S S S S +++=其中 ,0:1=z S d x d y dS =1,()()()dy y x dx dxdy y x y x dSxD S xy⎰⎰⎰⎰⎰⎰-++=++=++1010222111111dx x dx y x x ⎰⎰⎪⎭⎫⎝⎛-+=⎥⎦⎤⎢⎣⎡++-=-101010211111| 212ln -=; ,0:2=x S d y d z dS =2,()()()dz y dy dydz y y x dSyD S yz⎰⎰⎰⎰⎰⎰-+=++=++10102221101112()()dy y y dy y y⎰⎰⎪⎪⎭⎫⎝⎛+-+=+-=10212111211 ()2ln 11ln 12||1010-=+-+-=y y ; ,0:3=y S d z d x dS =3,()()()dz x dx dzdx x y x dSxD S zx ⎰⎰⎰⎰⎰⎰-+=++=++10102221101113()()dx x x dx x x⎰⎰⎪⎪⎭⎫⎝⎛+-+=+-=10212111211 ()2ln 11ln 12||1010-=+-+-=x x; ,1:4y x z S --= d x d y dS 34=,()()()dz y x dx dxdy y x y x dSxD S xy⎰⎰⎰⎰⎰⎰-++=++=++101022211311314dx x dx y x x ⎰⎰⎪⎭⎫⎝⎛-+=⎥⎦⎤⎢⎣⎡++-=-101010********| ().212ln 33211ln 321113|1010⎪⎭⎫ ⎝⎛-=-+=⎪⎭⎫⎝⎛-+=⎰x dx x ; ()⎰⎰++S y x dS 21()+++=⎰⎰121S y x dS()+++⎰⎰221S y x dS()⎰⎰++321S y x dS ()⎰⎰++421S y x dS()()().32ln 2213212ln 32ln 12ln 1212ln +-=⎪⎭⎫ ⎝⎛-=-+-+⎪⎭⎫ ⎝⎛-=(ⅱ).321S S S S ++=其中 ,0:1=z S d x d y dS =1,()()r d r r d d x d y y xdS y xaD S xy.42222221⎰⎰⎰⎰⎰⎰=+=+πθ 24a π=;,:2h z S = d x d y dS =2,()()r d r r d d x d y y xdS y xaD S xy.420222222⎰⎰⎰⎰⎰⎰=+=+πθ24a π=;,:2223a y x S =+其向yoz 面上的投影区域为⎩⎨⎧≤≤-≤≤.,0:a y a h z D yz . 将曲面3S 方程化为22y a x -±=,则,22y a y yx --=∂∂,0=∂∂zx,所以, d y d z ya a d y d z z x y x d S 22221-=⎪⎭⎫⎝⎛∂∂+⎪⎪⎭⎫ ⎝⎛∂∂+= ()()dydz ya a y y a dS y x yz D S ⎰⎰⎰⎰-⎥⎦⎤⎢⎣⎡+-=+222222322.23⎰⎰-=-haadz y a dy a22312..2arcsin 4303|h a a y h a aπ==或者()..22..32232233h a ah a dS a dS y xS S ππ===+⎰⎰⎰⎰()⎰⎰++S y x dS21()++=⎰⎰122S dS y x ()++⎰⎰222S y x()d S y xS ⎰⎰+322().22223344h a a h a a a+=++=ππππ(ⅲ)由积分区域的对称性,及被积函数的奇偶性知,显然()dS z y x S⎰⎰+++=⎰⎰dS x SdS y S⎰⎰().0=+++⎰⎰dS z y x S11.(P210,第3题)证明泊松公式()()d uc b a uf dS cz by ax f S⎰⎰⎰-++=++112222π其中S 为球面0,1222222>++=++c b a z y x ,f 为连续函数.证明:取新的空间直角坐标系Ouvw ,其中原点不变,使坐标平面Ouvw 与平面0=++cz by ax 重合,并使Ou 轴垂直于平面0=++cz by ax .则有其实根据坐标系Ouvw 选取方法的描述,我们不难看出Ou 轴上的单位向量就可取作平面0=++cz by ax 的单位法线向量.则222cb a cz by ax u ++++=(注意到,显然222cb a cz by ax u ++++=为点()z y x P ,,到平面0=++cz by ax 的距离).则 ()dS cz by ax f S⎰⎰++()d S c b a u f S⎰⎰++=222显然在新坐标系下,球面的形状并未改变(仍记为S ),且它的方程应为 1222=++w v u(因为在新的坐标系下,任何一个球面上的点到原点的距离仍然为1.) 得: ()22221u w v -=+当u 固定时,1222=++w v u 表示垂直于Ou 轴平面上的一个圆周. 进一步,我们把S 化为参数方程表示:.20,11,sin 1,cos 1,22πθθθ≤≤≤≤-⎪⎩⎪⎨⎧-=-==u u w u v u u,1='uu ,cos 12θuu v u --=';sin 12θuu w u--=',0='θu ,sin 12θθu v --='.cos 12θθu w -=' ;112222u w v u E u u u-='+'+'= ;0...=''+''+''=θθθw w v v u u F u u u.12222u w v u G -='+'+'=θθθ因此, 曲面的元素dS =dudv =故()dS cz by ax f S⎰⎰++()d S c b a u f S⎰⎰++=222()d u c b a u f d ⎰⎰-++=πθ2011222().211222⎰-++=du c b a u f π12(P210,第4题)设某种物质均匀分布在球面2222a z y x =++上(认为分布密度1=ρ).求它对于oz 轴的转动惯量.解:由公式 ()d Sy x J S⎰⎰+=22 由对称性 ()d S y x J S ⎰⎰+=1228其中2221:y x a z S --=,则2z z x y ∂∂==∂∂,所以,d S d x d d x d y==. 因此 ()d x d y yx a a y x S S xyD ⎰⎰--+==222221.88r d r ra r d a a.8022220⎰⎰-=πθ极()r d rra a a ra a .4022222⎰-+-=π r d r r a a a.4022⎰--=πr d r ra a a.140223⎰-+π()22022.2ra d r a a a--=⎰π()220223.12r a d ra a a ---⎰π()|232232.2a r a a -=π|2232.2ar a a --π434aπ-=44a π+ .384a π=13(P217,第1题)沿圆锥面()122≤=+z y xS的下侧,求曲面积分d S.⎰⎰,其中{}.,,z y x =解:⎰⎰⎰⎰++=SSzdxdy ydzdx xdydz d .化为第一型曲面积分计算.S 的向下的法向量{}⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧-++=-''=1,,1,,2222y x y y x x z z yx ,所以{}.c o s ,c o s ,c o s 21,2,222220γβα=⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧-++==y x y y x x n 故⎰⎰⎰⎰++=SSzdxdy ydzdx xdydz d .()⎰⎰++=SdS z y x γβαcos .cos .cos .⎰⎰⎪⎪⎪⎭⎫⎝⎛-+++=S dS z y x y yx x 222222222⎰⎰⎪⎪⎭⎫ ⎝⎛-+=S dS z y x 2222(根据第一型曲面积分的计算方法) ⎰⎰=⎪⎪⎭⎫⎝⎛+-+=xy D dxdy y x y x .02222222 14(P217,第2题)沿椭球面1222222=++cz b y a x 的外侧,求曲面积分.⎰⎰⎪⎪⎭⎫⎝⎛++S z dxdy y dzdx x dydz解:把S 分割为21,S S 两个部分.其中,222211:b y a x c z S --=(上侧);222221:by a x c z S ---=(下侧).21,S S 向xoy 面上的投影区域均为.1:2222≤+by a x D xy故dxdy b ya x c z dxdyxyD S ⎰⎰⎰⎰--=2222111作变量代换: ⎩⎨⎧==.s i n ,c o s θθbr y ar x由二重积分的换元法dr abrd rc dxdy b y a x c D D xyθ⎰⎰⎰⎰'-=--222221111.其中 ()()abr br b ar a y r yxrxr y x J =-=∂∂∂∂∂∂∂∂=∂∂=θθθθθθθcos sin sin cos ,,⎩⎨⎧≤≤≤≤'.20,10:πθr D 所以=⎰⎰1S zdxdydr abrd rc dxdy b y a x c D D xyθ⎰⎰⎰⎰'-=--222221111dr r r d c ab ⎰⎰-=πθ2010211dr r r d c ab ⎰⎰-=πθ2010211所以, ().212111|1022102πππc ab r c ab rd rc ab =⎥⎦⎤⎢⎣⎡--=---=⎰ 由轮换对称性,知:πa bcx dzdy S 4=⎰⎰; .4πb acy dzdx S=⎰⎰ 故⎰⎰⎪⎪⎭⎫ ⎝⎛++S z dxdy y dzdx x dydz +=⎰⎰S z dxdy+⎰⎰S x dzdy⎰⎰Sy dzdx+=πc ab 4πabc4().44222222a c c b b a abc b ac ++=+ππ15(P217,第3题)沿球面()()()2222R c z b y a x =-+-+-的外侧,求曲面积分.222⎰⎰++Sdxdy z dzdx ydydz x解:把S 分割为21,S S 两个部分.其中,()()2221:b y a x R c z S ----+=(上侧);()()2222:b y a x R c z S -----=(下侧).21,S S 向xoy 面上的投影区域均为:xy D ()()222R b y a x ≤-+-故 ()()dxdy b y a x R c dxdy z xyDS ⎰⎰⎰⎰⎥⎦⎤⎢⎣⎡----+=222221作变量代换: ⎩⎨⎧+=+=.s i n ,c o s θθr b y r a x由二重积分的换元法()()[]r d rr R c d x d y b y a x R c D D xy⎰⎰⎰⎰'-+=⎥⎦⎤⎢⎣⎡----+2222222. 其中 ()()r r r y r yxrx r y x J =-=∂∂∂∂∂∂∂∂=∂∂=θθθθθθθcos sin sin cos ,,⎩⎨⎧≤≤≤≤'.20,0:πθR r D 所以=⎰⎰12S dxdy z []rdr r R c D 222⎰⎰'-+()dr r rR c d R⎰⎰-+=πθ20222()rdr rR c R2222⎰-+=π()r dr r R r R c c R⎰-+-+=02222222πrdr r R c rdr c RR⎰⎰-+=02202222ππ()rdr r R R⎰-+0222π()()|||0222023220222132.222RR R r R r R c r c ⎥⎦⎤⎢⎣⎡--⎥⎦⎤⎢⎣⎡--⎪⎪⎭⎫ ⎝⎛=πππ.2344322R cR R c πππ++=(1)同理 ()()dxdy b y a x R c dxdy z xyDS ⎰⎰⎰⎰⎥⎦⎤⎢⎣⎡------=222221()dr r r R c d R⎰⎰⎥⎦⎤⎢⎣⎡---=πθ20222()rdr r R c R 20222⎰---=πrdr r R c rdr cRR⎰⎰-+-=0222222ππ()rdr r R R⎰--0222π()()|||0222023220222132.222RR R r R r R c r c ⎥⎦⎤⎢⎣⎡-+⎥⎦⎤⎢⎣⎡--⎪⎪⎭⎫ ⎝⎛-=πππ .2344322R cR R c πππ-+-= =⎰⎰Sdxdy z 2+⎰⎰12S dxdy z 32382cR dxdy z S π=⎰⎰ ; 由轮换对称性,知:=⎰⎰Sdydz x 2338aR π; =⎰⎰Sdzdx y 2.383bR π故.222⎰⎰++Sdxdy z dzdx y dydz x ⎰⎰=Sdydzx 2⎰⎰Sdzdx y 2⎰⎰Sdxdy z 2().383c b a R ++=π16(P217,第4题)设S 为长方体()c z b y a x ≤≤≤≤≤≤0,0,0的表面.沿外侧求曲面积分⎰⎰Sxyzdxdy解:把S 分割为654321,,,,,S S S S S S 六个部分.其中 ()b y a x c z S ≤≤≤≤=0,0:1的上侧; ()b y a x z S ≤≤≤≤=0,00:2的下侧; ()c z b y a x S ≤≤≤≤=0,0:3的前侧; ()c z b y x S ≤≤≤≤=0,00:4的后侧; ()c z a x b y S ≤≤≤≤=0,0:5的右侧; ()c z a x y S ≤≤≤≤=0,00:6的左侧.注意到除21,S S 外,其余四片曲面在xoy 面上的投影为零,因此=⎰⎰Sxyzdxdy +⎰⎰1S xyzdxdy ⎰⎰2S xyzdxdy⎰⎰=xyD xycdxdy ⎰⎰-xyD dxdy xy 0.c b a yd y x d x c ab.4022⎰⎰==17(P225第1题)利用格林公式计算下面的曲线积分(l 的方向为正方向): (ⅰ)()dy xy dx y x l22+-⎰,l 为圆周()222a y x =+;(ⅱ)()()dy y x dx y x l--+⎰,l 为椭圆⎪⎪⎭⎫⎝⎛=+12222b y a x ; (ⅲ)()xdy dx y l+-⎰,l 为曲线()1=+y x ;(ⅳ)()()dy y y e dx y e x lx sin cos 1---⎰,l 为区域().sin 0,0x y x D <<<<π;18(P225第2题)求()()dy m y e dx my y eI x xL-+-=⎰cos sin ,(m 为常数) 其中l 是自点()0,a A 经过圆周()022>=+a ax y x 的上半部分到点O(0,0)的半圆 周.(提示:作辅助线后用格林公式).解:cos ,cos x x P Q e y m e y y x∂∂=-=∂∂. 所以,由格林公式:221...428A O O A D D Q P a dxdy mdxdy m ma x y ππ⋂⎡⎤∂∂+=-===⎢⎥∂∂⎣⎦⎰⎰⎰⎰⎰⎰.所以,2220.888AOOAma ma ma I πππ⋂==-=-=⎰⎰ (因为,⎰⎰==OAadx 0.00)19(P225第5题)设函数()x f 在正半轴()0>x 上有连续导数()x f '且().21=f 若 在右半平面内沿任意闭合光滑曲线l ,都有 ()043=+⎰dy x xf ydx x l求函数().x f解:()y x y x P 34,=,()()x xf y x Q =,都是右半平面上的连续函数,由于在右半平面内沿任意闭合光滑曲线l ,都有 ()043=+⎰dy x xf ydx x l故有xQy P ∂∂=∂∂即 ()()x f x x f x '+=34 化简,得 ()()241x x f xx f =+' (1)为一阶线性微分方程,其通解为 ()⎥⎦⎤⎢⎣⎡+⎰⎰=⎰-c ex e x f dx xdx x 1214().1134xc x c x x +=+=代入条件()21=f ,得 .1=c故 ().13xx x f +=20(P226第6题)设D 是以光滑曲线l 为正向边界的有界闭区域,而函数()y x u u ,= 在闭区域D 上具有连续的二阶偏导数且记2222yux u u ∂∂+∂∂=∆证明: ⎰⎰⎰∆=∂∂Dl udxdy ds nu其中()()y n yu x n x u n u ,cos ,cos ∂∂+∂∂=∂∂ 表示函数()y x u u ,=沿边界曲线l 外法线方向的方向导数.证明:设为曲线l 的正向的切线向量,其方向余弦为()x ,cos τ、()y ,cos τ,则有 ()()y x n ,,=,()().,,x y n π-=故 ()()y x n ,c o s ,c o s =,()().,cos ,cos x y n -=()()ds x y uy x u ds n u l l ⎰⎰⎪⎪⎭⎫ ⎝⎛∂∂-∂∂=∂∂,cos ,cos ττ(由两型曲线积分之间的联系)dx y udy x u l ⎰∂∂-∂∂=(格林公式) ⎰⎰⎥⎦⎤⎢⎣⎡⎪⎪⎭⎫ ⎝⎛∂∂-∂∂-⎪⎭⎫ ⎝⎛∂∂∂∂=D dxdy y u y x u x =⎪⎪⎭⎫⎝⎛∂∂+∂∂=⎰⎰D dxdy y u x u 2222.⎰⎰∆Dudxdy21(P226第7题)在第6题的假设和记号下,证明:.22d s n uu u d x d y u d x d y y u x u D l D ⎰⎰⎰⎰⎰∂∂+∆-=⎥⎥⎦⎤⎢⎢⎣⎡⎪⎪⎭⎫ ⎝⎛∂∂+⎪⎭⎫ ⎝⎛∂∂ 证明:仿上题 ()()ds x y uy xu u ds n u ul l⎰⎰⎪⎪⎭⎫ ⎝⎛∂∂-∂∂=∂∂,cos ,cos ττ(由两型曲线积分之间的联系) dx yuu dy x u ul⎰∂∂-∂∂=(格林公式) ⎰⎰⎥⎦⎤⎢⎣⎡⎪⎪⎭⎫ ⎝⎛∂∂-∂∂-⎪⎭⎫ ⎝⎛∂∂∂∂=D dxdy y u u y x u u x ⎰⎰⎥⎦⎤⎢⎣⎡⎪⎪⎭⎫ ⎝⎛∂∂+∂∂∂∂+⎪⎪⎭⎫ ⎝⎛∂∂+∂∂∂∂=D dxdy y u u y u y u x u u x u x u 2222....dxdy y u x u u dxdy y u x u D D ⎪⎪⎭⎫ ⎝⎛∂∂+∂∂+⎥⎥⎦⎤⎢⎢⎣⎡⎪⎪⎭⎫ ⎝⎛∂∂+⎪⎭⎫ ⎝⎛∂∂=⎰⎰⎰⎰222222 udxdy u dxdy y u x u D D ∆+⎥⎥⎦⎤⎢⎢⎣⎡⎪⎪⎭⎫ ⎝⎛∂∂+⎪⎭⎫ ⎝⎛∂∂=⎰⎰⎰⎰22 移项,即得 .22ds n uu udxdy u dxdy y u x u D l D ⎰⎰⎰⎰⎰∂∂+∆-=⎥⎥⎦⎤⎢⎢⎣⎡⎪⎪⎭⎫ ⎝⎛∂∂+⎪⎭⎫ ⎝⎛∂∂ 22(P227第8题)格林第二公式 若函数()y x u u ,=和()y x v v ,=都满足第6题中的假设,证明:ds vu n v n u dxdy vuv u lD⎰⎰⎰∂∂∂∂=∆∆ 证明: ()()ds xy u y x u v ds n u vl l⎰⎰⎪⎪⎭⎫ ⎝⎛∂∂-∂∂=∂∂,cos ,cos (由两型曲线积分之间的联系)dx yuv dy x u vl⎰∂∂-∂∂=(格林公式) ⎰⎰⎥⎦⎤⎢⎣⎡⎪⎪⎭⎫ ⎝⎛∂∂-∂∂-⎪⎭⎫ ⎝⎛∂∂∂∂=D dxdy y u v y x u v x ⎰⎰⎥⎦⎤⎢⎣⎡⎪⎪⎭⎫ ⎝⎛∂∂+∂∂∂∂+⎪⎪⎭⎫ ⎝⎛∂∂+∂∂∂∂=D dxdy y u v y u y v x u v x u x v 2222....⎰⎰⎰⎰⎥⎥⎦⎤⎢⎢⎣⎡⎪⎪⎭⎫ ⎝⎛∂∂+⎪⎭⎫ ⎝⎛∂∂+⎪⎪⎭⎫⎝⎛∂∂∂∂+∂∂∂∂=D D dxdy y u x u v dxdy y v y u x v x u 22.....⎰⎰⎰⎰∆+⎪⎪⎭⎫⎝⎛∂∂∂∂+∂∂∂∂=D D udxdy v dxdy y v y u x v x u (1)由轮换对称性,知 ds n vul⎰∂∂ ...⎰⎰⎰⎰∆+⎪⎪⎭⎫ ⎝⎛∂∂∂∂+∂∂∂∂=DD vdxdy u dxdy y v y u x v x u (2) 于是ds n v u n uv ds vu n vnul l ⎰⎰⎪⎭⎫ ⎝⎛∂∂-∂∂=∂∂∂∂ ⎥⎦⎤⎢⎣⎡∆+⎪⎪⎭⎫ ⎝⎛∂∂∂∂+∂∂∂∂=⎰⎰⎰⎰D D udxdy v dxdy y v y u x v x u ..⎥⎦⎤⎢⎣⎡∆+⎪⎪⎭⎫ ⎝⎛∂∂∂∂+∂∂∂∂-⎰⎰⎰⎰D D vdxdy u dxdy y v y u x v x u .. ()⎰⎰∆-∆=Ddxdy v u u v .dxdy vuv u D⎰⎰∆∆=23(P227第9题)计算高斯(Gauss)积分 ()(b a I =,其中l 为简单(光滑)闭合曲线,为不在l 上的点()b a ,到l 上动点()y x ,的向量,而n 为l 上动点()y x ,处的法向量.解:设为曲线l 的正向的切线向量,其方向余弦为()x ,cos 、()y ,cos ,则有 ()()y x n ,,=,()().,,x y n π-=又设()(){}y x n ,cos ,,cos 0= ,{}b y a x --=,,则()()()()()()().,c o s .,c o s .,c o s ,c o s 220b y a x y b y x a x n r n r -+--+-==⎪⎭⎫ ⎝⎛= 故(()()()()()().,cos .,cos .22b y a x y n b y x n a x -+--+-= ()()()()()()()[]d s y n b y x n a x b y a x b a I l,cos ,cos .1,22-+--+-=⎰()()()()()()[]d s x b y y a x b y a x l,cos ,cos .122ττ----+-=⎰ ()()()().22⎰-+----=lb y a x dx b y dy a x 记 ()()(),,22b y a x b y y x P -+---=()()().,22b y a x ax y x Q -+--=则()()()(),2222b y a x a x b y y P-+-----=∂∂()()()().2222b y a x a x b y x Q -+-----=∂∂它们在xoy 平面内除点 ()b a ,外处处连续,且.0=∂∂-∂∂yP xQ(一)若点()b a ,在l 所包围的区域D 外,原式=0;(二)若点()b a ,在l 所包围的区域D 内,以点()b a ,为中心作一个充分小的圆()()).0(:222>=-+-εεεb y a x l 取逆时针方向,使之完全包含在l 为边界的区域内.记介于εl 和l 之间的区域为'εD .则在'εD 由格林公式可得:()()()()⎰-+----l b y a x dx b y dy a x 22()()()()⎰-+-----εl b y a x dx b y dy a x 22.0⎰⎰'=⎥⎦⎤⎢⎣⎡∂∂-∂∂=εDdxdy y P x Q所以,()()()()⎰-+----=l b y a x dx b y dy a x I 22()()⎰---=εεldx b y dy a x 2()()⎰---=εεl dx b y dy a x 21(格林公式)()()ππεεεεε2.22112222===⎥⎦⎤⎢⎣⎡∂-∂-∂-∂=⎰⎰⎰⎰DD dxdy dxdy y y b x a x .24(P227第10题)利用斯托克斯公式重新计算积分(例3) ()()(),⎰-+-+-=ld z y x d y z x d x y z I 其中l 是曲线⎩⎨⎧=+-=+.2,122z y x y x方向为从oz 轴正方向往负方向看去是顺时针方向. 解一:由斯托克斯公式d x d y y x z x y z z y x d x d y d z d x d y d z 2=---∂∂∂∂∂∂.取∑为平面2=+-z y x 上由椭圆所围成的那一小块曲面.(取下侧),因此{}1,1,1-=,.31,33,330⎭⎬⎫⎩⎨⎧-=n )()()()dS dxdy dz y x dy z x dx y z I l⎰⎰⎰⎰⎰∑∑-=-=-+-+-=3122.2.23.312⎰⎰⎰⎰-=-=-=xyxyD D dxdy dxdy π解二:(直接计算)()()()⎰⎰⎰∑=-+-+-=dxdy dz y x dy z x dx y z I l2其中,.1:22≤+y x D xy所以,.22π-=-=⎰⎰dxdy I xyD .25(P238第1题)下面的向量场是否为保守场?若是,并求位势:u(){};sin cos 2,sin cos 2122y x x y x y y x f --=解:(1)这里()x y y x y x P sin cos 2,2-=,().sin cos 2,2y x x y y x Q -=因为xQ x y y x y P ∂∂=--=∂∂sin 2sin 2,()2,R y x ∈ 所以{}y x x y x y y x f sin cos 2,sin cos 222--=是定义在全平面上的保守场.所以,()+-dx x yy x sin cos 22()dy y x x y sin cos 22-是某一个函数()y x u ,的全微分.故可取()()()()()dyy x x y dx x y y x y x u y x sin cos 2sin cos 2,2,0,02-+-=⎰()()dy y x x y dx x x yx ⎰⎰-+-=0202sin cos 2sin 00cos 2.cos cos 22y x x y +=则,所求的位势为 ().cos cos ,22c y x x y c y x u ++=+(){}.sin ,cos ,222z y e x z xe f y y --=--解:这里()()().sin ,,,cos ,,,2,,2z y z y x R e x z z y x Q xe z y x P y y -=-==--x Q xe y P y ∂∂=-=∂∂-2;y R z z Q ∂∂=-=∂∂sin ;.0zP x R ∂∂==∂∂ ().,,3R z y x ∈ 所以,{}z y e x z xe f y y sin ,cos ,22--=--为定义在全空间上的保守场.所以,+-dx xe y 2()zdz y dy e x z y sin cos 2---是某一个函数()z y x u ,,的全微分. (二)现取()()()()zdz y dy e x z dx xe z y x u y z y x y sin cos 2,,2,,0,0,0--+=--⎰ 取0M M 如图所示,从()0,0,00M 沿x 轴到点()0,0,1x M 再沿平行于y 轴的直线到点()0,,2y x M 最后沿平行于z 轴的直线到点(),,.M x y z 于是()()⎰⎰⎰-+-+=--z yyxzdz y dy ex dx xe z y x u 02sin 0cos 2,,[]|||022c o szy yx z y e x y x+++=-()[]()y z y x e x y x y-+-++=-c o s 222.c o s2z y e x y +=- 则,所求的位势为 ().cos ,,2c z y e x c z y x u y ++=+- 26(P238第2题)证明式(14-31),并由此求下面的曲线积分:()();).1(2,11,22⎰-xxdy ydx ()()⎰++1,1,63,2,1.).2(xydz zxdy yzdx解:(一)要证式(14-31)成立,即要证若平面区域D 内保守力场()(){}y x Q y x P f ,,,=有位势()y x u ,,则对D 内的任意两点()()222111,,,y x M y x M ,有 ()()()()()().,,,.1122,,2211y x u y x u dy y x Q dx y x P y x y x -=+⎰事实上,因为()(){}y x Q y x P f ,,,=为保守力场,故()()dy y x Q dx y x P l,.+⎰在D 内与路径无关,而只取决于路径的起点、终点.令 ()()()()()dy y x Q dx y x P y x v y x y x ,.,,,11+=⎰(1)则可证明()y x v ,也是f 在D 内的一个势函数.故()()C y x v y x u ≡-,, ,对任意()D y x ∈,成立 (2)取()()11,,y x y x =,并注意到()0,11=y x v (因为沿闭合曲线的积分为零),得()()()111111,,,y x u y x v y x u C =-=(2)式中再取()()22,,y x y x =,并注意到(),0,11=y x v 得()()C y x v y x u =-2222,, 即 ()()()()().,,3,,11222222y x u y x u C y x u y x v --============又由(1)式,注意到()y x v ,的记号,得 ()()()()()().,,,.1122,,2211y x u y x u dy y x Q dx y x P y x y x -=+⎰(二)()()⎰-2,11,22).1(x xdyydx 中,()2,x y y x P =,().1,2x xx y x Q -=-= 因为 xQx y P ∂∂==∂∂21,().0,,2≠∈x R y x 所以,2xxdyydx -是某一个函数()y x u ,的全微分. 故可取()()()⎰-=y x x xdy ydx y x u ,0,12,dy x dx y x ⎰⎰⎪⎭⎫ ⎝⎛-+=0110.x y -=所以()()()().2321121,22,12,11,22-=⎪⎭⎫ ⎝⎛---=-=-⎰u u xx d y yd x()()⎰++1,1,63,2,1.).2(xydz zxdy yzdx 中,()()().,,,,,,,,xy z y x R zx z y x Q yz z y x P ===因为x Q z y P ∂∂==∂∂;y R x z Q ∂∂==∂∂;.zP y x R ∂∂==∂∂ ().,,3R z y x ∈ 所以,+yzdx xydz zxdy +是某一个函数()z y x u ,,的全微分. (二)现取()()()xydz zxdy dx yz z y x u z y x ++=⎰,,0,0,0,,取0M M 如图所示,从()0,0,00M 沿x 轴到点()0,0,1x M 再沿平行于y 轴的直线到点()0,,2y x M 最后沿平行于z 轴的直线到点(),,.M x y z 于是()⎰⎰⎰++=zy x xydz dy x dx z y x u 000.00,,.xyz =所以()()()().03,2,11,1,61,1,63,2,1=-=++⎰u u x y d z z x d y y z d x27(P238第5题)验证下列方程我全微分方程,并求通解:()();04332).1(=-++dy y x dx y x ()().03223).2(2222=+-++-dy y xy x dx y xy x解:()();04332).1(=-++dy y x dx y x这里,()()y x y x Q y x y x P 43,,32,-=+=.因为,xQy P ∂∂==∂∂3,是全微分方程. 故:()()()()()dyy x dx y x y x u y x 4332,,0,0-++=⎰()()dy y x dx x yx ⎰⎰-++=04302[]||02223yxy xy x -+=.2322y xy x -+=通解为:c y xy x =-+2223.()().03223).2(2222=+--+-dy y xy x dx y xy x这里,()().32,,23,2222y xy x y x Q y xy x y x P -+-=+-=. 因为,xQ y x y P ∂∂=+-=∂∂22,所以方程是全微分方程. 故:()()()()()dy y xy x dx y xy xy x u y x 22,0,0223223,+--+-=⎰()()dy y xy x dx x y x⎰⎰-+-+=022023203[]||032203yxy xy y x x -+-+=.3223y xy y x x -+-=因此,所求方程的通解为:.3223c y xy y x x =-+-.28(P238第6题)设函数()y x u u ,=在凸区域(即包含区域内任意两点间的连线)2R ⊂Ω内连续可微分且K gradu ≤(常数).证明:对于Ω内任意两点B A ,,都有 ()()().,.B A d K B u A u ≤- 其中()B A d ,表示点B A ,之间的距离.证明:由于Ω为凸区域,故线段AB 整个属于Ω.设点B 的坐标为()000,,z y x ,点A 的坐标为()111,,z y x ,且令.,,010101z z z y y y x x x -=∆-=∆-=∆ 考虑一元函数()()z t z y t y x t x u t f ∆+∆+∆+=000,, ().10≤≤t (1) 显然, ()()()().1,0A u f B u f == (2)且()t f 在[]1,0上可微,并且 ()()x z t z y t y x t x u t f x ∆∆+∆+∆+'='.,,000 ()y z t z y t y x t x u y ∆∆+∆+∆+'+.,,000()z z t z y t y x t x u z ∆∆+∆+∆+'+.,,000 (3) 于是,由微分学中值定理知()()()()()ξf f f B u A u '=-=-01()()=3 ()x z z y y x x u x ∆∆+∆+∆+'.,,000ξξξ ()y z z y y x x u y ∆∆+∆+∆+'+.,,000ξξξ()z z z y y x x u z ∆∆+∆+∆+'+.,,000ξξξ ()..,,000z z y y x x gradu ∆+∆+∆+=ξξξ (4)由(4)式可知 ()()(z z y y x x gradu B u A u ,,000∆+∆+∆+=-ξξξ ()().,..,,000B A d K z z y y x x gradu ≤∆+∆+∆+≤ξξξ29(P238第7题)求向量场⎪⎭⎫ ⎝⎛=x y grad f arctan 沿下列曲线l 的环量:(ⅰ)l 为圆周()()12222=-+-y x ;l 为圆周422=+y x (分为左、右半圆周分别计算). 解: ⎭⎬⎫⎩⎨⎧⎪⎭⎫ ⎝⎛∂∂⎪⎭⎫ ⎝⎛∂∂=⎪⎭⎫ ⎝⎛=x y y x y x x y grad f arctan ,arctan arctan.,2222⎭⎬⎫⎩⎨⎧++-=y x x y x y (ⅰ)2222.y x xdyy x ydx d f ll+++-=⎰⎰(格林公式)d x d y y x y y y x x x D ⎰⎰⎥⎦⎤⎢⎣⎡⎪⎪⎭⎫ ⎝⎛+-∂∂-⎪⎪⎭⎫ ⎝⎛+∂∂=2222 ()().022********=⎥⎥⎦⎤⎢⎢⎣⎡+--+-=⎰⎰dxdy y x x y y x x y D (ⅱ)⎰⎰+-=l ly x ydx xdy d f 22.[].22.241412ππ==-=⎰l ydx xdy 30(P238第8题)求,f rot 其中().2,3,32x y z x y z f ---=解:⎭⎬⎫⎩⎨⎧∂∂-∂∂∂∂-∂∂∂∂-∂∂=y P x Q x R z P z Q y R f rot ,,{}.6,4,2=31(P238第9题)证明: ()f gradu f urot f u rot ⨯+=. 解:设()()(){}z y x R z y x Q z y x P f ,,,,,,,,=,则()()(){}.,,,,,.,,,z y x uR z y x Q u z y x uP uf =()()()()()()⎭⎬⎫⎩⎨⎧∂∂-∂∂∂∂-∂∂∂∂-∂∂=y uP x uQ x uR z uP z uQ y uR f rot ,, ,,{⎪⎭⎫ ⎝⎛∂∂+∂∂-⎪⎭⎫ ⎝⎛∂∂+∂∂⎪⎭⎫ ⎝⎛∂∂+∂∂-⎪⎪⎭⎫ ⎝⎛∂∂+∂∂=x u R x R u z u P z P u z u Q z Q u y u R y R u },⎪⎪⎭⎫ ⎝⎛∂∂+∂∂-⎪⎭⎫ ⎝⎛∂∂+∂∂y u P y P u x u Q x Qu ⎭⎬⎫⎩⎨⎧∂∂-∂∂∂∂-∂∂∂∂-∂∂=y P x Q x R z P z Q y R u ,,。
(整理)曲面积分精解6
第一节 第一类曲面积分内容要点一、 第一类曲面积分的概念与性质定义1 设曲面∑是光滑的, 函数),,(z y x f 在∑上有界, 把∑任意分成n 小块i S ∆(i S ∆同时也表示第i 小块曲面的面积),在i S ∆上任取一点),,,(i i i ζηξ作乘积),,2,1(),,(n i S f i i i i =∆⋅ζηξ并作和,),,(1∑=∆⋅ni i i i i S f ζηξ 如果当各小块曲面的直径的最大值0→λ时, 这和式的极限存在,则称此极限值为),,(z y x f 在∑上第一类曲面积分或对面积的曲面积分,记为∑⎰⎰=→∑∆=ni i i i i S f dS z y x f 1),,(lim ),,(ζηξλ (4.2) 其中),,(z y x f 称为被积函数,∑称为积分曲面. 二、对面积的曲面积分的计算法.),(),(1)],(,,[),,(22⎰⎰⎰⎰++=∑xyD y x dxdy y x z y x z y x z y x f dS z y x f (4.3)例题选讲例 1 计算曲面积分,⎰⎰∑z dS其中∑是球面2222a z y x =++被平面)0(a h h z <<=截出的顶部.解 ∑的方程为.222y x a z --=∑在xOy 面上的投影区域:xy D {}.),(2222h a y x y x -≤+又,122222yx a a z z y x --=++利用极坐标故有⎰⎰⎰⎰-=∑xy D r a adxdy z dS 22 220202222r a rdr d a r a ardrd ha Dxy-=-=⎰⎰⎰⎰-θθπ22022)(212h a r a In a -⎥⎦⎤⎢⎣⎡--=π.2h aaIn π=例2(E01)计算,)(⎰⎰∑++dS z y x 其中∑为平面5=+z y 被柱面2522=+y x 所截得的部分.解 积分曲面∑-=,5:y z 其投影域},25),({22≤+=y x y x Dxy,2)1(011222dxdy dxdy dxdy z z dS y x =-++=++=故⎰⎰⎰⎰⎰⎰+=-++=++∑xyxyD D dxdy x dxdy y y x dS z y x )5(2)5(2)(.2125)cos 5(2520πθθπ=+=⎰⎰rdr r d例3(E02)计算,⎰⎰∑xyzdS 其中∑是由平面0,0,0===z y x 及1=++z y x 所围四面体的整个边界曲面.解 如图(见系统演示),.2341xyzdS xyzdS ⎪⎪⎪⎭⎫⎝⎛+++=⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰∑∑∑∑∑注意到在321,,∑∑∑上,被积函数,0),,(==xyz z y x f 故上式右端前三项积分等于零. 在4∑上,,1y x z --=所以,3)1()1(112222=-+-+=++y x z z从而⎰⎰⎰⎰∑∑=4xyzdS xyzdS ⎰⎰--=xyD dxdy y x xy ,)1(3其中xy D 是4∑在xOy 面上的投影区域.=⎰⎰∑xyzdS ⎰⎰---=xdy y x y xdx 1010)1(3dx y y x x x-⎰⎥⎦⎤⎢⎣⎡--=10103232)1(3dx x x ⎰-⋅=1036)1(3.1203)33(634312=-+-=⎰dx x x x x 例4计算,dS xyz ⎰⎰∑其中∑为抛物面).10(22≤≤+=z y x z解 根据抛物面22y x z +=对称性,及函数||xyz 关于yOz xOz 、坐标面对称,有dxdy y x y x xy xyzdS dS xyz xy D ⎰⎰⎰⎰⎰⎰'+++=∑=∑2222)2()2(1)(441⎰⎰⎰⎰+=+⋅=20125122220412sin 241sin cos 4ππdr r r tdt rdr r rt t r dt.420151254141512-=⎪⎭⎫ ⎝⎛-=⎰du u u 例 5 计算,⎰⎰∑xdS 其中∑是圆柱面,122=+y x 平面2+=x z 及0=z 所围成的空间立体的表面.解,=⎰⎰⎰⎰⎰⎰⎰⎰∑+∑+∑∑321∑∑12,在xOy 面上得投影域.1:22≤+y x D xy于是⎰⎰⎰⎰∑==1,0xyD xdxdy xdS ⎰⎰⎰⎰∑=+=2,011xyD dxdy xxdS将)1:,(313223∑∑∑-±=x y 投影到zOx 面上,得投影域.10,11:+≤≤≤≤-x y x D xydxdz y y xxdS xdS xdS zxD z x ⎰⎰⎰⎰⎰⎰⎰⎰++=∑+∑=∑221232313,12112211222π=-=-+=⎰⎰⎰⎰+-x D dz x xdxdz x x x xz所以.00ππ=++=∑⎰⎰xdS例6(E03)计算,)(222⎰⎰∑++dS z y x∑为内接于球面2222a z y x =++的八面体a z y x =++||||||表面.解 被积函数222),,(z y x z y x f ++=关于三个坐标面和原点均对称.积分曲面∑也具有对称性,故原积分⎰⎰⎰⎰∑∑=1,8其中),0,,(:1>=++∑z y x a z y x 1∑在xOy 面上的投影为,0:a x D xy ≤≤,0x a y -≤≤而,y x a z --=所以.3122dxdy dxdy z z dS y x =++=dS z y x dS z y x ⎰⎰⎰⎰∑∑++=++1)(8)(222222dxdy y x a y xxy D 3])([8222⎰⎰--++=dy y x a y x dxxa a⎰⎰---++=022203])([8.324a =例7(E04)求球面2222a z y x =++含在圆柱体ax y x =+22内部的那部分面积. 解 由对称性知,所求曲面面积A 是第一卦限上面积1A 的4倍.1A 的投影区域),0,(:22≥≤+y x ax y x D xy曲面方程,222y x a z --=故,122222yx a a z z y x --=++所以 ⎰⎰⎰⎰⎰⎰-=--=++=20cos 022222224414πθθa D D yxra rdr d a yx a adxdy dxdy z z A xyxy.42)1(sin 422202a a d a-=-=⎰πθθπ例8 设有一颗地球同步轨道卫星, 距地面的高度为36000=h km ,运行的角速度与地球自转的角速度相同. 试计算该通讯卫星的覆盖面积与地球表面积的比值(地球半径6400=R km). 解 取地心为坐标原点,地心到通讯卫星重心的连线为z 轴,建立如图坐标系.卫星覆盖的曲面∑是上半球面倍半顶角为α的圆锥面所截得的部分.∑的方程为,222y x R z --=它在xOy 面上的投影区域.sin :2222αR y x D xy ≤+于是通讯卫星的覆盖面积为).cos 1(22απ-=R A将h R R +=αcos 代入上式得 .21222h R h R h R R R A +⋅=⎪⎭⎫ ⎝⎛+-=ππ 由此得这颗通讯卫星的覆盖面积与地球表面积之比为%.5.4242≈R Aπ 由以上结果可知,卫星覆盖了全球三分之一以上的面积,故使用三颗相隔32π角度的通讯卫星就可以覆盖几乎地球全部表面.课堂练习1.当∑是xOy 面内的一个闭区域时, 曲面积分⎰⎰∑dS z y x f ),,(与二重积分有什么关系?2.计算⎰⎰∑+dS y x )(22, 其中∑为锥面)(3222y x z +=被平面0=z 和3=z 所截得的部分..3. 求半径为a 的球的表面积.第二节 第二类曲面积分内容要点一、有向曲面:双侧曲面 单侧曲面在科学幻想故事“一列名叫麦比乌斯的地铁”②中,故事情节围绕一列从波士顿地铁系统中神秘消逝的第86号列车而展开. 这个地铁系统前一天才举行通车仪式, 但是现在第86号却消失了, 什么痕迹也没有留下.事实上, 很多人都报告说他们听到了列车在它们的正上方或正下方飞驰的声音, 但是谁也没有真正地看到过它. 当确定这列火车为止的所有努力都失败之后, 哈佛的数学家罗杰.图佩罗给交通中心打电话, 并且提出了一个惊人的理论:这个地铁系统非常复杂, 以至于它可能变成了一个单面典面(麦比乌斯带)的一部分, 而那列在当时丢失的火车可能正在这条带子的“另一个”面上跑它的正常路线. 面对极度惊愕的市政官员, 他耐心地解释了这种系统的拓扑奇异性. 在经过一段时间——确切地说是十星期之后——这列丢失的列车又重新出现了,它的乘客都安然无恙,只是有一点累.二、第二类曲面积分的概念与性质定义1 设∑为光滑的有向曲面, 其上任一点),,(z y x 处的单位法向量,cos cos cos k j i nγβα++= 又设k z y x R j z y x Q i z y x P z y x A),,(),,(),,(),,(++=其中函数R Q P ,,在∑上有界, 则函数γβαc o s c o s c o s R Q P n v ++=⋅则∑上的第一类曲面积分⎰⎰∑⋅dS n v.)cos cos cos (⎰⎰∑++=dS R Q P γβα (5.5)称为函数),,(z y x A在有向曲面∑上的第二类曲面积分.三、第二类曲面积分的计算法设光滑曲面∑:),(y x z z =,与平行于z 轴的直线至多交于一点,它在xOy 面上的投影区域为xy D , 则.⎰⎰⎰⎰±=∑yzD dxdy y x z y x R dxdy z y x R )],(,,[),,(. (5.9)上式右端取“+”号或“-”号要根据γ是锐角还是钝角而定.例题选讲第二类曲面积分的计算法例1 (E01) 计算曲面积分,222⎰⎰∑++dxdy z dzdx y dydz x 其中∑是长方体}0,0,0|),,{(c z b y a x z y x ≤≤≤≤≤≤=Ω的整个表面的外侧.解 如图(见系统演示), 把有向曲面∑分成六部分.除43,∑∑外,其余四片曲面在yOz 面上的投影值为零,因此⎰⎰⎰⎰⎰⎰∑∑∑+=34222dydz x dydz x dydz x .0222bc a dydz dydz a yzyzD D ⎰⎰⎰⎰=-=类似地可得,22ac b dzdx y ⎰⎰∑=.22ab c dxdy z =⎰⎰∑于是所求曲面积分为.)(abc c b a ++例2 (E02) 计算,⎰⎰∑xyzdxdy 其中∑是球面1222=++z y x外侧在0,0≥≥y x 的部分.解 把∑分成1∑和2∑两部分,1:2211y x z --=∑,1:2222y x z ---=∑⎰⎰⎰⎰⎰⎰∑∑∑+=12xyzdxdy xyzdxdy xyzdxdydxdy y x xy dxdy y x xy xyxyD D )1(12222------=⎰⎰⎰⎰dxdy y x xyxyD ⎰⎰--=2212利用极坐标.1521sin 222=-=⎰⎰θθrdrd r r xyD 例3 (E03) 计算,)(2⎰⎰∑-+zdxdy dydz x z 其中∑是旋转抛物面2/)(22y x z +=介于平面0=z 及2=z 之间的部分的下侧.解.cos cos )(dS cos )()(222dxdy x z x z dydz x z ⎰⎰⎰⎰⎰⎰∑∑∑+=+=+γαα 在曲面∑上,有.11c o s c o s x x z x -=-=-=γα ⎰⎰⎰⎰∑--+=-+∑dxdy z x x z zdxdy dydz x z ]))([()(22dxdy y x x x y x xy D ⎰⎰⎭⎬⎫⎩⎨⎧+--⋅⎥⎦⎤⎢⎣⎡++-=)(21)()(412222.821cos )(212020222222πθθπ=⎪⎭⎫ ⎝⎛+=⎥⎦⎤⎢⎣⎡++=⎰⎰⎰⎰rdr r r d dxdy y x x xy D 课堂练习1.当∑是xOy 面内的一个闭区域时, 曲面积分⎰⎰∑dxdy z y x f ),,(与二重积分有什么关系?2.计算曲面积分,⎰⎰∑++zdxdy ydzdx xdydz 其中∑为平面,0=x ,0=y 1=++z y x 所围成的空间区域的整个边界曲面的外侧.第三节 高斯公式 通量与散度内容要点一、高斯公式定理1设空间闭区域Ω由分片光滑的闭曲面∑围成,函数),,(z y x P 、),,(z y x Q 、),,(z y x R 在Ω上具有一阶连续偏导数,则有公式⎰⎰⎰⎰⎰∑Ω++=⎪⎪⎭⎫ ⎝⎛∂∂+∂∂+∂∂Rdxdy Qdzdx Pdydz dv z R y Q x P (6.1)这里∑是Ω的整个边界曲面的外侧, γβαcos ,cos ,cos 是∑上点),,(z y x 处的法向量的方向余弦. (6.1)式称为高斯公式.若曲面∑与平行于坐标轴的直线的交点多余两个,可用光滑曲面将有界闭区域Ω分割成若干个小区域,使得围成每个小区域的闭曲面满足定理的条件,从而高斯公式仍是成立的.此外,根据两类曲面积分之间的关系,高斯公式也可表为.)cos cos cos (⎰⎰⎰⎰⎰∑Ω++=⎪⎪⎭⎫ ⎝⎛∂∂+∂∂+∂∂dS R Q P dv z R y Q x P γβα二、通量与散度一般地,设有向量场k z y x R j z y x Q i z y x P z y x A),,(),,(),,(),,(++=,其中函数P 、Q 、R 有一阶连续偏导数,∑是场内的一片有向曲面,n 是曲面∑的单位法向量. 则沿曲面∑的第二类曲面积分⎰⎰⎰⎰⎰⎰∑∑∑++=⋅=⋅=ΦRdxdy Qdzdx Pdydz S d n A S d A称为向量场A通过曲面∑流向指定侧的通量. 而zR y Q x P ∂∂+∂∂+∂∂ 称为向量场A 的散度,记为A div,即zRy Q x P A div ∂∂+∂∂+∂∂= . (6.5)例题选讲利用高斯公式计算例1(E01)计算曲面积分,)()(⎰⎰∑-+-xdydz z y dxdy y x 其中∑为柱面122=+y x 及平面3,0==z z 所围成的空间闭区域Ω的整个边界曲面的外侧(图10-6-2).解 ,)(x z y P -=,0=Q ,y x R -=,z y x P -=∂∂,0=∂∂y Q ,0=∂∂zR利用高斯公式,得 原式=⎰⎰⎰Ω-dxdydz z y )((利用柱面坐标)⎰⎰⎰Ω-=dz rdrd z r θθ)sin (rdz z r dr d ⎰⎰⎰-=10320)sin (θθπ.29π-=例2(E02)计算,)()(22⎰⎰∑-+-dxdy z x dzdx y z其中∑为旋转抛物面221y x z --=在10≤≤z 部分的外侧.解 作辅助平面∑=1,0:z 则平面∑1与曲面∑围成空间有界闭区域,Ω由高斯公式得⎰⎰∑-+-dxdy z x dzdx y z)()(22⎰⎰⎰⎰∑∑+∑-+---+-=11)()()()(2222dxdy z x dzdx y z dxdy z x dzdx y z ⎰⎰⎰⎰⎰∑Ω---=1)()2(2dxdy z x dv⎰⎰⎰⎰⎰--=-xyD r d x rdz dr d σθπ22011022.434cos 0)1(42012212πππθθππ-=+-=⋅--=⎰⎰⎰rdr r d dr r r例3(E03)计算,)cos cos cos (222⎰⎰∑++dS z y x γβα 其中∑为锥面222z y x =+)0(h z ≤≤, γβαcos ,cos ,cos 为此曲面外法线向量的方向余弦.解 补充平面),(:2221h y x h z ≤+=∑取1∑的上侧,则1∑+∑构成封闭曲面, 设其所围成空间区域为.Ω 于是⎰⎰∑+∑++1)cos cos cos (222dS z y x γβα ⎰⎰⎰Ω++=dv z y x )(2⎰⎰⎰+++=h y x D dz z y x dxdy xy22)(2⎰⎰⎰⎰⎰⎰⎰=-=--==+ππθ200422222.21)()(222h D D h yx h rdr r h d dxdy y x h zdz dxdy xyxy而⎰⎰⎰⎰⎰⎰∑∑===++11,)cos cos cos (422222xyD h dxdy hdxdy z dS z y xπγβα故.2121)c o s c o s c o s (444222h h h dS z y x πππγβα-=-=++⎰⎰∑例4(E04)证明: 若∑为包围有界域Ω的光滑曲面, 则⎰⎰⎰⎰⎰⎰⎰⎰Ω∑Ω⎪⎪⎭⎫ ⎝⎛∂∂∂∂+∂∂∂∂+∂∂∂∂-∂∂=∆dV z v z u y v y u x v x u dS n uvudV v 其中nu∂∂为函数u 沿曲面∑的外法线方向的方向导数,u ,v 在Ω上具有一阶和二阶连续偏导数,符号222222zy x ∂∂+∂∂+∂∂=∆称为拉普拉斯算子. 这个公式称为格林第一公式.证 因为=∂∂n u γβαcos cos cos z u y u xu∂∂+∂∂+∂∂n u ⋅∇=,其中}cos ,cos ,{cos γβα=n 是∑在点),,(z y x 处 的外法线的方向余弦,于是⎰⎰⎰⎰⎰⎰∑∑∑⋅∇=⋅∇=∂∂dS n u v dS n u v dS nuv)[()(dS z u v y u v x u v ⎰⎰∑⎥⎦⎤⎢⎣⎡⎪⎭⎫⎝⎛∂∂+⎪⎪⎭⎫ ⎝⎛∂∂+⎪⎭⎫ ⎝⎛∂∂=γβαcos cos cos dv z u v z y u v y x u v x ⎰⎰⎰Ω⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛∂∂∂∂+⎪⎪⎭⎫ ⎝⎛∂∂∂∂+⎪⎭⎫ ⎝⎛∂∂∂∂=.dv z v z u y v y u x v x u udv v ⎰⎰⎰⎰⎰⎰ΩΩ⎝⎛⎪⎭⎫∂∂∂∂+∂∂∂∂+∂∂∂∂+∆=将上式右端移至左端即得所要证明的等式.通量与散度例5(E05)求向量场k z j y i x r++=的流量(1) 穿过圆锥)0(222h z z y x ≤≤≤+的底(向上); (2) 穿过此圆锥的侧表面(向外).解 设21,S S 及S 分别为此圆锥的面,侧面及全表面,则穿过全表面向外的流量 Q ⎰⎰+⋅=S S d r⎰⎰⎰=Vdv r div⎰⎰⎰=Vdv 3.3h π=(1)穿过底面向上的流量 1Q ⎰⎰+⋅=S S d r⎰⎰=≤+=hz z y x zdxdy 222⎰⎰≤+=222z y x hdxdy .3h π=(2)穿过侧表面向外的流量2Q 1Q Q -=.0=课堂练习1.利用高斯公式计算,)()()(222⎰⎰+-+-+-S dxdy xy z dzdx xz y dydz yz x其中+S 为球2222)()()(R c z b y a x =-+-+-面的外侧.第四节 斯托克斯公式 环流量与旋度斯托克斯公式是格林公式的推广,格林公式建立了平面区域上的二重积分与其边界曲线上的曲线积分之间的联系,而斯托克斯公式则建立了沿空间曲面∑的曲面积分与沿∑的边界曲线Γ的曲线积分之间的联系.分布图示★ 斯托克斯公式★ 例1 ★ 例2★ 例3★ 空间曲线积分与路径无关的条件 ★ 三元函数的全微分求积 ★ 环流量与旋度★ 例4 ★ 例5★ 例6★ 斯托克斯公式的向量形式 ★ 向量微分算子 ★ 内容小结 ★课堂练习★ 习题11-7★返回内容要点一、斯托克斯公式定理1 设Γ为分段光滑的空间有向闭曲线,∑是以Γ为边界的分片光滑的有向曲面,Γ的正向与∑的侧符合右手规则,函数),,(),,,(),,,(z y x R z y x Q z y x P 在包含曲面∑在内的一个空间区域内具有一阶连续偏导数, 则有公式dxdy y P x Q dzdx x R z P dydz z Q y R ⎪⎪⎭⎫ ⎝⎛∂∂-∂∂+⎪⎭⎫⎝⎛∂∂-∂∂+⎪⎪⎭⎫ ⎝⎛∂∂-∂∂⎰⎰∑.⎰++=LRdz Qdy Pdx (7.1)公式(7.1)称为斯托克斯公式.为了便于记忆,斯托克斯公式常写成如下形式:⎰⎰⎰Γ∑++=∂∂∂∂∂∂Rdz Qdy Pdx RQ P zy x dxdy dzdx dydz 利用两类曲面积分之间的关系,斯托克斯公式也可写成.c o s c o s c o s ⎰⎰⎰Γ∑++=∂∂∂∂∂∂Rdz Qdy Pdx dS RQPzy x γβα二、空间曲线积分与路径无关的条件三、环流量与旋度 设向量场,),,(),,(),,(),,(k z y x R j z y x Q i z y x P z y x A++= 则沿场A中某一封闭的有向曲线C 上的曲线积分⎰++=ΓCRdz Qdy Pdx称为向量场A沿曲线C 按所取方向的环流量. 而向量函数⎭⎬⎫⎩⎨⎧∂∂-∂∂∂∂-∂∂∂∂-∂∂y P x Q x R z P z Q y R ,,称为向量场A 的旋度,记为A rot,即.k y P x Q j x R z P i z Q y R A rot ⎪⎪⎭⎫ ⎝⎛∂∂-∂∂+⎪⎭⎫ ⎝⎛∂∂-∂∂+⎪⎪⎭⎫ ⎝⎛∂∂-∂∂=旋度也可以写成如下便于记忆的形式:RQPz y x k j i A rot ∂∂∂∂∂∂=.四、向量微分算子:,k zj y i x ∂∂+∂∂+∂∂=∇例题选讲利用斯托克斯公式计算例1(E01)计算曲线积分,⎰Γ++ydz xdy zdx 其中Γ是平面1=++z y x 被三坐标面所截成的三角形的整个边界, 它的正向与这个三角形上侧的法向量之间符合右手规则.解 按斯托克斯公式,有,⎰⎰⎰∑++=++Γdxdy dzdx dydz ydz xdy zdx由于∑的法向量的三个方向余弦都为正,再由对称性知:,3⎰⎰⎰⎰=∑++xyD d dxdy dzdx dydz σ所以.23=++⎰Γydz xdy zdx例 2 计算曲线积分,)()()(222222dz y x dy x z dx z y -+-+-⎰Γ其中Γ是平面2/3=++z y x 截立方体:,10≤≤x ,10≤≤y 10≤≤z 的表面所得的接痕,从x 轴的正向看法,取逆时针方向.解 取∑为题设平面的上侧被Γ所围成部分,则该平面的法向量,3}3,1,1{=n即,31cos cos cos ===λβα原式dS y x x y z y z y x z⎰⎰∑---∂∂∂∂∂∂=222222313131⎰⎰∑++-=dS z y x )(34.293322334-=-=∑⋅-=⎰⎰⎰⎰xyD dxdy dS例3(E02)计算,)()()(222222⎰Γ+++++dz y x dy z x dx z y 式中Γ是).0,0(2,222222><<=+=++z R r rx y x Rx z y x此曲线是顺着如下方向前进的: 由它所包围在球面Rx z y x 2222=++上的最小区域保持在左方.解 由斯托克斯公式,有 原式⎰⎰∑-+-+-=dS y x x z z y ]cos )(cos )(cos )[(2γβαdS R z y x R y x z R x z y ⎰⎰∑⎥⎦⎤⎢⎣⎡-+-+⎪⎭⎫ ⎝⎛--=)()(1)( ⎰⎰∑-=dS y z )(2(利用对称性)⎰⎰⎰⎰∑=∑=dS R zdS γcos ..2222R rd R Rdxdy rxy x πσ==∑=⎰⎰⎰⎰≤+例4 求矢量场k z j xy i x A 222+-=在点()2,1,10M 处的散度及旋度.解 A div z A y A x A z y x ∂∂+∂∂+∂∂=z x x 2)2(2+-+=.2z =故0M A div .4=A rot k y A x A j x A z A i z A y A x y z x x z⎪⎪⎭⎫ ⎝⎛∂∂-∂∂+⎪⎭⎫ ⎝⎛∂∂-∂∂+⎪⎪⎭⎫ ⎝⎛∂∂-∂∂= k y j i)02()00()00(--+-+-= .2k y -=故0M Arot .2k -=例5(E03)设,32222yz xy y x u -+= 求grad u ; div(grad u );rot(grad u ). 解 g r a d u⎭⎬⎫⎩⎨⎧∂∂∂∂∂∂=z u y u x u ,,}.6,4,2{yz xy xy -= div(gradu)⎭⎬⎫⎩⎨⎧∂-∂+∂∂+∂∂=z yz y xy x xy )6()4()2(y x y 642-+=).(4y x -=rot(gradu).,,222222⎭⎬⎫⎩⎨⎧∂∂∂-∂∂∂∂∂∂-∂∂∂∂∂∂-∂∂∂=x y u y x u z x u x z u y z u z y u 因为22232yz xy y x u -+=有二阶连续导数,故二阶混合偏导数与求导次序无关,故rot(gradu).0=注:一般地,如果u 是一单值函数,我们称向量场A=grad u 为势量场或保守场,而u 称为场A的势函数.例6(E04)设一刚体以等角速度k j i z y xωωωω++=绕定轴L 旋转,求刚体内任意一点M 的线速度v的旋度.解 取定轴l 为z 轴,点M 的内径rOM =,k z j y i x ++=则点M 的线速度v r⨯=ωzyx kji z yx ωωω =,)()()(k x y j z x i y z y x x z z yωωωωωω-+-+-= 于是v rot xy z x y z z y x kj i y x x z z y ωωωωωω---∂∂∂∂∂∂=)(2k j i z y x ωωω++=.2ω =即速度场v 的旋等于角速度ω的 2 倍.课堂练习1. 计算,)()()(222⎰-+-+-AmBdz xy z dy xz y dx yz x 其中AmB 是螺线πϕϕϕ2,sin ,cos h z a y a x ===从)0,0,(a A 到),0,(h a B 的一段曲线. 2. 物体以一定的角速度ω依逆时针方向绕Oz 轴旋转, 求速度v 和加速度w在空间点),,(z y x M 和已知时刻t 的散度和旋度.。
曲面积分习题课_
∑
x P
y Q
y Q
z R
dS z R
y
cosα cos β cosγ = ∫∫
∑
x P
2. 旋度
i 称向量 x P j y Q k 为向量场的旋度 (rotA) . z R
R Q P R Q P = ( )i + ( ) j + ( )k. y z z x x y
2. 基本技巧 (1) 利用对称性及重心公式简化计算 (2) 利用高斯公式 注意公式使用条件
两类关系公式的另一种表达形式
向量点积法
设∑ : z = f ( x , y ), 法向量为 { f x′ , f y′ , 1},
I = ∫∫ Pdydz + Qdzdx + Rdxdy
∑
= ∫∫ { P , Q , R} { f x′ , f y′ ,1}dxdy
∑
′ ′ 将∑在xoy面投影± ∫∫ {P, Q, R} { fx , f y , 1}dxdy.
解 设( X , Y , Z )为∏ 上任意一点 , 则得出 ∏ 的方程为 则得出∏ xX yY + + zZ = 1 2 2 由点到平面的距离公式,得 由点到平面的距离公式 得 1 ρ ( x, y, z ) = x2 y2 2 + +z 4 4
x2 y2 由z = 1 2 2
z = x x x2 y2 2 1 2 2
∑ + ∑1 + ∑ 2
∫∫
ydydz xdzdx + z 2dxdy ,
= ∫∫∫ 2zdv
( = 柱坐标) dθ ∫ rdr ∫ 2 zdz + ∫ dθ ∫ rdr ∫ 2 zdz ∫
曲线曲面积分(单元练习题)答案
曲线积分与曲面积分单元练习题一、填空题:1设L为x'+y2=1上点(1,0)到(_1,0)的上半弧段,贝U ]2ds = 2兀;x = 2 cost2.f_ ds = —兀2,其中C是曲线《y = 2sint介于t = 0到t =兀一段;C X + y 8--------- z = t3.L为逆时针方向的圆周:(x -2)2• (y • 3)2=4 ,贝y J ydx_ xdy= _8兀;L4.设C是由x轴、y轴与直线x + y =1围成的区域的正向边界,贝U :,ydx_ xdy =C5.第一类曲面积分dS^的面积;6.设曲面为:x2y2z^a2,则11 (x2y2z2)dS 二4 a4;Z7•设 3 :x2y2z2= a2.则■j':i z2dS = - ~ a4;i J—&格林(Green)公式指出了下列两类积分:「平面上第二类曲线积分和二重积分之间关系。
高斯(Gauss)公式指出了下列两类积分:空间上的第二类曲面积分与三重积分—之间关系。
二、计算题:1.计算.yds,其中L是抛物线y =x2上自点(0, 0)到(1, 1)的一段弧。
L1 2 1 2 于 1 5 5「1解x 1 4 x dx (1 4x )2|0=012 122.计算.xyds,其中L为从(0, 0)到(2, 0)的上半圆弧:x2• y2二2x( y 一0)。
L解jxyds= ((1 +cost)sintdt = 2L 33 .已知平面曲线弧段L是圆x2y^4上从点2,0到0,2的有向弧段,试计算I = L xydx解 I 22cost2sintd 2cost = -8 ^costsin 2tdt =4•计算|二j (x 2 2xy)dx (x 2 y 4)dy ,其中L 为由点0(0,0)到点A(1,1)的曲线JIy = sin — x .2I = j (x 22xy)dx (x 2y 4)dy1 1 二 0x 2dx0(1 y4)dy解法二:根据第二类曲线积分计算。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第十章 曲线积分与曲面积分(第六部分)曲面积分习题解答一、对面积的曲面积分1.计算曲面积分⎰⎰∑++dS y x z )342(,其中∑为平面1432=++zy x 在第一卦限中的部分. 分析 因为∑:1432=++z y x ,可恒等变形为∑:y x z 3424--=,又因被积函数y x z 342++与∑形式相同,故可利用曲面方程来简化被积函数,即将4342=++y x z 代入,从而简化计算。
解 平面∑方程的为)321(4yx z --=(如图), ∑在xoy 面上的投影区域xy D :0,0,132≥≥≤+y x yx ;34,2-=∂∂-=∂∂y z x z ,面积元素 dxdy dxdy y z x z dS 361122=⎪⎪⎭⎫⎝⎛∂∂+⎪⎭⎫ ⎝⎛∂∂+= 从而 ⎰⎰⎰⎰⋅=++∑xyD dxdy dS y x z 3614)342( 61432213614=⋅⋅⋅=. 2. 计算曲面积分⎰⎰∑+dS y x |)|(,其中∑为1||||||=++z y x .解 由对称性可知,=⎰⎰∑xdS ,由轮换对称性和代入技巧知,⎰⎰⎰⎰⎰⎰∑∑∑=++=dS dS z y x dS y 31|)||||(|31||,再由曲面积分的几何意义知,34238=⋅=⎰⎰∑dS ,所以,334|)|(=+⎰⎰∑dS y x.y二、对坐标的曲面积分1.计算曲面积分⎰⎰∑dydz x 2.其中∑为球面2222R z y x =++在第一卦限部分的上侧。
分析 由于∑不是封闭曲面,且只是对坐标z y ,的曲面积分,故直接计算即可。
解 因∑:222z y R x --=取前侧,且∑在yoz 面上的投影区域为0 ,0 , :222≥≥≤+z y R z y D yz .于是得 ⎰⎰∑dydz x 2dydz z y R yzD ⎰⎰--=)(222⎰⎰⋅-θ=πRrdr r R d 02220 )( 402228141212R r r R Rπ=⎥⎦⎤⎢⎣⎡-π=. 2. 计算曲面积分⎰⎰∑++=ydzdx xdydz zdxdy I .其中∑是柱面122=+y x 被平面0=z 及3=z 所截得的在第一卦限内的部分的前侧。
分析 本题为计算对坐标的组合积分,但由于∑不是封闭曲面,且其中的三个曲面积分化为二重积分计算又比较容易(因为∑为柱面,在xoy 坐标面上的投影0=dxdy ),故直接计算即可。
解 因∑在xoy 坐标面上的投影0=dxdy ,所以0=⎰⎰∑zdxdy ;又∑在yoz 、zox 坐标面上的投影区域为:30 ,10 :≤≤≤≤z y D yz ; 30 ,10 :≤≤≤≤z x D zx .⎰⎰∑++=ydzdx xdydz zdxdy I⎰⎰⎰⎰∑∑+=ydzdx xdydz⎰⎰⎰⎰-+-=zxyzD D dzdx x dydz y 2211⎰⎰-=3 0 1 0212dz dx x 3412⋅π⋅=π=23.3. 计算曲面积分⎰⎰∑++-+=dxdy z y dzdx z y x dydz xz I )2()(2222.其中∑为上半球体222a y x ≤+,2220y x a z --≤≤的表面外侧。
分析由于 为封闭曲面,所以可采高斯公式计算。
解 本题中,2xz P =,22z y x Q -=,z y R 22+=.积分曲面∑为封闭曲面,设∑所围成的空间闭区域为Ω(如图),则Ω:222a y x ≤+,2220y x a z --≤≤;或 Ω:a r ≤≤0,20π≤ϕ≤,π≤θ≤20.于是由Gauss 公式,得⎰⎰⎰Ω∂∂+∂∂+∂∂=dxdydz zR y Q x P I )(⎰⎰⎰Ω++=dxdydz y x z )(222⎰⎰⎰ϕ⋅ϕθ=ππadr r r d d 02220 2 0sin 552a π=. 注 若将本题中的积分曲面∑改为上半球面222y x a z --=的上侧,则由于∑不是封闭曲面,又不是平面块,采用下述方法计算较为简便,现计算如下:补平面块)( ,0 :222a y x z ≤+=∑'取下侧,则∑与∑'构成一封闭曲面,且取外侧(如图所示)。
在封闭曲面∑'+∑上应用Gauss 公式,得⎰⎰∑'+∑++-+dxdy z y dzdx z y xdydz xz )2()(2222⎰⎰⎰Ω∂∂+∂∂+∂∂=dv z Ry Q x P )(⎰⎰⎰Ω++=dv y x z)(222⎰⎰⎰ϕ⋅ϕθ=ππadr r r d d 0 2220 2 0sin 552a π=.又 ⎰⎰∑'++-+dxdy z y dzdx z y x dydz xz )2()(2222⎰⎰∑'+=dxdy z y )2(2222a dxdy xyD π-=-=⎰⎰.故 ⎰⎰⎰⎰∑'+∑∑'++-+-=dxdy z y dzdx z y x dydz xz I )2()( )(2222)2(5225a a π--π=)5(5232a a +π=.yy4. 计算曲面积分⎰⎰∑+++++=dxdy z z y x f dzdx y z y x f dydz x z y x f I ]),,([]),,(2[]),,([其中) , ,(z y x f 为连续函数,∑是平面1=+-z y x 在第四卦限部分的上侧。
分析 由于x z y x f P +=),,(,y z y x f Q +=),,(2,z z y x f R +=),,(,其中) , ,(z y x f 未知,而积分曲面∑为平面块,故可考虑利用两类曲面积分之间的关系,把给定的第二型曲面积分转化为第一型曲面积分计算。
解 ∑(如图所示)在xoy 面上的投影区域01 ,10 :≤≤-≤≤y x x D xy .∑的方向余弦为31cos =α,31cos -=β,31cos =γ,故 ⎰⎰∑++β++α+=z z y x f y z y x f x z y x f I ),,([cos ]),,(2[cos ]),,({[⎰⎰⎰⎰∑∑=+-=dS dS z y x 31)(31 21331===⎰⎰⎰⎰xyxyD D dxdy dxdy . 注 在本题中,若用定义直接计算,由于被积函数中含有未知函数) , ,(z y x f ,那么转化成三个二重积分后,下一步计算二重积分就很难进行了。
一般情况下,若被积函数中含有抽象函数,通常不采用直接计算的方法,而是采用将第二型曲面积分转化为第一型曲面积分或Gauss 公式的方法来处理。
5. 设)(u f 具有连续导数,计算曲面积分dxdy z z y f y dzdx y z y f z dydz x I ⎥⎦⎤⎢⎣⎡+⎪⎭⎫ ⎝⎛+⎥⎦⎤⎢⎣⎡+⎪⎭⎫ ⎝⎛+=⎰⎰∑33311其中∑为由22y x z +=和2=z 所围成区域的外侧。
分析 令3x P =,31y z y f z Q +⎪⎭⎫ ⎝⎛=,31z z y f y R +⎪⎭⎫ ⎝⎛=,由于被积函数含有抽象函数⎪⎭⎫⎝⎛z y f ,如果直接计算很难求出。
考虑到∑为封闭曲面,而且y)(3222z y x zR y Q x P ++=∂∂+∂∂+∂∂, 因此可考虑应用高斯公式计算。
解 令 3x P =,31y z y f z Q +⎪⎭⎫ ⎝⎛=,31z z y f z R +⎪⎭⎫⎝⎛=,则 23x x P =∂∂,2231y z y f z y Q +⎪⎭⎫ ⎝⎛'=∂∂,2231z z y f z z R +⎪⎭⎫ ⎝⎛'-=∂∂, 应用高斯公式,得⎰⎰⎰Ω∂∂+∂∂+∂∂=dxdydz z R y Q x P I )(⎰⎰⎰Ω++=dxdydz z y x )(3222 在柱面坐标系下,Ω:2≤≤ρz ,20≤ρ≤,π≤θ≤20. 计算得⎰⎰⎰Ω++=dxdydz z y x I )(3222⎰⎰⎰ρπ+ρρρθ=2222 0 2 0 )(3dz z d d⎰ρρ-ρ-+ρρπ=20 332)31382(6d ⎰ρρ-ρ+ρπ=2 0 43)486(2d20524)54423(2ρ-ρ+ρπ=π=5144.6.计算曲面积分⎰⎰∑++++=23222)(z y x zdxdyydzdx xdydz I ,其中∑为曲面911625122)()(-+-=-y x z )(0≥z 的上侧。
分析 由于23222)(z y x xP ++=,23222)(z y x yQ ++=,23222)(z y x zR ++=,有252222222)(z y x x z y x P ++-+=∂∂,252222222)(z y x y z x y Q ++-+=∂∂,252222222)(z y x z x y z R ++-+=∂∂,从而0=∂∂+∂∂+∂∂zR y Q x P ,故可考虑用高斯公式。
但是曲面不封闭,且三个偏导数在),,(000点不连续,所以,需要补面去掉奇点。
解 补有向曲面0, :22221>=++∑z r z y x ,r 足够小,使1∑完全包含于∑y内,取下侧,补有向曲面0z :2=∑,取位于小圆222 r y x =+与椭圆9)1(16)2(122-+-=y x 之间部分,取下侧,则21∑+∑+∑构成封闭曲面,且方向为外侧。
设由21∑+∑+∑所围成的空间闭区域为Ω. 应用高斯公式,得⎰⎰∑+∑+∑++++2123222)(z y x zdxdyydzdx xdydz 0=∂∂+∂∂+∂∂=⎰⎰⎰Ωdxdydz z R y Q x P )(. 为计算⎰⎰⎰⎰∑∑++=++++113232221)(zdxdyydzdx xdydz r z y x zdxdy ydzdx xdydz ,再补面2223,0:r y x z ≤+=∑,取上侧,用高斯公式⎰⎰⎰⎰⎰Ω'∑+∑-=++dxdydz zdxdy ydzdx xdydz 33132rπ-=.而03=++⎰⎰∑zdxdy ydzdx xdydz ,所以,323311r zdxdy ydzdx xdydz π-=-=++⎰⎰⎰⎰⎰⎰∑∑+∑∑,π2)(123222-=++++⎰⎰∑z y x zdxdy ydzdx xdydz .又 0)(223222=++++⎰⎰∑z y x zdxdyydzdx xdydz , 因此,ππ2)2(0=--=I .7. 求力k x j z i y F ++=沿有向闭曲线Γ所作的功,其中Γ为平面1=++z y x 被三个坐标面所截成的三角形的整个边界,从z 轴正向看去,沿顺时针方向。
解 由已知 ⎰Γ++=xdz zdy ydx W .取∑为平面1=++z y x 的下侧被Γ所围成的部分,按斯托克斯公式,有 2333==-=++-=⎰⎰⎰⎰⎰⎰∑∑xyD dxdy dxdy dxdy dzdx dydz W .(注:本资料素材和资料部分来自网络,仅供参考。