生态学第6章生活史对策

合集下载

生态学 第六章 生活史对策

生态学 第六章 生活史对策

第六章生活史对策生活史life history:生物的生活史是指从出生到死亡所经历的全部过程。

生活史的关键组分包括身体大小、生长率、繁殖和寿命。

生态对策bionomic strategy:又称生活史对策life history strategy,是生物在生存斗争中获得的生存对策权衡trade-off:指生物在资源(物质和能量)在繁殖、生长、维持等三方面进行分配。

生物可利用的资源是有限的,投入到某一功能或性状上的量多,必然会减少投入到另一项上的量。

r-选择r-selection:r-选择种类是在不稳定环境中进化的,具有所有使种群增长率最大化的特征:快速发展,小型成体,数量多而个体小的后代,高的繁殖能量分配和短的时代周期。

虽然r-选择种类死亡率甚高,但高r值使其种群能迅速恢复,而且高扩散能力可以使其迅速离开恶化生境,在其他地区建立新的种群,因此r-选择种类的高死亡率、高运动型和连续地面临新局面是,有利于形成新物种。

k-选择k-selection:k-选择种类是在接近环境容纳量K的稳定环境中进化的,具有事种群竞争能力最大化的特征:慢速发展,大型成体,数量少但体型大的后代,低繁殖能量分配和长的世代周期。

虽然k-选择种类大量死亡或导致生境退化的可能性小,但一旦受到危害造成种群数量下降,其低r指使种群恢复十分困难,因此在动物保护中需特别注意,如大熊猫、大象、虎均属此类。

CSR模式:利用生境干扰程度及其对植物的严峻性来划分生境,将生活史对策分为:Competitive选择:竞争对策,低严峻度、低干扰生境,以生长为主,竞争力最大化Stress tolerant选择:胁迫忍耐对策,高严峻度、低干扰生境,生长慢,寿命长,繁殖分配小Ruderal选择:杂草对策,低严峻度、高干扰生境,繁殖率高,生长快,寿命短。

种群生活史对策

种群生活史对策

10
个体大小的意义
• 物种个体的大小与其 寿命有很强的正相关 关系。 • 个体大小与内禀增长 率r有同样强的负相关 关系。 • 体型大、寿命长的个 体有较强的竞争力。 • 体型小、寿命短的物 种进化速度更快。
11
生长和发育速度
• 生长:
▫ 1生物体生物物质的增加; ▫ 2生物细胞数量的增加。
• 发育:
生产很多后代,对子代的抚育投入很少 生产少数后代,对子代的抚育投资较大
• 不抚育(多数植物)
后代个体小,数量多 后代个体大,数量少
47
植物的亲代投资策略
• 一种物种采取哪种亲本投资策略,取决于该物种 的具体情况。 • 就有性繁殖而言,种子的大小应当最有利于种子 的传播、定居和减少植物的取食。
35
能量分配与权衡
36
各类植物生长型的年净同化中的繁殖分配
玉米、大麦
多数禾谷类
40%
30%
野生一年生草本 多年生草本(有克隆) 多年生木本(无克隆)
10% 20%
多年生草本(无克隆)
37
生长和繁殖
38
繁殖和存活
• 哺乳雌鹿和未生育雌鹿的死亡率比较
39
现在生育与未来存活
• 轮虫现在生育力与未来存活可能性的关系
• 种群为了适应其生活环境,实现最大限度的生存 与繁衍,在生活史动态上所表现的各种自组织和 有序性,可概括为各种生态对策或生活史对策。 • 有很多不同的方案被提出并用来对这些性状组合 进行分类,并预测某种特定环境中会出现怎样的 生活史对策。
52
策略
r-选择: 小而快
K-选择:大而慢
53
r-选择和K-选择
河流(繁殖)
幼体生境 墨西哥 南欧洲

生活史对策概述

生活史对策概述

生活史对策概述大气基地贺园园1111700026生活史与生活史对策:生活史(life history)意为生物从其出生到死亡所经历的全部过程,也叫生活周期(life cycle)。

生活史性状包括出生时个体大小;生长形式;成熟年龄;成熟时个体大小;后代的数量、大小、性比;特定年龄和大小的繁殖投入;特定年龄和大小的死亡规律;寿命等。

生活史对策(life history strategy)是指生物在生存斗争中获得的生存对策,也称生态对策(bionomic strategy )或进化对策,例如生殖对策、取食对策、迁移对策、体型大小对策等主要内容:任何生物做出的任何一种生活史对策,都意味着能量的合理分配,并通过这种能量使用的协调,来促进自身的有效生存和繁殖。

每个生物具有生长、维持生存和繁殖三大基本功能,生物必须采取一定的策略配置能够获得的有限资源,其核心主要强调在特定环境中提高生殖、生存和生长能力的组合方式.1)生长对策●生长速度早期演替种:早期迅速生长,具开拓对策(白桦)后期演替种:早期生长缓慢,具保守对策(红松)●生长方式以温带木本植物为例,其顶枝形成有两种主要方式:①有限生长类型:顶枝在冬季完全定型,冬芽形成时就决定了叶子数目。

②无限生长类型:冬芽只含有少量叶原基,在下一个生长季,顶枝尖端在生长季内还能产生新的叶子和节间。

●根冠比率—物质分配2)生殖对策生殖对策实际就包括两个方面的问题:第一是生殖者存活的问题,也即生殖的代价问题,生物生殖必然带来变化的生理压力和个体危险,因此,也就必然会影响到生物的生存;第二是生殖的效率问题,生物选择的对策,都旨在提高生殖的效率,这一点可从植物的生殖行为中证实。

1)体型效应物种个体的大小与其寿命有很强的正相关关系。

2)成体的存活与繁殖成熟个体存活率低,生物繁殖越早,投资于繁殖的能量越多;成熟个体存活率越高,生物的繁殖期越晚(个体较大),分配于繁殖的能量就越少。

3)当前繁殖与未来繁殖如果未来生命期望低,分配给当前繁殖的能量应该高,而如果剩下的预期寿命很长,分配给当前繁殖的能量应该较低。

森林生态学讲稿-第六章森林群落演替

森林生态学讲稿-第六章森林群落演替

森林群落的演替一、裸地(一)裸地概念和类型裸地:即指从来没有植物生长的地段。

裸地通常有极端的环境条件,如极为干旱、潮湿、缺乏有机质等。

分为两种:原生裸地和次生裸地原生裸地;指从来没有生长过植被、或原来生长过植被,但被彻底消灭,连原有植被下的土壤条件均已不存在的地段。

次生裸地:指那些原生植被虽然被消灭,但原有群落下的土壤条件还多少保留着,并且土壤中还多少保留着原来群落某些繁殖体的地段。

(二)裸地形成的原因地形变迁:地形变迁形成的裸地多为原生裸地。

如风积作用形成的沙丘和土堆、重力侵蚀形成的山崩、火山活动形成的熔岩等。

气象因素:气象因素形成的多为次生裸地。

如干旱使水库、河流或湖泊变干、风灾和雪灾引起的植物毁灭等。

生物作用:生物作用形成的一般为次生裸地。

如灾害性昆虫的大发生。

人为影响:人为影响形成的一般为次生裸地。

如砍伐森林、过度放牧、垦荒等。

二、植物群落的形成过程植物群落的形成过程一般包括四个阶段:迁移、定居、竞争和反应等。

迁移:即繁殖体传播到裸地的过程。

繁殖体包括植物的种子、孢子以及能起作用的任何部分(如某些植物地下茎、具无性繁殖能力的枝、干等)。

定居:繁殖体传播到新的地点后,即进入定居过程。

定居包括发芽、生长和繁殖三个环节。

各环节能否顺利完成,取决于物种的生物学特性、生态学特性和定居地的生境条件。

竞争:在一定的地段,由于不同物种的同时入侵或随着个体的增长和繁殖,必然导致营养空间和资源的竞争,结果是适者生存。

反应:通过植物的定居和生长,群落内生物和非生物环境间会不断发生能量转换和物质循环,原来的生境条件会发生相应的变化。

改造的结果往往是不利于早期入侵者的生存,从而为另一些更适应种的进入创造了条件,即另一个群落形成的开始。

三、森林群落的发育从一个群落形成到被另一个群落替代,每一个群落都有一个发育过程。

这个过程可分为三个时期:发育初期、盛期和末期。

发育初期:在发育初期,建群种的良好发育是一个主要标志。

建群种的生长和变化会引起其它种类的生长和个体数量的变化。

生态学:第6章 生活史对策

生态学:第6章  生活史对策
如果增加某一环节的能量分配,就必然要以减少其它环节能量分配为代价。
Growth
Competition Reproduction
6.2 体型效应 ✓ 生物个体大小差异非常悬殊,主要是由其遗传特征决定的。 ✓ 生物个体大小与其生长发育、繁殖、行为、进化、生态适应性等密切相关。
生物个体大小示意图
✓ 个体大小与生活史周期(寿命)的长短有很好的正相关性,即随着物种个体的增 大,寿命有增长的趋势(左图);但个体大小与内禀增长率之间呈显著的负相关 关系(右图)。
✓ 缓步动物也因此被认为是生命力最强的动物。在隐生的情况下,可以在高温 (151 ℃)、接近绝对零度(-272.8 ℃)、高辐射、真空或高压的环境下生存数 分钟至数日不等。曾经有缓步动物隐生超过120年的记录。
缓步动物门:是动物界的一个门,主要生活 在淡水的沉渣、潮湿土壤以及苔藓植物的水 膜中,少数种类生活在海水的潮间带。有记 录的大约有750余种。
stress
6.3.4 机遇、平衡、周期性生活史对策 Winemiller & Rose(1992)对鱼类生活史对策的研究表明,与种群动态相关的参数, 如:繁殖力(产生的后代数量)、幼体成活率和性成熟年龄之间存在权衡,在这三 维空间中,鱼类的生态对策被划分为三种。
Байду номын сангаас
繁 ①机遇对策:繁殖力低、 殖 幼体成活率低、性成熟 力
✓ 动物界的休眠大致有两种类型: ① 一类是严冬季节来临时(低温和缺少食物)进行的冬眠,如青蛙、刺猬; ② 一类是酷暑、干旱季节的夏眠,如非洲肺鱼、黄鼠。
✓ 休眠是动物界较为常见的现象,如:两栖动物、爬行动物、部分无脊椎动物、少 数的鸟类和哺乳动物。
滞育(diapause):
✓ 昆虫和其他节肢动物长期适应不良环境而形成的种的遗传性。自然情况下,个体 发育到一定阶段,在不良环境到来之前,其生理上已经有所准备,由某些季节信 号(如光周期变化)的诱导而引起的形态发生停顿、生理活动降低等静止现象。

环境生态学课程内容

环境生态学课程内容

知识点第一章生物与环境1.1生态因子1、生态因子:环境中对生物生长、发育、生殖、行为和分布有直接或间接影响的环境因素。

如:温度、湿度、食物、氧气、二氧化碳等。

2、环境因子:生物有机体以外的所有环境要素,是构成环境的基本成分。

3、作用规律:(1)综合作用。

生态环境是一个统一的整体,生态环境中各种生态因子都是在其他因子的相互联系、相互制约中发挥作用,任何一个单因子的变化,都必将引起其他因子不同程度的变化及其反作用。

如气候的作用。

(2)主导因子作用。

在对生物起作用的诸多因子中,其中必有一个或两个是对生物起决定性作用的生态因子,称为主导因子。

主导因子发生变化会引起其他因子也发生变化。

如孵卵的温度控制直接性和间接性,食物,降水。

(3)直接作用和间接作用。

环境中的一些生态因子对生物产生间接作用,如地形因子;另外一些因子如光照、温度、水分状况则对生物起直接的作用。

(4)阶段性作用。

生态因子对生物的作用具有阶段性,这种阶段性是由生态环境的规律性变化所造成的。

如光照长短。

(5)不可代替性和补偿作用。

环境中各种生态因子对生物的作用虽然不尽相同,但都各具有重要性,不可缺少;但是某一个因子的数量不足,有时可以靠另外一个因子的加强而得到调剂和补偿。

如水体内的钙和锶。

4、作用方面:光、温度、水、大气、土壤。

5、生态因子空间分布特征:1、纬度地带性2、垂直地带性3、经度地带性1.3最小因子1、利比希最小因子定律:低于某种生物需要的最少量的任何特定因子,是决定该种生物生存和分布的根本因素。

应用这一定律时,一是注意其只适用于稳定状态,即能量和物质的流入和流出处于平稳的情况。

二是要考虑生态因子之间的相互作用。

2、限制因子:在众多生态因子中,任何接近或超过某种生物的耐受性极限而阻止其生存、生长、繁殖或扩散的因子,称限制因子。

3、主导因子作用:在各种生态因子中,对生物的生长发育具有决定性作用的因子,称为主导因子。

主导因子发生变化,会引起其它因子也发生变化或使生物的生长发育发生明显变化。

6生活史对策

6生活史对策

环境
生物进化方向
6.3.2 生殖价和生殖效率
所有生物都不得不在分配给当前繁殖 ( Current
reproduction)的能量和分配给存活的能量之间进行权
衡,后者与未来的繁殖(future reproduction)相关联。 生殖价(reproduction value)是该个体马上要生 产的后代数量加上那些预期的其在以后的生命过程中要 生产的后代数量。进化预期使个体传递给下一世代的总 如果未来生命期望低,分配给当前繁殖的能量应该高, 而如果剩下的预期寿命很长,分配给当前繁殖的能量应 该较低。
第三部分:种群生态学
三 、 生 活 史 对 策
• 1、能量分配与权衡 • 2、体型效应 • 3、生殖对策 • 4、滞育和休眠 • 5、迁移 • 6、复杂的生活周期
• 7、衰老
生活史(life history):指生物从出生到死
亡所经历的全部过程。
生活史的关键组分包括身体大小(body size)、生长率(growth rate)、繁殖 (reproduction)和寿命(longevity)。 生态对策(bionomic strategy)或生活史对策 ( life history strategy ):生物在生存斗争中 获得的生存对策,如生殖对策、取食对策、 迁移对策 避敌对策、体型大小对策、r对策和K对策等。
2、体型效应
2.1 体型大小与寿命
体型大小是生物体最明显的表面性状, 是生物的遗传特征,它强烈影响到生物 的生活史对策。
一般来说,物种个体体型大小与其寿 命有很强的正相关关系。
图片:体型效应
体 型 效 应
2.2 体型大小与内禀ቤተ መጻሕፍቲ ባይዱ长率
物种个体体型大小与内禀增长率有很强的负相关关 系。

第二部分-种群生态学-3-生活史对策

第二部分-种群生态学-3-生活史对策

大小及对后代的亲代关怀等要素。
– 早熟型和晚熟型
– 生殖的时间节律
– 一次生殖和多次生殖
– 窝卵数/每胎产仔数
– 抚育与无抚育
12
• 植物种群的生殖对策:
– 有性繁殖/无性繁殖 – 种子植物的种子数量与大小
• 生殖价 (reproductive value):生物体今后
传递到下一个世代的总后代数量。
15
r-对策与K-对策的特征比较
r-选择(机会主义) 气候 死亡 存活 数量 种内种间竞争 多变,不稳定,难以预测 具灾变性,无规律 非密度制约 幼体存活率低 时间上变动大,不稳定 远远低于环境容纳量K 多变,通常不紧张 K-选择(保守主义) 稳定,较确定,可预测 比较有规律 密度制约 幼体存活率高 时间上稳定 通常接近K 经常保持紧张
• 生殖效率:后代质量与投入能量的比值
r
三、K-对策与r-对策 环境与物种进化
不稳定 环境 r生 物
K-
稳定 环境
不稳定 环境
r生 物
K-
稳定 环境
不稳定环境 不可预测 灾变较多
如何应对
两条道路 遭遇两种环境

环境
K
稳定环境 竞争较 为激烈
以r-对策者模式应对
以K-对策者模式应对
r K
r-对策者 K-对策者
• 扩散与迁移
藏羚羊的 季节性迁徙
• 美洲王蝶的迁徙:10 月底至来年3月初, 上亿只美洲王蝶从美 东北部和加南部飞越 4500多公里来到温暖 的墨西哥中部林区越 冬和繁衍。
动物的迁移模式
29
思考作业:主要概念
生殖价reproductive value 生活史life history

种群生态学-生活史对策(生态对策)

种群生态学-生活史对策(生态对策)

N2 K1/α12

K2
·
K1 K2/α21 N1 11
21:00:13
3、生态位理论




生态位(niche)是物种在生物群落或生态系统 中的地位和作用。 空间生态位(spatial niche)。 营养生态位(trophic niche). 多维生态位空间
基础生态位(fundamental niche)和实际生态位(realized niche):
4716群落生态学?保存完整的群落很有用?重新恢复荒芜地区的种群?确定大多数重要物种的保存方法确定大多数重要物种的保存方法?遭到干扰后预测出群落怎样能得到恢复遭到干扰后预测出群落怎样能得到恢复?预测对于干扰群落的恢复能力?确定目前需要保护物种的数量和能够在哪儿保存确定目前需要保护物种的数量和能够在哪儿保存22
dN2/dt>0 K2/α21
21:00:13
N1
7
N1取胜, N2灭亡

K1 > K2 /α21,K2< K1/α12 N1取胜,N2被排挤掉
N2 K1/α12 K2
21:00:13
KN1灭亡, N2取胜

K1 < K2 /α21,K2> K1/α12 N2取胜,N1被排挤掉
种内和种间关系
种群的空间结构:不同的检验方法 种群的年龄结构 生命表的编制:计算方法、存活曲线
生态对策r-对策和K对策
种群增长模型:逻辑斯谛增长方程
种群调节的一些基本概念:局域种群、 集合种群、斑块等
21:00:13
高斯假说 Lotka-Volterra模型 生态位理论
15
群落生态学



生活史对策概述讲解学习

生活史对策概述讲解学习

生活史对策概述大气基地贺园园1111700026生活史与生活史对策:生活史(life history)意为生物从其出生到死亡所经历的全部过程,也叫生活周期(life cycle)。

生活史性状包括出生时个体大小;生长形式;成熟年龄;成熟时个体大小;后代的数量、大小、性比;特定年龄和大小的繁殖投入;特定年龄和大小的死亡规律;寿命等。

生活史对策(life history strategy)是指生物在生存斗争中获得的生存对策,也称生态对策(bionomic strategy )或进化对策,例如生殖对策、取食对策、迁移对策、体型大小对策等主要内容:任何生物做出的任何一种生活史对策,都意味着能量的合理分配,并通过这种能量使用的协调,来促进自身的有效生存和繁殖。

每个生物具有生长、维持生存和繁殖三大基本功能,生物必须采取一定的策略配置能够获得的有限资源,其核心主要强调在特定环境中提高生殖、生存和生长能力的组合方式.1)生长对策●生长速度早期演替种:早期迅速生长,具开拓对策(白桦)后期演替种:早期生长缓慢,具保守对策(红松)●生长方式以温带木本植物为例,其顶枝形成有两种主要方式:①有限生长类型:顶枝在冬季完全定型,冬芽形成时就决定了叶子数目。

②无限生长类型:冬芽只含有少量叶原基,在下一个生长季,顶枝尖端在生长季内还能产生新的叶子和节间。

●根冠比率—物质分配2)生殖对策生殖对策实际就包括两个方面的问题:第一是生殖者存活的问题,也即生殖的代价问题,生物生殖必然带来变化的生理压力和个体危险,因此,也就必然会影响到生物的生存;第二是生殖的效率问题,生物选择的对策,都旨在提高生殖的效率,这一点可从植物的生殖行为中证实。

1)体型效应物种个体的大小与其寿命有很强的正相关关系。

2)成体的存活与繁殖成熟个体存活率低,生物繁殖越早,投资于繁殖的能量越多;成熟个体存活率越高,生物的繁殖期越晚(个体较大),分配于繁殖的能量就越少。

3)当前繁殖与未来繁殖如果未来生命期望低,分配给当前繁殖的能量应该高,而如果剩下的预期寿命很长,分配给当前繁殖的能量应该较低。

基础生态学第六章-生活史对策

基础生态学第六章-生活史对策
优点:生殖率高,发育速度快,世代时间短,因
此,种群在数量较低时,可以迅速恢复到较高的 水平;后代数量多,通常具有较大的扩散迁移能 力,可迅速离开恶化的环境,在其他地方建立新 种群,因此,常常出现在群落演替的早期阶段; 由于高死亡率、高运动性和连续面临新环境,可 能使其成为物种形成的新源泉。
缺点:死亡率高、竞争力弱、缺乏对后代关怀,
(一)r-对策(或r-选择)
r-对策(或r-选择)种类是在不稳定环境中进化的, 是适应于不可预测的多变环境中生存的种类(如干旱地区和 寒带),因而使种群增长率r最大。其生物学特性表现为:高 生育力、快速发育、早熟、成年个体小、寿命短、单次生殖 多而小的后代。一旦环境条件好转,就能以其高增长率r,迅 速恢复种群,使物种能得以生存。也就是说r-对策(或r- 选择)者发展利用的是机会;尽管该种对策者后代的存活能 力差,但是生物的繁殖对环境的变化反应迅速。一旦机会出 现,种群的数量将会迅速的增长,因而不易灭绝,如蝗虫、 蚊子等。
可使繁殖力达到最大。
但事实是:所有生物都不得不在分配给当前繁殖的 能量和分配给存活的能量之间进行权衡,后者与未 来的繁殖相关联。如果未来生命期望低,分配给当 前繁殖的能量应该高,而如果剩下的预期寿命很长, 分配给当前繁殖的能量应该较低。
能量分配方式:
单次生殖或多次生殖: 大量小型后代或少量大型后代:
产卵多:耗自己 的资源,减少寿 命
一只雌豆象 发现了一株

豇豆并开始 产卵
豆象的幼虫不能 在豇豆植株间移动
成年豆象也 无喂幼行为
18
6.3.3 生境分类与植物生活史
不同繁殖付出(CR)生境的物种
– 高-CR生境物种:生物推迟繁殖后代 – 低-CR生境物种:生物提前繁殖后代

生活史对策种群生态学

生活史对策种群生态学
15/24
6.3.3 生境分类与植Байду номын сангаас的生活史对策
除了r-K二分法的生态对策外,Grime(1977,1979)对植物 生境进行了四分,提出了植物生活史对策的三分法--CSR三角 形。影响植物选择压力最大的是生境的干扰强度和严峻度(胁 迫度),以此为坐标轴,可划分为四种生境类型:
干扰强度
②高干扰、低严峻度
10/24
6.3.1 r-选择 和 K-选择
Lack(1954)指出,动物在进化过程中面临着 两种相反的可供选择的进化对策。MacArthur & Wilson (1967)把这两种进化对策定义为r对策者 和K对策者。Pianka (1970)提出了r选择和K选择 理论,指出:r选择者是在不稳定的环境中进化的, 高r的特征表现为:快速发育、小型成体、数量多
育;体型小;单次生殖
迟生育;体型大;多次生

短,通常小于1年
长,通常大于1年
高繁殖力
高存活力
r选择者和K选择者之间有r-K连续体。
6.3.2 生殖价和生殖效率
生殖价随年龄、环境而变化。
天蓝绣球
14/24
生殖效率:
稳定环境中产少量高质量后代,不稳定环境 中产大量小型后代。
生殖次数:
“两面下注”理论:如果成体死亡率低而幼体死 亡率高,则保卫成体赌注,选择多次生殖对策, 相反则单次生殖,一次性繁殖大量后代。
花旗松Pseudotsuga menziesii
不繁殖的雌鼠妇比繁殖的生长能高三倍。 (2)繁殖与生存的权衡:产奶雌马鹿死亡率明显高 于不育雌马鹿(图6-2)。
5/24
第二部分 种群生态学
4 种群及其基本特征
5 种群种及其变异与进化

生活史对策名词解释

生活史对策名词解释

生活史对策名词解释生活史对策是指从个人、组织或社会角度出发,通过对过往经验和实践的总结,以及对现实情况和未来趋势的分析,制定出一套具体的、可操作性的方案和策略,以应对生活中可能遇到的各种问题和挑战。

生活史对策起源于对历史经验的总结和应用。

通过对过去的经验教训进行梳理和总结,可以帮助人们更好地理解过去所发生的事情,找到其中的规律和因果关系,从而能够更好地预测未来的发展趋势。

在不同的领域中,生活史对策可以有不同的形式和内容,但其核心思想都是通过对生活史的观察和研究,为未来的决策提供参考。

生活史对策的重要性体现在以下几个方面:1. 预测未来趋势:通过对生活史的研究和总结,可以了解过去事件的发展规律和趋势,从而能够预测未来可能的情况和变化。

这对于个人、组织和社会都具有重要价值。

例如,在个人生活中,我们可以通过观察市场的历史发展趋势,预测出未来可能的投资机会;在组织层面,可以通过对竞争对手的生活史研究,预测其未来的策略和动向,从而制定出更加有效的竞争对策。

2. 借鉴经验教训:生活史对策可以帮助人们学习和借鉴过去的经验教训,避免重蹈覆辙。

通过对过去的错误和失败进行深入分析,可以找到其根本原因和规律,为未来的决策提供参考。

例如,对于企业来说,通过对行业内其他企业的生活史进行研究,可以了解到行业竞争的规律和成功的原因,从而为自身的发展制定相应的对策。

3. 优化决策过程:通过生活史对策,我们可以对自己、组织或社会的决策过程进行优化和改进。

通过对过去的决策进行回顾和评估,可以找到其优点和不足之处,从而进行针对性的改进。

例如,在个人生活中,通过对自己过去某些错误决策的回顾和评估,可以在未来遇到类似情况时,做出更加明智和理性的决策。

生活史对策可以运用于各个领域和层面。

个人可以通过对自身生活史的研究,了解自己的优点和不足之处,制定出个人成长和发展的对策;组织可以通过对行业或竞争对手的生活史研究,了解行业的发展规律和竞争对手的策略,制定出更加有效的发展战略;社会可以通过对历史事件的研究和总结,了解社会变革的规律和原因,为未来的社会发展提供参考。

生态学课后习题答案

生态学课后习题答案

生态学课后习题答案1.说明生态学的定义研究有机体及其周围环境相互关系的科学。

2.研究生态学采用的方法:野外的/ 实验的、理论的第一部分有机体与环境一.生物与环境1.概念与术语环境:指某一特定生物体或生物群体周围一切的总和,包括空间及直接或间接影响该生物体或生物群体生存的各种因素。

生态因子:指环境要素中对生物起作用的因子,如光照、温度、水分、氧气、二氧化碳。

食物和其他生物等。

生态幅(生态价) :每一种生物对每一种生态因子都有一个耐受范围,即有一个生态上的最低点和最高点。

在最低点和最高点之间的范围,称为生态幅。

大环境:指地区环境、地球环境和宇宙环境。

小环境:指对生物有直接影响的邻接环境,即指小范围内的特定栖息地。

大气候:大环境中的气候,是指离地面1.5m以上的气候,是由大范围因素所决定小气候:小环境中的气候,指近地面大气层中1.5m以内的气候。

生境:所有生态因子构成生物的生态环境,特定生物体或群体的栖息地的生态环境。

密度制约因子:如食物、天敌等生物因子,其对动物种群数量影响的强度随其种群密度而变化,从而调节了种群数量。

非密度制约因子:指温度、降水等气候因子,它们的影响强度不随种群密度而变化。

限制因子:任何生态因子,当接近或超过某种生物的耐受性极限而阻止其生存、生长、繁殖或扩散时,这个因素称为限制因子。

2.什么是最小因子定律?什么是耐受性定律?最小因子定律:低于某种生物需要的最小量的任何特定因子,是决定该种生物生存和分布的根本因素。

耐受性定律:任何一个生态因子在数量上或质量上的不足或过多,级当其接近或达到某种生物的耐受限度时会使该种生物衰退或不能生存。

3.生态因子相互联系表现哪些方面?1)综合作用:环境中的每个生态因子不是孤立的、单独的存在,总是与其他因子相互联系、相互影响、相互制约的。

2)主导因子作用:对生物起作用的众多因子并非等价的,其中有一个是起决定作用的,它的改变会引起其他生态因子发生变化,使生物的生长发育发生变化,这个因子称主导因子。

06生活史对策

06生活史对策

其 他
稀少,有时持续存在 低的
注:V - 营养扩张;S - 植被空隙区季节性更替;W - 大量的小型风播种或孢子;Bs - 持续的种子库;Br - 持续的幼苗库。
在严重缺乏资源的生境中,成功的竞争者 大多具有抑制生产的必要适应。有效的竞争者 必须具有能从环境中迅速提取资源的能力,进 而促进快速生长;在资源递减的生境中,胁迫 是一种正常状态,即使可利用的资源很丰富, 这类植物也不具有快速生长的能力。胁迫忍耐 种具有很大的寿命、抗胁迫的组织、发育良好 的驯化潜力,常进行营养繁殖,幼苗可长期保 持幼小状态等特点。 Grime(1979)提出了三角形模型的设想 (见下图)。
大型和小型小天蓝绣球(Phlox drummondi) 生殖价随年龄的变化
6.3.3
生境分类与植物的生活史对策
J. P. Grime等人(1979)在r-和K-选择 的基础上,对生活史式样的分类作了扩充,提出 了在资源丰富的临时生境中的选择,称干扰型 ( R);在资源丰富的可预测生境中的选择,称 竞争型( C);在资源胁迫生境中的选择,称胁 迫忍耐型(S)。 它们的能量分配方式分别为: R-选择主要 分配给生殖,C-选择主要分配给生长,S-选择 主要分配给维持。
6
)的概念
生物从其出生到死亡所经历的 全部过程。 生活史的关键组分——身体大小、生长率、寿命、繁殖
生态对策(bionomic strategy)
生物在生存斗争中获得的生存对策。也称为生活史 对策(life history strategy)
6.1
能量分配与权衡
仅便竞争种利cs和r选择物种的特征比较特征c选择s选择r选择形态学生活型草本灌木和乔木地衣草本灌木和乔木草本枝条的形态学高叶冠浓密地上与地下侧向伸展广泛小型革质或针形小型侧向生长有限叶型强壮常中生结构小型革质或针形各式各样中生结构建成期寿命长或比较短长很长很短叶和根的寿命相对短长短生活史叶的物侯学叶的生长量有明显的峰值并与最大潜在生产力时期相符合常绿叶的形成式样不一在高的潜在生产力时期叶形成期短花物侯学最大潜在生产力以后开花较少在此前花期与季节无一定的关系在生活史早期开花开花频率成体通常每年开花一次间断开花开花频率高每年用于种子生产比例小小大持久的器官休眠的芽和种子叶和根休眠种子更新的对策vswbsvbrswbs特征c选择快s选择慢r选择快生理学最大潜在相对生长率对胁迫的反应形态建成根枝比叶面积根表面积的反应快营养生长的反应最大形态简称的反应慢而小提早结束营养生长快速将资源转向开花光合作用和矿质营养季节性强机会主义的常与营养生长无联系机会主义的与营养生长一致光合作用矿质营养和组织抗性对温度光照和湿度的季节性光照和湿度的季节性变化的适应弱强弱光合产物和矿质养分的贮藏主要的光合产物和矿质养分快速组合成营养结构贮藏一部分作为下个生长季节的资本稀少有时持续存在只限于种子其他枯枝落叶层丰富常持续存在稀少有时持续存在稀少通常不持续存在对非专性草食动物的适口性多种多样的低的多种多样的常常是高的注
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

生殖价和生殖效率
• 所有生物都不得不在分配给当前繁殖(Current reproduction)的能量和分配给存活的能量之间进行 权衡,后者匀未来的繁殖(future reproduction)相 关联。 • 生殖价(reproduction value)是该个体马上要生产 的后代数量加上那些预期的其在以后的生命过程中 要生产的后代数量。进化预期使个体传递给下一世 代的总后代数量最大,换句话说,使个体出生时的 生殖价最大。如果未来生命期望低,分配给当前繁 殖的能量应该高,而如果剩下的预期寿命很长,分 配给当前繁殖的能量应该较低。
繁殖格局
一、一次繁殖和多次繁殖: 一次繁殖和多次繁殖: 一次性繁殖生物:大多数昆虫; 1. 一次性繁殖生物:大多数昆虫;一年生草 本植物;多年生植物(例竹类植物); 本植物;多年生植物(例竹类植物); 多次性繁殖生物:多年生植物; 2. 多次性繁殖生物:多年生植物;大型动物 特别是哺乳类动物); (特别是哺乳类动物); 一年生植物是适应恶劣环境的一种进化; 3. 一年生植物是适应恶劣环境的一种进化;
繁殖格局
二、生活年限与繁殖: 生活年限与繁殖: 植物:一年生植物;二年生植物; 1. 植物:一年生植物;二年生植物;多年生 植物; 植物; 动物:短命型;中等寿命型;长寿型; 2. 动物:短命型;中等寿命型;长寿型; 动植物的繁殖类型与环境条件有密切关系; 3. 动植物的繁殖类型与环境条件有密切关系;
能量分配与权衡
A.生物不可能使其生活史的每一组分都达到最 生物不可能使其生活史的每一组分都达到最 而必须在不同生活史组分间进行“ 大,而必须在不同生活史组分间进行“权 衡”。 B.在繁殖中,生物可以选择能量分配方式。 在繁殖中, 在繁殖中 生物可以选择能量分配方式。 C.资源或许分配给一次大批繁殖 单次生殖, 资源或许分配给一次大批繁殖----单次生殖 资源或许分配给一次大批繁殖 单次生殖, 或更均匀地随时间分开分配----多次生殖 多次生殖。 或更均匀地随时间分开分配 多次生殖。 D.同样的能量分配,可产生或者许多小型后代, 同样的能量分配, 同样的能量分配 可产生或者许多小型后代, 或者少量大型的后代。 或者少量大型的后代。
(2)植物种群的生殖适应对策 • 有些植物把较多的能量用于营养生长,而分 配给花和种子的能量较少,因此,这些植物 的竞争力较强,但生殖能力比较低,多年生 木本植物就属于这一类;有些植物则把大部 分的能量用于生殖,产生大量的种子,如一 年生草本植物。 • 有些植物的种子小,但数量很多;有些植物 的种子较大,但数量较少。对植物来说,种 子的大小应最利于种子的传播、定居和减少 动物的取食,种子的大小与植物的生存环境 密切相关。
生殖对策
由于生物的生态对策包括很多方面,如生殖方 式对策、取食对策、逃避捕食对策、迁移对策、 休眠对策、体型大小对策、存活率对策、种群大 小对策、竞争力对策、寿命对策、忍耐力对策、 繁殖率对策、育幼对策等多个方面。因此,对群 落中多物种种群生态对策的比较和进化研究十分 困难,也难以排序。
• 进化必然要反映能进行有效生殖,自然选择将有利 于在一生中能够产生并养活更多后代的个体。 • 生物从外界环境中摄取的能量,一是用于自身的生 长发育,二是用于繁殖后代。亲代用在生殖上的能 量都是有限的。 • 若产生的后代数量多,个体就小;如果后代个体大, 数量就会很少。 • 亲代用于生殖的能量多,产生的后代数量多,但用 于抚育的能量就少,后代得不到完善的抚育,死亡 率就高;若亲代将大部分能量用于抚育,后代的死 亡率低,但产生后代的数目必然就少。 • 每一种生物的生殖适应对策就是在生殖和抚育这一 对矛盾之中,找出一种最优组合。
r选择者和K选择者之间有r-K连 续体,如蚜虫
不同植物种的个体寿命和 生境中有利于该种一个世 代生存繁殖的时间长度之 比,可表示生境持续稳定 性。 • r-选择 特点:快速发育,小型成体, 快速发育,小型成体, 快速发育 数量多而个体小的后代, 数量多而个体小的后代,高的 繁殖能量分配和短的世代周期 短的世代周期。 繁殖能量分配 短的世代周期 • K-选择 特点:慢速发育,大型成体, 慢速发育,大型成体, 慢速发育 数量少但体型大的后代, 数量少但体型大的后代,低繁 殖能量分配和长的世代周期 长的世代周期。 殖能量分配 长的世代周期
生殖价随年龄、环境而变化。
天蓝绣球
生殖效率:
稳定环境中产少量高质量后代,不稳定环境 中产大量小型后代。
生殖次数:
“两面下注”理论:如果成体死亡率低而幼体死 两面下注”理论 亡率高,则保卫成体赌注,选择多次生殖对策, 相反则单次生殖,一次性繁殖大量后代。
Grime(1979)认为有四种类型: 认为有四种类型: 认为有四种类型
从微生物—大型动植物都有生活史; 从微生物 大型动植物都有生活史; 大型动植物都有生活史 出生-生长-分化-繁殖-衰老-死亡; 出生-生长-分化-繁殖-衰老-死亡; 一个生物从出生到死亡所经历的全部过 程成为生活史( history); 程成为生活史(life history); 有些生物一生繁殖多次 有些植物一生仅繁殖一次( 箭竹); 有些植物一生仅繁殖一次(例:箭竹);
r-对策者与 对策者的种群增长曲线 对策者与k-对策者的种群增长曲线 对策者与 特点
• K对策种群 对策种群 和r对策种 对策种 群的增长 曲线 • S为种群稳 定平衡点, X为种群绝 灭点
r-对策的优缺点 对策的优缺点
• 优点:生殖率高,发育速度快,世代时间短,因 优点:生殖率高,发育速度快,世代时间短, 种群在数量较低时, 此,种群在数量较低时,可以迅速恢复到较高的 水平;后代数量多, 水平;后代数量多,通常具有较大的扩散迁移能 可迅速离开恶化的环境, 力,可迅速离开恶化的环境,在其他地方建立新 种群,因此,常常出现在群落演替的早期阶段; 种群,因此,常常出现在群落演替的早期阶段; 由于高死亡率、高运动性和连续面临新环境, 由于高死亡率、高运动性和连续面临新环境,可 能使其成为物种形成的新源泉。 能使其成为物种形成的新源泉。 • 缺点:死亡率高、竞争力弱、缺乏对后代的关怀, 缺点:死亡率高、竞争力弱、缺乏对后代的关怀, 高的瞬时增长率必然导致种群的不稳定性,因此, 高的瞬时增长率必然导致种群的不稳定性,因此, 种群的密度经常激烈变动。 种群的密度经常激烈变动。
生长与繁殖的权衡:花旗松生长率与繁殖率负相关
花旗松Pseudotsuga menziesii
不繁殖的雌鼠妇比繁殖的生长能高三倍。 (2)繁殖与生存的权衡 )繁殖与生存的权衡:产奶雌马鹿死亡率明显 高于不育雌马鹿
体型效应
体型大小显著影响生物的生活史,它与寿命、世代时间正相关
体型大小与内禀增长率负相关
存活曲线 C 型 , 幼体存活率 低 时间上变动大,不稳定, 时间上变动大 , 不稳定 , 通 种群大小 常低于环境容纳量K 常低于环境容纳量K值。 种内、 多变, 种内、种间竞争 多变,通常不紧张 发育快;增长力高;提早生 选择倾向 育;体型小;单次生殖 寿命 最终结果 短,通常小于1年 通常小于1 高繁殖力
繁殖成本
1. 有机体在繁殖后代时对能量或资源的所有 消费称为繁殖成本; 消费称为繁殖成本; 成功的生活史是使能量协调使用的结果; 2. 成功的生活史是使能量协调使用的结果; 动物在繁殖期有较高的死亡危险; 动物在繁殖期有较高的死亡危险; 植物在果实很多时减少木材生长; 3. 植物在果实很多时减少木材生长; 应用事例:人工限制家畜繁殖;人工疏果, 4. 应用事例:人工限制家畜繁殖;人工疏果, 剪枝等; 剪枝等;
K-对策的优缺点 对策的优缺点
• 优点:种群的数量较稳定,一般保持在K值 优点:种群的数量较稳定,一般保持在 值 附近,但不超过此值,因此, 附近,但不超过此值,因此,导致生境退 化的可能性小; 化的可能性小;具有个体大和竞争能力强 等特征,保证它们在生存竞争中取得胜利。 等特征,保证它们在生存竞争中取得胜利。 • 缺点:由于 值较低,种群一旦遭到危害, 缺点:由于r值较低 种群一旦遭到危害, 值较低, 难以恢复,有可能灭绝。 难以恢复,有可能灭绝。
r-选择 和 K-选择 - -
Lack(1954)指出,动物在进化过程中面临着两种相 反 的 可 供 选 择 的 进 化 对 策 。 MacArthur & Wilson (1967)把这两种进化对策定义为r对策者和K对策者。 Pianka (1970)提出了r选择和K选择理论,指出:r 选 r 择者是在不稳定的环境中进化的,高r的特征表现为: 择者 快速发育、 小型成体、 数量多而个体小的后代, 快速发育 、 小型成体 、 数量多而个体小的后代 , 高的 繁殖能量分配和短的世代时间(周期);K选择者 繁殖能量分配和短的世代时间 K选择者正好 相反,它们在稳定的环境中进化,高竞争力的特征表 现为:生长缓慢 、 大型成体 、 数量少但体型大的后代 、 生长缓慢、 生长缓慢 大型成体、 数量少但体型大的后代、 低繁殖能量分配和长的世代时间。 低繁殖能量分配和长的世代时间
第6章 生活史对策
生活史: 生活史:生物从出生到死亡所经历的全部 过程。 过程。生活史的关键组合是个体大小 Size),生长率( ),生长率 rate)、 )、繁殖 (Size),生长率(growth rate)、繁殖 reproduction)和寿命(longevity)。 (reproduction)和寿命(longevity)。
生态对策(bionomic strategy)或生活史对策( 生态对策(bionomic strategy)或生活史对策( life ):生物在生存斗争中获得的生存对 history strategy ):生物在生存斗争中获得的生存对 策 ,如生殖对策、取食对策、迁移对策等。
能量分配与权衡
生物的适应性体现在不同生活史组份的能 量分配方面,可以将能量更多地分配于生长、 代谢或繁殖,以适应不同的环境条件。 动物的能量收支(分配)模型为: C=F+U+M+G+P 生物种类、体重、性别、饵料性质、理化 因子等影响能量收支。 温带地区鸟类的窝卵数比热带地区多;高纬 度地区的哺乳动物每胎产仔数多于低纬度地 区的;低纬度地区的蜥蜴窝卵数较少,但成 活率较高;某些温带地区的昆虫产卵量要比 热带地区的高。 • 有些动物在生殖季节对食物供应量的反应相 当果断。如鹩哥一窝产5个卵,当出现食物 短缺时,亲鸟总是优先喂食早孵幼雏。 • 动物的生殖一般都有明显的时间节律,它们 总是在环境条件最适宜、食物最丰富时进行 生殖。
相关文档
最新文档