数学建模基础(入门必备)
数学建模基础知识
将path[0][2]、path[1][0]后path[1][2]
初始时,有A-1[i][j]=cost[i][j]。当求从顶点vi到顶点 vj的路径上所经过的顶点编号不大于k+1的最短路径长 度时,要分两种情况考虑:
一种情况是该路径不经过顶点编号为k+1的顶点, 此时该路径长度与从顶点vi到顶点vj的路径上所经过的 顶点编号不大于k的最短路径长度相同;
另一种情况是从顶点vi到顶点vj的最短路径上经过 编号为k+1的顶点。
{ int i;
for (i=0;i<n;i++)
if (s[i]==1)
{ printf(“从%d到%d的最短路径长度为:
%d\t路径为:",v0,i,dist[i]);
printf("%d,",v0);
/*输出路径上的起点*/
Ppath(path,i,v0);
/*输出路径上的中间点*/
printf("%d\n",i);
➢ 最小生成树问题
➢ 连线问题—欲修筑连接多个城市的铁路设计一个线路图, 使总造价最低(prim算法、Kruskal算法 )
➢ 图的匹配问题
➢ 人员分派问题:n个工作人员去做n份工作,每人适合做
其中一份或几份,问能否每人都有一份适合的工作?如果 不能,最多几人可以有适合的工作?(匈牙利算法)
➢ 遍历性问题
{2,3,4,5,6}
{0,4,5,6,11,∞,∞}
{3,4,5,6}
{0,4,5,6,11,9,∞}
{4,5,6}
{0,4,5,6,11,9,19}
数学建模基础知识
数学建模基础知识引言:数学建模是一门以数学为工具、以实际问题为研究对象、以模型为核心的学科。
它通过将实际问题抽象为数学模型,并利用数学方法对模型进行分析和求解,从而得到问题的解决方案。
在数学建模中,有一些基础知识是必不可少的,本文将介绍数学建模的基础知识,包括概率与统计、线性代数、微积分和优化算法。
一、概率与统计概率与统计是数学建模的基础。
概率论用于描述随机现象的规律性,统计学则用于从观测数据中推断总体的特征。
在数学建模中,需要根据实际问题的特点选择合适的概率模型,并利用统计方法对模型进行参数估计。
1.1 概率模型概率模型是概率论的基础,在数学建模中常用的概率模型包括离散型随机变量模型和连续型随机变量模型。
离散型随机变量模型适用于描述离散型随机事件,如投硬币的结果、掷骰子的点数等;连续型随机变量模型适用于描述连续型随机事件,如身高、体重等。
在选择概率模型时,需要根据实际问题的特点进行合理选择。
1.2 统计方法统计方法用于从观测数据中推断总体的特征。
在数学建模中,经常需要根据样本数据对总体参数进行估计。
常用的统计方法包括点估计和区间估计。
点估计用于估计总体参数的具体值,如均值、方差等;区间估计则用于给出总体参数的估计范围。
另外,假设检验和方差分析也是数学建模中常用的统计方法。
二、线性代数线性代数是数学建模的重要工具之一。
它研究线性方程组的解法、向量空间与线性变换等概念。
在线性方程组的求解过程中,常用的方法包括高斯消元法、矩阵的逆和特征值分解等。
线性代数还广泛应用于图论、网络分析等领域。
2.1 线性方程组线性方程组是线性代数的基础,它可以用矩阵和向量的形式来表示。
求解线性方程组的常用方法有高斯消元法、矩阵的逆矩阵和克拉默法则等。
高斯消元法通过矩阵的初等行变换将线性方程组转化为简化行阶梯形式,从而求得方程组的解。
2.2 向量空间与线性变换向量空间是线性代数的核心概念,它由若干个向量组成,并满足一定的运算规则。
数学建模常用知识点总结
数学建模常用知识点总结1.1 矩阵及其运算矩阵是一个矩形的数组,由行和列组成。
可以进行加法、减法和数乘运算。
1.2 矩阵的转置对矩阵进行转置就是把矩阵的行和列互换得到的新矩阵。
1.3 矩阵乘法矩阵A和矩阵B相乘得到矩阵C,要求A的列数等于B的行数,C的行数是A的行数,列数是B的列数。
1.4 矩阵的逆只有方阵才有逆矩阵,对于矩阵A,如果存在矩阵B,使得AB=BA=I,那么B就是A的逆矩阵。
1.5 行列式行列式是一个标量,是一个方阵所表示的几何体积的无向量。
1.6 特征值和特征向量对于矩阵A,如果存在标量λ和非零向量x,使得Ax=λx,那么λ就是A的特征值,x就是对应的特征向量。
1.7 线性相关和线性无关对于一组向量,如果存在一组不全为零的系数,使得它们的线性组合等于零向量,那么这组向量就是线性相关的。
1.8 空间与子空间空间是向量的集合,子空间是一个向量空间的子集,并且本身也是一个向量空间。
1.9 线性变换对于向量空间V和W,如果满足T(v+u)=T(v)+T(u)和T(kv)=kT(v),那么T就是一个线性变换。
1.10 最小二乘法对于一个线性方程组,如果方程个数大于未知数个数,可以使用最小二乘法来求得最优解。
1.11 奇异值分解矩阵分解的方法之一,将一个任意的矩阵分解为三个矩阵的乘积。
1.12 特征分解对于一个对称矩阵,可以将其分解为特征向量和特征值的乘积。
1.13 线性代数在建模中的应用在数学建模中,线性代数是非常重要的基础知识,它可以用来表示和分析问题中的数据,解决矩阵方程组、优化问题、回归分析等。
二、微积分2.1 极限和连续性极限是指一个函数在某一点上的局部性质,连续性则是函数在某一点上的全局性质。
2.2 导数和微分对于一个函数y=f(x),它的导数可以表示为f’(x),其微分可以表示为dy=f’(x)dx。
2.3 泰勒级数泰勒级数是一种用多项式逼近函数的方法,在建模中可以用来进行函数的近似计算。
数学建模入门知识
2008 数码相机定位
2009
制动器试验台的 控制方法分析
眼科病床的合理 安排
2010年上海世博 会影响力的定量 评估 交巡警服务平台 的设置与调度
卫星和飞船的跟 踪测控
输油管的布置 企业退休职工养 老金制度的改革
储油罐的变位识 2010 别与罐容表标定 2011 城市表层土壤重 金属污染分析
2012 葡萄酒的评价
1.4 数学建模的意义
•在一般工程技术领域数学建模仍然大有用武之地; •在高新技术领域数学建模几乎是必不可少的工具; •进入一些数学的新领域,为数学建模开辟了新处女地: 诸如经济、生态、人口、地质等领域。
Chap2 数模竞赛简介
01 数模竞赛的来源 05 数模竞赛的概况 02 数模竞赛的流程 06 数模竞赛的赛题 数模竞赛的知识储备 03 数模竞赛与优研 07 (西电) 04 数模竞赛类别 08 数模竞赛的素质要求
3.2 数学建模的论文撰写
0. 摘要
• • • • a. 模型的数学归类(在数学上属于什么类型) b. 建模的思想(思路) c. 算法思想(求解思路) d. 建模特点(模型优点,建模思想或方法,算法特点,结果 检验,灵敏度分析,模型检验…….) • e. 主要结果(数值结果,结论)(回答题目所问的全部“问题”) 表述:准确、简明、条理清晰、合乎语法;符合打印文章 格式; 校对:务必认真。
刊登于次年“数学的实践与认识” 第1期
3.获得高水平学科竞赛奖的学生 满足以下条件之一即可: (1)ACM/ICPC国际大学生程序设计竞赛亚 洲区分站赛银奖及以上获得者; (2)全国大学生电子设计竞赛省级一等奖及 以上获得者; (3)全国大学生电子设计竞赛嵌入式系统专 题邀请赛、信息安全专题邀请赛和模拟电子 系统专题邀请赛国家二等奖及以上获得者; (4)全国大学生工程训练综合能力竞赛国家 二等奖及以上获得者; (5)美国大学生数学建模竞赛一等奖及以上 获得者;全国大学生数学建模竞赛国家一等 奖获奖学生;全国大学生数学建模竞赛国家 二等奖获奖学生且同时获得美国大学生数学 建模竞赛国际二等奖以上奖项1项;全国大学 生数学竞赛全国最高奖项获奖学生; (6)全国大学生“挑战杯”科技作品竞赛一 等奖前三名,二等奖前二名;全国大学生 “挑战杯”创业大赛一、二等奖第一名获奖 学生。
数学建模入门
数学建模入门1. 简介数学建模是通过数学方法解决实际问题的过程。
它是现代科学和工程领域的重要工具之一。
在数学建模中,研究者根据问题的特点,选择合适的数学模型,并使用数学方法进行求解和分析。
本文将介绍数学建模的基本概念,步骤和常用方法,以帮助初学者入门。
2. 数学建模的步骤数学建模通常包括以下步骤:2.1. 理解问题在开始建模之前,我们首先需要完全理解问题。
这包括确定问题的背景,目标,以及所需要的输入和输出。
2.2. 建立数学模型建立数学模型是数学建模的核心步骤。
在这一步骤中,我们需要根据问题的特点选择适当的数学模型。
常用的数学模型包括线性模型,非线性模型,优化模型等。
2.3. 求解模型一旦模型建立完成,我们就可以使用数学方法来求解模型。
这包括使用数值方法,解析方法和模拟方法等。
2.4. 模型验证和分析在模型求解完成后,我们需要进行验证和分析。
这包括对模型的精度,稳定性和可行性进行评估。
2.5. 结果解释和应用最后,我们需要将模型的结果进行解释和应用。
这可以帮助我们理解问题,制定相应的决策,并进一步优化模型。
3. 常用的数学建模方法在数学建模中,有许多常用的数学方法可以帮助我们解决实际问题。
以下是其中几种常用的方法:3.1. 插值法插值法是通过已知数据点之间的曲线拟合来估计未知数据点的值。
常用的插值方法包括线性插值,拉格朗日插值和样条插值等。
3.2. 最小二乘法最小二乘法是一种基于最小化误差平方和的优化方法。
它可以用来拟合曲线,解决过拟合和欠拟合等问题。
3.3. 线性规划线性规划是一种通过线性目标函数和线性约束条件来进行优化的方法。
它在管理学,经济学和工程学等领域有着广泛的应用。
3.4. 离散事件模拟离散事件模拟是一种用来模拟离散事件和系统行为的方法。
它常用于研究生产过程,供应链管理和交通流动等问题。
4. 数学建模的应用领域数学建模在许多领域中都有着广泛的应用。
以下是其中几个常见的应用领域:4.1. 物理学在物理学中,数学建模被用来研究天体运动,量子力学,流体力学等问题。
数学建模入门
数学建模入门数学建模是运用数学方法和技巧解决实际问题的过程,是一种既有理论又有实践的学科。
随着科技的不断发展,数学建模在工业、农业、医学、金融等各领域都发挥着重要作用。
本文将介绍数学建模的基本步骤和常用方法,帮助读者初步了解数学建模的入门知识。
一、数学建模的基本步骤1. 定义问题:数学建模的第一步是明确问题的定义,包括问题的背景、目标和限制条件。
只有准确定义问题,才能制定合理的建模方法。
2. 收集信息:在开始建模之前,需要收集相关的信息和数据。
这些信息可以从文献、实验、观测等渠道获取,有助于对问题的深入理解和分析。
3. 建立模型:建立模型是数学建模的核心步骤。
根据问题的特点和要求,选择合适的数学模型和方法,建立起描述问题的数学表达式。
4. 模型求解:利用数学工具和计算机软件,对所建立的模型进行求解。
通过数值计算、优化算法等方法,得到问题的解析结果或近似解。
5. 模型验证:对模型的结果进行验证和评估,检查模型的准确性和可行性。
如果模型与实际情况有出入,需要对模型进行修正和完善。
6. 结果分析:分析模型的结果,得出对问题的解释和结论。
根据结果进行决策,提出相应的对策和建议。
二、数学建模的常用方法1. 数理统计:数理统计是数学建模中常用的方法之一,用于分析和处理统计数据,探索数据的规律和趋势。
包括概率分布、假设检验、回归分析等技术。
2. 最优化方法:最优化方法用于求解最大化或最小化问题,寻找最优解。
常见的最优化算法包括线性规划、整数规划、动态规划等。
3. 微分方程模型:微分方程模型用于描述动态系统的行为和演化过程。
通过建立微分方程模型,可以预测系统的未来发展趋势。
4. 离散事件模型:离散事件模型用于描述存在离散事件和状态转换的系统。
通过离散事件模拟,可以模拟系统的运行过程,探索不同策略对系统性能的影响。
5. 图论与网络模型:图论与网络模型用于描述事物之间的关系和连接方式。
通过图论和网络模型,可以分析复杂系统的结构和性质。
数学建模基础
数学建模基础引言数学建模是一种将现实中的问题转化为数学形式,通过数学模型来研究和解决问题的方法。
在现代科学和工程领域中,数学建模被广泛应用于各种领域,例如经济学、物理学、生物学、工程学等等。
本文将介绍数学建模的基础知识,包括数学建模的步骤、数学模型的分类、以及常用的数学建模方法和技巧。
数学建模的步骤数学建模的步骤通常分为以下几个阶段:1.理解问题:首先需要明确问题的背景和目标,了解问题的约束条件和限制,确保对问题的理解准确和全面。
2.建立数学模型:根据问题的特点和所需求解的内容,选择合适的数学模型来描述问题。
常见的数学模型包括方程模型、优化模型、概率模型等等。
3.分析模型:对建立的数学模型进行分析,探索模型的性质和特点。
可以通过数学理论、数值方法、计算机模拟等手段来进行模型的分析。
4.模型求解:根据所选的模型和分析的结果,求解模型并得到问题的解答。
求解方法可以是解析求解、数值求解或者结合两者的混合求解方法。
5.模型验证和评估:验证所建立的数学模型是否合理和可信,并评估模型的准确性和可用性。
可以通过实际数据的比对、模型的稳定性测试等手段来验证和评估模型。
6.结果解释和应用:根据所得的模型解答,解释结果的意义和影响,并探讨解答对实际问题的应用价值。
重要的是将数学模型的结果与实际问题相对应,确保解答的可行性和可操作性。
数学模型的分类数学模型可以按照多种方式进行分类。
常见的分类方式包括:1.静态模型和动态模型:静态模型是对问题在一个特定时刻或时间段内进行分析,不考虑时间的变化;动态模型则对问题随时间的变化进行建模和分析。
2.离散模型和连续模型:离散模型是对问题中离散事件或对象进行建模,通常使用离散数学工具进行分析;连续模型则对问题中连续的变量或对象进行建模,通常使用微积分和微分方程等连续数学工具进行分析。
3.硬性约束模型和软性约束模型:硬性约束模型是对问题中严格的限制条件进行建模,不允许违反;软性约束模型则对问题中某些条件进行宽松处理,允许有一定的违反程度。
数学建模基础
数学建模基础引言在现代社会,数学建模成为了一种重要的工具和方法,用于解决各种实际问题。
数学建模是一门跨学科的学科,它结合了数学、计算机科学、统计学和领域专业知识,通过数学模型的构建和求解,来描述和解释现实世界中的问题。
本文将介绍数学建模的基础知识和方法。
数学建模的基本流程数学建模的基本步骤包括问题的分析、建立数学模型、模型求解、结果分析和模型验证。
下面将对每个步骤进行详细说明。
问题的分析在进行数学建模之前,首先需要对问题进行充分的分析。
问题的分析包括确定问题的背景和目标,了解问题的限制条件和约束条件,分析问题的关键因素和变量,以及确定问题的求解方法和评价指标。
建立数学模型建立数学模型是数学建模的核心步骤。
在建立数学模型时,需要根据问题的特点选择合适的数学工具和方法,用数学语言来描述问题。
常用的数学模型包括线性模型、非线性模型、动态模型、随机模型等。
在建立数学模型时,需要明确变量的定义和范围,确定各个变量之间的关系,以及选择合适的数学形式来描述这些关系。
模型求解模型求解是指通过数学方法来求解建立的数学模型。
常用的数学方法包括解析解法、数值解法、优化方法等。
在模型求解过程中,需要根据具体的求解方法和算法来进行计算和推导,得到模型的具体解。
根据问题的具体特点,可能需要使用编程语言和计算机软件来实现模型的求解。
结果分析在模型求解之后,需要对求解的结果进行分析和解释。
结果分析需要根据问题的背景和目标,对模型求解的结果进行合理的解释和说明。
可以通过数据分析、图表展示等方式,来对结果进行可视化和呈现,以便更好地理解和评估模型的有效性和应用价值。
模型验证模型验证是指通过实际数据和实验验证建立的数学模型的准确性和可靠性。
在模型验证过程中,需要与实际数据进行对比和验证,对模型的假设和预测进行检验。
如果模型能够对实际问题进行合理的解释和预测,那么可以认为模型具有一定的准确性和可靠性。
数学建模的应用领域数学建模广泛应用于各个领域的研究和实践中。
数学建模知识点总结
数学建模知识点总结本文对数学建模的知识点进行总结,旨在帮助读者快速了解数学建模的核心概念和方法。
一、数学建模的基础知识1. 数学建模的定义:数学建模是通过数学方法解决实际问题的过程,包括问题的分析、建立数学模型、求解模型、结果的分析和验证等步骤。
2. 常用的数学模型:常见的数学模型包括线性模型、非线性模型、离散模型、连续模型等,不同类型的模型适用于不同的问题。
3. 数学建模的步骤:数学建模一般包括问题的形式化、模型的建立、模型的求解、模型的验证和结果的分析等步骤,每个步骤都需要仔细思考和合理选择方法。
二、数学建模的常用方法1. 数理统计方法:数理统计是数学建模中常用的方法之一,通过对问题数据的统计分析来获得问题的特征和规律,从而建立数学模型。
2. 最优化方法:最优化是数学建模中求解优化问题的常用方法,通过选择合适的优化目标函数和约束条件,求解出问题的最优解。
3. 微分方程方法:微分方程是数学建模中描述变化和关系的常用工具,通过建立微分方程模型,可以有效地描述问题的动态变化情况。
4. 图论方法:图论是数学建模中研究图结构和图算法的重要分支,通过构建问题的图模型,可以利用图论的方法解决相关问题。
5. 随机过程方法:随机过程是数学建模中研究随机事件发生的规律和模式的数学工具,通过建立随机过程模型,可以对问题进行概率分析和预测。
三、数学建模的案例应用1. 交通流量预测:通过建立交通流量模型,预测不同时间段和不同路段的交通流量,以便制定合理的交通管理策略。
2. 股票价格预测:通过建立股票价格模型,预测未来股票价格的变动趋势,为投资者提供参考和决策依据。
3. 环境污染控制:通过建立环境污染模型,分析污染源和传播规律,提出合理的环境保护措施和污染治理方案。
4. 生产优化调度:通过建立生产优化模型,分析生产过程中的瓶颈和制约因素,优化生产调度方案,提高生产效率。
5. 疾病传播模拟:通过建立疾病传播模型,分析疾病传播的潜在风险和影响因素,制定合理的防控措施。
数学建模的基础知识与技巧
数学建模的基础知识与技巧一、引言数学建模是一门涵盖数学、计算机科学和工程学等多领域知识的学科,它以解决实际问题为目标,通过建立数学模型来描述和分析现象,提出相应的解决方案。
本教案旨在介绍数学建模的基础知识与技巧,帮助学生掌握数学建模的思维方法和实践能力。
二、数学建模概述1. 什么是数学建模数学建模是将实际问题抽象为数学模型,通过建模、求解和验证等过程,得出对问题的定量分析、预测和决策的方法。
数学建模需要运用数学知识、计算机技术和实际背景知识。
2. 数学建模的重要性数学建模在科学研究、工程技术、经济管理等领域起着重要作用。
它能够帮助人们理解和预测现象、解决实际问题、优化决策,并推动科学技术的发展。
三、数学建模的基本步骤1. 问题分析与建模通过对实际问题的分析,确定模型建立的目标和问题的边界条件,选择合适的数学方法和模型类型进行建模。
同时需要考虑问题的实际背景和可行性。
2. 模型求解根据建立的数学模型,运用数学工具和计算机技术进行求解。
求解过程可以采用数值方法、符号方法或近似方法等。
3. 模型验证与分析对求解结果进行验证和分析,评估模型的合理性和适用性。
可以通过与实际数据的对比、敏感性分析和误差估计等方法进行模型的验证。
4. 结论与应用根据求解结果,得出对问题的定量分析和预测,并提出相应的解决方案。
同时将模型应用于实际问题,并对其效果进行评估。
四、数学建模的数学基础知识1. 函数与方程函数是数学建模中最基本的数学工具之一,它能够将问题的输入和输出联系起来。
方程是数学建模中常用的数学描述工具,通过方程可以描述问题的关系和约束条件。
2. 概率与统计概率论和数理统计是数学建模中常用的数学方法,能够帮助我们对问题的不确定性进行建模和分析,提供定量分析的方法和工具。
3. 最优化方法最优化方法是求解优化问题的数学工具,通过对问题的约束条件和目标函数进行分析,找出问题的最优解。
最优化方法在数学建模中具有广泛的应用。
数学建模入门知识共25页
•
30、风俗可以造就法律,也可以废除 法律。 ——塞·约翰逊
数学建模入门知识
16、业余生活要有意义,不要越轨。——华盛顿 17、一个人即使已登上顶峰,也仍要自强不息。——罗素·贝克 18、最大的挑战和突破在于用人,而用人最大的突破在于信任人。——马云 19、自己活着,就是为了使别人过得更美好。——雷锋 20、要掌握书,莫被书掌握;要为生而读,莫为读而生。——布尔沃
END
•
26、我们像鹰一样,生来就是自由的 ,但是 为了生 存,我 们不得 不为自 己编织 一个笼 子,然 后把自 己关在 里面。 ——博 莱索
•
27、法律如果不讲道理,即使延续时 间再长 ,也还 是没有 制约力 的。— —爱·科 克
•
28、好法律是由坏风俗创造出来的。 ——马 克罗维 乌斯
•
29、在一切能够接受法律支配的人类 的状态 中,哪 里没有 法律, 那里就 没有自 由。— —洛克
数学建模基础知识
数学建模基础知识一、数学基础数学建模是使用数学语言描述实际问题并建立模型的过程。
因此,掌握一定的数学基础知识是进行数学建模的关键。
这包括高等数学、线性代数、概率论与数理统计等学科的基础知识。
1. 高数学是数学建模的基础,主要包括极限、微积分、级数、微分方程等知识。
这些知识在模型构建和数值计算中有着广泛的应用。
2. 线性代数是研究线性方程组的科学,它提供了解决多变量问题的基本工具。
在模型构建和数据处理中,线性代数可以帮助我们理解和操作空间向量、矩阵等重要概念。
3. 概率论与数理统计是研究随机现象的数学科学。
在数据处理和问题解决中,概率论与数理统计的知识可以帮助我们理解和分析不确定性,从而更好地解决问题。
二、模型构建模型构建是数学建模的核心,它包括以下步骤:1. 问题分析:对实际问题进行深入分析,明确问题的主要矛盾和次要矛盾,找到问题的核心。
2. 模型假设:根据问题分析的结果,提出合理的假设,为模型构建提供基础。
3. 模型建立:根据假设,使用数学语言描述实际问题,建立数学模型。
4. 模型验证:将建立的模型用于实际问题,进行数据分析和预测,验证模型的准确性和可靠性。
三、数值计算数值计算是数学建模中不可或缺的一部分,它包括以下步骤:1. 算法设计:根据问题的特点,设计合适的算法,以实现模型的数值计算。
2. 编程实现:使用适当的编程语言实现算法,进行数值计算。
常用的编程语言包括Python、C++、Java等。
3. 结果分析:对计算结果进行分析和解释,为问题解决提供依据。
四、数据处理数据处理是数学建模中非常重要的一环,它包括以下步骤:1. 数据收集:根据实际问题的需要,收集相关的数据。
这可能包括历史数据、调查数据、实验数据等。
2. 数据清洗:对收集到的数据进行清洗和处理,去除无效和错误的数据,确保数据的准确性和完整性。
3. 数据转换:将清洗后的数据进行转换,使其更符合建模需要。
这可能包括数据的缩放、标准化、归一化等操作。
数学建模入门篇
数学建模入门篇(新手必看)一、什么是数学建模1、什么是数学模型数学模型是针对参照某种事物系统的特征或数量依存关系,采用数学语言,概括地或近似地表述出的一种数学结构,这种数学结构是借助于数学符号刻画出来的某种系统的纯关系结构。
从广义理解,数学模型包括数学中的各种概念,各种公式和各种理论。
(MBA智库)2、数学建模数学建模课看作是把问题定义转化为数学模型的过程。
简单的来说,对于我们学过的所有数学知识,要去解决生活中遇到的各种各样的问题,就需要我们建立相关的模型,使用数学这个工具来解决各种实际的问题,这就是建模的核心。
3、数学建模的思想对于数学建模的思想可以分为下列方法:(知乎张浩驰)对于数学建模的思想知乎上有各种解释,下面一篇解释的非常好,大家感兴趣的可以去知乎浏览什么是数学建模(讲的比较好)?二、数学建模比赛数学建模的相关比赛有很多,不同的比赛的影响力不同,在各个高校的认可度也不一样。
下面列举一些影响力和认可度较大的比赛。
1、"高教社杯"全国大学生数学建模竞赛参赛对象:本科生参赛时间:每年9月份(2020年为9月10日-9月13日)竞赛简介:“高教社杯”是目前影响力以及认可度最高的数学建模比赛,俗称“国赛”。
2020年共有来自全国及美国、英国、马来西亚的1470所院校/校区、45680队(本科41826队、专科3854队)、13万多人报名参赛。
在一些高校中对于国赛的认可度较高,国家级奖更是有极高的含金量。
竞赛官网:"高教社杯"全国大学生数学建模竞赛2、美国大学生数学建模竞赛参赛对象:本科生参赛时间:每年2月份左右竞赛简介:美国大学生数学建模竞赛(MCM/ICM)由美国数学及其应用联合会主办,是唯一的国际性数学建模竞赛,也是世界范围内最具影响力的数学建模竞赛。
赛题内容涉及经济、管理、环境、资源、生态、医学、安全、等众多领域。
竞赛官网:[美国大学生数学建模竞赛]添加链接描述(https:///undergraduate/contests/mcm/login.php)3、中国研究生数学建模竞赛(华为杯)参赛对象:研究生参赛时间:每年9月份左右竞赛简介:该赛事起源于2003年东南大学发起并成功主办的“南京及周边地区高校研究生数学建模竞赛”,2013年被纳入教育部学位中心“全国研究生创新实践系列活动”。
数学建模基础(入门必备)
、数学模型的定义现在数学模型还没有一个统一的准确的定义,因为站在不同的角度可以有不同的定义。
不过我们可以给出如下定义:“数学模型是关于部分现实世界和为一种特殊目的而作的一个抽象的、简化的结构。
”具体来说,数学模型就是为了某种目的,用字母、数学及其它数学符号建立起来的等式或不等式以及图表、图象、框图等描述客观事物的特征及其在联系的数学结构表达式。
一般来说数学建模过程可用如下框图来表明:实际I帀题——k模型假设一►模型崖立一k模型求超应用彌一检验与评价一棋型雰析数学是在实际应用的需求中产生的,要解决实际问题就必需建立数学模型,从此意义上讲数学建模和数学一样有古老历史。
例如,欧几里德几何就是一个古老的数学模型,牛顿万有引力定律也是数学建模的一个光辉典。
今天,数学以空前的广度和深度向其它科学技术领域渗透,过去很少应用数学的领域现在迅速走向定量化,数量化,需建立大量的数学模型。
特别是新技术、新工艺蓬勃兴起,计算机的普及和广泛应用,数学在许多高新技术上起着十分关键的作用。
因此数学建模被时代赋予更为重要的意义。
二、建立数学模型的方法和步骤1. 模型准备要了解问题的实际背景,明确建模目的,搜集必需的各种信息,尽量弄清对象的特征。
2. 模型假设根据对象的特征和建模目的,对问题进行必要的、合理的简化,用精确的语言作出假设,是建模至关重要的一步。
如果对问题的所有因素一概考虑,无疑是一种有勇气但方法欠佳的行为,所以高超的建模者能充分发挥想象力、洞察力和判断力,善于辨别主次,而且为了使处理方法简单,应尽量使问题线性化、均匀化。
3. 模型构成根据所作的假设分析对象的因果关系,利用对象的在规律和适当的数学工具,构造各个量间的等式关系或其它数学结构。
这时,我们便会进入一个广阔的应用数学天地,这里在高数、概率老人的膝下,有许多可爱的孩子们,他们是图论、排队论、线性规划、对策论等许多许多,真是泱泱大国,别有洞天。
不过我们应当牢记,建立数学模型是为了让更多的人明了并能加以应用,因此工具愈简单愈有价值。
数学建模知识点
数学建模知识点数学建模是指利用数学方法和技术对实际问题进行描述、分析和求解的过程。
在现实生活中,我们面临的问题往往是复杂的,数学建模的目的就是通过数学模型对这些问题进行抽象和分析,并找到合适的解决方法。
而要进行有效的数学建模,我们需要掌握一些基本的数学知识点。
本文将介绍数学建模中常用的几个重要知识点。
一、线性规划线性规划是数学建模中最常用的方法之一。
它的基本思想是在一组线性约束条件下,寻找一个线性目标函数的最优值。
线性规划可以用来解决资源分配、生产计划、运输问题等。
在线性规划中,我们需要掌握线性代数的相关知识,例如矩阵运算、向量空间等。
二、微积分微积分是数学建模中另一个重要的工具。
微积分主要包括导数、积分和微分方程等内容。
在数学建模中,常常需要对实际问题进行建模和分析,利用微积分的方法来求解最优值、极值点等。
同时,微积分还可以用来描述和分析变化率、速度、加速度等概念,对于模拟实际问题的变化过程有着重要的作用。
三、概率论与统计学概率论与统计学是数学建模中的另一个重要分支。
概率论研究的是随机事件的性质和规律,统计学则利用样本数据对总体进行推断和决策。
在数学建模中,概率论和统计学常常用于描述和分析实际问题的不确定性和随机性。
例如,通过概率模型可以对风险进行评估,通过统计方法可以对实验数据进行处理和分析。
四、图论图论是研究图和网络的一门学科,也是数学建模中常用的工具之一。
在数学建模中,我们经常需要用图来表示问题中的对象和关系,通过图论可以分析和求解一些与图相关的问题。
例如,利用图论可以解决路径规划、网络流量优化等实际问题。
五、数值计算方法数值计算方法是数学建模中的一种重要工具,用于对无法解析求解的问题进行数值逼近。
数值计算方法主要包括数值微分、数值积分、差分法和数值优化等。
在数学建模中,我们通常需要使用计算机进行模拟和求解,数值计算方法能够帮助我们高效地进行数值计算和近似求解。
总结:数学建模作为一种综合运用数学知识解决实际问题的方法,包括线性规划、微积分、概率论与统计学、图论和数值计算方法等重要的知识点。
数学建模所需要的数学基础
数学建模所需要的数学基础数学建模是将实际问题转化为数学模型并通过数学方法进行求解的过程。
它在现代科学研究和工程实践中具有重要的应用价值。
要进行数学建模,需要一定的数学基础。
本文将介绍数学建模所需要的数学基础,并提供一些指导意义的建议。
第一,数学分析是数学建模的基础。
数学分析是对实数、复数、函数等数学概念和性质的研究。
它主要包括极限、连续性、微积分等内容。
在数学建模中,往往需要通过分析来建立模型的数学表达式,计算模型的数值结果等。
因此,熟练掌握数学分析的理论和方法对于数学建模非常重要。
第二,概率论与数理统计是数学建模的重要工具。
概率论用于描述和研究随机现象的规律性,数理统计则是通过概率论的方法进行随机数据的分析和推断。
在数学建模中,不可避免地会涉及到一些随机性的问题,例如随机变量、概率分布、抽样调查等。
因此,对概率论和数理统计的基本概念和方法需要有一定的了解和掌握。
第三,线性代数是数学建模的基础工具。
线性代数主要研究线性方程组、线性映射、向量空间等内容。
在数学建模中,线性代数常常用于描述和计算模型中的向量、矩阵等数学对象。
例如,矩阵可以表示线性变换、线性方程组可以用于描述模型的关系等。
因此,对线性代数的理论和方法需要有一定的了解和熟练掌握。
第四,离散数学是数学建模的基础理论之一。
离散数学主要研究离散结构和离散对象的性质和关系。
在数学建模中,离散数学常常用于描述和计算离散的模型对象,例如图论、组合数学等。
熟练掌握离散数学的基本概念和方法有助于解决实际问题中的离散性特征。
综上所述,数学建模所需要的数学基础主要包括数学分析、概率论与数理统计、线性代数和离散数学等。
建议在学习数学建模时,首先要打好数学基础,通过系统地学习和练习以上所述的数学知识和方法。
其次,结合实际问题进行数学建模实践,不断提升数学建模的能力和经验。
此外,还需要培养数学思维和创新能力,灵活运用已学知识解决实际问题。
通过不断地学习和实践,相信每个人都能够掌握数学建模所需要的数学基础,并在实践中取得优秀的成绩。
数学建模基础入门
数学建模基础入门数学建模是一门应用数学领域的学科,它将数学方法和技巧应用于解决实际问题。
在现代科学和工程中,数学建模起着至关重要的作用。
本文将为您介绍数学建模的基本概念和入门知识。
一、引言数学建模是一种基于数学模型来描述和解决实际问题的过程。
它结合了数学理论和实际问题,通过建立合适的数学模型来分析和预测实际系统的行为。
数学建模的目标是通过理论分析和计算求解,得出对实际问题的认识和解决方案。
二、数学建模的基本步骤数学建模的过程可以分为以下几个基本步骤:1. 审题与问题分析:首先需要仔细审题,理解问题的背景和要求。
在问题分析阶段,需要明确问题的目标、所涉及的因素以及问题的约束条件。
2. 建立数学模型:在问题分析的基础上,需要选择合适的数学方法和技巧建立数学模型。
数学模型是对实际问题的抽象和描述,它可以是代数方程、微分方程、概率模型等形式。
3. 模型求解:根据建立的数学模型,采用适当的数值计算方法或者符号计算方法,对模型进行求解。
这一步骤需要运用数学知识和计算工具,得出模型的解析解或近似解。
4. 模型验证与分析:在获得数学模型的解之后,需要对解的合理性进行验证。
通过与实际数据的对比或者数值模拟的方法,验证模型的准确性和可靠性。
同时,对模型的敏感性分析和稳定性分析也是重要的一步。
5. 结果的解释与应用:根据模型求解得到的结果,进行结果的解释和分析。
将模型的结果与实际问题联系起来,给出合理的解释和应用建议。
在实际问题中,模型的结果通常会有多种解释和应用方式,需要综合考虑各种因素来得出最优解决方案。
三、常用的数学方法和技巧数学建模涉及的数学方法和技巧非常丰富,下面列举一些常用的方法和技巧:1. 最优化方法:最优化方法用于求解最大值或最小值问题,常见的最优化方法包括线性规划、整数规划、非线性规划等。
2. 概率统计方法:概率统计方法用于处理不确定性和随机性问题,包括概率分布、假设检验、回归分析等。
3. 微分方程方法:微分方程方法用于研究变化和动态系统,可以用来描述物理、化学、生物等领域的问题。
关于数学建模(入门必备!全面!)
近实际事物的抽象形式存在的,但它和真实的事物有着本质的区别。
要描述一个实际现象可以有很多种方式,比如录音,录像,比喻,传言等等。
为了使描述更具科学性,逻辑性,客观性和可重复性,人们采用一种普遍认为比较严格的语言来描述各种现象,这种语言就是数学。
使用数学语言描述的事物就称为数学模型。
有时候我们需要做一些实验,但这些实验往往用抽象出来了的数学模型作为实际物体的代替而进行相应的实验,实验本身也是实际操作的一种理论替代。
过程模型准备了解问题的实际背景,明确其实际意义,掌握对象的各种信息。
用数学语言来描述问题。
模型假设根据实际对象的特征和建模的目的,对问题进行必要的简化,并用精确的语言提出一些恰当的假设。
模型建模在假设的基础上,利用适当的数学工具来刻划各变量之间的数学关系,建立相应的数学结构(尽量用简单的数学工具)。
模型求解利用获取的数据资料,对模型的所有参数做出计算(或近似计算)。
模型分析对所得的结果进行数学上的分析。
模型检验将模型分析结果与实际情形进行比较,以此来验证模型的准确性、合理性和适用性。
如果模型与实际较吻合,则要对计算结果给出其实际含义,并进行解释。
如果模型与实际吻合较差,则应该修改假设,再次重复建模过程。
模型应用应用方式因问题的性质和建模的目的而异。
大学生数学建模竞赛全国大学生数学建模竞赛章程(2008年)第一条总则全国大学生数学建模竞赛(以下简称竞赛)是教育部高等教育司和中国工业与应用数学学会共同主办的面向全国大学生的群众性科技活动,目的在于激励学生学习数学的积极性,提高学生建立数学模型和运用计算机技术解决实际问题的综合能力,鼓励广大学生踊跃参加课外科技活动,开拓知识面,培养创造精神及合作意识,推动大学数学教学体系、教学内容和方法的改革。
第二条竞赛内容竞赛题目一般来源于工程技术和管理科学等方面经过适当简化加工的实际问题,不要求参赛者预先掌握深入的专门知识,只需要学过高等学校的数学课程。
题目有较大的灵活性供参赛者发挥其创造能力。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一、数学模型的定义现在数学模型还没有一个统一的准确的定义,因为站在不同的角度可以有不同的定义。
不过我们可以给出如下定义:“数学模型是关于部分现实世界和为一种特殊目的而作的一个抽象的、简化的结构。
”具体来说,数学模型就是为了某种目的,用字母、数学及其它数学符号建立起来的等式或不等式以及图表、图象、框图等描述客观事物的特征及其内在联系的数学结构表达式。
一般来说数学建模过程可用如下框图来表明:数学是在实际应用的需求中产生的,要解决实际问题就必需建立数学模型,从此意义上讲数学建模和数学一样有古老历史。
例如,欧几里德几何就是一个古老的数学模型,牛顿万有引力定律也是数学建模的一个光辉典范。
今天,数学以空前的广度和深度向其它科学技术领域渗透,过去很少应用数学的领域现在迅速走向定量化,数量化,需建立大量的数学模型。
特别是新技术、新工艺蓬勃兴起,计算机的普及和广泛应用,数学在许多高新技术上起着十分关键的作用。
因此数学建模被时代赋予更为重要的意义。
二、建立数学模型的方法和步骤1. 模型准备要了解问题的实际背景,明确建模目的,搜集必需的各种信息,尽量弄清对象的特征。
2. 模型假设根据对象的特征和建模目的,对问题进行必要的、合理的简化,用精确的语言作出假设,是建模至关重要的一步。
如果对问题的所有因素一概考虑,无疑是一种有勇气但方法欠佳的行为,所以高超的建模者能充分发挥想象力、洞察力和判断力,善于辨别主次,而且为了使处理方法简单,应尽量使问题线性化、均匀化。
3. 模型构成根据所作的假设分析对象的因果关系,利用对象的内在规律和适当的数学工具,构造各个量间的等式关系或其它数学结构。
这时,我们便会进入一个广阔的应用数学天地,这里在高数、概率老人的膝下,有许多可爱的孩子们,他们是图论、排队论、线性规划、对策论等许多许多,真是泱泱大国,别有洞天。
不过我们应当牢记,建立数学模型是为了让更多的人明了并能加以应用,因此工具愈简单愈有价值。
4. 模型求解可以采用解方程、画图形、证明定理、逻辑运算、数值运算等各种传统的和近代的数学方法,特别是计算机技术。
一道实际问题的解决往往需要纷繁的计算,许多时候还得将系统运行情况用计算机模拟出来,因此编程和熟悉数学软件包能力便举足轻重。
5. 模型分析对模型解答进行数学上的分析。
“横看成岭侧成峰,远近高低各不同”,能否对模型结果作出细致精当的分析,决定了你的模型能否达到更高的档次。
还要记住,不论那种情况都需进行误差分析,数据稳定性分析。
三、数模竞赛出题的指导思想传统的数学竞赛一般偏重理论知识,它要考查的内容单一,数据简单明确,不允许用计算器完成。
对此而言,数模竞赛题是一个“课题”,大部分都源于生产实际或者科学研究的过程中,它是一个综合性的问题,数据庞大,需要用计算机来完成。
其答案往往不是唯一的(数学模型是实际的模拟,是实际问题的近似表达,它的完成是在某种合理的假设下,因此其只能是较优的,不唯一的),呈报的成果是一编“论文”。
由此可见“数模竞赛”偏重于应用,它是以数学知识为引导计算机运用能力及文章的写作能力为辅的综合能力的竞赛。
四、竞赛中的常见题型赛题题型结构形式有三个基本组成部分:1. 实际问题背景涉及面宽——有社会,经济,管理,生活,环境,自然现象,工程技术,现代科学中出现的新问题等。
一般都有一个比较确切的现实问题。
2.若干假设条件有如下几种情况:1)只有过程、规则等定性假设,无具体定量数据;2)给出若干实测或统计数据;3)给出若干参数或图形;4)蕴涵着某些机动、可发挥的补充假设条件,或参赛者可以根据自己收集或模拟产生数据。
3.要求回答的问题往往有几个问题,而且一般不是唯一答案。
一般包含以下两部分:1)比较确定性的答案(基本答案);2)更细致或更高层次的讨论结果(往往是讨论最优方案的提法和结果)。
五、提交一篇论文,基本内容和格式是什么?提交一篇论文,基本内容和格式大致分三大部分:1. 标题、摘要部分题目——写出较确切的题目(不能只写A题、B题)。
摘要——200-300字,包括模型的主要特点、建模方法和主要结果。
内容较多时最好有个目录。
2. 中心部分1)问题提出,问题分析。
2)模型建立:①补充假设条件,明确概念,引进参数;②模型形式(可有多个形式的模型);③模型求解;④模型性质;3)计算方法设计和计算机实现。
4)结果分析与检验。
5)讨论——模型的优缺点,改进方向,推广新思想。
6)参考文献——注意格式。
3. 附录部分计算程序,框图。
各种求解演算过程,计算中间结果。
各种图形、表格。
六、参加数学建模竞赛是不是需要学习很多知识?没有必要很系统的学很多数学知识,这是时间和精力不允许的。
很多优秀的论文,其高明之处并不是用了多少数学知识,而是思维比较全面、贴合实际、能解决问题或是有所创新。
有时候,在论文中可能碰见一些没有学过的知识,怎么办?现学现用,在优秀论文中用过的数学知识就是最有可能在数学建模竞赛中用到的,你当然有必要去翻一翻。
具体说来,大概有以下这三个方面:第一方面:数学知识的应用能力归结起来大体上有以下几类:1)概率与数理统计2)统筹与线轴规划3)微分方程;还有与计算机知识交叉的知识:计算机模拟。
上述的内容有些同学完全没有学过,也有些同学只学过一点概率与数理统计,微分方程的知识怎么办呢?一个词“自学”,我曾听到过数模评卷的负责教师范毅说过“能用最简单浅易的数学方法解决了别人用高深理论才能解决的答卷是更优秀的答卷”。
第二方面:计算机的运用能力一般来说凡参加过数模竞赛的同学都能熟练地应用字处理软件“Word”,掌握电子表格“Excel”的使用;“Mathematica”软件的使用,最好还具备语言能力。
这些知识大部分都是学生自己利用课余时间学习的。
第三方面:论文的写作能力前面已经说过考卷的全文是论文式的,文章的书写有比较严格的格式。
要清楚地表达自己的想法并不容易,有时一个问题没说清楚就又说另一个问题了。
评卷的教师们有一个共识,一篇文章用10来分钟阅读仍然没有引起兴趣的话,这一遍文章就很有可能被打入冷宫了。
七、小组中应该如何分工?传统的标准答案是——数学,编程,写作。
其实分工不用那么明确,但有个前提是大家关系很好。
不然的话,很容易产生矛盾。
分工太明确了,会让人产生依赖思想,不愿去动脑子。
理想的分工是这样的:数学建模竞赛小组中的每一个人,都能胜任其它人的工作,就算小组只剩下她(他)一个人,也照样能够搞定数学建模竞赛。
在竞赛中的分工,只是为了提高工作的效率,做出更好的结果。
具体的建议如下:一定要有一个人脑子比较活,善于思考问题,这个人勉强归于数学方面吧;一定要有一个人会编程序,能够实现一些算法。
另外需要有一个论文写的比较好,不过写不好也没关系,多看一看别人的优秀论文,多用几次word,Visio就成了。
一、写好数模答卷的重要性1. 评定参赛队的成绩好坏、高低,获奖级别,数模答卷,是唯一依据。
2. 答卷是竞赛活动的成绩结晶的书面形式。
3. 写好答卷的训练,是科技写作的一种基本训练。
二、答卷的基本内容,需要重视的问题1.评阅原则假设的合理性,建模的创造性,结果的合理性,表述的清晰程度。
2.答卷的文章结构1)摘要。
2)问题的叙述,问题的分析,背景的分析等。
3)模型的假设,符号说明(表)。
4)模型的建立(问题分析,公式推导,基本模型,最终或简化模型等)。
5)模型的求解计算方法设计或选择;算法设计或选择,算法思想依据,步骤及实现,计算框图;所采用的软件名称;引用或建立必要的数学命题和定理;求解方案及流程。
6)结果表示、分析与检验,误差分析,模型检验。
7)模型评价,特点,优缺点,改进方法,推广。
8)参考文献。
9)附录、计算框图、详细图表。
3. 要重视的问题1)摘要。
包括:a. 模型的数学归类(在数学上属于什么类型);b. 建模的思想(思路);c. 算法思想(求解思路);d. 建模特点(模型优点,建模思想或方法,算法特点,结果检验,灵敏度分析,模型检验……);e. 主要结果(数值结果,结论;回答题目所问的全部“问题”)。
▲注意表述:准确、简明、条理清晰、合乎语法、字体工整漂亮;打印最好,但要求符合文章格式。
务必认真校对。
2)问题重述。
3)模型假设。
根据全国组委会确定的评阅原则,基本假设的合理性很重要。
a. 根据题目中条件作出假设b. 根据题目中要求作出假设关键性假设不能缺;假设要切合题意。
4)模型的建立。
a. 基本模型:ⅰ)首先要有数学模型:数学公式、方案等;ⅱ)基本模型,要求完整,正确,简明;b. 简化模型:ⅰ)要明确说明简化思想,依据等;ⅱ)简化后模型,尽可能完整给出;c. 模型要实用,有效,以解决问题有效为原则。
数学建模面临的、要解决的是实际问题,不追求数学上的高(级)、深(刻)、难(度大)。
ⅰ)能用初等方法解决的、就不用高级方法;ⅱ)能用简单方法解决的,就不用复杂方法;ⅲ)能用被更多人看懂、理解的方法,就不用只能少数人看懂、理解的方法。
d.鼓励创新,但要切实,不要离题搞标新立异。
数模创新可出现在:▲建模中,模型本身,简化的好方法、好策略等;▲模型求解中;▲结果表示、分析、检验,模型检验;▲推广部分。
e.在问题分析推导过程中,需要注意的问题:ⅰ)分析:中肯、确切;ⅱ)术语:专业、内行;ⅲ)原理、依据:正确、明确;ⅳ)表述:简明,关键步骤要列出;ⅴ)忌:外行话,专业术语不明确,表述混乱,冗长。
5)模型求解。
a. 需要建立数学命题时:命题叙述要符合数学命题的表述规范,尽可能论证严密。
b. 需要说明计算方法或算法的原理、思想、依据、步骤。
若采用现有软件,说明采用此软件的理由,软件名称。
c. 计算过程,中间结果可要可不要的,不要列出。
d. 设法算出合理的数值结果。
6)结果分析、检验;模型检验及模型修正;结果表示。
a. 最终数值结果的正确性或合理性是第一位的;b. 对数值结果或模拟结果进行必要的检验;结果不正确、不合理、或误差大时,分析原因,对算法、计算方法、或模型进行修正、改进。
c. 题目中要求回答的问题,数值结果,结论,须一一列出;d. 列数据问题:考虑是否需要列出多组数据,或额外数据对数据进行比较、分析,为各种方案的提出提供依据;e. 结果表示:要集中,一目了然,直观,便于比较分析。
▲数值结果表示:精心设计表格;可能的话,用图形图表形式。
▲求解方案,用图示更好。
7)必要时对问题解答,作定性或规律性的讨论。
最后结论要明确。
8)模型评价优点突出,缺点不回避。
改变原题要求,重新建模可在此做。
推广或改进方向时,不要玩弄新数学术语。
9)参考文献10)附录详细的结果,详细的数据表格,可在此列出,但不要错,错的宁可不列。
主要结果数据,应在正文中列出,不怕重复。
检查答卷的主要三点,把三关:a. 模型的正确性、合理性、创新性b. 结果的正确性、合理性c. 文字表述清晰,分析精辟,摘要精彩三、关于写答卷前的思考和工作规划答卷需要回答哪几个问题――建模需要解决哪几个问题;问题以怎样的方式回答――结果以怎样的形式表示;每个问题要列出哪些关键数据――建模要计算哪些关键数据;每个量,列出一组还是多组数――要计算一组还是多组数。