最新广东省中考数学命题规律及命题趋势分析
总结2023广东数学中考
![总结2023广东数学中考](https://img.taocdn.com/s3/m/e387bf9f5122aaea998fcc22bcd126fff7055d2b.png)
总结2023广东数学中考引言2023年广东数学中考已经顺利结束,本文将对该次考试进行总结和分析,以对广东中考数学的趋势和重点进行探讨。
考试内容2023广东数学中考的内容主要包括初中数学课程的核心知识和技能,以及应用题和解决问题的能力。
总体而言,考试内容贴近课程标准,注重综合运用能力。
题型分布根据考试数据,2023广东数学中考的题型分布如下:•选择题占比:40%•填空题占比:30%•解答题占比:30%从题型分布上看,选择题占据了一定比重,这要求考生熟练掌握基本概念和解题技巧。
而填空题和解答题则更注重对知识点的理解和应用能力。
难度分析整体而言,2023广东数学中考的难度适中,难度系数与往年相当。
对于具备扎实数学基础的考生而言,是可以拿到不错的成绩的。
选择题选择题的难度相对较低,主要考察考生对基本知识的掌握程度。
其中,有一些选择题考察了计算能力和推理能力,对于能够灵活应用知识的考生来说,是较容易得分的题型。
填空题填空题的难度适中,考察了考生对概念和定理的理解程度。
较多的填空题考察了考生对解题方法的灵活运用和数学思维的逻辑性。
解答题解答题相对较难,主要考察了考生对知识点的综合应用和问题解决能力。
其中一部分解答题是基于实际问题的应用题,要求考生将数学知识与实际情境相结合,思维灵活且条理清晰。
客观题答题技巧对于选择题和填空题,考生可以采取以下答题技巧:1.阅读题目要仔细,确保理解题意。
2.对于选择题,可以先排除明显错误的选项,再对剩余选项进行分析,并作出选择。
3.对于填空题,可以通过逐个试填选项,找出符合题意的答案。
解答题解题思路对于解答题,考生可以注意以下解题思路:1.阅读题目要仔细,理解问题的要求。
2.分析问题,梳理解题思路。
3.列出已知条件和所需求的未知量。
4.运用所学知识,选择合适的解题方法,逐步推导解答过程。
5.最后,检查解答过程和答案的合理性,并进行必要的补充说明。
复习备考建议为了在广东数学中考中取得良好成绩,考生可以采取以下备考策略:1.合理安排时间,制定复习计划。
广东今年中考数学试题及答案分析
![广东今年中考数学试题及答案分析](https://img.taocdn.com/s3/m/cc861a4e03768e9951e79b89680203d8ce2f6a99.png)
广东今年中考数学试题及答案分析今年广东的中考数学试题如火如荼地进行着,考生们紧张而期待着自己的成绩。
本文将对今年广东中考数学试题进行分析,帮助考生对试题有更全面的认识。
一、选择题分析选择题是中考数学试题中的常见题型,本次广东中考选择题分为单选题和多选题。
试题涵盖了各个知识点和难度层次,考查了学生对基础知识的掌握和运用能力。
以第一题为例,该题为单选题,涉及到图形的几何变换和角度概念。
考生需要通过观察图形并分析其性质,选择正确的答案。
这类题型注重对图像的理解和观察力,同时也考察了对几何概念的掌握程度。
第二题是一道多选题,考察了学生对平方和立方几何体的了解。
这种题型对学生的记忆和综合运用能力有一定要求,需要学生结合几何体的性质和特点,选出符合题意的选项。
综合来看,选择题在广东中考数学试题中占比较大,考察面较广,题目设计比较贴合实际生活和学习。
考生在做这类题目时需要细心观察、准确把握题意,同时巩固好基础知识,培养良好的逻辑思维和推理能力。
二、填空题分析填空题是中考数学试题中常见的题型之一,考查了学生对知识点的理解和灵活运用能力。
以第三题为例,该题为一道填空题,考察了学生对函数概念和函数表达式的理解。
学生需要根据已知条件构建函数表达式,并计算出对应结果。
这类题型对学生的数学思维能力和应用能力有一定要求,需要进行合理的分析和推断。
第四题也是一道填空题,考察了学生对代数式的处理和求解能力。
学生需要根据给定条件,列出代数方程,并解出未知数。
这种题型对学生的代数方程应用和计算能力提出了一定的要求,需要灵活运用代数知识进行求解。
填空题在广东中考数学试题中占比较小,但考察深度相对较高,需要学生对知识点的理解和灵活应用。
考生在做这类题型时需要注重理解题意,合理运用所学的知识,进行适当的计算和推理。
三、解答题分析解答题是中考数学试题中的主要题型之一,考查了学生的数学思维能力、问题分析和解决问题的能力。
以第五题为例,该题为一道解答题,考查了学生对百分数的理解和应用。
2024年广东省中考数学真题卷含答案解析
![2024年广东省中考数学真题卷含答案解析](https://img.taocdn.com/s3/m/23b384b25ff7ba0d4a7302768e9951e79b89692c.png)
机密★启用前2024年广东省初中学业水平考试数学满分120分 考试用时120分钟注意事项:1.答题前,考生务必用黑色字迹的签字笔或钢笔将自己的准考证号、姓名、考场号和座位号填写在答题卡上.用2B 铅笔在“考场号”和“座位号”栏相应位置填涂自己的考场号和座位号,将条形码粘贴在答题卡“条形码粘贴处”.2.作答选择题时,选出每小题答案后,用2B 铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案,答案不能答在试卷上.3.非选择题必须用黑色字迹的签字笔或钢笔作答,答案必须写在答题卡各题目指定区域内相应位置上:如需改动,先划掉原来的答案,然后再写上新的答案;不准使用铅笔和涂改液.不按以上要求作答的答案无效.4.考生必须保持答题卡的整洁.考试结束后,将试卷和答题卡一并交回.一、选择题:本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 计算-5+3的结果是( )A. 2B. -2C. 8D. -82. 下列几何图形中,既是中心对称图形也是轴对称图形的是( )A. B. C. D.3. 2024年6月6日,嫦娥六号在距离地球约384000千米外上演“太空牵手”,完成月球轨道的交会对接.数据384000用科学记数法表示为( )A. 43.8410⨯B. 53.8410⨯C. 63.8410⨯D.538.410⨯4. 如图,一把直尺、两个含30︒的三角尺拼接在一起,则ACE ∠的度数为( )A. 120︒B. 90︒C. 60︒D. 30︒5. 下列计算正确的是( )A. 2510a a a ⋅=B. 824a a a ÷=C. 257a a a -+=D. ()5210a a =6. 长江是中华民族的母亲河,长江流域孕育出藏羌文化、巴蜀文化、荆楚文化、吴越文化等区域文化.若从上述四种区域文化中随机选一种文化开展专题学习,则选中“巴蜀文化”的概率是( )A 14 B. 13 C. 12 D. 347. 完全相同的4个正方形面积之和是100,则正方形的边长是( )A. 2B. 5C. 10D. 208. 若点()()()1230,,1,,2,y y y 都在二次函数2y x =的图象上,则( )A. 321y y y >>B. 213y y y >>C. 132y y y >>D. 312y y y >>9. 方程233x x=-的解为( )A. 3x = B. 9x =- C. 9x = D. 3x =-10. 已知不等式0kx b +<的解集是2x <,则一次函数y kx b =+的图象大致是().A. B. C. D.二、填空题:本大题共5小题,每小题3分,共15分.11. 数据2,3,5,5,4的众数是____.12. 关于x 的不等式组中,两个不等式的解集如图所示,则这个不等式组的解集是______.13. 若关于x 的一元二次方程220x x c ++=有两个相等的实数根,则c =_______.14. 计算:333a a a -=--_______.15. 如图,菱形ABCD 的面积为24,点E 是AB 的中点,点F 是BC 上的动点.若BEF △的面积为4,则图中阴影部分的面积为______.三、解答题(一):本大题共3小题,每小题7分,共21分.16. 计算:011233-⨯-+-.17. 如图,ABC 中,90C ∠=︒.(1)实践与操作:用尺规作图法作A ∠的平分线AD 交BC 于点D ;(保留作图痕迹,不要求写作法)(2)应用与证明:在(1)的条件下,以点D 为圆心,DC 长为半径作D .求证:AB 与D 相切.18. 中国新能源汽车为全球应对气候变化和绿色低碳转型作出了巨大贡献.为满足新能源汽车的充电需求,某小区增设了充电站,如图是矩形PQMN 充电站的平面示意图,矩形ABCD 是其中一个停车位.经测量,60ABQ ∠=︒, 5.4m AB =, 1.6m CE =,GH CD ⊥,GH 是另一个车位的宽,所有车位的长宽相同,按图示并列划定.根据以上信息回答下列问题:(结果精确到0.1m1.73≈)(1)求PQ 的长;(2)该充电站有20个停车位,求PN 的长.四、解答题(二):本大题共3小题,每小题9分,共27分.19. 端午假期,王先生计划与家人一同前往景区游玩,为了选择一个最合适的景区,王先生对A 、B 、C 三个景区进行了调查与评估.他依据特色美食、自然风光、乡村民宿及科普基地四个方面,为每个景区评分(10分制).三个景区的得分如下表所示:景区特色美食自然风光乡村民宿科普基地A 6879在B7787C 8866(1)若四项所占百分比如图所示,通过计算回答:王先生会选择哪个景区去游玩?(2)如果王先生认为四项同等重要,通过计算回答:王先生将会选择哪个景区去游玩?(3)如果你是王先生,请按你认为的各项“重要程度”设计四项得分的百分比,选择最合适的景区,并说明理由.20. 广东省全力实施“百县千镇万村高质量发展工程”,2023年农产品进出口总额居全国首位,其中荔枝鲜果远销欧美.某果商以每吨2万元的价格收购早熟荔枝,销往国外.若按每吨5万元出售,平均每天可售出100吨.市场调查反映:如果每吨降价1万元,每天销售量相应增加50吨.该果商如何定价才能使每天的“利润”或“销售收入”最大?并求出其最大值.(题中“元”为人民币)21. 综合与实践【主题】滤纸与漏斗【素材】如图1所示:①一张直径为10cm 圆形滤纸;②一只漏斗口直径与母线均为7cm 的圆锥形过滤漏斗.【实践操作】的步骤1:取一张滤纸;步骤2:按如图2所示步骤折叠好滤纸;步骤3:将其中一层撑开,围成圆锥形;步骤4:将围成圆锥形的滤纸放入如图1所示漏斗中.【实践探索】(1)滤纸是否能紧贴此漏斗内壁(忽略漏斗管口处)?用你所学的数学知识说明.(2)当滤纸紧贴漏斗内壁时,求滤纸围成圆锥形的体积.(结果保留π)五、解答题(三):本大题共2小题,第22题13分,第23题14分,共27分.22. 【知识技能】(1)如图1,在ABC 中,DE 是ABC 的中位线.连接CD ,将ADC △绕点D 按逆时针方向旋转,得到A DC '' .当点E 的对应点E '与点A 重合时,求证:AB BC =.【数学理解】(2)如图2,在ABC 中()AB BC <,DE 是ABC 中位线.连接CD ,将ADC △绕点D 按逆时针方向旋转,得到A DC '' ,连接A B ',C C ',作A BD ' 的中线DF .求证:2DF CD BD CC ⋅='⋅.拓展探索】(3)如图3,在ABC 中,4tan 3B =,点D 在AB 上,325AD =.过点D 作DE BC ⊥,垂足为E ,3BE =,323CE =.在四边形ADEC 内是否存在点G ,使得180AGD CGE ∠+∠=︒?若存在,请给出证明;若不存在,请说明理由.的【23. 【问题背景】如图1,在平面直角坐标系中,点B ,D 是直线()0y ax a =>上第一象限内的两个动点()OD OB >,以线段BD 为对角线作矩形ABCD ,AD x ∥轴.反比例函数k y x =的图象经过点A .【构建联系】(1)求证:函数k y x=的图象必经过点C .(2)如图2,把矩形ABCD 沿BD 折叠,点C 的对应点为E .当点E 落在y 轴上,且点B 的坐标为()1,2时,求k 的值.【深入探究】(3)如图3,把矩形ABCD 沿BD 折叠,点C 的对应点为E .当点E ,A 重合时,连接AC交BD 于点P .以点O 为圆心,AC 长为半径作O .若OP =O 与ABC 的边有交点时,求k 的取值范围.机密★启用前2024年广东省初中学业水平考试数学满分120分考试用时120分钟注意事项:1.答题前,考生务必用黑色字迹的签字笔或钢笔将自己的准考证号、姓名、考场号和座位号填写在答题卡上.用2B铅笔在“考场号”和“座位号”栏相应位置填涂自己的考场号和座位号,将条形码粘贴在答题卡“条形码粘贴处”.2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案,答案不能答在试卷上.3.非选择题必须用黑色字迹的签字笔或钢笔作答,答案必须写在答题卡各题目指定区域内相应位置上:如需改动,先划掉原来的答案,然后再写上新的答案;不准使用铅笔和涂改液.不按以上要求作答的答案无效.4.考生必须保持答题卡的整洁.考试结束后,将试卷和答题卡一并交回.一、选择题:本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 计算-5+3的结果是()A. 2B. -2C. 8D. -8【答案】B【解析】【分析】根据有理数的加法法则,即可求解.【详解】∵-5+3=-(5-3)=-2,故答案是:B.【点睛】本题主要考查有理数的加法法则,掌握“异号两数相加,取绝对值较大的数的符号,并把较大数的绝对值减去较小数的绝对值”是解题的关键.2. 下列几何图形中,既是中心对称图形也是轴对称图形的是()A. B. C. D.【答案】C【解析】【分析】本题主要考查了中心对称图形和轴对称图形的定义,如果一个平面图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形就叫做轴对称图形;中心对称图形的定义:把一个图形绕着某一个点旋转180︒,如果旋转后的图形能够与原来的图形重合,那么这个图形叫做中心对称图形,这个点就是它的对称中心.根据轴对称图形和中心对称图形的定义进行逐一判断即可.【详解】解:A .是轴对称图形,不是中心对称图形,故不符合题意;B .不是轴对称图形,是中心对称图形,故不符合题意;C .既是轴对称图形,又是中心对称图形,故不符合题意;D .是轴对称图形,不是中心对称图形,故不符合题意;故选:C .3. 2024年6月6日,嫦娥六号在距离地球约384000千米外上演“太空牵手”,完成月球轨道的交会对接.数据384000用科学记数法表示为( )A. 43.8410⨯B. 53.8410⨯C. 63.8410⨯D. 538.410⨯【答案】B【解析】【分析】本题考查了绝对值大于1的科学记数法的表示,解题的关键在于确定a n ,的值.根据绝对值大于1的数,用科学记数法表示为10n a ⨯,其中110a ≤<,n 的值为整数位数少1.【详解】解:384000大于1,用科学记数法表示为10n a ⨯,其中 3.84a =,5n =, ∴384000用科学记数法表示为53.8410⨯,故选:B .4. 如图,一把直尺、两个含30︒的三角尺拼接在一起,则ACE ∠的度数为( )A. 120︒B. 90︒C. 60︒D. 30︒【答案】C【解析】【分析】本题考查了平行线的性质.熟练掌握平行线的性质是解题的关键.由题意知,AC DE ∥,根据ACE E ∠=∠,求解作答即可.【详解】解:由题意知,AC DE ∥,∴60ACE E ∠=∠=︒,故选:C .5. 下列计算正确的是( )A. 2510a a a ⋅=B. 824a a a ÷=C. 257a a a -+=D. ()5210a a =【答案】D【解析】【分析】本题主要考查了同底数幂乘除法计算,幂的乘方计算,合并同类项,熟知相关计算法则是解题的关键.【详解】解:A 、257a a a ⋅=,原式计算错误,不符合题意;B 、826a a a ÷=,原式计算错误,不符合题意;C 、253a a a -+=,原式计算错误,不符合题意;D 、()5210a a =,原式计算正确,符合题意;故选:D .6. 长江是中华民族的母亲河,长江流域孕育出藏羌文化、巴蜀文化、荆楚文化、吴越文化等区域文化.若从上述四种区域文化中随机选一种文化开展专题学习,则选中“巴蜀文化”的概率是( )A. 14 B. 13 C. 12 D. 34【答案】A【解析】【分析】本题考查了概率公式,用到的知识点为:概率=所求情况数与总情况数之比.直接根据概率公式求解即可.【详解】解:根据题意,选中“巴蜀文化”的概率是14,故选:A .7. 完全相同的4个正方形面积之和是100,则正方形的边长是( )A. 2B. 5C. 10D. 20【答案】B【解析】【分析】本题主要考查了算术平方根的应用,先求出一个正方形的面积,再根据正方形的面积计算公式求出对应的边长即可.【详解】解:∵完全相同的4个正方形面积之和是100,∴一个正方形的面积为100425÷=,∴5=,故选:B .8. 若点()()()1230,,1,,2,y y y 都在二次函数2y x =的图象上,则( )A. 321y y y >>B. 213y y y >>C. 132y y y >>D. 312y y y >>【答案】A【解析】【分析】本题考查了二次函数的图象和性质、二次函数图象上点的坐标特征等知识点,根据二次函数的解析式得出函数图象的对称轴是y 轴(直线0x =),图象的开口向上,在对称轴的右侧,y 随x 的增大而增大,再比较即可.【详解】解∶ 二次函数2y x =的对称轴为y 轴,开口向上,∴当0x >时, y 随x 的增大而增大,∵点()()()1230,,1,,2,y y y 都在二次函数2y x =的图象上,且012<<,∴321y y y >>,故选∶A .9. 方程233x x=-的解为( )A. 3x = B. 9x =- C. 9x = D. 3x =-【答案】C【解析】【分析】把分式方程去分母转化为整式方程,求出整式方程的解得到x 的值,经检验即可得到分式方程的解.【详解】解:233x x=-去分母得:23(3)x x =-,去括号得:239x x =-,移项、合并同类项得:9x -=-,解得:x =9,经检验:x =9是原分式方程的解,故选:C .【点睛】本题考查了解分式方程,利用了转化的思想,解题的关键是解分式方程注意要检验,避免出现增根.10. 已知不等式0kx b +<的解集是2x <,则一次函数y kx b =+的图象大致是( )A. B. C. D.【答案】B【解析】【分析】本题考查一次函数与一元一次不等式,解不等式的方法:从函数的角度看,就是寻求使一次函数y kx b =+的值大于(或小于)0的自变量x 的取值范围.找到当2x <函数图象位于x 轴的下方的图象即可.【详解】解∶∵不等式0kx b +<的解集是2x <,∴当2x <时,0y <,观察各个选项,只有选项B 符合题意,故选:B .二、填空题:本大题共5小题,每小题3分,共15分.11. 数据2,3,5,5,4的众数是____.【答案】5【解析】【分析】由于众数是一组数据中出现次数最多的数据,注意众数可以不止一个,由此即可确定这组数据的众数.【详解】解:∵5是这组数据中出现次数最多的数据,∴这组数据的众数为5.故答案为:5.【点睛】本题属于基础题,考查了确定一组数据的众数的能力,解题关键是要明确定义,读懂题意.12. 关于x 的不等式组中,两个不等式的解集如图所示,则这个不等式组的解集是______.【答案】3x ≥##3x≤【解析】【分析】本题主要考查了求不等式组解集,在数轴上表示不等式组的解集,根据“同大取大,同小取小,大小小大中间找,大大小小找不到(无解)”求出不等式组的解集即可.【详解】解:由数轴可知,两个不等式的解集分别为3x ≥,2x >,∴不等式组的解集为3x ≥,故答案为:3x ≥.13. 若关于x 的一元二次方程220x x c ++=有两个相等的实数根,则c =_______.【答案】1【解析】【分析】由220x x c ++=有两个相等的实数根,可得240b ac ∆=-=进而可解答.【详解】解:∵220x x c ++=有两个相等的实数根,∴24440b ac c ∆=-=-=,∴1c =.故答案为:1.【点睛】本题主要考查根据一元二次方程根的情况求参数,掌握相关知识是解题的关键.14. 计算:333a a a -=--_______.【答案】1【解析】的【分析】本题主要考查了同分母分式减法计算,根据同分母分式减法计算法则求解即可.【详解】解:331333a a a a a --==---,故答案为:1.15. 如图,菱形ABCD 的面积为24,点E 是AB 的中点,点F 是BC 上的动点.若BEF △的面积为4,则图中阴影部分的面积为______.【答案】10【解析】【分析】本题考查了菱形的性质,三角形中线的性质,利用菱形的性质、三角形中线的性质求出6ADE S = ,8ABF S = ,根据ABF △和菱形的面积求出23BF BC =,2BF CF=,则可求出CDF 的面积,然后利用ADE BEF CDF ABCD S S S S S =---阴影菱形 求解即可.【详解】解:连接AF BD 、,∵菱形ABCD 的面积为24,点E 是AB 的中点,BEF △的面积为4,∴1116222ADE ABD ABCD S S S ==⨯=菱形 ,28ABF BEF S S == ,设菱形ABCD 中BC 边上的高为h ,则12ABFABCD BF h S S BC h ⋅=⋅菱形 ,即18224BF BC=,∴23BF BC =,∴2BF CF=,∴12212ABF CDF BF h S BF S CFCF h ⋅===⋅ ,∴4CDF S =△,∴10ADE BEF CDF ABCD S S S S S =---=阴影菱形 ,故答案为:10.三、解答题(一):本大题共3小题,每小题7分,共21分.16.计算:011233-⨯-+-.【答案】2【解析】【分析】本题主要考查了实数的运算,零指数幂,负整数指数幂,先计算零指数幂,负整数指数幂和算术平方根,再计算乘法,最后计算加减法即可.【详解】解:011233-⨯-+-111233⨯+-=11233=+-2=.17. 如图,在ABC 中,90C ∠=︒.(1)实践与操作:用尺规作图法作A ∠的平分线AD 交BC 于点D ;(保留作图痕迹,不要求写作法)(2)应用与证明:在(1)的条件下,以点D 为圆心,DC 长为半径作D .求证:AB 与D 相切.【答案】(1)见解析(2)证明见解析【解析】【分析】本题考查了尺规作角平分线,角平分线的性质定理,切线的判定等知识.熟练上述知识是解题的关键.(1)利用尺规作角平分线的方法解答即可;(2)如图2,作DE AB ⊥于E ,由角平分线性质定理可得DE DC =,由DE 是半径,DE AB ⊥,可证AB 与D 相切.【小问1详解】解:如图1,AD 即为所作;【小问2详解】证明:如图2,作DE AB ⊥于E ,∵AD 是CAD ∠的平分线,DC AC ⊥,DE AB ⊥,∴DE DC =,∵DE 是半径,DE AB ⊥,∴AB 与D 相切.18. 中国新能源汽车为全球应对气候变化和绿色低碳转型作出了巨大贡献.为满足新能源汽车的充电需求,某小区增设了充电站,如图是矩形PQMN 充电站的平面示意图,矩形ABCD 是其中一个停车位.经测量,60ABQ ∠=︒, 5.4m AB =, 1.6m CE =,的GH CD ⊥,GH 是另一个车位的宽,所有车位的长宽相同,按图示并列划定.根据以上信息回答下列问题:(结果精确到0.1m 1.73≈)(1)求PQ 的长;(2)该充电站有20个停车位,求PN 的长.【答案】(1)6.1m(2)66.7m【解析】【分析】本题主要考查了矩形的性质,解直角三角形的实际应用:(1)先由矩形的性质得到90Q P ∠=∠=︒,再解Rt ABQ 得到AQ =,接着解直角三角形得到BC =,进而求出AP =,据此可得答案;(2)解Rt BCE 得到 3.2m BE =,解Rt ABQ 得到 2.7m BQ =,再根据有20个停车位计算出QM 的长即可得到答案.【小问1详解】解:∵四边形PQMN 是矩形,∴90Q P ∠=∠=︒,在Rt ABQ 中,60ABQ ∠=︒, 5.4m AB =,∴sin AQ AB ABQ =⋅=∠,30QAB ∠=︒,∵四边形ABCD 是矩形,∴90AD BC BAD BCD ABC BCE =====︒,∠∠∠∠,∴30CBE ∠=︒,∴tan CE BC CBE ==∠,∴AD =;∵180309060PAD =︒-︒-︒=︒∠,∴cos AP AD PAD =⋅=∠,∴ 6.1m PQ AP AQ =+=≈【小问2详解】解:在Rt BCE 中, 3.2m sin CE BE CBE==∠,在Rt ABQ 中,cos 2.7m BQ AB ABQ =⋅=∠,∵该充电站有20个停车位,∴2066.7m QM QB BE =+=,∵四边形ABCD 是矩形,∴66.7m PN QM ==.四、解答题(二):本大题共3小题,每小题9分,共27分.19. 端午假期,王先生计划与家人一同前往景区游玩,为了选择一个最合适的景区,王先生对A 、B 、C 三个景区进行了调查与评估.他依据特色美食、自然风光、乡村民宿及科普基地四个方面,为每个景区评分(10分制).三个景区的得分如下表所示:景区特色美食自然风光乡村民宿科普基地A 6879B7787C 8866(1)若四项所占百分比如图所示,通过计算回答:王先生会选择哪个景区去游玩?(2)如果王先生认为四项同等重要,通过计算回答:王先生将会选择哪个景区去游玩?(3)如果你是王先生,请按你认为的各项“重要程度”设计四项得分的百分比,选择最合适的景区,并说明理由.【答案】(1)王先生会选择B 景区去游玩(2)王先生会选择A 景区去游玩(3)最合适的景区是B 景区,理由见解析【解析】【分析】本题主要考查了求平均数和求加权平均数:(1)根据加权平均数的计算方法分别计算出三个景区的得分即可得到答案;(2)根据平均数计算方法分别计算出三个景区的得分即可得到答案;(3)设计对应的权重,仿照(1)求解即可.小问1详解】解:A 景区得分为630%815%740%915%7.15⨯+⨯+⨯+⨯=分,B 景区得分为730%715%840%715%7.4⨯+⨯+⨯+⨯=分,C 景区得分为830%815%640%615%6.9⨯+⨯+⨯+⨯=分,∵6.97.157.4<<,∴王先生会选择B 景区去游玩;【小问2详解】的【解:A 景区得分67897.54+++=分,B 景区得分77877.254+++=分,C 景区得分668874+++=分,∵77.257.5<<,∴王先生会选择A 景区去游玩;【小问3详解】解:最合适的景区是B 景区,理由如下:设特色美食、自然风光、乡村民宿及科普基地四个方面的占比分别为30%20%40%10%,,,,A 景区得分为630%820%740%910%7.1⨯+⨯+⨯+⨯=分,B 景区得分为730%720%840%710%7.4⨯+⨯+⨯+⨯=分,C 景区得分为830%820%640%610%7⨯+⨯+⨯+⨯=分,∵77.17.4<<,∴王先生会选择B 景区去游玩.20. 广东省全力实施“百县千镇万村高质量发展工程”,2023年农产品进出口总额居全国首位,其中荔枝鲜果远销欧美.某果商以每吨2万元价格收购早熟荔枝,销往国外.若按每吨5万元出售,平均每天可售出100吨.市场调查反映:如果每吨降价1万元,每天销售量相应增加50吨.该果商如何定价才能使每天的“利润”或“销售收入”最大?并求出其最大值.(题中“元”为人民币)【答案】当定价为4.5万元每吨时,利润最大,最大值为312.5万元【解析】【分析】本题主要考查了二次函数的实际应用,设每吨降价x 万元,每天的利润为w 万元,根据利润=每吨的利润⨯销售量列出w 关于x 的二次函数关系式,利用二次函数的性质求解即可.【详解】解:设每吨降价x 万元,每天的利润为w 万元,由题意得,()()5210050w x x =--+的25050300x x =-++2150312.52x ⎛⎫=--+ ⎪⎝⎭,∵500-<,∴当12x =时,w 有最大值,最大值为312.5,∴5 4.5x -=,答:当定价为4.5万元每吨时,利润最大,最大值为312.5万元.21. 综合与实践【主题】滤纸与漏斗【素材】如图1所示:①一张直径为10cm 的圆形滤纸;②一只漏斗口直径与母线均为7cm 的圆锥形过滤漏斗.【实践操作】步骤1:取一张滤纸;步骤2:按如图2所示步骤折叠好滤纸;步骤3:将其中一层撑开,围成圆锥形;步骤4:将围成圆锥形的滤纸放入如图1所示漏斗中.【实践探索】(1)滤纸是否能紧贴此漏斗内壁(忽略漏斗管口处)?用你所学的数学知识说明.(2)当滤纸紧贴漏斗内壁时,求滤纸围成圆锥形的体积.(结果保留π)【答案】(1)能,见解析(23cm 【解析】【分析】本题考查了圆锥,解题的关键是:(1)利用圆锥的底面周长=侧面展开扇形的弧长求出圆锥展开图的扇形圆心角,即可判断;(2)利用圆锥的底面周长=侧面展开扇形的弧长,求出滤纸围成圆锥形底面圆的半径,利用勾股定理求出圆锥的高,然后利用圆锥体积公式求解即可.【小问1详解】解:能,理由:设圆锥展开图的扇形圆心角为n ︒,根据题意,得77180n ππ⋅=,解得180n =°,∴将圆形滤纸对折,将其中一层撑开,围成圆锥形,此时滤纸能紧贴此漏斗内壁;【小问2详解】解:设滤纸围成圆锥形底面圆的半径为cm r ,高为cm h ,根据题意,得18052180ππr ⨯=,解得52r =,∴h ==,∴圆锥的体积为223115332r h ππ⎛⎫=⨯= ⎪⎝⎭.五、解答题(三):本大题共2小题,第22题13分,第23题14分,共27分.22. 【知识技能】(1)如图1,在ABC 中,DE 是ABC 的中位线.连接CD ,将ADC △绕点D 按逆时针方向旋转,得到A DC '' .当点E 的对应点E '与点A 重合时,求证:AB BC =.【数学理解】(2)如图2,在ABC 中()AB BC <,DE 是ABC 的中位线.连接CD ,将ADC △绕点D 按逆时针方向旋转,得到A DC '' ,连接A B ',C C ',作A BD ' 的中线DF .求证:2DF CD BD CC ⋅='⋅.【拓展探索】(3)如图3,在ABC 中,4tan 3B =,点D 在AB 上,325AD =.过点D 作DE BC ⊥,垂足为E ,3BE =,323CE =.在四边形ADEC 内是否存在点G ,使得180AGD CGE ∠+∠=︒?若存在,请给出证明;若不存在,请说明理由.【答案】(1)证明见解析;(2)证明见解析;(3)存在,证明见解析【解析】【分析】本题考查了旋转的性质、中位线的性质、外角定理、相似三角形的判定与性质、勾股定理、三角函数,圆内接四边形的对角互补熟练.掌握知识点以及灵活运用是解题的关键.(1)根据中位线的性质、旋转的性质即可证明;(2)利用旋转的性质、外角定理、中位线的性质证明A FD DGC ''△∽△后即可证明;(3)当两圆相交,连接交点与两圆心所构成的四边形为圆内接四边形,其中一组对角互补,即两角之和为180︒.根据圆内接四边形的对角互补,将问题转化为求出两圆的位置关系即可证明.【详解】证明:(1) DE 是ABC 的中位线,∴12DE BC =且12AD DB AB ==.又 ADC △绕点D 按逆时针方向旋转得到A DC ''∴DE AD=∴AB BC =.(2)由题意可知:DC DC '=,DA DA '=,CDC ADA ''∠=∠.作DG CC '⊥,则12CG C G CC ''==且12CDG C DG CDC ''∠=∠=∠,又 BD DA DA '==,∴A BD BA D ''∠=∠.根据外角定理A DA A BD BA D '''∠=∠-∠,∴12BA D A DA ''∠=∠,∴BA D C CG ''∠=∠.又 DB DA '=,DF 是A BD ' 的中位线,∴'DF A B ⊥,∴90A FD '∠=︒,∴A FD DGC ''△∽△,∴DF A DC G CD '='',∴12DF BDCD C C =',∴2DF CD BD CC ⋅='⋅.(3)假设存在点G 使得180AGD CGE ∠+∠=︒,如图分别以AD ,CE 为直径画圆,圆心分别为1O ,2O ,半径分别为r ,R ,则165r =,163R =.过点1O 作1O H BC ⊥于点H ,过点D 作1DF O H ⊥于点F ,则有DF BC ∥,四边形DEHF 为长方形,∴190O FD FHB DEB ∠=∠=∠=︒,1O DF DBE ∠=∠,∴1O FD DEB △∽△,∴11O DO F DF DB DE BE ==,11O DDBDE O F =.又 在BDE 中,4·tan 343DE BE B ==⨯=,5BD ===,1516r O D ==,根据勾股定理可得:4DE FH ==,5DB =,∴16425O F =,4825DF EH ==.∴111644 6.5625O H O F =+==,216482563.4132575O H R EH =-=-=≈.在12Rt O HO △中,127.39O O =≈.又 16168.553r R +=+≈,∴12O O r R <+,∴两圆有交点,满足180AGD CGE ∠+∠=︒.23. 【问题背景】如图1,在平面直角坐标系中,点B ,D 是直线()0y ax a =>上第一象限内的两个动点()OD OB >,以线段BD 为对角线作矩形ABCD ,AD x ∥轴.反比例函数k y x =的图象经过点A .【构建联系】(1)求证:函数k y x=的图象必经过点C .(2)如图2,把矩形ABCD 沿BD 折叠,点C 的对应点为E .当点E 落在y 轴上,且点B 的坐标为()1,2时,求k 的值.【深入探究】(3)如图3,把矩形ABCD 沿BD 折叠,点C 的对应点为E .当点E ,A 重合时,连接AC交BD 于点P .以点O 为圆心,AC 长为半径作O .若OP =O 与ABC 的边有交点时,求k 的取值范围.【答案】(1)证明见解析;(2)163k =;(3)68k ≤≤【解析】【分析】(1)设(),B m ma ,则,k A m m ⎛⎫ ⎪⎝⎭,用含,m k 的代数式表示出,k C am am ⎛⎫ ⎪⎝⎭,再代入k y x=验证即可得解;(2)先由点B 的坐标和k 表示出2DC k =-,再由折叠性质得出2DE BE=,如图,过点D 作DH y ⊥轴,过点B 作BF y ⊥轴,证出DHE EFB ∽,由比值关系可求出24k HF =+,最后由HF DC =即可得解;(3)当O 过点B 时,如图所示,过点D 作DH x 轴交y 轴于点H ,求出k 的值,当O 过点A 时,根 据A ,C 关于直线OD 对轴知,O 必过点C ,如图所示,连AO ,CO ,过点D 作DH x 轴交y 轴于点H ,求出k 的值,进而即可求出k 的取值范围.【详解】(1)设(),B m ma ,则,k A m m ⎛⎫ ⎪⎝⎭,∵AD x 轴,∴D 点的纵坐标为k m , ∴将k y m =代入y ax =中得:k m ax =得,∴k x am=,∴,k k D am m ⎛⎫ ⎪⎝⎭,∴,k C am am ⎛⎫ ⎪⎝⎭,∴将k x am =代入k y x=中得出y am =,∴函数k y x =的图象必经过点C ;(2)∵点()1,2B 在直线y ax =上,∴2a =,∴2y x =,∴A 点的横坐标为1,C 点的纵坐标为2,∵函数ky x =的图象经过点A ,C ,∴22k C ⎛⎫⎪⎝⎭,,()1,A k ,∴2k D k ⎛⎫⎪⎝⎭,∴2DC k =-,∵把矩形ABCD 沿BD 折叠,点C 的对应点为E ,∴12kBE BC ==-,90BED BCD ∠=∠=︒,∴2212DC k DEk BC BE -===-,如图,过点D 作DH y ⊥轴,过点B 作BF y ⊥轴,∵AD x 轴,∴H ,A ,D 三点共线,∴90HED BEF ∠+∠=︒,90BEF EBF ∠+∠=︒,∴HED EBF ∠=∠,∵90DHE EFB ∠=∠=︒,∴DHE EFB ∽,∴2DHHEDEEF BF BE ===,∵1BF =,2kDH =∴2HE =,4kEF =,∴24kHF =+,由图知,HF DC =,∴224kk +=-,∴163k =;(3)∵把矩形ABCD 沿BD 折叠,点C 的对应点为E ,当点E ,A 重合,∴AC BD ⊥,∵四边形ABCD 为矩形,∴四边形ABCD 为正方形,45ABP DBC ∠=∠=︒,∴sin 45APAB BC CD DA =====︒,12AP PC BP AC ===,BP AC ⊥,∵BC x ∥轴,∴直线y ax =为一,三象限的夹角平分线,∴y x =,当O 过点B 时,如图所示,过点D 作DH x ∥轴交y 轴于点H ,∵AD x ∥轴,∴H ,A ,D 三点共线,∵以点O 为圆心,AC 长为半径作O ,OP =,∴23OP OB BP AC BP AP AP AP =+=+=+==∴AP =,∴2AB AD ===,2BD AP ==,2BO AC AP ===,∵AB y ∥轴,∴DHO DAB ∽,∴HO DH DO AB AD BD==,∴22HO DH ==,∴4HO HD ==,∴422HA HD DA =-=-=,∴()2,4A ,∴248k =⨯=,当O 过点A 时,根 据A ,C 关于直线OD 对轴知,O 必过点C ,如图所示,连AO ,CO ,过点D 作DH x ∥轴交y 轴于点H ,∵AO OC AC ==,∴AOC 为等边三角形,∵OP AC ⊥,∴160302AOP ∠=⨯︒=︒,∴tan 30AP OP PD =︒⨯===,2AC BD AP ===,∴AB AD ===,OD BP PD =+=+, ∵AB y ∥轴,∴DHO DAB ∽,∴HO DH DO AB AD BD==,==∴3HO HD ==+,∴33HA HD DA =-=+-=,∴(3A +,∴((336k =⨯+=,∴当O 与ABC 的边有交点时,k 的取值范围为68k ≤≤.【点睛】本题主要考查了相似三角形的判定和性质,解直角三角形,一次函数的性质,反比例函数的性质,矩形的性质,正方形的判定和性质,轴对称的性质,圆的性质等知识点,熟练掌握其性质,合理作出辅助线是解决此题的关键.。
2024年广东省中考数学命题趋势一+教材变式题课件
![2024年广东省中考数学命题趋势一+教材变式题课件](https://img.taocdn.com/s3/m/49107cedf021dd36a32d7375a417866fb84ac0d6.png)
(2)若∠A = 130∘ ,BE = BC,求∠DBC的度数. 【答案】∵△ ABD ∼△ EDC, ∴ ∠DEC = ∠A = 130∘ , ∴ ∠BEC = 50∘ . ∵ BE = BC, ∴ ∠BCE = ∠BEC = 50∘ , ∴ ∠DBC = 180∘ − 2 × 50∘ = 80∘ .
【答案】猜想:BD ⊥ AC,AO = OC.(写出一个即可)
AB = CB, 证明:在△ ADB和△ CDB中, AD = CD,
BD = BD, ∴△ ADB ≌△ CDB SSS ,
∴ ∠ADO = ∠CDO.
AD = CD, 在△ AOD和△ COD中, ∠ADO = ∠CDO,
OD = OD, ∴△ AOD ≌△ COD SAS ,
到第3周和第5周到第6周
C. 第3周和第5周的销量一样 D. 第1周到第5周,周销量逐渐增大
(第4题)
5. 人教八下P44第1题变式如图,▱ABCD的周长是
36 cm,对角线AC,BD相交于点O,AC ⊥ AB,E是
BC的中点,△ AOD的周长比△ AOB的周长多2 cm,
连接AE,则AE的长为( C )
2
BAC的面积为90π× 2 2 = π
360
2
m2
.
2,∴ 扇形
(第7题)
8. 人教八上P53数学活动2变式在人教版八年级上册数学教 材P53的数学活动2中有这样一段描述:我们把两组邻边分 别相等的四边形叫做“筝形”.如图,四边形ABCD是一个筝 形,其中AD = CD,AB = CB,猜想筝形的对角线有什么 性质(写出一条即可),并用全等三角形的知识证明你的 猜想.
10. 人教九上P50探究2变式新茶上市期间,某茶厂为获得最大利益,根 据市场行情,把新茶价格定为400元/千克,并根据历年的相关数据整理 出第x天(1 ≤ x ≤ 15,且x为整数)的制茶成本(含采摘和加工)和制 茶量的相关信息如下表.假定该茶厂每天制作和销售的新茶没有损失,且 能在当天全部售出.
广东省中考数学命题规律及命题趋势分析
![广东省中考数学命题规律及命题趋势分析](https://img.taocdn.com/s3/m/a5934ec7336c1eb91b375d63.png)
省中考数学命题规律及命题趋势分析(转)中考是初中教学的指挥棒,研究、分析中考试题对平时组织教学有着积极的指导意义。
研究省近三年的中考数学试题,把握中考命题的方向和脉搏,对落实新课程标准,有效地组织初三数学课的教学和复习,同样也有着现实的指导作用。
一、中考试题的题量、题型和分值2005年、2006年、2007年省数学中考试题的考试题型分为选择题、填空题和解答题。
近三年的题量和分值都保持不变,选择题都是5小题,每小题3分;填空题为5小题,每小题4分;解答题分为三类:第一类5小题每小题6分共30分,第二类每小题7分共28分,第三类每小题9分共27分。
二、中考试题知识点的覆盖面分析近三年来省的中考试题,对照每年的《中考说明》,试题按照《中考说明》的要求,都注意了重要知识点的考查。
如在每年的第一类解答题5道题中,每年必考的容实数的运算、代数式的化简求值、解不等式组、解方程或方程组、一元二次方程根的判别式或根与系数的关系、基本作图等。
在每年的解答题二中,列方程解应用题、解直角三角形、求函数解析式、平面图形的简单论证和计算等是考查的重点。
每年的解答题三,是中考稳中求变的突破口,命题组在这三大题中,可谓是绞尽脑汁。
但总体来说,还是有可以捕捉的规律,如圆与三角形、圆与四边形中等积式和比例式的证明,几何与方程、函数的结合题,几何图形中的一些条件给定、探求结果的开放型题等都是近三年来保留的压轴题。
三、试题特点(一) 准确把握对数学知识与技能的考查。
1.从知识点上看,在命题方向上,没有太多的起伏;从容上看,几何题中的面积、弧长、侧面积或圆中线段、角度计算或者与代数相似三角形、三角函数的联系等,二次函数综合题还是压轴题的首选容。
07年在几何题方面有所侧重,全卷占了61分,在二次函数方面有所减少,只是在第22题第(2)小题运用二次函数知识求三角形面积的最大值。
但明年中考是否一样,有待商讨。
并且考试容与考查方式的结合新颖。
如07年省题第21题把圆的切线及其性质、三角函数、解直角三角形等知识点与现实生活有机结合,学生对“滚铁环”游戏并不陌生。
广东2023中考数学解读
![广东2023中考数学解读](https://img.taocdn.com/s3/m/876e5e4f77c66137ee06eff9aef8941ea76e4b8c.png)
广东2023中考数学解读广东2023中考数学试题涵盖了各个知识点,主要考察了考生的运算能力、逻辑思维和问题解决能力。
下面我们对试题进行逐一解读。
试题中的整数相关知识点比较多。
在试题中,涉及到整数的加减乘除运算,考察考生对整数运算规则的理解和掌握程度。
特别是对于有括号的整数运算,考生需要注意括号的运算顺序和规律,正确进行加减乘除的运算。
此外,试题中还涉及到整数的相反数、绝对值和整除等概念,考生需要熟练掌握相关定义和性质。
试题中对于小数的应用也有一定的考察。
在试题中,出现了小数四则运算和小数和整数之间的转换等问题,考生需要熟练掌握小数的运算和转换规则,做到灵活运用。
三角形是数学中的重要几何概念,也是中考数学重点考察的内容之一。
在试题中,涉及到了三角形的面积、相似性和全等性等概念。
对于面积的计算,考生需要熟练掌握三角形、矩形、平行四边形等图形的面积公式,并能够正确运用。
对于相似和全等三角形的判断,考生需要能够根据给定的条件和性质进行推理和判断。
代数是数学中的重要分支,参加中考的学生通常需要掌握一些代数的基本知识和运算规则。
在试题中,涉及到了代数式的加减乘除运算、解方程等问题。
对于代数式的运算,考生需要注意用分配律、结合律和合并同类项等法则进行化简和计算。
对于方程的解,考生需要能够根据方程的性质和条件进行推理和解答。
除此之外,试题中还涉及到了概率与统计和函数的知识点。
在概率与统计部分,考生需要掌握统计数据的收集和整理、频数表和频数分布表的制作、概率的计算等基本方法。
在函数部分,考生需要了解函数的概念、函数的图像、函数的性质等内容。
特别是对于函数图像的绘制和函数性质的判断,考生需要运用相关知识和技巧进行解答。
综上所述,广东2023中考数学试题涵盖了整数、小数、代数、几何、概率与统计、函数等多个知识点,考察了考生的运算能力、逻辑思维和问题解决能力。
考生在备考过程中需要系统地学习和掌握各个知识点,并通过做题和解题训练提升解题能力。
2023广州中考数学总结
![2023广州中考数学总结](https://img.taocdn.com/s3/m/b6924fcccd22bcd126fff705cc17552707225eea.png)
2023广州中考数学总结引言2023年广州中考数学科目已经结束,本次考试涵盖了初中数学的各个重要知识点。
本文将总结2023广州中考数学科目的考试内容,分析考试趋势,并为学生提供备考建议。
一、考试内容1.整数与有理数:包括整数的四则运算、有理数的加减乘除以及有理数的比较等基础操作。
2.分数:包括分数的加减乘除、分数和整数的混合运算、分数的化简和比较等内容。
3.代数:涉及代数式的展开与因式分解、简单方程与方程组的解法、一元一次方程与一元一次不等式的应用等。
4.几何:包括平面图形的性质与判断、几何变换(平移、旋转、翻转)、三角形的性质与判断、相似与全等等。
5.统计与概率:包括数据的收集与整理、频数表与频率表的制作、统计量的计算、概率的计算等。
二、考试趋势分析根据2023年广州中考数学科目的考试内容及试卷分析,可以得出以下考试趋势:1.知识点扩展:与往年相比,2023年中考数学试卷对于知识点的覆盖更加全面,不仅包括基础知识点,还增加了一些高阶知识点。
因此,学生应注重全面掌握数学各个知识点。
2.算法意识的重要性:2023年中考数学试卷中,对于算法意识的要求更高。
解题过程更加注重方法的规范性和逻辑性。
因此,学生在备考过程中应注重培养解题思路和方法的训练。
3.综合能力的考查:2023年中考数学试卷中,注重综合能力的考查。
试题往往涉及多个知识点的综合应用,要求学生能够较好地综合运用不同的数学知识进行解决。
因此,学生需要注重数学知识的整体掌握和运用能力的培养。
三、备考建议1.夯实基础:数学学科是基础学科,学生应在备考前夯实基础知识。
恶补数学基础知识,确保对于整数、分数、代数、几何、统计与概率等基础知识点的掌握。
2.重点突破:根据试题分析,确定重点知识点,加强对于重点知识点的理解和记忆。
在备考过程中,注重强化短时间内的学习和提高。
3.提升解题技巧:注重解题技巧的学习和训练,运用解题方法和技巧解决各类数学题目。
同时,注重学习常用的数学公式和定理,积累解题经验。
2023中考数学 命题趋势解析
![2023中考数学 命题趋势解析](https://img.taocdn.com/s3/m/36512448854769eae009581b6bd97f192279bf97.png)
2023中考数学命题趋势解析摘要:一、引言二、中考数学命题趋势分析1.命题依据2.命题方向3.命题形式三、2023 中考数学命题趋势预测1.侧重基础知识和基本技能2.注重综合能力和实践能力3.考查思维能力和创新意识四、应对策略1.扎实掌握基础知识2.提高综合解题能力3.培养思维敏捷和创新意识五、总结正文:一、引言随着教育改革的深入推进,中考数学命题也在不断地创新和变化。
为了更好地指导学生备考,本文将对2023 中考数学命题趋势进行解析,以帮助学生更好地应对考试。
二、中考数学命题趋势分析1.命题依据中考数学命题依据主要为国家课程标准,以考查学生对数学知识的理解、掌握和应用能力为目标。
2.命题方向(1)强调基础知识和基本技能的考查,注重学生对知识的理解和运用;(2)注重综合能力和实践能力的考查,体现数学与生活、社会的联系;(3)考查思维能力和创新意识,体现数学的学科特点。
3.命题形式(1)选择题、填空题、解答题等多种题型;(2)常规题、创新题、综合题等多种类型;(3)有明确的知识点考查,也有综合性的问题解决。
三、2023 中考数学命题趋势预测1.侧重基础知识和基本技能预计2023 中考数学命题将继续强调对基础知识和基本技能的考查,如代数、几何、函数、统计与概率等知识点。
学生需要熟练掌握相关知识点,形成解题技能。
2.注重综合能力和实践能力2023 中考数学命题将更加注重考查学生的综合能力和实践能力,例如在实际问题中运用数学知识解决问题,综合运用多个知识点进行推理和分析。
3.考查思维能力和创新意识预计2023 中考数学命题将注重考查学生的思维能力和创新意识,如逻辑推理、空间想象、抽象思维等。
这类题目旨在考查学生对数学概念的理解和应用能力。
四、应对策略1.扎实掌握基础知识学生应对基础知识进行深入学习和理解,形成知识网络,熟练掌握解题技能。
2.提高综合解题能力学生需要注重综合解题能力的训练,学会在不同知识点之间进行转换和运用,形成解题策略。
广东2023中考数学解读
![广东2023中考数学解读](https://img.taocdn.com/s3/m/ae305965a4e9856a561252d380eb6294dd882200.png)
广东2023中考数学解读摘要:一、2023 年广东中考数学整体分析1.选择题:中规中矩,数与代数考了5 道,几何考了4 道,统计概率1 道2.填空题:整体难度还行,但风格跟往年有点差别二、2023 年广东中考数学试题特点1.选择题第10 题:二次函数压轴题,难度略高2.选择题第6 题:数学文化考察,涉及黄金分割数3.填空题第13 题:反比例函数的实际应用4.填空题第14 题:打折销售问题三、近九年广东中考数学理解型试题分布情况1.2015 至2023 年:理解型试题比重稳定在0.25 附近2.2023 年:理解型试题比重高达0.63.2023 年:理解型试题比重突然回调到0.174.2023 年:理解型试题比重回升到0.43正文:2023 年广东中考数学解读一、2023 年广东中考数学整体分析2023 年广东中考数学试题整体表现中规中矩,符合往年的出题规律和难度。
在选择题部分,数与代数题目占据了5 道,几何题目出现了4 道,而统计概率题目仅有1 道。
其中,选择题第10 题作为二次函数的压轴题,虽然题目难度略高,但整体来说还是在考生的可接受范围内。
选择题第6 题涉及数学文化考察,要求考生了解黄金分割数的概念,这一题目对于不了解的考生来说可能会有一定难度。
在填空题部分,整体难度还算平稳,但与往年相比,风格略有差别。
例如,第13 题涉及反比例函数的实际应用,这一题目在人教版和北师大版的九年级教材中都有出现,但在往年的真题中很少出现。
第14 题则是一个打折销售问题,这一类题目在历年中考中也是常见题型。
二、2023 年广东中考数学试题特点除了整体难度适中外,2023 年广东中考数学试题还有一些特点值得关注。
选择题第10 题作为二次函数的压轴题,虽然难度略高,但题目的考查方向和难度都是合理的,符合中考数学的考察要求。
选择题第6 题涉及数学文化考察,要求考生了解黄金分割数的概念,这一题目不仅考查了考生的数学知识,也考查了考生对数学历史的了解,是一道具有一定深度的题目。
广东2023中考数学解读
![广东2023中考数学解读](https://img.taocdn.com/s3/m/f212e561a4e9856a561252d380eb6294dd882225.png)
广东2023中考数学解读
广东2023年中考数学的试题特点解读如下:
1.试题结构稳定,由易到难顺应学生的心理特征,易、中、难题分值比例兼顾
学业水平与选拔功能,无偏题、怪题。
2.试题具有一定的开放性,例如第20题不再以常见的先化简,再求值的思路
设问,而是先考查因式分解的方法,再让学生通过在所给定的三个代数式中任选两个,分别作为分子、分母,组成一个分式,并化简该分式。
答案不唯一,但都需要通过因式分解去达到分式化简的目的,突出了学习因式分解的价值和意义。
第21题用学生很熟悉的打乒乓球作为情境,计算概率来说明规则是否公平,设问方式比较新颖,体现了学习概率的价值和意义,突出开放性与创新性。
3.第24、25题侧重探究能力的考查,突出中考数学试题的选拔功能,引导日
常教学中教师要鼓励学生进行自主探究、动手操作,从特殊到一般,从具体到抽象,形成问题分析与解决能力,实现数学学习方式从解题到解决问题的转变。
4.试题注重考查学生的基础知识和基本技能,同时强调数学思想方法的运用。
例如第20题需要学生运用因式分解的方法进行分式化简;第21题需要学生运用概率计算的知识判断规则是否公平;第24、25题需要学生运用探究能力解决实际问题。
5.试题还注重与现实生活的联系,例如第21题以打乒乓球为背景设问,让学
生感受到数学与生活的紧密联系。
广东2023年中考数学的试题难度适中,既考查了学生的基础知识和基本技
能,又突出了数学思想方法的运用和数学探究能力的考查。
试题注重与现实生活的联系,突出了数学学习的应用价值。
因此,建议学生在日常学习中要注重基础知识的掌握和基本技能的训练,同时要注重数学思想方法的运用和数学探究能力的培养。
2024年广东中考数学分析范文
![2024年广东中考数学分析范文](https://img.taocdn.com/s3/m/fc82fdadafaad1f34693daef5ef7ba0d4a736dc5.png)
数学是一门非常重要的学科,也是广东中考的一项重要科目。
数学分析是数学中的一个重要分支,是用数学方法研究函数和序列的性质、变化以及发展规律的一门学科。
下面是对2024年广东中考数学分析题的分析。
2024年广东中考数学分析部分由三个大题构成,分别是解答题、选择题和填空题。
首先是解答题。
解答题是考查学生对数学知识点的理解与运用能力的题目。
难度有一定的挑战性,需要学生灵活运用所学知识。
例如,2024年广东中考数学分析题中的一道解答题是关于函数的单调性和最值的问题。
这道题通过给出一个函数的定义域和函数值的范围,要求学生判断函数的单调性,并找出函数的最小值和最大值。
这道题不仅考查了学生对函数单调性和最值的掌握程度,还要求学生运用函数的定义和运算性质去解答问题。
接下来是选择题。
选择题是一种较为简单但需要迅速准确判断的题目。
广东中考数学分析中的选择题主要考查学生对基本概念和方法的理解和运用能力。
例如,一道选择题是给出一个函数的图像和函数的定义域,要求学生判断该函数的单调性。
这道题通过给出函数的图像,引导学生观察函数变化的趋势,然后再根据定义域和函数值之间的关系,判断函数的单调性。
这道题考察了学生对函数图像的理解和观察能力,以及对函数的定义域和值域的掌握能力。
最后是填空题。
填空题是一种针对具体问题的题目,需要学生根据所给信息和条件,填写出相应的答案。
填空题考查学生对数学知识的灵活运用能力和解题思路的构建能力。
例如,一道填空题是给出一个方程组和一个关于函数的不等式,要求学生求解该方程组,同时满足不等式条件。
这道题要求学生灵活运用线性方程组的求解方法,并将解代入不等式中验证答案。
这道题考察了学生对方程组解法和不等式条件的理解能力。
综上所述,2024年广东中考数学分析部分的题目分为解答题、选择题和填空题三种题型。
这些题目不仅考查了学生的基本概念和方法的掌握能力,还要求学生能够运用所学知识解决实际问题。
通过解答这些题目,学生可以提高自己的数学思维和分析能力,为将来的学习和工作打下坚实的数学基础。
广东2023中考数学解读
![广东2023中考数学解读](https://img.taocdn.com/s3/m/8ea9053f178884868762caaedd3383c4bb4cb4a6.png)
广东2023中考数学解读2023年的广东中考数学考试为第一次实施的新高考改革后的数学试卷。
本文将对该试卷进行解读,从试卷结构、题型设计、考查重点和难度等方面进行分析,帮助考生更好地备考。
一、试卷结构广东2023中考数学试卷分为五个部分,共80分。
各部分及分数比例如下:第一部分:选择题(共30小题,每小题1分,满分30分);第二部分:填空题(共6小题,每小题2分,满分12分);第三部分:解答题(共6小题,每小题5分,满分30分);第四部分:应用题(共3小题,每小题6分,满分18分);第五部分:开放性问题(共3小题,每小题4分,满分12分)。
试卷的结构变化相较于以往中考试卷有所调整,整体分值也有所增加。
其中,选择题占总分的37.5%,填空题占15%,解答题占37.5%,应用题占22.5%,开放性问题占15%。
二、题型设计1.选择题广东2023中考数学试卷的选择题采用单选题的形式,要求考生从四个选项中选择一个正确答案。
其题目设计注重考查对基本概念、定理和方法的理解和运用,既有计算题,也有应用题。
选择题的目的主要是检测考生对基础知识的掌握情况,以及对思路和解题方法的灵活运用。
2.填空题填空题共有6个题目,每个题目全部或部分给出了计算式,考生需要填入正确的数值或符号。
填空题在一定程度上考查考生对计算的熟练程度和对基本概念的理解。
其中,有的填空题要求考生进行简单计算,有的填空题则需要考生进行推理和解方程等操作。
3.解答题解答题一共有6个小题,要求考生进行详细的解答过程,回答问题。
解答题的设计主要考查考生的推理和证明能力,要求考生能够运用所学的数学知识解决实际问题,并能够清晰地表达自己的思路和答案。
在解答题中,会涉及到运算、几何图形的分析和推理、函数的性质和应用等内容。
4.应用题应用题共有3个小题,要求考生通过对一些实际问题的建模,运用数学知识求解实际问题。
这类题目旨在考查考生的综合运用能力,以及对数学理论的应用能力。
中考数学命题趋势分析及中考数学备考复习建议
![中考数学命题趋势分析及中考数学备考复习建议](https://img.taocdn.com/s3/m/7b7eb98609a1284ac850ad02de80d4d8d15a01bb.png)
中考数学命题趋势分析及中考数学备考复习建议随着教育改革的不断深入和中考改革的推进,在中考数学考试中,命题趋势也发生了一些变化。
本文将就中考数学命题的趋势进行分析,并给出一些建议,帮助考生备考复习。
一、趋势分析1. 知识点的权重调整:过去,中考数学命题更注重基础知识的考查,如整数运算、代数式化简等。
但随着综合素质教育的理念深入人心,中考数学命题摈弃了简单的纯机械计算题,转而注重考查学生的综合运用能力,如应用题、解决实际问题题等。
2. 考查解决问题的能力:中考数学命题越来越倾向于考查学生解决实际问题的能力。
这种趋势主要体现在命题中加入了更多的实际应用背景,要求学生能够把数学知识运用到实际问题中进行分析与解决。
3. 提高思维能力的考查:中考数学命题注重培养学生的思维能力,启发学生的创新思维。
题目中可能会增加一些需要通过推理、归纳、模型建立等方式解决的题目,此类题目注重学生的思维拓展和灵活运用能力。
二、备考复习建议1. 掌握基础知识:一些基础知识虽然在命题中的占比下降,但仍然是考试中的重要组成部分。
建议学生在备考过程中,细致地复习基础知识,熟练掌握整数运算、代数式化简等基础题型。
2. 提高应用能力:在备考过程中,学生要注重实际问题的解决能力的锻炼。
建议学生多从生活中的问题出发,如购物结账、比较商品价格等,通过分析问题、建立模型、解决问题的方式来训练应用题解题能力。
3. 注重思维训练:中考数学命题强调学生的思维能力,因此备考过程中要注重对思维能力的培养。
学生可以多做一些有挑战性的问题,培养归纳总结能力、推理能力和创新思维。
4. 做真题进行练习:备考过程中,学生可以多做一些中考数学的真题。
通过做真题,学生可以熟悉考试的题型、了解考试的难度和命题的趋势,从而更好地应对考试。
5. 合理安排时间:备考阶段要合理安排时间,将时间分配到各个知识点和题型上。
同时,要有适当的休息和调整,保持良好的精神状态。
结语:通过对中考数学命题的趋势分析,我们可以看出备考过程中需要注重综合应用和思维能力的培养。
广东数学中考命题分析
![广东数学中考命题分析](https://img.taocdn.com/s3/m/91019657a98271fe910ef94e.png)
一、广东省中考数学试题特点
一、广东省中考数学试题特点
3、中考试题注重对基础知识与基本技能的考查. 一位合格的初中毕业生必须掌握的重要数学知识
(包括数学事实、数学活动经验)和基本技能是适应 未来社会生活以及进一步发展的必要条件.试题加强对 四基的考查,有利于学生能力的形成与发展,在运用 的过程中对一些重要的数学概念、公式、定理、法则、 性质及数与式的运算技能、数与形的表示技能、统计 技能等进行了考查.如:
广东省中山市初中 毕业生数学学业考试 (中考)研讨会
目录
一、广东省中考数学试题总体特点 二、近年中考数学试题考点分布及趋势(按单元) 三、广东省中考数学试题的呈现预测及例题 (按题型) 四、近年广东省中考数学试题总体难易分布 五、复习备考建议
一、广东省中考数学试题特点
2、试题的难易程度 中考主要考查的内容包括:数学的基本知识和基本技能;数 学的活动经验;数学思考;对数学的基本认识;解决问题的 能力等。 以近年中考题为例:试题紧扣课标,很多试题源于课本(如: 2014年省题7题,2015省题5题 ),
从试题分布情况来看,试题编排从最基本的知识开始(求- 2的绝对值),由易到难,逐步提高难度,梯度合理,学生动手 很容易。解答题中的大部分题目都立足于考查初中数学核心的 基础知识、基本技能和基本数学思想方法;同时它也体现中考 的选拔功能,试题注意到初、高中数学知识的衔接,有些试题 着眼于多个知识点的整合或者多个知识点的交汇处命题,着重 考查学生数形结合的解题能力以及综合运用、创新探索的能力。
12
图形认识 39 几 37 几 23 几 25 几 32 几 30 几
证明
何
何
何
何
何
何
图形变换 9 48 12 49 19 42 31 56 23 55 26 56
2024广东中考数学分析范文
![2024广东中考数学分析范文](https://img.taocdn.com/s3/m/bf1ca03e26284b73f242336c1eb91a37f1113228.png)
2024广东中考数学分析范文数学分析是中学数学的重要内容,也是学生备战中考的重点之一、下面是一篇关于2024年广东中考数学分析的范文,供参考。
2024年广东中考数学分析题考查了一些基础知识和解题策略,要求学生熟练运用已掌握的知识和方法进行解题。
此次考试题型多样,包括选择题、填空题和解答题,考查了多个知识点,如函数、方程、平面几何等。
在选择题方面,考查了函数的零点及其个数、函数的图像、函数的性质等。
这些题目主要是考查学生对函数的定义和基本性质的理解和应用能力。
学生在解答这类题目时,应注意细节,尤其是要注意图像的对称性、单调性和整体性质。
在填空题方面,考查了方程的解和解的个数、函数的表示和计算等。
这些题目主要是考查学生对方程的理解和解题方法的掌握。
学生在解答这类题目时,应注意方程解的范围、解的个数及其求解过程。
在解答题方面,考查了平面几何的证明、函数应用题等。
这些题目主要是考查学生的证明能力和实际问题解决能力。
学生在解答这类题目时,应注意结论的证明过程、图像的理解和应用能力。
此次数学分析题难度适中,整体试卷的时间安排合理,给学生留有一定的答题时间。
尤其是在解答题部分,几个问题的难度有所递进,为学生提供了展示自己数学水平的机会。
在备考中,考生应重点掌握与数学分析相关的基本知识,如函数、方程、变量之间的关系等。
要灵活运用所学的知识和方法,将其应用于实际问题中,培养解题的思维能力和问题解决能力。
同时,还要注重题目的分析和细节的把握,避免因大意而出错。
总结而言,2024年广东中考数学分析题考查了学生对数学基本知识和解题方法的掌握程度,要求学生能够熟练运用所学的知识和方法进行解题。
此次试题的难度适中,整体试卷的设计合理,给学生留有一定的答题时间。
通过认真备考和答题,相信广大考生都能取得优异的成绩。
(以上为一篇2024广东中考数学分析范文,共计240字。
广东中考数学考试命题的见解
![广东中考数学考试命题的见解](https://img.taocdn.com/s3/m/8dfe08b6f80f76c66137ee06eff9aef8941e4821.png)
广东中考数学考试命题的见解一、整体趋势与特点近年来,广东中考数学试题在保持稳定性和连续性的基础上,呈现出一些新的趋势和特点。
试题整体上更加注重考查学生的数学核心素养和综合能力,强调数学知识的实际应用和问题解决能力。
同时,试题的难易程度适中,既有利于选拔优秀学生,又能照顾到大多数学生的实际水平。
二、考查内容广东中考数学试题在考查内容上非常全面,涵盖了数与代数、图形与几何、统计与概率等各个领域。
试题在考查基础知识的同时,也注重考查学生的拓展能力和创新思维。
例如,在数与代数方面,试题不仅考查了基本的运算能力和代数式的化简,还涉及到了方程与不等式、函数等更深层次的内容。
在图形与几何方面,试题不仅考查了学生的基本图形知识和几何变换能力,还涉及到了空间观念、几何证明等更高层次的内容。
在统计与概率方面,试题注重考查学生的数据分析和概率计算能力,要求学生能够从实际背景中抽象出数学问题,并运用所学知识进行解决。
三、试题形式广东中考数学试题在形式上比较灵活多样,既有选择题、填空题等传统题型,也有解答题、证明题等更具挑战性的题型。
选择题和填空题主要考查学生的基础知识和基本技能,而解答题和证明题则更加注重考查学生的思维能力和创新能力。
此外,试题还注重设置实际情境和问题背景,让学生在解决实际问题中感受数学的应用价值。
四、备考建议针对广东中考数学考试的特点和趋势,我认为备考时应该注重以下几点:1、系统复习基础知识:牢固掌握数与代数、图形与几何、统计与概率等各个领域的基础知识是备考的关键。
学生应该对每个知识点进行深入的理解和熟练的应用,形成完整的知识体系。
2、强化思维能力训练:广东中考数学试题注重考查学生的思维能力,因此备考时要加强这方面的训练。
学生可以通过做一些有挑战性的题目、参加数学竞赛等方式来提高自己的思维能力。
3、提高解题速度和准确性:在考试中,解题速度和准确性是非常重要的。
学生应该通过大量的练习来提高自己的解题速度和准确性,同时注意总结解题方法和技巧。
2023年广东中考数学解析
![2023年广东中考数学解析](https://img.taocdn.com/s3/m/9a8a2c8d2dc58bd63186bceb19e8b8f67d1cef7a.png)
2023年广东中考数学解析2023年广东中考的数学部分是考生们面对的一项重要考试科目。
良好的数学分数对于考生们进一步升学打下了坚实的基础。
本文将对2023年广东中考数学卷的题目类型、解题技巧及备考建议进行详细分析,帮助考生们更好地应对这一挑战。
一、选择题选择题是中考数学卷中常见的题型,涵盖多个知识点。
在解答选择题时,考生需要仔细审题,理解题意。
一般来说,选择题可分为计算类和推理类两种类型。
对于计算类选择题,考生应打好基础,掌握好四则运算和常见的公式,做到快速计算并准确答题。
对于推理类选择题,考生应注重逻辑思维,运用已掌握的数学知识进行推理,理解题目中的关系,作出正确的选择。
二、解答题解答题是考察考生们运用数学知识解答实际问题的题目类型。
解答题一般要求考生给出详细的解题过程,并得出准确的答案。
在解答题时,考生应首先理清题意,分析题目所给的条件和要求。
其次,可以尝试用已学的数学知识进行求解,注重解题思路和方法,避免走入死胡同。
最后,要进行必要的计算,并合理陈述解题过程,确保答案准确无误。
三、应试技巧1. 认真分析试题在考试过程中,考生应认真阅读每道题目,并仔细分析题目所给的条件和要求。
了解题目类型和解题思路,有针对性地进行解答,节省时间和精力。
2. 合理安排时间数学卷的时间通常较紧张,考生应合理安排时间,控制好每道题目的做题时间。
如果某道题目暂时无法解答,可以先跳过,将更多时间用在最有把握的题目上。
3. 多做模拟题在备考阶段,考生可以多做一些模拟题来提高解题能力和熟悉题型。
模拟题能够辅助考生了解自身的备考情况,并发现自己的薄弱环节,有针对性地进行复习和训练。
4. 培养良好的解题思维数学解题需要一定的逻辑思维和观察力。
考生在备考过程中,应注重培养解题思维,多进行思考和推理,提高解题能力和答题速度。
四、备考建议1. 夯实基础知识数学是一个渐进的学科,考生应夯实基础知识,掌握好代数、几何、概率等重要的数学知识点。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
广东省中考数学命题规律及命题趋势分析(转)中考是初中教学的指挥棒,研究、分析中考试题对平时组织教学有着积极的指导意义。
研究广东省近三年的中考数学试题,把握中考命题的方向和脉搏,对落实新课程标准,有效地组织初三数学课的教学和复习,同样也有着现实的指导作用。
一、中考试题的题量、题型和分值2005年、2006年、2007年广东省数学中考试题的考试题型分为选择题、填空题和解答题。
近三年的题量和分值都保持不变,选择题都是5小题,每小题3分;填空题为5小题,每小题4分;解答题分为三类:第一类5小题每小题6分共30分,第二类每小题7分共28分,第三类每小题9分共27分。
二、中考试题知识点的覆盖面分析近三年来广东省的中考试题,对照每年的《中考说明》,试题按照《中考说明》的要求,都注意了重要知识点的考查。
如在每年的第一类解答题5道题中,每年必考的内容实数的运算、代数式的化简求值、解不等式组、解方程或方程组、一元二次方程根的判别式或根与系数的关系、基本作图等。
在每年的解答题二中,列方程解应用题、解直角三角形、求函数解析式、平面图形的简单论证和计算等是考查的重点。
每年的解答题三,是中考稳中求变的突破口,命题组在这三大题中,可谓是绞尽脑汁。
但总体来说,还是有可以捕捉的规律,如圆与三角形、圆与四边形中等积式和比例式的证明,几何与方程、函数的结合题,几何图形中的一些条件给定、探求结果的开放型题等都是近三年来保留的压轴题。
三、试题特点(一) 准确把握对数学知识与技能的考查。
1.从知识点上看,在命题方向上,没有太多的起伏;从内容上看,几何题中的面积、弧长、侧面积或圆中线段、角度计算或者与代数相似三角形、三角函数的联系等,二次函数综合题还是压轴题的首选内容。
07年在几何题方面有所侧重,全卷占了61分,在二次函数方面有所减少,只是在第22题第(2)小题运用二次函数知识求三角形面积的最大值。
但明年中考是否一样,有待商讨。
并且考试内容与考查方式的结合新颖。
如07年省题第21题把圆的切线及其性质、三角函数、解直角三角形等知识点与现实生活有机结合,学生对“滚铁环”游戏并不陌生。
对这些知识点的考查并不放在对概念、性质的记忆上而是对概念、性质的理解与运用上,通过现实生活来体验数学的妙趣。
2.从学习能力上看,着重考查学生数学思想的理解及运用。
数学能力是学好数学的根本,主要表现为数学的思想方法。
初中数学中最常见的思想方法有:分类、化归、数形结合、猜想与归纳等。
其中,数形结合思想、方程与函数思想、分类讨论思想等几乎是历年中考试卷考查的重点,必须引起足够的重视。
1)分类讨论思想:当面临的问题不宜用统一方法处理时,就得把问题按照一定的原则或标准分为若干类,然后逐类进行讨论,再把结论汇总,得出问题的答案。
这种解决问题的方法就是分类讨论的思维方法。
2)“化归”是转化和归结的简称。
我们在处理和解决数学问题时,总的指导思想是把未知问题转化为能够解决的问题,这就是化归思想。
例如:05年省题第12题考查了学生解分式方程的基本思想和方法以及化归的思想方法,即:用化归的思想把分式方程转化成易解的一元二次方程从而求得方程的解。
3)数形结合思想:指将数量与图形结合起来分析、研究、解决问题的一种思维策略,具有直观形象,为分析问题、解决问题创造了条件。
例如:06年省题第18题考查用数形结合的思想,利用“点A的坐标为(1,2),AD垂直平分OB”的条件结合图形求出B点的坐标即可解决问题。
在数学解题中由数思形,以形促数可以开辟多角度、多层次的解题思维途径。
从题目本身看,是“数”和“形”两个方面,从学生能力角度看,则是要考查学生的运算能力和空间想象能力。
4)方程与函数思想:方程与函数思想就是分析和研究具体问题中的数量关系,经过适当的数学变化和构造,建立方程或函数关系,运用方程或函数的知识,使问题得到解决。
例如:07年第22题在求第二问时首先设BE=x,△DHE的面积为y,然后利用方程的思想列出二次函数关系式,再利用二次函数的最小值求法即可求出三角形面积的最小值。
5) 猜想与归纳的数学思维方法:“观察——归纳——猜想”是一种重要的思维模式,也是中考数学的重点题型。
由于这类问题能培养同学们探索问题的能力,因而成为中考命题的热点。
解这类问题,需要从特殊情况入手,通过观察、分析、归纳、概括、猜想出一般规律。
其中解题的关键在于正确的归纳猜想。
例如:07年第20题,先求出OA1、OA2、OA3,再以此类推求出OA6,从而求出△OA6B6的周长。
运用从特殊到一般、分析、归纳、总结的解题思想。
3.从课程标准与考查目标上看,试题对初中数学课程标准的理解及广东省中考数学考试说明的结合较好,尤其是课程标准新增加的与考查目标的结合处理相当准确。
结合方式多样化、题目内容生活化。
如:06年第14题,重在考查学生对概率模型的理解、建立简单的概率模型,以及对特定事件发生概率值的计算。
其解法多样,可以用树状图,也可以用列表。
(二)关注数学知识解决实际问题的考查。
数学来源于生活,同时也运用于生活,学数学就是为了解决生活中所碰到的问题。
近三年的中考题相当关注数学知识的运用。
如:06年广东第17题,是一道利用不等式知识来解决决策问题的优秀试题,设计回避了对问题解决的思路作出任何暗示,需要学生根据实际问题的分析来发现其中所隐含的数学模型,这是一种做数学的要求,这也是考查能力的有效做法。
(三)注重数学活动过程的考查。
这几年不仅关注对学生学习结果的评价,也要关注对他们数学活动过程的评价;不仅关注数学的思想方法的考查,还关注对他们在一般性思维方法与创新思维能力的发展等方面的评价,尤其是注重对学生探索性思维能力和创新思维能力的考查;不仅关注知识的教学,更多的是要关注对学生的数学思维潜力的开发与提高。
这是近几年考试的一道亮丽的风景线。
试题的形式多样,既有关注通过学生阅读材料去理解一些数学对象的试题,也有借助提供各种形式的素材去考查学生从中获取信息的试题,还有关注操作性和探索性试题。
如:06年省题第21题,问题的解决需要学生平时积累动手实践的经验和考试时将实践经验提升为“思想实践”、“头脑操作”的能力。
传统考题的一般形式是以考查学生掌握知识的终结结果为命题形式,在新课标的理念下学习的过程性如何考查是一新问题,本题是一种新的尝试。
把正方形的周长、面积计算与学生的操作实践相结合。
如:05年省第19题,本题的考查层次非常丰富,不同水平的学生可以充分展示自己不同的探究深度,较好地考查了学生运用数学思想方法探索规律、获取新知的能力,以及运用知识解决问题的能力。
通读全题后能够很明显地感觉到,这里花费了大量笔墨的“探究与发现”、“猜想与证明”、“拓展与延伸”部分是学生阅读和理解题意的重点,它可以启发学生获得解决后续问题的思路。
让学生经历学习、探索、问题解决的整个过程。
这里将考试过程与学习过程结合起来,体现了一种较好的理念。
四、命题趋势分析(一)数与式部分的试题将不再纯粹地考查记忆的内容,尤其是一些繁、难、偏的计算题目将不再出现,取而代之的是探索数与式的数学意义及与实际生活的联系的问题,在变化的图形或实际问题的背景中观察、概括出一般规律;运用数学模型解决实际问题等。
(二)空间与图形部分的内容与以往相比难度有较大的降低,不会出现繁难的几何论证题目,在填空题和选择题中将重点考查视图、几何体及其平面展开图之间的关系以及初步的空间观念,几何论证题将转为从常见的几何图形中提出问题或猜想,通过对其分析、探索、发现其内在规律并能用简单的逻辑推理来证明命题的正确性,以考查考生的合情推理能力。
(三)统计与概率部分的试题,特别是与之有关的统计技能的试题,在今后的试卷中将必不可少。
新课标指出,发展统计观念是新课程的一处重要目标。
与统计有关的试题往往要求学生有较强的阅读能力,因此在平时的教学中应适当提高学生的阅读能力,为顺利解题打下基础,而统计题中往往有许多问题没有统一的结论,因此,在平时的教学中,要注意教给学生答案的开放性,不可用唯一的标准作为规范解答,以免误导学生。
(四)与生活实际相联系的问题会越来越受命题者的青睐,而解决实际问题必须要建立数学模型,教会学生将实际问题转化为数学模型是今后教学的一个重点,必须培养学生用数学的方法解决问题的能力,培养学生对探索性试题进行研究,培养学生的合作交流意识,从数学的角度提出问题,理解问题,并综合运用数学知识解决问题;只有掌握了一定的解决问题的基本策略,才能在中考中尽情发挥自己的水平,提高自己的能力。
(五)加强学生创新思维与实践能力的培养。
近几年中考命题对观察、实验、类比、归纳、猜想、判断、探究等能力的综合考查特别突出,试题通过给定资料让学生运用所学知识“再发现” ,通过一种新颖独立的创新思维活动,解答所提出的几个问题。
因此,要特别关注探究型和应用类试题探索数式规律和图形变化规律,阅读理解,实验操作,这种考查思维能力和动手能力的题目非常活跃。
应用题仍是属于此类型且是必考题目,题型有函数型、统计型、概率型。
五、调整学习策略应对中考变化(一)重教材,抓基础。
一味搞题海战术,整天埋头做大量的课外习题,就是本末倒置。
中考命题基本上是教材中题目的引申、变形或组合,所以必须深钻教材,绝不能脱离课本。
特别是教材的编排有“螺旋上升”的优点,也有知识点分散的缺点,所以进入初三的学生在学好新的知识的同时,应该把初一、初二的相关内容进行归纳整理,使之形成结构。
成绩好的学生应加强各模块内部的整合,更要去寻求各模块的交叉点、中间地带,有区分度的试题往往就出自这些地方。
学习困难的学生应多做教材中的例题或习题,并注意解题方法的归纳和整理。
(二)重反思,抓粗心。
由于试题难度的降低,分数的高低往往决定于细心。
数学成绩再好的同学,也难免会粗心,但粗心的背后是有原因的,知识的负迁移,知识点不熟练,平时解题不规范等。
所以应经常性地反思自己的错误,应给自己准备一个记录本,对一些易错、易忘问题随时记录,根据个人的具体情况,查漏补缺,做知识归类、解题方法归类,在形成知识结构的基础上加深记忆,对经常错的点要进行归类,并加强这方面的强化练习。
(三)重过程,抓理解。
中考命题中有突现“动态”、“探究”、“过程”等观念的趋势,如图表中信息的收集与处理、结论的猜测与证明、利用学具进行操作、图形的旋转、翻折运动及文字语言、符号语言、图形语言的转换等。
引导我们切切实实地关注学习的体验过程,重视知识的发生过程,不可死记硬背,在学习中只有亲自动手操作实验、在探究中发现规律才会真正理解。
(四)重通法,抓变通。
中考数学试题形式和知识背景千变万化,但其中运用的数学思想方法却往往是相通的。
要处理好“通法”和技巧的关系,在学习中不应过分地追求特殊方法、技巧,不必将力气花在钻难题、怪题。