2017年有理数培优题(有问题详解)
七年级数学上册第一单元《有理数》-解答题专项经典题(专题培优)(2)

一、解答题1.计算:(1)()2411(10.5)2--23⎡⎤---⨯⨯⎣⎦(2)6÷(-2)3-|-22×3|+3÷2×12+1; 解析:(1)23-;(2)-11 【分析】(1)先计算乘方及括号,再计算乘法,最后计算加减法;(2)先计算乘方和绝对值,再计算乘除法,最后计算加减法.【详解】 (1)()2411(10.5)2--23⎡⎤---⨯⨯⎣⎦=111(2)23--⨯⨯- =113-+=23-; (2)6÷(-2)3-|-22×3|+3÷2×12+1 =116(8)123122÷--+⨯⨯+ =3312144--++ =-11.【点睛】 此题考查含乘方的有理数的混合运算,掌握运算顺序及运算法则是解题的关键. 2.计算 ①()115112236⎛⎫--+--- ⎪⎝⎭ ②()32112114132⎛⎫⎛⎫-÷-⨯--- ⎪ ⎪⎝⎭⎝⎭③524312(4)()12(152)2-÷-⨯-⨯-+ ④()()213132123242834⎛⎫⎛⎫-÷--+-⨯- ⎪ ⎪⎝⎭⎝⎭⑤222019111()22(1)2⎡⎤---÷--⨯-÷-⎢⎥⎣⎦ 解析:①-2;②458-;③-10;④-9;⑤-13. 【分析】 ①先去括号和绝对值,在进行加减运算即可.②先运算乘方,去括号,再将除法改为乘法,最后进行混合运算即可.③先运算乘方,再去括号,最后进行混合运算即可.④先运算乘方,利用乘法分配律去括号,再将除法改为乘法,最后进行混合运算即可. ⑤先运算乘方,再将除法改为乘法,再去括号,去绝对值,最后进行混合运算即可.【详解】①原式14171236=+-- 386176666=+-- 2=-. ②原式3274()(3)()48=-⨯-⨯--- 2798=-+ 458=-. ③原式3132(4)12(1516)4=-÷-⨯-⨯-+ 181214=⨯-⨯ 10=-.④原式()()()()1171542242424834=⨯--⨯--⨯-+⨯- 8335690=-++-9=-.⑤原式11(12)2(1)4=---÷-⨯÷- 1(142)2=-+-⨯-⨯1(6)2=-+-⨯112=--13=-.【点睛】本题考查有理数的混合运算,掌握有理数混合运算的顺序是解答本题的关键.3.计算(1)28()5(0.4)5+----;(2)1571361236⎛⎫⎛⎫-+-÷- ⎪ ⎪⎝⎭⎝⎭; (3)2336()(2)()(6)575⨯---⨯-+-⨯; (4)42019213(20.2)(2)(1)5⎡⎤---+-÷⨯---⎢⎥⎣⎦; (5)24512.5()(0.1)(2)(2)10⎡⎤÷-⨯---+-⎣⎦. 解析:(1)3;(2)3;(3)667-;(4)3-;(5)315.4【分析】 (1)先把运算统一为省略加号的和的形式,再利用加法的运算律,把互为相反数的两数先加,从而可得答案;(2)先把除法转化为乘法,再利用乘法的分配律把运算化为:()()()1573636363612-⨯-+⨯--⨯-,再计算乘法运算,最后计算加减运算即可得到答案;(3)把原式化为:()233662557-⨯+-⨯-⨯,逆用乘法的分配律,同步进行乘法运算,最后计算减法即可得到答案; (4)先计算小括号内的运算与乘方运算,再计算中括号内的运算,再计算乘法运算,最后计算加减运算即可得到答案;(5)先计算乘方运算,同步把除法转化为乘法,再计算小括号内的减法运算,同步进行乘法运算,最后计算加法运算即可得到答案.【详解】解:(1)28()5(0.4)5+---- 2850.45=--+ 3.=(2)1571361236⎛⎫⎛⎫-+-÷- ⎪ ⎪⎝⎭⎝⎭ ()157363612⎛⎫=-+-⨯- ⎪⎝⎭()()()1573636363612=-⨯-+⨯--⨯-123021=-+3.=(3)2336()(2)()(6)575⨯---⨯-+-⨯ ()233662557=-⨯+-⨯-⨯ 2366557⎛⎫=-⨯+- ⎪⎝⎭ 667=-- 667=- (4)42019213(20.2)(2)(1)5⎡⎤---+-÷⨯---⎢⎥⎣⎦()()1132212⎡⎤⎛⎫=---+-⨯--- ⎪⎢⎥⎝⎭⎣⎦ ()313212⎛⎫=---+⨯-+ ⎪⎝⎭ ()31212⎛⎫=---⨯-+ ⎪⎝⎭131=--+3.=-(5)24512.5()(0.1)(2)(2)10⎡⎤÷-⨯---+-⎣⎦ ()()1=2.5101632100⨯-⨯-- ()1164=--- 1164=-+ 315.4= 【点睛】本题考查的是含乘方的有理数的混合运算,乘法分配律的应用,掌握运算法则与运算顺序是解题的关键.4.计算:(1)9-(-14)+(-7)-15;(2)12×(-5)-(-3)÷374 (3)-15+(-2)3÷193⎛⎫--- ⎪⎝⎭(4)(-10)3+[(-8)2-(5-32)×9]解析:(1)1;(2)14;(3)1147-;(4)-900. 【分析】(1)先将减法化为加法,再分别把正数和负数相加,将结果相加;(2)先分别计算乘除,再计算加法;(3)先分别计算乘方和括号内的,再计算除法,最后计算加法;(4)先分别计算乘方和括号内的,再将结果相加即可.【详解】解:(1)原式=914(7)(15)++-+-=23(22)+-=1;(2)原式=7460(3)3--- =6074-+=14;(3)原式=115(8)(9)3-+-÷-- =2815(8)()3-+-÷-=315(8)()28-+--=6157-+=1147-; (4)原式=[]100064(4)9-+--⨯=1000(6436)-++=1000100-+=-900.【点睛】本题考查有理数的混合运算.熟记有理数混合运算的运算顺序和每一步的运算法则是解题关键.5.某儿童自行车厂计划一周生产儿童自行车1400辆,平均每天生产200辆,但由于种种原因,实际每天的生产量与计划每天的生产量有出入.实际情况如下表(超产记为正,减(2)这周生产量最多的一天比生产量最少的一天多生产多少辆?(3)该厂实行每周计件工资制,每生产一辆可得50元,若超额完成任务,则超出部分每辆另奖12元;少生产一辆扣20元,那么该工厂这周的工资总额是多少元?解析:(1)该厂本周实际生产自行车1409辆;(2)产量最多的一天比产量最少的一天多生产自行车26辆;(3)该厂工人这一周工资总额是70558元.【分析】(1)根据每天的增减量,依次相加,可得答案;(2)根据每天的增减量,用最多的一天减去最少的一天即可; (3)该厂一周工资=实际自行车产量×50+超额自行车产量×12.【详解】解:(1)1400+5-2-4+13-10+16-9=1409(辆),答:该厂本周实际生产自行车1409辆; (2)16-(-10)=26(辆),答:产量最多的一天比产量最少的一天多生产自行车26辆;(3)50×1409+12×9=70558.答:该厂工人这一周工资总额是70558元.【点睛】本题考查有理数加、减运算的应用,用正数和负数表示.明白“+”是比计划多、“-”是比计划少是解题的关键.6.计算:(1)()2131753-⨯---+ (2)311131484886⎛⎫-+⨯- ⎪⎝⎭解析:(1)6;(2)58. 【分析】 (1)先计算乘方,再计算乘法,最后计算加减即可;(2)带分数化成假分数,利用乘法分配律去掉括号,再计算加减即可.【详解】(1)()2131753-⨯---+ 29753=-⨯++6=;(2)311131484886⎛⎫-+⨯- ⎪⎝⎭ 1591148484886=-+⨯-⨯ 3096888=-+- 30916888=-- 58=. 【点睛】本题考查了有理数的混合运算,有理数混合运算顺序:先算乘方,再算乘除,最后算加减;同级运算,应按从左到右的顺序进行计算;如果有括号,要先做括号内的运算.进行有理数的混合运算时,注意各个运算律的运用,使运算过程得到简化.7.计算:(1)()110822⎫⎛---÷-⨯-⎪⎝⎭ (2)()2313232154⎫⎛-⨯--⨯-÷- ⎪⎝⎭解析:(1)12- ;(2)0【分析】(1)先去绝对值,同时把除变乘,再计算乘法,最后加减即可(2)先计算乘方和括号内的,把除变乘,再计算乘法,最后加减法即可【详解】(1)()110822⎫⎛---÷-⨯- ⎪⎝⎭=1110822⎛⎫⎛⎫--⨯-⨯- ⎪ ⎪⎝⎭⎝⎭=102--=-12(2)()2313232154⎫⎛-⨯--⨯-÷- ⎪⎝⎭=()()2386154-⨯---⨯-=243660--+=0【点睛】本题考查有理数的混合运算,解答的关键是熟练掌握运算法则和运算顺序.8.以1厘米为1个单位长度用直尺画数轴时,数轴上互为相反数的点A 和点B 刚好对着直尺上的刻度2和刻度8.(1)写出点A 和点B 表示的数;(2)写出在点B 左侧,并与点B 距离为9.5厘米的直尺左端点C 表示的数;(3)若直尺长度为a 厘米,移动直尺,使得直尺的长边CD 的中点与数轴上的点A 重合,求此时左端点C 表示的数.解析:(1)点A 表示的数是-3,点B 表示的数是3;(2)点C 表示的数是-6.5;(3)3-0.5a【分析】(1)根据AB=8-2=6,点A 和点B 表示的数是互为相反数,即可得到结果;(2)利用点B 表示的数3减去9.5即可得到答案;(3)利用中点表示的数向左移动0.5a 个单位计算即可.【详解】(1)∵AB=8-2=6,点A 和点B 表示的数是互为相反数,∴点A 表示的数是-3,点B 表示的数是3;(2)点C 表示的数是:3-9.5=-6.5;(3)∵直尺长度为a 厘米,直尺中点表示的数是-3,∴直尺此时左端点C 表示的数-3-0.5a .【点睛】此题考查利用数轴表示数,数轴上两点之间的距离,数轴上点移动的规律,熟记数轴上点移动的规律进行计算是解题的关键.9.计算:(1)()21112424248⎛⎫-+--+⨯- ⎪⎝⎭(2)()()1178245122-÷-⨯--⨯+÷ 解析:(1)9;(2)34【分析】 (1)根据绝对值的性质、乘法分配律计算各项,即可求解;(2)先算乘除,再算加减,即可求解.【详解】解:(1)()21112424248⎛⎫-+--+⨯- ⎪⎝⎭ ()()()11144242424248=-+-⨯-+⨯--⨯-01263=+-+9=;(2)()()1178245122-÷-⨯--⨯+÷ ()()1174204+=---- 34=. 【点睛】本题考查有理数的混合运算,掌握有理数的运算法则是解题的关键.10.如图,在数轴上有三个点,,A B C ,回答下列问题:(1)若将点B 向右移动5个单位长度后,三个点所表示的数中最小的数是多少? (2)在数轴上找一点D ,使点D 到,A C 两点的距离相等,写出点D 表示的数; (3)在数轴上找出点E ,使点E 到点A 的距离等于点E 到点B 的距离的2倍,写出点E 表示的数.解析:(1)1- (2)0.5 (3)3-或7-【分析】(1)根据移动的方向和距离结合数轴即可回答;(2)根据题意可知点D 是线段AC 的中点;(3)在点B 左侧找一点E ,点E 到点A 的距离是到点B 的距离的2倍,依此即可求解.【详解】解:(1)点B 表示的数为-4+5=1,∵-1<1<2,∴三个点所表示的数最小的数是-1;(2)点D 表示的数为(-1+2)÷2=1÷2=0.5;(3)点E 在点B 的左侧时,根据题意可知点B 是AE 的中点,AB=|-1+4|=3则点E 表示的数是-4-3=-7.点E 在点B 的右侧时,即点E 在AB 上,则点E 表示的数为-3.【点睛】本题主要考查的是有理数大小比较,数轴的认识,找出各点在数轴上的位置是解题的关键.11.计算:(1)()()674-+--;(2)()3232--⨯. 解析:(1)17-;(2)14【分析】(1)根据有理数的加减法即可求出值;(2)原式先计算乘方,再计算乘法运算,最后算加减运算即可求出值;【详解】解:(1)原式134=-17=-(2)原式()86=--14=【点睛】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键. 12.计算题:(1)3×(﹣4)﹣28÷(﹣7);(2)﹣12020+(﹣2)3×1123⎛⎫-+ ⎪⎝⎭. 解析:(1)﹣8;(2)13. 【分析】(1)先计算乘除,再计算加减,即可得到答案;(2)先计算乘方、然后计算乘法和括号内的运算,再计算加法即可.【详解】解:(1)3×(﹣4)﹣28÷(﹣7)=(﹣12)+4=﹣8;(2)﹣12020+(﹣2)3×1123⎛⎫-+ ⎪⎝⎭. =-1+(-8)×16⎛⎫-⎪⎝⎭ =413-+=13. 【点睛】本题考查了有理数的加减乘除运算,解题的关键是熟练掌握运算法则进行解题.13.计算:()2213113244812⎛⎫-+--⨯-- ⎪⎝⎭. 解析:13【分析】运用乘法的分配律去括号,再按有理数混合运算的顺序计算.【详解】解:原式()19692=-+---()85=--13=【点睛】本题考查了有理数的混合运算,熟练掌握运算法则是解题的关键.14.计算:(1)22123()0.8(5)35⎡⎤-⨯--÷-⎢⎥⎣⎦(2)5233(2)4()(12)1234⨯-+-+--⨯- 解析:(1)13;(2)10. 【分析】(1)依据有理数的混合运算的运算顺序和法则依次运算即可;(2)分别计算乘法、绝对值和后面用乘法分配律计算,再将结果相加、减.【详解】解:(1)原式=12790.8()95⎡⎤-⨯-÷-⎢⎥⎣⎦ =95()()527-⨯-=13; (2)原式=52364[(12)(12)(12)]1234-++⨯--⨯--⨯- =64(589)-++-++ =6412-++=10.【点睛】本题考查有理数的混合运算.解决此题的关键是正确把握运算顺序和每一步的运算法则.注意运算律的运用.15.计算:-32+2×(-1)3-(-9)÷213⎛⎫ ⎪⎝⎭解析:70【分析】先计算乘方,然后计算乘除,再计算加减,即可得到答案.【详解】解:原式=92(1)(9)9-+⨯---⨯=9281--+=70.【点睛】本题考查了有理数的混合运算,解题的关键是熟练掌握运算法则进行解题.16.计算:(1)()11270.754⎛⎫--+-+ ⎪⎝⎭; (2)()()202023111242144⎛⎫-++-⨯--⨯- ⎪⎝⎭; 解析:(1)6;(2)11.【分析】(1)先变成省略括号和形式,同时把小数化分数,把分数相加,同号相加,最后异号相加即可;(2)先算乘方,去绝对值和带分数化假分数,再计算乘法,最后计算加减法即可.【详解】解:(1)()11270.754⎛⎫--+-+ ⎪⎝⎭, =1312744+-+, =1217+-,=13-7,=6; (2)()()202023111242144⎛⎫-++-⨯--⨯- ⎪⎝⎭, =()351124444⎛⎫++⨯--⨯- ⎪⎝⎭=11235++-=11.【点睛】本题考查含有乘方的有理数混合,掌握有理数混合运算的法则,解答的关键是熟练掌握运算法则和运算顺序.17.计算:(1)117483612⎛⎫-+-⨯ ⎪⎝⎭; (2)20213281(2)(3)3---÷⨯-. 解析:(1)36-;(2)26.【分析】(1)利用乘法分配律进行简便运算即可;(2)先算乘方,再算乘除,最后计算加减即可.【详解】解:(1)117483612⎛⎫-+-⨯ ⎪⎝⎭ 1174848483612=-⨯+⨯-⨯ 16828=-+-36=-;(2)20213281(2)(3)3---÷⨯- 31(89)8=---⨯⨯ 127=-+26=.【点睛】本题考查了有理数的混合运算,掌握有理数运算的相关运算法则并灵活运用运算律准确计算是解题的关键.18.计算:(1)6÷(-3)×(-32) (2)-32×29-+(-1)2019-5÷(-54) 解析:(1)3;(2)1.【分析】(1)根据有理数的乘除混合运算法则计算即可;(2)根据有理数的混合运算法则计算即可.【详解】解:(1)原式=6×1-3⎛⎫ ⎪⎝⎭ ×(-32)=3; (2)原式=-9×29+(-1)-5×4-5⎛⎫ ⎪⎝⎭=-2-1+4=1.【点睛】本题考查有理数的混合运算,解答本题的关键是明确有理数混合运算的计算方法.19.(1)371(24)812⎛⎫-+⨯- ⎪⎝⎭;(2)431(2)2(3)----⨯- 解析:(1)-29;(2)13.【分析】(1)利用乘法分配律进行简便运算,即可得出结果;(2)先计算有理数的乘方与乘法,再进行加减运算即可.【详解】解:(1)371(24)812⎛⎫-+⨯- ⎪⎝⎭ 37(1242424)812=-⨯-⨯+⨯ (24914)=--+29=-;(2)431(2)2(3)----⨯-1(8)(6)=-----186=-++13=.【点睛】本题考查了有理数的混合运算,熟练掌握有理数混合运算的运算顺序、运算法则及乘法运算律是解题的关键.20.计算:(1)()()34287⨯-+-÷;(2)()223232-+---.解析:(1)16-;(2)6.【分析】(1)先算乘除,后算加法即可;(2)原式先计算乘方运算,再化简绝对值,最后算加减运算即可求出值.【详解】(1)原式12416=--=-(2)原式34926=-+-=【点睛】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.21.计算(1)442293⎛⎫-÷⨯- ⎪⎝⎭2; (2)313242⎛⎫⨯⨯- ⎪⎝⎭3()32490.5234-⨯-÷+-. 解析:(1)16-;(2)34【分析】(1)按照有理数的四则运算进行运算即可求解;(2)按照有理数的四则运算法则进行运算即可,先算乘方,注意符号.【详解】解:(1)原式944163616499=-⨯⨯=-⨯=-,(2)原式1139 24()(8)8444 =⨯--⨯-⨯+ 39324=-++34=,【点睛】本题考查有理数的加减乘除乘方运算法则,先算乘方,再算乘除,最后算加减,有括号先算括号内的,计算过程中细心即可.22.计算:(1)311 13+(0.25)(4)3 444 ---+--(2)31(2)93 --÷(3)1125 100466() 46311 -⨯-⨯-⨯解析:(1)21;(2)-35;(3)-392【分析】(1)有理数加减混合运算,从左到右以此计算,有小括号先算小括号里面的,可以使用加减交换律和结合律使得计算简便;(2)有理数的混合运算,先算乘方,然后算乘除,最后算加减;(3)有理数的混合运算,可以使用乘法分配律使得计算简便.【详解】解:(1)311 13+(0.25)(4)3 444 ---+--=3111 13+434444-+=3111 (13+4)(3) 4444+-=183+ =21(2)31(2)93--÷=893--⨯=827--=35-(3)1125100466()46311-⨯-⨯-⨯ =11101004664633⎛⎫⎛⎫--⨯-⨯- ⎪ ⎪⎝⎭⎝⎭=11101004466664633+-⨯-⨯-⨯⨯ =40011120+---=392-【点睛】 本题考查有理数的混合运算,掌握运算顺序和计算法则正确计算是解题关键.23.一名足球守门员练习折返跑,从球门线出发,向前记作正数,返回记作负数,他的记录如下:(单位:米)+5,﹣4,+10,﹣8,﹣6,+13,﹣10.(1)守门员最后是否回到了球门线的位置?(2)在练习过程中,守门员离开球门线最远距离是多少米?(3)守门员全部练习结束后,他共跑了多少米?解析:(1)回到了球门线的位置;(2)11米;(3)56米【分析】(1)由于守门员从球门线出发练习折返跑,问最后是否回到了球门线的位置,只需将所有数加起来,看其和是否为0即可;(2)计算每一次跑后的数据,绝对值最大的即为所求;(3)求出所有数的绝对值的和即可.【详解】解:(1)(+5)+(﹣4)+(+10)+(﹣8)+(﹣6)+(+13)+(﹣10)=(5+10+13)-(4+8+6+10)=28-28=0.答:守门员最后回到了球门线的位置;(2)(3)|+5|+|﹣4|+|+10|+|﹣8|+|﹣6|+|+13|+|﹣10|=5+4+10+8+6+13+10=56(米).答:守门员全部练习结束后,他共跑了56米.【点睛】本题考查了正数和负数以及有理数加减运算的应用等知识点,解题的关键是理解“正”和“负”的相对性,确定具有相反意义的量.24.计算:(1)152|18|()263-⨯-+; (2)20203221124(2)3()3-+÷--⨯. 解析:(1)6;(2)-5【分析】(1)先去掉绝对值,然后根据乘法分配律即可解答本题;(2)根据有理数的乘方、有理数的乘除法和加减法可以解答本题.【详解】解:(1)152|18|()263-⨯-+ =18×(12﹣56+23) =18×12﹣18×56+18×23=9﹣15+12=6;(2)20203221124(2)3()3-+÷--⨯ =﹣1+24÷(﹣8)﹣9×19=﹣1+(﹣3)﹣1=﹣5.【点睛】 此题主要考查有理数的混合运算,熟练掌握混合运算顺序是解题关键.25.在数轴上,一只蚂蚁从原点O 出发,它先向左爬了2个单位长度到达点A ,再向右爬了3个单位长度到达点B ,最后向左爬了9个单位长度到达点C .(1)写出A ,B ,C 三点表示的数;(2)根据点C 在数轴上的位置回答,蚂蚁实际上是从原点出发,向什么方向爬了几个单位长度?解析:(1)A ,B ,C 三点表示的数分别是-2,1,-8;(2)向左爬了8个单位.【分析】(1)向左用减法,向右用加法,列式求解即可写出答案;(2)根据C 点表示的数,向右为正,向左为负,继而得出答案.【详解】解:(1)A 点表示的数是0-2=-2,B 点表示的数是-2+3=1,C 点表示的数是1-9=-8;(2)∵O 点表示的数是0;C 点表示的数是-8,∴蚂蚁实际上是从原点出发,向左爬了8个单位.【点睛】本题考查了数轴的知识及有理数的加减法的应用,属于基础题,比较简单,理解向左用减法,向右用加法,是关键.26.探索代数式222a ab b -+与代数式2()a b -的关系(1)当5a =,2b =-时,分别计算两个代数式的值.(2)你发现了什么规律?(3)利用你发现的规律计算:2220182201820192019-⨯⨯+解析:(1)49, 49;(2)a 2−2ab +b 2=(a−b )2;(3)1.【分析】(1)将a 、b 的值分别代入a 2−2ab +b 2与(a−b )2计算可得;(2)根据(1)中的两式的计算结果即可归纳总结出关系式;(3)原式变形后,利用完全平方公式计算可得结果.【详解】解:(1)当a =5,b =−2时,a 2−2ab +b 2=52−2×5×(−2)+(−2)2=25+20+4=49,(a−b )2=[5−(−2)]2=72=49;(2)根据(1)的计算,可得规律:a 2−2ab +b 2=(a−b )2;(3)20182−2×2018×2019+20192=(2018−2019)2=(−1)2=1.【点睛】本题考查了代数式的求值及完全平方公式的应用,解题的关键是掌握代数式的求值方法以及利用完全平方公式简便运算.27.计算(1)112(24)243⎛⎫-⨯-+- ⎪⎝⎭; (2)3221(2)(3)⎡⎤÷---⎣⎦;(3)2202035|5|(1)( 3.14)02π⎛⎫---⨯-+-⨯ ⎪⎝⎭. 解析:(1)22;(2)2117-;(3)54-. 【分析】(1)原式利用乘法分配律计算即可得到结果;(2)原式先计算乘方运算,再计算括号内的运算,最后除法运算即可得到结果;(3)原式先计算乘方运算,再计算乘除运算,最后算加减运算即可得到结果;【详解】(1)112(24)243⎛⎫-⨯-+- ⎪⎝⎭ 112(24)(24)(24)243⎛⎫⎛⎫=-⨯-+-⨯+-⨯- ⎪ ⎪⎝⎭⎝⎭12616=-+=22;(2)3221(2)(3)⎡⎤÷---⎣⎦()2189=÷--()2117=÷-2117=-; (3)2202035|5|(1)( 3.14)02π⎛⎫---⨯-+-⨯ ⎪⎝⎭ 255104=-⨯+ 54=-. 【点睛】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.28.高速公路养护小组,乘车沿东西方向公路巡视维护,如果约定向东为正,向西为负,当天的行驶记录如下(单位:千米):+17,-9,+7,-15,-3,+11,-6,-8,+5,+16(1)养护小组最后到达的地方在出发点的哪个方向?距出发点多远?(2)若汽车耗油量为0.2升/千米,则这次养护共耗油多少升?解析:(1)最后到达的地方在出发点的东边,距出发点15千米;(2)这次养护共耗油19.4升.【分析】(1)求出这一组数的和,结果是正数则在出发点的东边,是负数则在出发点的西侧; (2)所走的路程是这组数据的绝对值的和,然后乘以0.2,即可求得耗油量.【详解】解:(1)17﹣9+7﹣15﹣3+11﹣6﹣8+5+16,=17+7+11+5+16-(9+15+3+6+8),=15.答:最后到达的地方在出发点的东边,距出发点15千米;(2)(17971531168516)0.2++-+++-+-+++-+-++++⨯,=97×02,=19.4(升).答:这次养护共耗油19.4升.【点睛】本题主要考查了正负数的意义,解题关键是理解“正”和“负”的相对性,明确什么是一对具有相反意义的量.在一对具有相反意义的量中,先规定其中一个为正,则另一个就用负表示.也考查了有理数的加减运算.29.计算:2334[28(2)]--⨯-÷-解析:21-.【分析】先计算有理数的乘方,再计算括号内的除法与减法,然后计算有理数的乘法,最后计算有理数的减法即可得.【详解】解:原式[]9428(8)=--⨯-÷-, []942(1)=--⨯--, 943=--⨯,912=--,21=-.【点睛】本题考查了含乘方的有理数混合运算,熟练掌握各运算法则是解题关键.30.计算:(1)[]2(2)18(3)24-+--⨯÷ (2)()()243513224⎡⎤----⨯÷-⎢⎥⎣⎦ 解析:(1)10;(2)-15【分析】(1)先算乘方,再算乘法,最后算加减;同级运算,应按从左到右的顺序进行计算;如果有括号,要先做括号内的运算.(2)根据有理数的乘方、有理数的乘除法和加减法可以解答本题.【详解】(1)解:原式=4+[18-(-6)]÷4=4+24÷4=4+6=10;(2)解:原式=-1-[9-10÷(-2)]=-1-[9-(-5)]=-1-14=-15.【点睛】本题考查了有理数的混合运算,解题的关键是明确有理数混合运算的计算方法.。
七年级数学上册《有理数》培优测试题(含答案)

B. (3) (2)
C. (3)2 (2)2
D.
(3)2 (2)
10.几个同学在日历纵列上圈出了三个数,算出它们的和,其中错误的一个是(
)
A.28
B.33
C.45
D.57
二、填空题(每小题 3 分,共 24 分)
11.绝对值小于 n ( n 是正整数)的整数共有___________个。
12.当 a b 0 时, 1 _______ 1 (填“>”“=”或“<”)。
D.不能确定正负
3.当 a 、 b 互为相反数时,下列各式一定成立的是( )
A. b 1 a
B. b 1 a
C. a b 0
D. ab 0
4. 3.14 的计算结果是( )
A.0
B. 3.14
C. 3.14
5. a 为有理数,则下列各式成立的是(
)
D. 3.14
A. a 2 0
七年级数学上册《有理数》培优测试题
一、选择题(每小题 3 分,共 30 分)
1.下列说法正确的是(
)
A.任何负数都小于它的相反数
B.零除以任何数都等于零
C.若 a b ,则 a 2 b2
D.两个负数比较大小,大的反而小
2.如果一个数的绝对值等于它的相反数,那么这个数(
)
A.必为正数
B.必为负数
C.一定不是正数
(2) 第 n 行与第 n 列的交叉点上的数应为____________。(用含正整数 n 的式子表
示) (3) 计算左上角 2×2 的正方形里所有数字之和,即:
1
-2
-2
3
在数表中任取几个 2×2 的正方形,计算其中所有数字之和,归纳你得出的结论。
(人教版)重庆七年级数学上册第一章《有理数》经典题(培优)

D.既没有最大的数,也没有最小的数D
Hale Waihona Puke 解析:D【分析】分别根据有理数的定义,绝对值的定义,有理数的大小比较逐一判断即可.
【详解】
整数和分数统称为有理数,故原说法错误,故选项A不合题意;
没有绝对值最大的数,绝对值最小的数是 ,故原说法错误,故选项B不合题意;
绝对值相等的两数之和等于零或大于 ,故原说法错误,故选项C不合题意;
原式=1+1+(-1)+(-1)=0,
②当a、b、c为一正两负时,设a为正,b、c为负
原式1+(-1)+(-1)+1=0,
综上, 的值为0,
故答案为:0.
【点睛】
此题考查了绝对值,有理数的混合运算,熟练掌握运算法则是解本题的关键.
11.某种细菌在培养过程中,每半小时分裂一次(由一个分裂成两个).经过3个小时,这种细菌由1个可分裂为( )
【点睛】
此题主要考查了一元一次方程的应用和有理数的计算,正确理解图表,得到日历纵列上圈出相邻的三个数的和一定是3的倍数以及它的取值范围是关键.
8.下列结论错误的是( )
A.若a,b异号,则a·b<0, <0
B.若a,b同号,则a·b>0, >0
C. = =-
D. =- D
解析:D
【解析】
根据有理数的乘法和除法法则可得选项A、B正确;根据有理数的除法法则可得选项C正确;根据有理数的除法法则可得选项D原式= ,选项D错误,故选D.
A. -1 B.1 C. +1 D. -3B
解析:B
【解析】
【分析】
绝对值的化简求值主要需要判断绝对值里面的正负,从而去掉绝对值,再对式子进行计算进而得到答案.
人教版数学七年级上册第一章《有理数》培优测试卷(含答案解析)

人教版数学七年级上册第一章《有理数》培优测试卷学校:___________姓名:___________班级:___________考号:___________一、单选题1.据相关报道,开展精准扶贫户工作五年来,我国约有5500万人摆脱贫困,国家发放扶贫资金共375亿元.将375亿用科学记数法表示为()A.375×107B.3.75×1010C.3.75×109D.37.5×1082.已知有理数a、b在数轴上的位置如图所示,下列结论正确的是()A.b>a B.ab>0 C.b—a>0 D.a+b>03.下列计算正确的是()A.(﹣16)÷(﹣4)=﹣4 B.﹣|2﹣5|=3C.(﹣3)2=9 D.(﹣2)3=﹣64.股民小王上周五买进某公司的股票,每股25元,下表为本周内该股票的涨跌情况,则本周五收盘时,该股票每股价格是()A.27.1元B.24.5元C.29.5元D.25.8元5.如果|a|=7,|b|=5,试求a-b的值为()(A)2(B)12(C)2和12(D)2;12;-12;-26.一根1米长的小木棒,第一次截去它的13,第二次截去剩余部分的13,第三次再截剩余部分的13,如此截下去,第五次后剩余的小木棒的长度是()A.(23)5B.1﹣(23)5C.(13)5D.1﹣(13)57.下列表述中,正确的是()A.有理数有最大的数,也有最小的数B.有理数有最大的数,但没有最小的数C.有理数有最小的数,但没有最大的数D.有理数既没有最大的数,也没有最小的数8.下列说法正确的是( ) A .绝对值等于3的数是﹣3B .绝对值不大于2的数有±2,±1,0C .若|a|=﹣a ,则a≤0D .一个数的绝对值一定大于这个数的相反数9.现规定一种运算:1!=1,2!=2×1=2,3!=3×2×1=6,4!=4×3×2×1=24,……,则200!199!的值为( ) A .200B .199C .200199D .110.当2<a <3时,代数式|3﹣a|﹣|2﹣a|的结果是( ) A .﹣1 B .1C .2a ﹣5D .5﹣2a二、填空题 11.﹣23的绝对值的相反数与﹣223的相反数的差是_____. 12.如果两个数的绝对值相等,那么这两个数_____.13.已知m 为最大的负整数,x 与y 互为相反数,则(x+y )2018+m 2=_____. 14.在(-1)2 017,(-1)2 018,-22,(-3)2中,最大的数与最小的数的和等于______. 15.计算(-34)×(-112)÷(-214)的值为______. 16.有理数a ,b ,c 在数轴上的位置如图所示,化简|b ﹣c|﹣|c|+|c ﹣a|=_____.三、解答题 17.计算(1)﹣(3﹣5)+32×(1﹣3) (2)﹣32﹣3122(1)293-⨯-- . 18.(1)当a≠0时,求aa的值.(写出解答过程) (2)若a≠0,b≠0,且a a +b b=0,则abab 的值为 .(3)若ab >0,则a a+b b +abab 的值为 . 19.某公司的线路检修小组在一条东西方向的马路上工作,从甲地出发,如果规定向东行驶为正,向西行驶为负,下表记录的是检修小组从甲地出发后连续七次行驶情况.(单位:km,每次行驶终点为下次行驶的起点)解答下列问题:(1)检修小组在第几次纪录时距甲地最远?(2)检修小组收工时,位于出发点甲地哪一侧,距甲地多远?20.股民李叔叔在上周星期五以每股11.2元买了一批股票,共购进5000股,下表为本周星期一到星期五该股票的涨跌情况:(1)求本周星期三收盘时每股的价格;(2)本周内每股最高是多少元?最低是多少元?(3)已知李叔叔买进股票时支付了0.15%的手续费,卖出时还需支付成交额的0.15%手续费和0.1%的交易税,如果李叔叔在星期五收盘时将全部的股票卖出,你对他的收益情况如何评价?21.一只小虫从某点O出发在一条直线上来回爬行,假定向右爬行的路程记为正数,向左记为负数,爬行的各段路程依次为+5,﹣3,+11,﹣8,﹣6,+12,﹣10.(单位:厘米)(1)小虫离开O点最远是厘米.(2)小虫最后是否回到出发点O的位置?为什么?(3)在爬行过程中,每爬行1厘米被奖励两粒芝麻,则小虫可得多少粒芝麻?22.把下列各数填入相应的大括号内:﹣13.5,0,+27,﹣45,227,﹣10,3.14(1)正数集合:{}(2)负数集合:{}(3)整数集合:{}(4)分数集合:{}(5)非负整数集合:{}23.请观察下列定义新运算的各式:1⊙3=1×4+3=7;3⊙(﹣1)=3×4﹣1=11;5⊙4=5×4+4=24;4⊙(﹣3)=4×4﹣3=13.(1)请你归纳:a⊙b=;(2)若a≠b,那么a⊙b b⊙a(填“=”或“≠”);(3)先化简,再求值:(a﹣b)⊙(2a+b),其中a是最大的负整数,b是绝对值最小的整数.参考答案1.B【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【详解】解:将375亿用科学记数法表示为3.75×1010.故选B.【点睛】本题考查科学记数法—表示较大的数,解题关键是小数点移动了多少位,n的绝对值与小数点移动的位数相同2.B【分析】由数轴可得b<a<0,从而可以判断选项中的结论是否正确,从而可以解答本题.【详解】解:∵由数轴可得,b<a<0,∴a>b,(故A错误);ab>0,(故B正确);b-a<0,(故C错误);a+b<0,(故D错误).故选:B.【点睛】本题考查数轴,解题的关键是明确数轴的特点,能根据各数的大小判断选项中的结论是否成立.3.C【分析】原式利用有理数的乘方,乘法,以及除法法则计算得到结果,即可做出判断.【详解】解:A、(﹣16)÷(﹣4)=4,故A错误;B、﹣|2﹣5|=﹣3,故B错误;C、(﹣3)2=9,故C正确;D、(﹣2)3=﹣8,故D错误;故选C.【点睛】本题考查有理数的除法,绝对值的化简,有理数的减法,有理数的乘方,解题关键是熟练掌握法则.4.B【分析】本题是一道较为基础的题型,考查的是对正数和负数的实际意义的熟练程度,对于本题而言,星期五收盘时,该股票每股是:25﹣2.1+2﹣1.2+0.5+0.3=24.5(元).【详解】解:25﹣2.1+2﹣1.2+0.5+0.3=24.5(元),故选B.【点睛】本题考查正数和负数的实际意义,解题关键是掌握本题中正数和负数的意义,这样可以提高解题的速度和准确率.5.D【解析】绝对值等于7的数有正负7,绝对值等于5的数有正负5.6.A【分析】根据题意可以得到第五次后剩下的小棒的长度,从而可以解答本题.【详解】解:由题意可得,第五次后剩下的小棒的长度是:(1−13)(1−13)(1−13)(1−13)(1−13)=(23)5米,故选A.【点睛】本题考查有理数的乘方,解答本题的关键是明确题意,求出第五次后剩下的小棒的长度.7.D【分析】根据有理数的分类,可得答案.【详解】解:有理数既没有最大的数,也没有最小的数.故选:D.【点睛】本题考查了有理数,解决本题的关键是熟记没有最大的有理数,也没有最小的有理数.8.C【分析】根据绝对值的性质进行解答,即一个正数的绝对值是它本身,一个负数的绝对值是它的相反数,0的绝对值是0.【详解】解:A、绝对值等于3的数是3和﹣3,故错误;B、绝对值不大于2的整数有±2,±1,0,故错误;C、若|a|=﹣a,则a≤0,正确,D、负数的绝对值等于这个数的相反数,故错误,故选C.【点睛】本题考查的是绝对值的性质及相反数的定义,解答关键是熟知以下知识:(1)绝对值的性质:一个正数的绝对值是它本身,一个负数的绝对值是它的相反数,0的绝对值是0;(2)相反数:只有符号不同的两个数叫互为相反数.9.A【分析】首先观察已知条件,不难找到规律n!=n×(n-1)×(n-2)×…×2×1,注意不要找错对应关系;然后根据新运算法则将待求式转化为一般的算式,再进行化简、计算即可求出所要求的结果. 【详解】解:根据题中的新定义得:原式=2001991 1991981⨯⨯⋅⋅⋅⨯⨯⨯⋅⋅⋅⨯=200,【点睛】本题考查定义新运算,有理数的除法,有理数的乘法,解题关键是要根据题目所给的已知条件得到新运算的法则.10.D【分析】根据绝对值的性质进行解答,即一个正数的绝对值是它本身,一个负数的绝对值是它的相反数,0的绝对值是0.【详解】解:∵2<a<3,∴3﹣a>0,2﹣a<0,∴|3﹣a|﹣|2﹣a|=3﹣a﹣a+2=5﹣2a,故选D.【点睛】本题考查的是绝对值的性质,解答关键是熟练掌握绝对值的性质:一个正数的绝对值是它本身,一个负数的绝对值是它的相反数,0的绝对值是0.11.﹣313.【分析】根据绝对值的性质和相反数的定义分别求出−23的绝对值的相反数与−223的相反数,再相减即可得出.【详解】解:﹣23的绝对值的相反数为﹣23,﹣223的相反数为223,﹣23﹣223=﹣313.故答案为﹣31 3【点睛】本题考查有理数的减法,相反数,绝对值,解题关键是熟练掌握绝对值、相反数的意义. 12.相等或互为相反数.【分析】根据绝对值的定义及性质可知,一对相反数的绝对值相等,故如果两个数的绝对值相等,那么这两个数可能相等,也可能互为相反数.【详解】解:如果两个数的绝对值相等,那么这两个数可能相等,也可能互为相反数.故答案为相等或互为相反数.【点睛】本题考查绝对值、相反数的意义,解题关键是熟练、准确掌握意义.13.1.【分析】根据有理数中最大的负整数为-1,可得m=﹣1;相反数的定义:实数a与-a叫做互为相反数,0的相反数是0本身,有理数中最大的负整数为-1【详解】解:由题意得:m=﹣1,x+y=0,∴原式=02018+(﹣1)2=1.故答案为1.【点睛】本题考查有理数、相反数、乘方的相关知识,解题关键是有理数中最大的负整数为-1,有理数中最大的负整数为-1.14.5【详解】(-1)2 017=-1,(-1)2 018=1,-22=-4,(-3)2=9,其中最大的数是9,最小的数是-4,它们的和等于5.故答案是5.15.﹣12.【分析】因为负数的倒数仍然是负数,所以把除法变成乘法,除数变为它的倒数后,先定积的符号,再算绝对值的积.【详解】解:(﹣34)×(﹣112)÷(﹣214)=(-34)×(-32)×(﹣49)=﹣12.故答案为﹣12.【点睛】本题考查有理数的混合运算,解题关键是运算顺序及符号的确定.16.a+b﹣c.【分析】首先根据数轴,确定a、b、c的大小及b﹣c 、c﹣a正负,然后根据绝对值的意义化简,绝对值意思是值一定为正值,按照“符号相同为正,符号相异为负”的原则来去绝对值符号.①绝对值符号里面为负,在去掉绝对值时必须要加一个负的符号老确保整个值为正值,也就是当:│a│=a (a为正值,即a≥0 时);│a│= -a (a为负值,即a≤0 时)【详解】解:由图知:c<b<0<a,∴b﹣c>0,c﹣a<0,∴|b﹣c|﹣|c|+|c﹣a|=b﹣c+c+a﹣c=a+b﹣c.故答案为a+b﹣c.【点睛】本题考查绝对值意义和整式的加减,解题关键是根据数轴上点的位置确定需要化简的式子的绝对值.17.(1)﹣16;(2)﹣811 12.【分析】(1)先算乘方,再算乘除,最后算加减即可;(2)先算乘方和绝对值,再算乘除,最后算加减即即可. 【详解】解:(1)﹣(3﹣5)+32×(1﹣3)=﹣(﹣2)+9×(﹣2)=2+(﹣18)=﹣16;(2)﹣32﹣31221293⎛⎫-⨯--⎪⎝⎭.=﹣9﹣(﹣278)×29﹣23=﹣9+34﹣23=﹣811 12.【点睛】本题考查有理数的混合运算,解题关键是运算顺序、乘方、绝对值化简. 18.(1)1或-1;(2)﹣1;(3)3或﹣1.【分析】(1)当a≠0时,可能a>0.也可能a<0,所以需要分两种情况解答.(2),因为两个式子的和为0,所以两个加数互为相反数,a、b是异号. (3)需要分a、b同号和异号两种情况解答.【详解】解:(1)当a>0时,|a|=a,则原式=1;当a<0时,|a|=﹣a,则原式=﹣1;(2)∵a≠0,b≠0,且aa+bb=0,∴a与b异号,即ab<0,∴|ab|=﹣ab,则原式=﹣1;(3)∵ab>0,∴a与b同号,当a>0,b>0时,原式=1+1+1=3;当a<0,b<0时,原式=﹣1﹣1+1=﹣1.故答案为(2)﹣1;(3)3或﹣1【点睛】本题考查绝对值的意义及式子化简,解题关键是分类讨论.19.(1)检修小组在第五次纪录时距甲地最远;(2)检修小组位于出发点甲地东侧,距甲地5千米.【分析】(1)分别计算每次距A地的距离,进行比较即可;(2)收工时距A地的距离等于所有记录数字的和的绝对值;【详解】解:(1)第一次距甲地|﹣4|=4千米;第二次距甲地:|﹣4+7|=3千米;第三次距甲地:|﹣4+7﹣10|=7千米;第四次距甲地:|﹣4+7﹣10+9|=2千米;第五次距甲地:|﹣4+7﹣10+9+6|=8千米;第六次距甲地:|﹣4+7﹣10+9+6﹣1|=7千米;第七次距甲地:|﹣4+7﹣10+9+6﹣1﹣2|=5千米.所以检修小组在第五次纪录时距甲地最远;(2)因为收工时,﹣4+7﹣10+9+6﹣1﹣2=5千米,所以此时检修小组位于出发点甲地东侧,距甲地5千米.【点睛】此题主查考查正负数在实际生活中的应用及有理数的加减混合运算,掌握运算法则是解答此题的关键.20.(1)本周星期三收盘时每股的价格为11.7元;(2)本周内每股最高是12.2元,最低是11.5元;(3)盈利2768.5元.【分析】(1)用每股原价加上每天每股涨跌数就是该天每股的钱数,依次类推,计算出周三股价;;(2),根据统计表所提供的每天涨跌的数据,计算出每一天的股价,从中找出本周内最高价每股的钱数,同理,计算出本周内最低价每股的钱数;(3),用周五每股的钱数乘1000,再分别减去买进股票时付的手续费、卖出时付的手续费、交易税,即得他的收益.【详解】解:(1)根据题意得:11.2+0.3+0.4+(﹣0.2)=11.7(元),则本周星期三收盘时每股的价格为11.7元;(2)星期一收盘价格为11.2+0.3=11.5(元),星期二收盘时价格为11.5+0.4=11.9(元),星期三收盘时价格为11.9﹣0.2=11.7(元),星期四收盘时价格为11.7+0.5=12.2(元),星期五收盘时价格为12.2﹣0.4=11.8(元),所以本周内每股最高是12.2元,最低是11.5元;(3)买进的费用:5000×11.2×(1+0.15%)=56084(元);卖出时的受益:5000×11.8×(1﹣0.15%﹣0.1%)=58852.5(元).则盈利:58852.5﹣56084=2768.5(元).【点睛】本题考查如何根据统计表所提供的数据,进行有关计算.解题关键是:读懂表格中正、负数的含义,涉及的知识点有理数的大小比较、有理数的加减、百分数乘法的应用等.21.(1)13;(2)小虫最后没有回到出发点O的位置;(3)小虫可得110粒芝麻.【分析】(1)由于向右爬行的路程记为正数,向左爬行的路程为负数,所以要计算出它爬行所有数的和,于是可判断到离出发点多远;(2)依次往后计算看哪个数最大即可得到离O点的最远距离;(3)计算所有数的绝对值的和得到小虫爬行的路程,再把路程乘以2得到小虫共得的芝麻.【详解】解:(1)第一次爬行距离O点是5cm,第二次爬行距离O点是5﹣3=2(cm),第三次爬行距离O点是2+11=13(cm),第四次爬行距离O点是13﹣8=5(cm),第五次爬行距离O点是|5﹣6|=|﹣1|=1(cm),第六次爬行距离O点是﹣1+12=11(cm),第七次爬行距离O点是11﹣10=1(cm),从上面可以看出小虫离开O点最远是13cm.故答案为13;(2)小虫最后没有回到出发点O的位置.理由如下:∵(+5)+(﹣3)+(+11)+(﹣8)+(﹣6)+(+12)+(﹣10)=1(cm ), ∴小虫最后没有回到出发点O 的位置;(3)(|+5|+|﹣3|+|+11|+|﹣8|+|﹣6|+|+12|+|﹣10|)×2=55×2=110(粒),所以小虫可得110粒芝麻.【点睛】本题考查数轴,正数和负数,22.见解析【分析】利用正数,负数,整数,分数,以及非负整数定义判断即可.【详解】(1)正数集合:{+27,227,3.14}; (2)负数集合:{413.5,,105---}; (3)整数集合:{0,+27,10-};(4)分数集合:{13.5-,45-,227,3.14}; (5)非负整数集合:{0,+27},【点睛】此题考查了有理数,熟练掌握各自的定义是解本题的关键.23.(1)4a +b ;(2)≠;(3)-6.【分析】(1)根据题目中的式子可以猜出a ⊙b 的结果;(2)根据(1)中的结果和a≠b ,可以得到a ⊙b 和b ⊙a 的关系;(3)根据(1)中的结果可以得到(a-b )⊙(2a+b )的值,【详解】解:(1)由题目中的式子可得,a ⊙b=4a+b ,故答案为4a+b ;(2)∵a ⊙b=4a+b ,b ⊙a=4b+a ,∴(a ⊙b )-(b ⊙a )=(4a+b )-(4b+a )=4a+b-4b-a=4(a-b)+(b-a),∵a≠b,∴4(a-b)+(b-a)≠0,∴(a⊙b)≠(b⊙a),故答案为≠;(3)(a-b)⊙(2a+b)=4(a-b)+(2a+b)=4a-4b+2a+b=6a-3b.由题意a=-1,b=0∴原式=6×(-1)-3×0=-6.【点睛】本题考查有理数的混合运算,解题的关键是明确有理数混合运算的计算方法.。
有理数的及其运算---培优题库4(含解析)

有理数及其运算培优题库41.如图,在一个由6个圆圈组成的三角形里,把1到6这6个数分别填入图的圆圈中,要求三角形的每条边上的三个数的和S都相等,那么S的最大值是()A.9 B.10 C.12 D.132.如图所示,在数轴上A点表示数a,B点表示数b,且a、b满足|2a+6|+|b﹣9|=0(1)点A表示的数为,点B表示的数为;(2)若点A与点C之间的距离表示为AC,点B与点C之间的距离表示为BC,请在点A、点B之间的数轴上找一点C,使BC=2AC,则C点表示的数为;(3)在(2)的条件下,若一动点P从点A出发,以3个单位长度/秒速度由A向B运动;同一时刻,另一动点Q从点C出发,以1个单位长度/秒速度由C向B运动,终点都为B点.当一点到达终点时,这点就停止运动,而另一点则继续运动,直至两点都到达终点时才结束整个运动过程.设点Q运动时间为t秒.请用含t的代数式表示:点P到点A的距离PA=,点Q到点B的距离QB=;点P与点Q之间的距离 PQ=.3.【阅读理解】点A、B、C为数轴上三点,如果点C在A、B之间且到A的距离是点C到B的距离3倍,那么我们就称点C 是{A,B}的奇点.例如,如图1,点A表示的数为﹣3,点B表示的数为1.表示0的点C到点A的距离是3,到点B的距离是1,那么点C是{A,B}的奇点;又如,表示﹣2的点D到点A的距离是1,到点B的距离是3,那么点D就不是{A,B}的奇点,但点D是{B,A}的奇点.【知识运用】如图2,M、N为数轴上两点,点M所表示的数为﹣3,点N所表示的数为5.(1)数所表示的点是{M,N}的奇点;数所表示的点是{N,M}的奇点;(2)如图3,A、B为数轴上两点,点A所表示的数为﹣50,点B所表示的数为30.现有一动点P从点B出发向左运动,到达点A停止.P点运动到数轴上的什么位置时,P、A和B中恰有一个点为其余两点的奇点?4.在有理数范围内,我们定义三个数之间的新运算法则“⊕”;a⊕b⊕c=(|a﹣b﹣c|+a+b+c).如:1⊕(﹣2)⊕3=[|1﹣(﹣2)﹣3|+1+(﹣2)+3]=1.解答下列问题:(1)计算:⊕(﹣3)⊕(﹣)的值;(2)在﹣,﹣,﹣,0,,,,,,这11个数中,任意取三个数作为a,b,c的值,进行“a⊕b⊕c”运算,求在所有计算的结果中的最大值.5.数轴上点A,C对应的数分别是a,c,且a,c满足:|a+6|+(c﹣1)2=0,点B对应的数是﹣2.(1)填空:a=,c=;在数轴上描出点A,B,C;(2)若点M在数轴上对应的数为m,且满足|m﹣1|+|m+6|=15,则m=;(3)若A,B两点同时沿数轴正方向匀速运动,点A的速度为每秒2个单位长度,点B的速度为每秒1个单位长度,在运动过程中,点A到点C的距离是点B到点C距离的3倍时,点A对应的数是多少?6.如图,在单位长度为1的数轴上有,A、B、C、D四个点,点A、C表示的有理数互为相反数(1)请在数轴上标出原点O,并在点A、B、C、D上方标出它们所表示的有理数;(2)A、C两点间的距离AC=,B、D两点间距离BD=;(3)通过观察可以发现,数轴上两点之间的距离可以用这两个点所表示的有理数的绝对值来表示,如果数轴上点M表示的有理数是x,点N表示的有理数是y,那么M、N两地间的距离用含有绝对值的式子可以表示为;(4)设点P在数轴表示的有理数是x,借助数轴解答下列问题:①式子|x﹣4|表示点P与有理数所对应的点之间的距离:|x+1|表示点P与有理数所对应的点之间的距离;②当x是哪个有理数或哪个有理数范围内时,式子|x﹣4|+|x+1|的值最小?最小值是多少?③若式子|x﹣4|+|x+1|的值是6,那么点P所表示的有理数是多少?.7.已知数轴上A,B两点表示的有理数分别为a,b,且(a﹣1)2+|b+2|=0.(1)求a,b的值;(2)点C在数轴上表示的数是c,且与A、B两点的距离和为11,求c值;(3)小蜗牛甲以1个单位长度/s的速度从点B出发向其左边6个单位长度外的食物爬去,3s后位于点A 的小蜗牛乙收到它的信号,以2个单位长度/s的速度也迅速爬向食物,小蜗牛甲到达后背着食物立即返回,与小蜗牛乙在数轴上D点相遇,则点D表示的有理数是什么?从出发至此时,小蜗牛甲共用去多少时间?8.根据下面给出的数轴,解答下面的问题:(1)请你根据图中A、B(B在﹣2与﹣3的正中)两点的位置,分别写出它们所表示的有理数A:B:;(2)观察数轴,与点A的距离为4的点表示的数是:;(3)若将数轴折叠,使得A点与﹣2表示的点重合,则B点与数表示的点重合;(4)若数轴上M、N两点之间的距离为2010(M在N的左侧),且M、N两点经过(3)中折叠后互相重合,则M、N两点表示的数分别是:M: N:.9.点A、B在数轴上分别表示有理数a、b,点A与原点O两点之间的距离表示为AO,则AO=|a﹣0|=|a|,类似地,点B与原点O两点之间的距离表示为BO,则BO=|b|,点A与点B两点之间的距离表示为AB=|a ﹣b|.请结合数轴,思考并回答以下问题:(1)数轴上表示1和﹣3的两点之间的距离是;(2)数轴上表示m和﹣1的两点之间的距离是;(3)数轴上表示m和﹣1的两点之间的距离是3,则有理数m是;(4)若x表示一个有理数,并且x比﹣3大,x比1小,则|x﹣1|+|x+3|=;(5)求满足|x﹣2|+|x+4|=6的所有整数x的和.10.结合数轴与绝对值的知识回答下列问题:一般地,数轴上表示数m和数n的两点之间的距离公式为|m﹣n|.(1)例如:数轴上表示4和1的两点之间的距离为|4﹣1|=数轴表示5和﹣2的两点之间的距离为|5﹣(﹣2)|=|5+2|=(2)数轴上表示数a的点与表示﹣4的点之间的距离表示为数轴上表示数a的点与表示2的点之间的距离表示为若数轴上a位于﹣4与2之间,求|a+4|+|a﹣2|的值;(3)当a=时,|a+5|+|a﹣1|+|a﹣4|的值最小,最小值为.11.如图,数轴上A、B两点所对应的数分别是a和b,且(a+5)2+|b﹣7|=0.(1)则a=,b=.A、B两点之间的距离=;(2)有一动点P从点A出发第一次向左运动1个单位长度,然后在新的位置第二次运动,向右运动2个单位长度,在此位置第三次运动,向左运动3个单位长度…按照如此规律不断地左右运动,当运动到2017次时,求点P所对应的有理数.(3)在(2)的条件下,点P在某次运动时恰好到达某一个位置,使点P到点B的距离是点P到点A的距离的3倍?请直接写出此时点P的位置,并指出是第几次运动.12.阅读下面材料:已知点A、B在数轴上分别表示有理数a、b,A、B两点之间的距离表示为|AB|,当A、B两点中有一点在原点时,不妨设点A在原点,如图1,|AB|=|OB|=|b|=|a﹣b|,当A、B两点都不在原点时.(1)如图2,点A、B都在原点的右边,|AB|=|OB|﹣|OA|=|b|﹣|a|=b﹣a=|a﹣b|(2)如图3,点A、B都在原点的左边,|AB|=|OB|﹣|OA|=|b|﹣|a|=﹣b﹣(﹣a)=a﹣b=|a﹣b| (3)如图4,点A、B在原点的两边,|AB|=|OA|+|OB|=|a|+|b|=a+(﹣b)=a﹣b=|a﹣b|综上,数轴上A、B两点的距离|AB|=|a﹣b|回答下列问题:(1)数轴上表示2和5的两点之间的距离是,数轴上表示﹣2和﹣5的两点之间的距离是,数轴上表示﹣2和5的两点之间的距离是;(2)数轴上表示x和﹣1的两点A和B之间的距离是,如果|AB|=2那么x为.(3)若x表示一个有理数,则|x﹣1|+|x+3|有最小值吗?若有,请求出最小值;若没有,请说明理由.13.我国著名数学家华罗庚曾说过:“数缺形时少直观,形少数时难入微,”因此,为了解问题和解决问题,我们常常需要把“数”和“形”结合起来.【教材回顾由形想数】下图选自教材《合并同类项》(单位略)(1)从图1中可以直观地看出,学校的占地面积可以表示为100a+200a+240b+60b,也可以表示为【速算研究由数想形】37×33,26×24,79×71,…是一些十位数字相同,且个位数字之和是10的两个两位数相乘的算式,是否可以找到一种速算方法?图形建模:用长方形的面积表示两个正数的乘积,以37×33为例:构图方法:如图2,画长为37,宽为33的长方形,将这个37×33的长方形从右边切下一个长为30,宽为3的小长方形,拼接到原长方形的上面.图形分析:原长方形面积可以有两种不同的表达方式,37×33的长方形面积(30+7+3)×30的长方形与右上角3×7的矩形面积之和,即37×33=(30+10)×30+3×7=4×3×100+3×7=1221.用文字表述37×33的算方法是:十位数字3加1的和与3相乘,再乘以100,加上个位数字3与7的积,构成运算结果.(2)①类比示例:对于26×24,画图并简要说明其构图方法、速算方法.②归纳提炼:两个十位数字相同,并且个位数字之和是10的两位数相乘的速算方法是.(用文字语言表述)(3)①如图3,你能破解其中的奥妙吗?请画图解释图3的速算方法,并标出必要数据.②归纳提炼:用字母表示①中的速算方法:ab=.(用符号语言表述,设其中一个两位数是a,另一个两位数是b).14.如图,在数轴上A点表示数a,B点表示数b,AB表示A点和B点之间的距离,数轴上有一点C,且C 点到A点的距离是C点到B点距离的2倍,且a、b满足|a+4|+(b﹣11)2=0.(1)直接写出点C表示的数;(2)点P从A点以每秒4个单位的速度向右运动,点Q同时从B点以每秒3个单位的速度向左运动,若AP+BQ =2PQ,求时间t;(3)数轴上有一定点N,N点在数轴上对应的数为2,若点P与点M同时从A点出发,一起向右运动,P点的速度为每秒6个单位,M点的速度为每秒3个单位,在P点到达点B之前:①的值不变;②2BM﹣BP的值不变,其中只有一个正确,请你找出正确的结论并求出其值.15.如图,在数轴上A点表示数a,B点表示数b,AB表示A点和B点之间的距离,C是AB的中点,且a、b满足|a+2|+(b+2a)2=0(1)求点C表示的数;(2)若点P从A向右运动,点M为AP中点,在P点到达点B之前,求证:2BM﹣BP为定值(3)点P从A点以每秒2个单位的速度向右运动,点Q同时从B点出发以每秒1个单位的速度向左运动,若AP+BQ=2PQ,求时间t.16.在数轴上,点A表示数a,点B表示数b,已知a、b满足(3a+b)2+|b﹣6|=0,(1)求a、b的值;(2)若在数轴上存在一点C,使得C到B的距离是C到A的距离的3倍,求点C表示的数;(3)若小蚂蚁甲从点A处以1个单位长度/秒的速度向左运动,同时小蚂蚁乙从点B处以2个单位长度/秒的速度也向左运动,丙同学观察两只小蚂蚁运动,在它们刚开始运动时在原点O处放置一颗饭粒,乙在碰到饭粒后立即背着饭粒以原来的速度向相反的方向运动,设运动的时间为t秒.求甲、乙两只小蚂蚁到原点的距离相等时所对应的时间t.17.如图,一个点从数轴上的原点开始,先向右移动3个单位长度,再向左移动5个单位长度,可以看出,到终点表示的数是﹣2.已知A、B是数轴上的点,请参照上图,完成下列填空:(1)如果点A表示的数是3,将点A先向右移动7个单位长度,再向左移动5个单位长度,那么终点B表示的数是,A、B两点间的距离为;(2)如果点A表示的数是﹣4,将点A先向右移动12个单位长度,再向左移动16个单位长度,那么终点B 表示的数是,A、B两点间的距离为;(3)一般地,如果点A表示的数是a,将点A先向右移动m个单位长度,再向左移动n个单位长度,那么终点B表示的数是,A、B两点间的距离为.18.已知:b是最小的正整数,且a、b满足(c﹣5)2+|a+b|=0.(1)请求出a、b、c的值;(2)a、b、c所对应的点分别为A、B、C,点P为动点,其对应的数为x,点P在﹣1到1之间运动时(即﹣1≤x≤1时),请化简式子:|x+1|﹣|x﹣1|﹣2|x+3|;(写出化简过程);(3)在(1)、(2)的条件下,点A、B、C开始在数轴上运动,若点A以每秒1个单位长度的速度向左运动,同时,点B以每秒2个单位长度,点C以每秒5个单位长度的速度向右运动,3秒钟后,若点B与点C之间的距离表示为BC,点A与点B之间的距离表示为AB.请求BC﹣AB的值.19.已知数轴上,点O为原点,点A对应的数为11,点B对应的数为b,点C在点B右侧,长度为3个单位的线段BC在数轴上移动,(1)如图1,当线段BC在O,A两点之间移动到某一位置时,恰好满足线段AC=OB,求此时b的值;(2)线段BC在数轴上沿射线AO方向移动的过程中,是否存在AC﹣OB=AB?若存在,求此时满足条件的b的值;若不存在,说明理由.20.某景区一电瓶小客车接到任务从景区大门出发,向东走2千米到达A景区,继续向东走2.5千米到达B 景区,然后又回头向西走8.5千米到达C景区,最后回到景区大门.(1)以景区大门为原点,向东为正方向,以1个单位长表示1千米,建立如图所示的数轴,请在数轴上表示出上述A、B、C三个景区的位置.(2)A景区与C景区之间的距离是多少?(3)若电瓶车充足一次电能行走15千米,则该电瓶车能否在一开始充足电而途中不充电的情况下完成此次任务?请计算说明.21.材料1:一般地,n个相同因数a相乘:记为a n.如23=8,此时,3叫做以2为底的8的对数,记为log28(即log28=3).那么,log39=,(log216)2+log381=.材料2:新规定一种运算法则:自然数1到n的连乘积用n!表示,例如:1!=1,2!=2×1=2,3!=3×2×1=6,4!=4×3×2×1=24,…在这种规定下,请你解决下列问题:(1)计算 5!=(2)已知x为整数,求出满足该等式的x:=1.22.阅读下列材料并解决有关问题:我们知道,|m|=.现在我们可以用这一结论来化简含有绝对值的代数式,如化简代数式|m+1|+|m﹣2|时,可令m+1=0和m﹣2=0,分别求得m=﹣1,m=2(称﹣1,2分别为|m+1|与|m﹣2|的零点值).在实数范围内,零点值m=﹣1和m=2可将全体实数分成不重复且不遗漏的如下3种情况:(1)m<﹣1;(2)﹣1≤m<2;(3)m≥2.从而化简代数式|m+1|+|m﹣2|可分以下3种情况:(1)当m<﹣1时,原式=﹣(m+1)﹣(m﹣2)=﹣2m+1;(2)当﹣1≤m<2时,原式=m+1﹣(m﹣2)=3;(3)当m≥2时,原式=m+1+m﹣2=2m﹣1.综上讨论,原式=通过以上阅读,请你解决以下问题:(1)分别求出|x﹣5|和|x﹣4|的零点值;(2)化简代数式|x﹣5|+|x﹣4|;(3)求代数式|x﹣5|+|x﹣4|的最小值.23.已知:在一条东西向的双轨铁路上迎面驶来一快一慢两列火车,快车长AB=2(单位长度),慢车长CD =4(单位长度),设正在行驶途中的某一时刻,如图,以两车之间的某点O为原点,取向右方向为正方向画数轴,此时快车头A在数轴上表示的数是a,慢车头C在数轴上表示的数是b.若快车AB以6个单位长度/秒的速度向右匀速继续行驶,同时慢车CD以2个单位长度/秒的速度向左匀速继续行驶,且|a+8|与(b ﹣16)2互为相反数.(1)求此时刻快车头A与慢车头C之间相距多少单位长度?(2)从此时刻开始算起,问再行驶多少秒钟两列火车行驶到车头AC相距8个单位长度?(3)此时在快车AB上有一位爱动脑筋的七年级学生乘客P,他发现行驶中有一段时间t秒钟,他的位置P 到两列火车头A、C的距离和加上到两列火车尾B、D的距离和是一个不变的值(即PA+PC+PB+PD为定值).你认为学生P发现的这一结论是否正确?若正确,求出这个时间及定值;若不正确,请说明理由.24.如图,半径为1个单位长度的圆片上有一点Q与数轴上的原点重合(提示:计算结果保留π)(1)把圆片沿数轴向左滚动1周,点Q到达数轴上点A的位置,点A表示的数是(2)圆片在数轴上向右滚动的周数记为正数,圆片在数轴上向左滚动的周数记为负数,依次运动情况记录如下:+3,﹣1,,+4,﹣3,①第3次滚动周后,Q点回到原点.第6次滚动周后,Q点距离原点4π②当圆片结束运动时,Q点运动的路程共有多少?25.观察下列各式:=×(1﹣),=×(﹣),=×(﹣),…,=×(),…(1)归纳猜想:=.(2)巧计算:+++…+‘(3)巧解方程:++=.26.【背景知识】数轴上A点、B点表示的数为a、b,则A、B两点之间的距离AB=|a﹣b|;线段AB的中点M表示的数为.【问题情境】已知数轴上有A、B两点,分别表示的数为﹣40和20,点A以每秒3个单位的速度沿数轴向右匀速运动,点B以每秒2个单位向左匀速运动.设运动时间为t秒(t>0).(1)运动开始前,A、B两点的距离为;线段AB的中点M所表示的数为.(2)它们按上述方式运动,A、B两点经过多少秒会相遇,相遇点所表示的数是什么?(3)当t为多少时,线段AB的中点M表示的数为﹣5?27.认真阅读下面的材料,完成有关问题.材料:在学习绝对值时,我们知道了绝对值的几何含义,如|5﹣3|表示5、3在数轴上对应的两点之间的距离;|5+3|=|5﹣(﹣3)|,所以|5+3|表示5、﹣3在数轴上对应的两点之间的距离;|5|=|5﹣0|,所以|5|表示5在数轴上对应的点到原点的距离.(1)一般地,点A、B、C在数轴上分别表示有理数x、﹣2、1,那么A到B的距离与A到C的距离之和可表示为(用含绝对值的式子表示).(2)利用数轴探究:①满足|x﹣3|+|x+1|=6的x的所有值是.②|x﹣3|+|x+1|的最小值是.28.认真阅读下面的材料,完成有关问题.材料:在学习绝对值时,老师教过我们绝对值的几何含义,如|5﹣3|表示5、3在数轴上对应的两点之间的距离;|5+3|=|5﹣(﹣3)|,所以|5+3|表示5、﹣3在数轴上对应的两点之间的距离;|5|=|5﹣0|,所以|5|表示5在数轴上对应的点到原点的距离.一般地,点A、B在数轴上分别表示有理数a、b,那么A、B 之间的距离可表示为|a﹣b|.(1)点A、B、C在数轴上分别表示有理数x、﹣2、1,那么A到B的距离与A到C的距离之和可表示为(用含绝对值的式子表示).(2)利用数轴探究:①找出满足|x﹣3|+|x+1|=6的x的所有值是,②设|x﹣3|+|x+1|=p,当x 的值取在不小于﹣1且不大于3的范围时,p的值是不变的,而且是p的最小值,这个最小值是;当x的值取在的范围时,|x|+|x﹣2|取得最小值,这个最小值是.(3)求|x﹣3|+|x﹣2|+|x+1|的最小值为,此时x的值为.(4)求|x﹣3|+|x﹣2|+|x+1|+|x+2|的最小值,求此时x的取值范围.29.如果有理数a、b满足|ab﹣2|+(1﹣b)2=0,试求:++…+的值.30.如图,半径为1个单位的圆片上有一点A与数轴上的原点重合,AB是圆片的直径.(注:结果保留π)(1)把圆片沿数轴向左滚动半周,点B到达数轴上点C的位置,点C表示的数是数(填“无理”或“有理”),这个数是(2)圆片在数轴上向右滚动的周数记为正数,圆片在数轴上向左滚动的周数记为负数,依次运动情况记录如下:+2,﹣1,+4,﹣6,+3①第次滚动后,A点距离原点最远②当圆片结束运动时,此时点A所表示的数是.31.如图,半径为1个单位的圆片上有一点A与数轴上的原点重合,AB是圆片的直径.(结果保留π)(1)把圆片沿数轴向左滚动1周,点A到达数轴上点C的位置,点C表示的数是数(填“无理”或“有理”),这个数是;(2)把圆片沿数轴滚动2周,点A到达数轴上点D的位置,点D表示的数是;(3)圆片在数轴上向右滚动的周数记为正数,圆片在数轴上向左滚动的周数记为负数,依次运动情况记录如下:+2,﹣1,+3,﹣4,﹣3.第几次滚动后,A点距离原点最近?第几次滚动后,A点距离原点最远?32.如图1,有一个玩具火车放置在数轴上,若将火车在数轴上水平移动,则当A点移动到B点时,B点所对应的数为15,当B点移动到A点时,A点所对应的数为3(单位:单位长度).由此可得(1)玩具火车的长为个单位长度.(2)你能解决下面问题吗?一天,小明去问奶奶的年龄,奶奶说:“我若是你现在这么大,你还要40年才出生呢;你若是我现在这么大,我已是老寿星,116岁了!”小明心想:奶奶的年龄到底是多少岁呢?请你帮他求出来.(3)在(1)的条件下数轴上放置与AB一模一样的玩具火车CD,使原点与C重合,两列玩具火车分别从O 和A同时向右出发,已知CD火车速度1个单位/秒,AB火车速度为0.5个单位/秒,问几秒两火车头A与C 相距1个单位?33.数学课上老师出了一道题计算:1+21+22+23+24+25+26+27+28+29,老师在教室巡视了一圈,发现同学们都做不出来,于是给出答案:解:令s=1+21+22+23+24+25+26+27+28+29①则2s=2+22+23+24+25+26+27+28+29+210②②﹣①得s=210﹣1根据以上方法请计算:(1)1+2+22+23+…+22015(写出过程,结果用幂表示)(2)1+3+32+33+…+32015=(结果用幂表示)34.阅读材料:求1+2+22+23+24+…+22013的值.解:设S=1+2+22+23+24+…+22012+22013,将等式两边同时乘2得:2S=2+22+23+24+25+…+22013+22014将下式减去上式得2S﹣S=22014﹣1即S=22014﹣1即1+2+22+23+24+…+22013=22014﹣1仿照此法计算:1+2+22+23+ (2100)35.计算:1+2﹣3﹣4+5+6﹣7﹣8+9+10﹣11﹣12+…+2005+2006﹣2007﹣2008.36.甲、乙、丙三个教师承担本学期期末考试的第17题的网上阅卷任务,若由这三人中的某一人独立完成阅卷任务,则甲需要15小时,乙需要10小时,丙需要8小时.(1)如果甲乙丙三人同时改卷,那么需要多少时间完成?(2)如果按照甲、乙、丙、甲、乙、丙,…的次序轮流阅卷,每一轮中每人各阅卷1小时,那么需要多少小时完成?(3)能否把(2)题所说的甲、乙、丙的次序作适当调整,其余的不变,使得完成这项任务的时间至少提前半小时?(答题要求:如认为不能,需说明理由;如认为能,请至少说出一种轮流的次序,并求出相应能提前多少时间完成阅卷任务)37.某超市在国庆期间推出如下优惠购物方案:①一次性购物不超过100元不享受优惠;②一次性购物超过100元但不超过300元一律九折优惠;③一次性购物超过300元一律八折优惠.王强两次购物分别付款80元、234元;若他一次性购买,比分两次购买可省多少元?38.阅读下列材料:我们知道|x|的几何意义是在数轴上数x对应的点与原点的距离,即|x|=|x﹣0|,也就是说,|x|表示在数轴上数x与数0对应点之间的距离,这个结论可以推广为|x1﹣x2|表示在数轴上x1,x2对应点之间的距离.例1:解方程|x|=2,容易看出,在数轴上与原点距离为2点的对应数为2或﹣2,即该方程的解为x=2或x=﹣2例2:解不等式|x﹣1|>2,如图1,在数轴上找出|x﹣1|=2的解,即到1的距离为2的点对应的数为﹣1和3,则|x﹣1|>2的解集为x<﹣1或x>3.例3:解方程|x﹣1|+|x+2|=5.由绝对值的几何意义知,该方程表示求在数轴上与1和﹣2的距离之和为5的点对应的x的值在数轴上,1和﹣2的距离为3,满足方程的x对应点在1的右边或﹣2的左边,若x对应点在1的右边,由图2可以看出x=2.同理,若x对应点在﹣2的左边,可得x=﹣3,故原方程的解是x=2或x=﹣3.参考阅读材料,解答下列问题:(1)方程|x+3|=4的解为.(2)不等式|x﹣3|+|x+4|≥9的解集为.39.如果表示运算x+y+z,表示运算a﹣b﹣c+d,那么的结果是多少?40.今年铁路大提速,小明的爸爸因要出差,于是去火车站查询列车的开行时间.下面是小明的爸爸从火车站带回家的最新时刻表:2015年10月18日起1008次列车时刻表始发点发车时间终点站到站时间A站上午8:20 B站次日12:20小明的爸爸找出以前同一车次的时刻表如下:2014年1008次列车时刻表到站时间始发点发车时间终点站A站下午14:30 B站第三日8:30 比较了两张时刻表后,小明的爸爸提出了如下问题,请你帮小明解答:(1)请直接写出现在该次列车的运行时间是多少小时?(2)现在该次列车的运行时间比以前缩短了多少小时?(3)若该次列车提速后的平均时速为每小时200千米,那么,该次列车原来的平均时速为多少?(结果精确到个位)41.如图,在数轴上,点A表示的数是﹣1,点B表示的数是2.5,解答下列各问:(2)观察数轴,与点A的距离为10的点表示的数为;(3)若将数轴折叠,使点A恰好与表示3的点重合,则点B与表示的点重合;(4)若数轴上P、Q两点之间的距离为2016,点P在点Q的左侧,且P、Q两点按(3)中的方式折叠后互相重合,则P、Q两点表示的数分别是,.42.为了计算1+2+22+23+24+…+29+210的值,我们采用如下的方法:设S=1+2+22+23+24+…+29+210①,则2S=2+22+23+24+…+29+210+211②,由②﹣①,得S=211﹣1,利用上述的方法,求1+5+52+53+54+…+52014+52015的值.43.某大型超市上周日购进新鲜的黄瓜1000公斤,每公斤1.5元,受暴发的“毒黄瓜”的影响,销售价格出现较大的波动,表中为一周内黄瓜销售价格的涨跌情况(涨为正,跌为负,其中星期一的销售价格是与进价比较,单位:元):星期一二三四五六每公斤销售+0.3 +0.4 ﹣0.5 ﹣0.6 ﹣0.7 +0.1 价涨跌(与前一天比较)(1)到星期二时,每公斤的黄瓜售价是多少元?(2)本周最低售价是每公斤多少元?(3)已知截止到星期五,已卖出黄瓜700公斤,销售总额为935元.如果超市星期六能将剩下的黄瓜全部卖出.不考虑损耗等其他因素,请算算该超市本周销售黄瓜是盈还是亏?盈亏是多少?44.已知在纸面上有一数轴(如图),折叠纸面.例如:若数轴上数2表示的点与数﹣2表示的点重合,则数轴上数﹣4表示的点与数4表示的点重合,根据你对例题的理解,解答下列问题:(1)若数轴上数2表示的点与﹣2表示的点重合,则数轴上数﹣6表示的点与数表示的点重合.(2)若数轴上数﹣3表示的点与数1表示的点重合.①则数轴上数3表示的点与数表示的点重合.②若数轴上A、B两点之间的距离为2016,并且A、B两点经折叠后重合,如果A点表示的数比B点表示的数大,则A点表示的数是多少?45.如图1在5×5的方格(每小格边长为1个单位长度)格点处有4只甲虫A、B、C、D,它们爬行规律总是先左右,再上下.规定:向右与向上为正,向左与向下为负.从A到B的爬行路线记为:A→B(+1,+3),从B到A的爬行路线为:B→A(﹣1,﹣3),其中第一个数表示左右爬行信息,第二个数表示上下爬行信息,那么图中(1)A→C(,),B→D(,);(2)若甲虫A的爬行路线为A→B→C→D(如左图),请计算甲虫A爬行的路程;(3)若甲虫A的爬行路线依次为(+2,+2),(+1,﹣1),(﹣2,+3),(﹣1,﹣2),最终到达甲虫P处,请在图2标出甲虫A的爬行路线示意图及最终甲虫P的位置;若甲虫A向上爬行的速度为每秒0.5个单位长度,向下爬行的速度为每秒2个单位长度,向左或向右爬行的速度为每秒1个单位长度,请计算甲虫A 爬行的时间.46.计算下面各题(1)计算:+++…++(2)计算:1++++…+.47.(一)问题:你能比较两个数20102011和20112010的大小吗?为解决这个问题,我们先把它抽象成数学问题,写出它的一般形式,即比较n n+1和(n+1)n的大小(n为自然数),然后从简单情形入手,从中发现规律,经过归纳猜想出结论.(1)通过计算,比较下列各组数的大小:。
完整版)有理数培优专题

完整版)有理数培优专题
有理数培优专题
简介
本文档将详细介绍有理数的基本概念、性质和运算规则,以及一些与有理数相关的常见问题和解法。
内容
1.有理数的定义
有理数是可以表示为两个整数的比值的数,包括正有理数、负有理数和零。
有理数可以用分数的形式表示,例如1/2、-3/4等。
2.有理数的四则运算
加法:有理数之间的加法可以通过分数的加法规则进行计算,即分子相加,分母保持不变。
减法:有理数之间的减法可以通过分数的减法规则进行计算,即分子相减,分母保持不变。
乘法:有理数之间的乘法可以通过分数的乘法规则进行计算,即分子相乘,分母相乘。
除法:有理数之间的除法可以通过分数的除法规则进行计算,即将一个有理数乘以另一个有理数的倒数。
3.有理数的性质
有理数的加法满足交换律、结合律和分配律。
有理数的乘法满足交换律、结合律和分配律。
有理数的加法和乘法满足分数的相应性质。
有理数的乘法满足0的性质,即任何有理数乘以0的结果都是0.
4.有理数的应用
有理数在日常生活中的应用非常广泛,例如计算物品的价格、测量长度和温度等。
有理数在代数学中也有重要的应用,例如解方程、求解不等式等。
5.有理数的解题技巧
解有理数的运算题可以借助分数运算的规则,如化简分数、通
分等。
解有理数的应用题可以将问题转化为数学模型,然后进行计算。
结论
有理数作为数学的重要分支之一,具有广泛的应用领域以及丰
富的运算规则和性质。
通过研究有理数的定义、运算规则和应用,
可以提高我们的数学思维能力,并且在实际问题解决中发挥重要作用。
有理数的及其运算---培优题库3(含解析)

有理数及其运算培优题库31.若|a﹣2|+(﹣b)2=0,则b a=.2.已知(|x+1|+|x﹣2|)(|y﹣2)|+|y+1|)(|z﹣3|+|z+1|)=36,求2016x+2017y+2018z的最大值和最小值3.已知a2=9,|b|=5,且a<b,求a﹣b的值.4.计算:(1)(﹣20)+(+3)﹣(﹣5)﹣(+7)(2)(﹣3)×(﹣4)﹣48÷|﹣6|(3)(﹣24)×(﹣﹣)(4)﹣12+×[6﹣(﹣3)2]5.已知a与b互为相反数,c与d互为倒数,m的绝对值为3,求(a+b)cd+﹣m2的值.6.在数轴上表示数:22,﹣2,﹣12,1,0,﹣1.5,并将它们用“<“连接起来.7.已知有理数a、b、c在数轴上的位置如图所示,化简:2|a+b|﹣3|a﹣c|+2|c﹣b|8.阅读探究:12=;12+22=;12+22+32=;12+22+32+42=;…(1)根据上述规律,求12+22+32+42+52的值;(2)你能用一个含有n(n为正整数)的算式表示这个规律吗?请直接写出这个算式(不计算);(3)根据你发现的规律,计算下面算式的值:62+72+82+92+102+112+122+132+142+152.9.已知a、b互为相反数,m、n互为倒数(m、n都不等于±1),x的绝对值为2,求的值.10.已知a是最大的负整数,且b、c满足|b﹣1|+(c+4)2=0.(1)填空:a=,b=,c=;(2)a、b、c在数轴上所对应的点分别为A、B、C,P是数轴上点A、B之间一动点(不与点A、B重合),其对应的数为x,化简:|x+1|﹣2|x﹣1|;(3)在(1)、(2)的条件下,点A、B、C开始在数轴上同时运动,若点C和点A分别以每秒4个单位长度和1个单位长度的速度向左运动,点B以每秒2个单位长度的速度向右运动,假设t秒钟过后,点A与点C 之间的距离表示为AC,点A与B之间的距离表示为AB.请问:AC﹣AB的值是否随着时间t的变化而改变?若变化,请说明理由;若不变,请求出其值.11.已知在纸面上有一数轴(如图所示).一般地,数轴上表示数m和数n的两点之间的距离可用|m﹣n|表示(1)①数轴上表示﹣3和2两点之间的距离是②如果表示数a与﹣2的两点之间的距离是4,那么a=③若数轴上表示数a的点位于﹣4与2之间,则|a+4|+|a﹣2|的值是(2)①5﹣|x+3|有最大值是.②|x﹣4|+|x﹣5|的最小值是.12.规定一种新运算“※”,即a※b=a2﹣(1+b),例如1※2=12﹣(1+2)=﹣2,根据规定完成下列问题:(1)求3※(﹣2)的值;(2)求(﹣1)※[3※(﹣2)]的值.13.已知点A在数轴上对应的数为a,点B对应的数为b,且|a+4|+(b﹣1)2=0,A、B之间距离记作|AB|,定义:|AB|=|a﹣b|.(1)求线段AB的长|AB|;(2)设点P在数轴上对应的数为x,当|PA|﹣|PB|=3时,求x的值.14.已知三个有理数a,b,c,其积是负数,其和是正数,当时,求代数式x2017﹣2x+2的值.15.(1)已知|x+2|+|y﹣3|=0,求﹣x﹣y+4xy的值.(2)一只猴子沿一条东西方向的木棒爬行,先以5米/秒的速度向东爬行,然后以2.4米/秒的速度向西爬行,试求它向东爬行2秒,又向西爬行5秒后与出发点的距离及方向.16.阅读下列材料:|x|=,即当x<0时,=﹣1.用这个结论可以解决下面问题:(1)已知a,b是有理数,当ab≠0时,求的值;(2)已知a,b是有理数,当abc≠0时,求的值;(3)已知a,b,c是有理数,a+b+c=0,abc<0,求的值.17.如图,半径为1的小圆与半径为2的大圆上有一点与数轴上原点重合,两圆在数轴上做无滑动的滚动,小圆的运动速度为每秒π个单位,大圆的运动速度为每秒2π个单位.(1)若大圆沿数轴向左滚动1周,则该圆与数轴重合的点所表示的数是;(2)若小圆不动,大圆沿数轴来回滚动,规定大圆向右滚动时间记为正数,向左滚动时间记为负数,依次滚动的情况记录如下(单位:秒):﹣1,+2,﹣4,﹣2,+3,﹣8①第几次滚动后,大圆离原点最远?②当大圆结束运动时,大圆运动的路程共有多少?此时两圆与数轴重合的点之间的距离是多少?(结果保留π)(3)若两圆同时在数轴上各自沿着某一方向连续滚动,滚动一段时间后两圆与数轴重合的点之间相距9π,求此时两圆与数轴重合的点所表示的数.18.如图所示,丁丁做了一个程序图,按要求完成下列问题.(1)当丁丁输入的数为6时,求输出的结果n;(2)若丁丁某次输入数m后,输出的结果n为﹣5.5.请你写出m可能的2个值.19.王老师在一节数学课上讲解了二道例题:请你参考黑板上王老师的讲解,用运算律简便计算:(1)99×15;(2)999×118+999×(﹣)﹣999×.20.如图,A,B分别为数轴上的两点,点A对应的数是﹣2,点B对应的数是10.现有点P从点A出发,以4个单位长度/秒的速度向右运动,同时另一点Q从点B出发,以1个单位长度/秒的速度向右运动,设运动时间为t秒.(1)A、B两点之间的距离为;(2)当t=1时,P、B两点之间的距离为;(3)在运动过程中,线段PB、BQ、PQ中是否会有两条线段相等?若有,请求出此时t的值;若没有,请说明理由.21.当式子|x+1|+|x﹣3|+|x﹣4|+|x+6|取最小值时,求相应x的取值范围,并求出最小值.22.若我们定义a*b=4ab﹣(a+b),其中符号“*”是我们规定的一种运算符号.例如:6*2=4×6×2﹣(6+2)=40.依据以上内容,求下列式子的值.(1)(﹣4)*(﹣2);(2)(﹣1)*2.23.已知|a+3|+|b﹣5|=0,x,y互为相反数,求3(x+y)﹣a+2b的值.24.【概念学习】规定:求若干个相同的有理数(均不等0)的除法运算叫做除方,如2÷2÷2,(﹣3)÷(﹣3)÷(﹣3)÷(﹣3)等.类比有理数的乘方,我们把2÷2÷2记作2③,读作“2的圈3次方”,(﹣3)÷(﹣3)÷(﹣3)÷(﹣3)记作(﹣3)④,读作“﹣3的圈4次方”.一般地,把(a≠0)记作aⓝ读作“a的圈n次方”【初步探究】(1)直接写出计算结果:2③=,=(2)关于除方,下列说法错误的是A.任何非零数的圈3次方都等于它的倒数B.对于任何正整数n,1ⓝ=1C.3③=4③D.负数的圈奇数次方结果是负数,负数的圈偶数次方结果是正数【深入思考】我们知道,有理数的减法运算可以转化为加法运算,除法运算可以转化为乘法运算,有理数的除方运算如何转化为乘法运算呢?(3)试一试:仿照上面的算式,将下列运算结果直接写成幂的形式(﹣3)④=;5⑥=;=10 ⑩=(4)想一想:将一个非零有理数a的圈n次方写成幂的形式是(5)算一算:.25.有理数a、b表示的点在数轴上的位置如图所示,.(1)化简|a+1|;(2)化简:|b﹣1|;(3)化简:|ab﹣1|;(4)化简:|a﹣b﹣1|+|a+b+1|.26.计算:(1)11+(﹣18)﹣12﹣(﹣19)(2)(﹣5)×6+(﹣125)÷(﹣5)(3)﹣22×()+8÷(﹣2)2(4).27.已知数轴上三点A,O,B表示的数分别为6,0,﹣4,动点P从A出发,以每秒6个单位的速度沿数轴向左匀速运动.(1)当点P到点A的距离与点P到点B的距离相等时,点P在数轴上表示的数是;(2)另一动点R从B出发,以每秒4个单位的速度沿数轴向左匀速运动,若点P、R同时出发,问点P运动多少时间追上点R?(3)若M为AP的中点,N为PB的中点,点P在运动过程中,线段MN的长度是否发生变化?若发生变化,请你说明理由;若不变,请你画出图形,并求出线段MN的长度.已知数轴上三点A,O,B表示的数分别为6,0,﹣4,动点P从A出发,以每秒6个单位的速度沿数轴向左匀速运动.28.如果|a+1|+(b﹣2)2=0,求(a+b)2009+a2008的值.29.规定一种新的运算:a*b=ab﹣a﹣b+1,如3*4=3×4﹣3﹣4+1=6,试求x*y的值,其中其中x和y满足(x+2)2+|3﹣y|=0.30.已知a,b是有理数,且a,b异号,试比较|a+b|,|a﹣b|,|a|+|b|的大小关系.31.已知|2a﹣2|+|3b﹣1|+|c+4|=0,求﹣2a+6b+2c的值.32.已知|a|=2,|b|=5,且ab<0,求3a﹣2b的值.33.国庆节放假时,小华一家三口一起乘小轿车去乡下探望爷爷、奶奶和外公、外婆.早上从家里出发,向东走了4千米到超市买东西,然后又向东走了3千米到爷爷家,中午从爷爷家出发向西走了12千米到外公家,晚上返回家里.(1)若以家为原点,向东为正方向,用1个单位长度表示1千米,请将超市、爷爷家和外公家的位置在下面数轴上分别用点A、B、C表示出来;(2)问超市A和外公家C相距多少千米?(3)若小轿车每千米耗油0.09升,求小明一家从出发到返回家所经历路程小车的耗油量.(精确到0.1升)34.如果有理数a、b满足|ab﹣2|+(1﹣b)2=0,试求…的值.35.在解决数学问题的过程中,我们常用到“分类讨论”的数学思想,下面是运用分类讨论的数学思想解决问题的过程,请仔细阅读,并解答问题.【提出问题】三个有理数a,b,c满足abc>0,求的值.【解决问题】解:由题意,得a,b,c三个有理数都为正数或其中一个为正数,另两个为负数.①a,b,c都是正数,即a>0,b>0,c>0时,则;②当a,b,c中有一个为正数,另两个为负数时,不妨设a>0,b<0,c<0,则.综上所述,值为3或﹣1.【探究】请根据上面的解题思路解答下面的问题:(1)三个有理数a,b,c满足abc<0,求的值;(2)若a,b,c为三个不为0的有理数,且,求的值.36.如图,数轴上有A、B、C三个点,A、B、C对应的数分别是a、b、c,且满足|a+24|+|b+10|+(c﹣10)2=0,动点P从A出发,以每秒1个单位的速度向终点C运动,设运动时间为t秒.(1)求a、b、c的值;(2)若点P到A点的距离是点P到B点的距离的2倍,求点P对应的数;(3)当点P运动到B点时,点Q从点A出发,以每秒3个单位的速度向C点运动,Q点到达C点后,再立即以同样的速度返回,运动到终点A.在点Q开始运动后第几秒时,P、Q两点之间的距离为4?请说明理由.37.阅读理解:|a|的几何意义是a这个数在数轴上对应的点到原点的距离,那么|a﹣1|可以看作是a这个数在数轴上对应的点到1的距离:|a﹣1|+|a2|就可以看作是a这个数在数轴上对应的点到1和2两个点的距离之和,下面我们结合数轴研究|a﹣1|+|a﹣2|的最小值,我们先看a表示的点可能的三种情况:(1)a 点在1的左边;(2)a点在1、2之间(包括在1、2上);(3)a点在2的右边.(1)a在1的左边,从图中很明显看出a到1和2的距离和明显大于1;(2)a点在1、2之间(包括在1、2上)可以看出a到1和2的距离和等于1;(3)a在2的右边,从图中很明显看出a到1和2的距离和明显大于1;那么我们可以得到当a在1、2之间(包括在1、2上)时,|a﹣1|+|a﹣2|有最小值的结论.问题解决:(1)|a﹣1|+|a﹣2|+|a﹣3|的几何意义是.(2)请你结论数轴探究|a﹣1|+|a﹣2|+|a﹣3|的最小值是;并在数轴上描出得到最小值时a所在的位置.深入探究:通过材料的飞分析和问题的解决,你现在对|a﹣1|+|a﹣2|+|a﹣3|…求最小值问题有所了解吗?找到a点在数轴上的位置可以帮助我们顺利解决问题,下面你自己再结合数轴算一算|a﹣1|+|a﹣2|+|a﹣3|+|a﹣4|+|a﹣5|的最小值是.(3)求|a﹣1|+|a﹣2|+|a﹣3|…+|a﹣2017|的最小值.38.在一条东西走向的马路旁,有青少年宫、党校、商场、医院四家公共场所.已知青少年宫在学校东400m 处,商场在学校西200m处,医院在学校东600m处,若将马路近似地看作一条直线,以学校为原点,向东为正方向,用1个单位长度表示100m.(1)在数轴上表示四家公共场所的位置.(2)列式计算青少年宫与商场之间的距离.39.一天,小天和小海利用温差来测量山峰的高度.小海在山脚测得气温是4℃,小天同时在山顶测得气温是2℃,已知该地区高度每升高100米,气温下降8℃,问这个山峰有多高?40.已知a与b互为相反数,c与d互为倒数,e是绝对值最小的有理数,求的值.41.已知|2x﹣1|+(y+2)2=0,求(xy)2016.42.已知a与b互为相反数,c与d互为倒数,m是绝对值为4的负数,求a++(cd)2017﹣m的值.43.现规定一种运算“*”,对于a、b两数有:a*b=a b﹣2ab,试计算(﹣3)*2的值.44.已知:a、b互为相反数,c、d互为倒数,m是最小的正整数,求代数式2017(a+b)﹣3cd+2m的值.45.如果|a+1|+(b﹣2)2=0,求(a+b)2011+a2010﹣(3ab﹣a)的值.46.小明的家、学校、邮局、图书馆坐落在一条东西走向的大街上,依次记为A、B、C、D,学校位于小明家西边150米,邮局位于小明家东边100米,图书馆位于学校西边250米.(1)用数轴表示A、B、C、D的位置(以小明家为原点)(2)一天小明从家里先去邮局寄信后,以每分钟50米的速度往图书馆方向走了8分钟,试问小明此时的位置在何处?到图书馆和学校的距离分别是多少米?47.邮递员骑摩托车车从邮局出发,先向西骑行3千米到达A村,继续向西骑行3千米到达B村,然后向东骑行10千米到达C村,最后回到邮局.(1)以邮局为原点,以向东方向为正方向,用1千米表示1个单位长度,画出数轴,并在数轴上表示出A、B、C三个村庄的位置;(2)C村离A村的路程有多远?(3)邮递员骑摩托车,每千米耗油0.05升,一共耗油了多少升?48.先阅读,后探究相关的问题.【阅读】|5﹣2|表示5与2差的绝对值,也可理解为5与2两数在数轴上所对应的两点之间的距离;|5+2|可以看做|5﹣(﹣2)|,表示5与﹣2的差的绝对值,也可理解为5与﹣2两数在数轴上所对应的两点之间的距离.(1)如图,先在数轴上画出表示点2.5的相反数的点B,再把点A向左移动1.5个单位,得到点C,则点B 和点C表示的数分别为和,B,C两点间的距离是.(2)数轴上表示x和﹣1的两点A和B之间的距离表示为;如果|AB|=3,那么x为.(3)若点A表示的整数为x,则当x为时,|x+4|与|x﹣2|的值相等.(4)要使代数式|x+5|+|x﹣2|取最小值时,相应的x的取值范围是,最小值是.49.对于有理数a,b,定义新运算:a△b=.如果|x+1|+|y﹣3|+|xz+2|=0,求x△(y△z)的值.50.如图,用粗线在数轴上表示了一个“范围”,这个“范围”包含所有大于1且小于2的数(数轴上1与2这两个数的点空心,表示这个范围不包含数1和2).请你在数轴上表示出一个范围,使得这个范围;(1)包含所有大于﹣3且小于0的数[画在数轴(1)上];(2)包含﹣1.5、π这两个数,且只含有5个整数[画在数轴(2)上];(3)同时满足以下三个条件:[画在数轴(3)上]①至少有100对互为相反数和100对互为倒数;②有最小的正整数;③这个范围内最大的数与最小的数表示的点的距离大于3但小于4.参考答案1.若|a﹣2|+(﹣b)2=0,则b a=.【分析】根据非负数的性质列出方程求出a、b的值,代入所求代数式计算即可.【解答】解:根据题意得:,解得:,则原式=.故答案是:.【点评】本题考查了非负数的性质:几个非负数的和为0时,这几个非负数都为0.2.已知(|x+1|+|x﹣2|)(|y﹣2)|+|y+1|)(|z﹣3|+|z+1|)=36,求2016x+2017y+2018z的最大值和最小值【分析】先讨论:|x+1|+|x﹣2|、|y﹣2|+|y+1|、|z﹣3|+|z+1|的最小值,根据它们的积是36,分别得到|x+1|+|x﹣2|、|y﹣2|+|y+1|、|z﹣3|+|z+1|的值,再讨论x、y、z的最大最小值,代入计算出代数式的最大值和最小值.【解答】解:∵|x+1|+|x﹣2|≥3,(|y﹣2|+|y+1|)≥3,(|z﹣3|+|z+1|)≥4,又∵(|x+1|+|x﹣2|)(|y﹣2|+|y+1|)(|z﹣3|+|z+1|)=36,∴|x+1|+|x﹣2|=3,|y﹣2|+|y+1|=3,|z﹣3|+|z+1|=4,当|x+1|+|x﹣2|=3时,x最小取﹣1,最大取2,当|y﹣2|+|y+1|=3时,y最小取﹣1,最大取2,当|z﹣3|+|z+1|=4时,z最小取﹣1,最大取3所以2016x+2017y+2018z的最大值为:2016×2+2017×2+2018×3=14120,2016x+2017y+2018z的最小值为:2016×(﹣1)+2017×(﹣1)+2018×(﹣1)=﹣6051【点评】本题考查了绝对值的意义,主要运用了分类讨论的思想.解决本题的关键是根据积得到各个绝对值的和分别是多少.3.已知a2=9,|b|=5,且a<b,求a﹣b的值.【分析】利用算术平方根,绝对值的性质求出a、b的值即可解决问题;【解答】解:∵a2=9,|b|=5,∴a=±3,b=±5,∵a<b,∴a=3,b=5或a=﹣3,b=5,∴a﹣b=3﹣5=﹣2或a﹣b=﹣3﹣5=﹣8【点评】本题考查有理数的乘方、绝对值、有理数的加法等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.4.计算:(1)(﹣20)+(+3)﹣(﹣5)﹣(+7)(2)(﹣3)×(﹣4)﹣48÷|﹣6|(3)(﹣24)×(﹣﹣)(4)﹣12+×[6﹣(﹣3)2]【分析】(1)原式利用减法法则变形,计算即可求出值;(2)原式先计算乘除运算,再计算加减运算即可求出值;(3)原式利用乘法分配律计算即可求出值;(4)原式先计算乘方运算,再计算乘法运算,最后算加减运算即可求出值.【解答】解:(1)原式=﹣20+3+5﹣7=﹣27+8=﹣19;(2)原式=12﹣8=4;(3)原式=﹣12+40+9=37;(4)原式=﹣1+×(﹣3)=﹣1﹣1=﹣2.【点评】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.5.已知a与b互为相反数,c与d互为倒数,m的绝对值为3,求(a+b)cd+﹣m2的值.【分析】利用相反数性质,倒数的定义,绝对值的代数意义求出a+b,cd,m的值,代入原式计算即可得到结果.【解答】解:根据题意得:a+b=0,cd=1,m=3或﹣3,∴原式=0×1+0﹣9=﹣9.【点评】此题考查了代数式求值,相反数,绝对值以及倒数的综合运用,熟练掌握各自的定义是解本题的关键.6.在数轴上表示数:22,﹣2,﹣12,1,0,﹣1.5,并将它们用“<“连接起来.【分析】先计算22,﹣12的值,再把各点表示在数轴上,最后用“<”连接各数.【解答】解:因为22=4,﹣12=﹣1,如图所示:用“<“连接起来为:﹣2<﹣1.5<﹣12<0<1<22.【点评】考查了有理数大小比较,本题难度不大,注意在数轴上表示的数和用不等号连接的数需是题目中给出的数.7.已知有理数a、b、c在数轴上的位置如图所示,化简:2|a+b|﹣3|a﹣c|+2|c﹣b|【分析】先通过点在数轴上的位置,先判断a、b、c的正负,再根据加法法则、减法法则判断a+b、a﹣c、c﹣b的正负,最后利用绝对值的意义对代数式化简.【解答】解:由有理数a、b、c在数轴上的位置知:a<0<b<c,|a|>|b|因为|a|>|b|,a<0,b>0所以﹣a>b,即﹣a﹣b>0所以a+b<0因为a<0<b<c所以a﹣c<0,c﹣b>0.所以2|a+b|﹣3|a﹣c|+2|c﹣b|=2×(﹣a﹣b)﹣3(c﹣a)+2(c﹣b)=﹣2a﹣2b﹣3c+3a+2c﹣2b=a﹣4b﹣c【点评】本题考查了数轴、绝对值的有关内容,解决本题的关键是通过数轴,利用加减法法则判断a+b、a ﹣c、c﹣b的正负.8.阅读探究:12=;12+22=;12+22+32=;12+22+32+42=;…(1)根据上述规律,求12+22+32+42+52的值;(2)你能用一个含有n(n为正整数)的算式表示这个规律吗?请直接写出这个算式(不计算);(3)根据你发现的规律,计算下面算式的值:62+72+82+92+102+112+122+132+142+152.【分析】(1)仿照阅读材料中的方法计算即可;(2)归纳总结得到一般性规律,写出即可;(3)原式利用得出的规律计算即可求出值.【解答】解:(1)根据题意得:原式==55;(2)根据题意得:12+22+32+…+n2=(n为正整数);(3)根据题意得:12+22+32+42+52=55②,12+22+32+42+52+62+72+82+92+102+112+122+132+142+152==1240②,则②﹣①得:62+72+82+92+102+112+122+132+142+152=1185.【点评】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.9.已知a、b互为相反数,m、n互为倒数(m、n都不等于±1),x的绝对值为2,求的值.【分析】利用相反数,倒数,以及绝对值的代数意义计算求出各自的值,代入原式计算即可求出值.【解答】解:根据题意得:a+b=0,mn=1,x=2或﹣2,则原式=﹣2+0﹣4=﹣6.【点评】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.10.已知a是最大的负整数,且b、c满足|b﹣1|+(c+4)2=0.(1)填空:a=﹣1 ,b= 1 ,c=﹣4 ;(2)a、b、c在数轴上所对应的点分别为A、B、C,P是数轴上点A、B之间一动点(不与点A、B重合),其对应的数为x,化简:|x+1|﹣2|x﹣1|;(3)在(1)、(2)的条件下,点A、B、C开始在数轴上同时运动,若点C和点A分别以每秒4个单位长度和1个单位长度的速度向左运动,点B以每秒2个单位长度的速度向右运动,假设t秒钟过后,点A与点C 之间的距离表示为AC,点A与B之间的距离表示为AB.请问:AC﹣AB的值是否随着时间t的变化而改变?若变化,请说明理由;若不变,请求出其值.【分析】(1)根据绝对值和偶次幂具有非负性可得b﹣1=0,c+4=0,进而可得答案;(2)根据a、b、c的值可得x+1>0,x﹣1<0,然后再利用绝对值的性质取绝对值合并同类项即可;(3)根据题意可得A、B、C三点对应的数字,然后表示出AC、AB的长,进而可得AC﹣AB的值是常数.【解答】解:(1)∵a是最大的负整数,∴a=﹣1,∵|b﹣1|+(c+4)2=0,∴b﹣1=0,c+4=0,∴b=1,c=﹣4.(2)由题意可知:﹣1<x<1,所以x+1>0,x﹣1<0,所以:|x+1|﹣2|x﹣1|=x+1+2x﹣2=3x﹣1.(3)由题意可知:A点对应的数字:﹣1﹣t;B点对应的数字:1+2t;C点对应的数字:﹣4﹣4t,所以AC=﹣1﹣t﹣(﹣4﹣4t)=3t+3,AB=1+2t﹣(﹣1﹣t)=3t+2,所以AC﹣AB=3t+3﹣3t﹣2=1.故答案为:﹣1;1;﹣4.【点评】此题考查一元一次方程的实际运用,以及数轴与绝对值,正确理解AB,AC的变化情况是关键.11.已知在纸面上有一数轴(如图所示).一般地,数轴上表示数m和数n的两点之间的距离可用|m﹣n|表示(1)①数轴上表示﹣3和2两点之间的距离是 5②如果表示数a与﹣2的两点之间的距离是4,那么a=﹣6或2③若数轴上表示数a的点位于﹣4与2之间,则|a+4|+|a﹣2|的值是 6(2)①5﹣|x+3|有最大值是 5 .②|x﹣4|+|x﹣5|的最小值是 1 .【分析】(1)①根据题意可以求得﹣3和2两点之间的距离;②根据题意可以列出相应的式子,从而可以求得a的值;③根据题意可以求得|a+4|+|a﹣2|的值;(2)①根据绝对值的定义可以求得题目中式子的最大值;②利用分类讨论的数学思想可以解答本题.【解答】解:(1)①数轴上表示﹣3和2两点之间的距离是:2﹣(﹣3)=5,故答案为:5;②表示数a与﹣2的两点之间的距离是4,则|a﹣(﹣2)|=4,解得,a=2或a=﹣6,故答案为:﹣6或2;③由题意可得,﹣4<a<2,∴|a+4|+|a﹣2|=a+4+2﹣a=6,故答案为:6;(2)①∵|x+3|≥0,∴5﹣|x+3|≤5,故答案为:5;②当x>5时,|x﹣4|+|x﹣5|=x﹣4+x﹣5=2x﹣9>1,当4≤x≤5时,|x﹣4|+|x﹣5|=x﹣4+5﹣x=1,当x<4时,|x﹣4|+|x﹣5|=4﹣x+5﹣x=9﹣2x>1,∴|x﹣4|+|x﹣5|的最小值是1,故答案为:1.【点评】本题考查数轴、非负数的性质,解答本题的关键是明确题意,找出所求问题需要的条件,利用分类讨论的数学思想和数形结合的思想解答.12.规定一种新运算“※”,即a※b=a2﹣(1+b),例如1※2=12﹣(1+2)=﹣2,根据规定完成下列问题:(1)求3※(﹣2)的值;(2)求(﹣1)※[3※(﹣2)]的值.【分析】(1)原式利用已知的新定义计算即可求出值;(2)原式利用已知的新定义计算即可求出值.【解答】解:(1)根据题中的新定义得:3※(﹣2)=32﹣[1+(﹣2)]=9+1=10;(2)(﹣1)※[3※(﹣2)]=1﹣10=﹣9.【点评】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.13.已知点A在数轴上对应的数为a,点B对应的数为b,且|a+4|+(b﹣1)2=0,A、B之间距离记作|AB|,定义:|AB|=|a﹣b|.(1)求线段AB的长|AB|;(2)设点P在数轴上对应的数为x,当|PA|﹣|PB|=3时,求x的值.【分析】(1)利用非负数的性质求出a、b的值即可解决问题;(2)列出绝对值方程,分区间讨论区间即可;【解答】解:(1)∵|a+4|+(b﹣1)2=0,∴a=﹣4,b=1,∴AB=|﹣4﹣1|=5.(2)由题意:|x﹣(﹣4)|﹣|x﹣1|=3,∴|x+4|﹣|x﹣1|=3,当x<﹣4时,﹣x﹣4+x﹣1=3,不合题意,当﹣4≤x<1时,x+4+x﹣1=3,解得x=0,当x≥1时,x+4﹣x+1=3,不符合题意,∴x=0.【点评】本题考查数轴、非负数的性质、绝对值等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.14.已知三个有理数a,b,c,其积是负数,其和是正数,当时,求代数式x2017﹣2x+2的值.【分析】根据积是负数得出a,b,c均≠0,且a,b,c全为负数或一负两正,根据和为正数得出a,b,c 一负两正,求出x值,即可求出答案.【解答】解:∵三个有理数a、b、c,其积是负数,∴a,b,c均≠0,且a,b,c全为负数或一负两正,∵其和是正数,∴a,b,c一负两正,∴=1+1﹣1=1时,代数式x2017﹣2x+2=12017﹣2×1+2=1.【点评】本题考查了绝对值,有理数的加法、乘法、除法的应用,关键是求出x的值.15.(1)已知|x+2|+|y﹣3|=0,求﹣x﹣y+4xy的值.(2)一只猴子沿一条东西方向的木棒爬行,先以5米/秒的速度向东爬行,然后以2.4米/秒的速度向西爬行,试求它向东爬行2秒,又向西爬行5秒后与出发点的距离及方向.【分析】(1)先根据非负数的性质求出x、y的值,再代入代数式计算即可.(2)设向东为正,然后列出算式,再根据有理数的乘法运算法则进行计算即可得解.【解答】解:(1)∵|x+2|+|y﹣3|=0,|x+2|≥0,|y﹣3|≥0,∴x+2=0,y﹣3=0,解得x=﹣2,y=3,∴﹣x﹣y+4xy=5﹣5﹣24=﹣24;(2)设向东为正,根据题意得3×2.5+5×(﹣2.5)=(3﹣5)×2.5=﹣2×2.5=﹣5(米),即小虫距出发点西边5米处.【点评】(1)本题考查的是代数式求值、绝对值的概念、非负数的性质的知识.(2)考查了有理数的乘法,正、负数的意义,设向东为正,然后列出算式是解题的关键.16.阅读下列材料:|x|=,即当x<0时,=﹣1.用这个结论可以解决下面问题:(1)已知a,b是有理数,当ab≠0时,求的值;(2)已知a,b是有理数,当abc≠0时,求的值;(3)已知a,b,c是有理数,a+b+c=0,abc<0,求的值.【分析】(1)对a、b进行讨论,即a、b同正,a、b同负,a、b异号,根据绝对值的意义计算+得到结果;(2)对a、b、c进行讨论,即a、b、c同正、同负、两正一负、两负一正,然后计算++得结果;(3)根据a,b,c是有理数,a+b+c=0,把求转化为求++的值,根据abc <0得结果.【解答】解:(1)已知a,b是有理数,当ab≠0时,①a<0,b<0,+=﹣1﹣1=﹣2;②a>0,b>0,+=1+1=2;③a,b异号,+=0.故+的值为±2或0.(2)已知a,b是有理数,当abc≠0时,①a<0,b<0,c<0,++=﹣1﹣1﹣1=﹣3;②a>0,b>0,c>0,++=1+1+1=3;③a,b,c两负一正,++=﹣1﹣1+1=﹣1;④a,b,c两正一负,++=﹣1+1+1=1.故++的值为±1,或±3.(3)已知a,b,c是有理数,a+b+c=0,abc<0.所以b+c=﹣a,a+c=﹣b,a+b=﹣c,a,b,c两正一负,所以++=++=﹣[++]=﹣1.【点评】本题考查了有理数的加法、绝对值的化简,解决本题的关键是对a、b、c的分类讨论.注意=±1(x>0,结果为1,x<0,结果为﹣1)17.如图,半径为1的小圆与半径为2的大圆上有一点与数轴上原点重合,两圆在数轴上做无滑动的滚动,小圆的运动速度为每秒π个单位,大圆的运动速度为每秒2π个单位.(1)若大圆沿数轴向左滚动1周,则该圆与数轴重合的点所表示的数是﹣4π;(2)若小圆不动,大圆沿数轴来回滚动,规定大圆向右滚动时间记为正数,向左滚动时间记为负数,依次滚动的情况记录如下(单位:秒):﹣1,+2,﹣4,﹣2,+3,﹣8①第几次滚动后,大圆离原点最远?②当大圆结束运动时,大圆运动的路程共有多少?此时两圆与数轴重合的点之间的距离是多少?(结果保留π)(3)若两圆同时在数轴上各自沿着某一方向连续滚动,滚动一段时间后两圆与数轴重合的点之间相距9π,求此时两圆与数轴重合的点所表示的数.【分析】(1)该圆与数轴重合的点所表示的数的绝对值,就是大圆的周长;(2)①分别计算出第几次滚动后,大圆离原点的距离,比较作答;②先计算总路程,因为小圆不动,计算各数之和为﹣10,即大圆最后的落点为原点左侧,向左滚动10秒,距离为20π;(3)分四种情况进行讨论:大圆和小圆分别在同侧,异侧时,表示出各自与数轴重合的点所表示的数.根据两圆与数轴重合的点之间相距9π列等式,求出即可.【解答】解:(1)若大圆沿数轴向左滚动1周,则该圆与数轴重合的点所表示的数是﹣2π•2=﹣4π;(2)①第1次滚动后,|﹣1|=1,第2次滚动后,|﹣1+2|=1,第3次滚动后,|﹣1+2﹣4|=3,第4次滚动后,|﹣1+2﹣4﹣2|=5,第5次滚动后,|﹣1+2﹣4﹣2+3|=2,第6次滚动后,|﹣1+2﹣4﹣2+3﹣8|=10,则第6次滚动后,大圆离原点最远;②1+2+4+3+2+8=20,20×2π=40π,﹣1+2﹣4﹣2+3﹣8=﹣10,∴当大圆结束运动时,大圆运动的路程共有40π,此时两圆与数轴重合的点之间的距离是20π;(3)设时间为t秒,分四种情况讨论:i)当两圆同向右滚动,由题意得:t秒时,大圆与数轴重合的点所表示的数:2πt,小圆与数轴重合的点所表示的数为:πt,2πt﹣πt=9π,2t﹣t=9,t=9,2πt=18π,πt=9π,则此时两圆与数轴重合的点所表示的数分别为18π、9π.ii)当两圆同向左滚动,由题意得:t秒时,大圆与数轴重合的点所表示的数:﹣2πt,小圆与数轴重合的点所表示的数:﹣πt,﹣πt+2πt=9π,﹣t+2t=9,t=9,﹣2πt=﹣18π,﹣πt=﹣9π,则此时两圆与数轴重合的点所表示的数分别为﹣18π、﹣9π.iii)当大圆向右滚动,小圆向左滚动时,同理得:2πt﹣(﹣πt)=9π,3t=9,t=3,2πt=6π,﹣πt=﹣3π,则此时两圆与数轴重合的点所表示的数分别为6π、﹣3π.iiii)当大圆向左滚动,小圆向右滚动时,同理得:πt﹣(﹣2πt)=9π,t=3,πt=3π,﹣2πt=﹣6π,则此时两圆与数轴重合的点所表示的数分别为﹣6π、3π.故答案为:﹣4π.【点评】本题考查了数轴及圆的几何变换,还考查了一元一次方程的应用,用方程解决此类问题比较简单,同时又利用了分类讨论的思想,明确向右移动坐标加的关系,向左移动坐标减的关系.18.如图所示,丁丁做了一个程序图,按要求完成下列问题.(1)当丁丁输入的数为6时,求输出的结果n;(2)若丁丁某次输入数m后,输出的结果n为﹣5.5.请你写出m可能的2个值.【分析】(1)把6代入计算即可求出值;(2)根据输出结果确定出m的值即可.【解答】解:(1)根据题意得:6﹣2=4,4﹣2=2,2﹣2=0,0﹣2=﹣2,﹣2的相反数是2,2﹣7=﹣5,则输出的结果n=﹣5;(2)m的可能值为﹣1.5或0.5.【点评】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.19.王老师在一节数学课上讲解了二道例题:请你参考黑板上王老师的讲解,用运算律简便计算:(1)99×15;(2)999×118+999×(﹣)﹣999×.【分析】(1)根据乘法分配律进行计算;(2)先根据乘法分配律的逆运算加括号,再将999变形为100﹣1,利用乘法分配律进行计算.【解答】(满分8分)。
【精选】有理数(培优篇)(Word版 含解析)

一、初一数学有理数解答题压轴题精选(难)1.点A、B在数轴上表示的数如图所示,动点P从点A出发,沿数轴向右以每秒1个单位长度的速度向点B运动到点B停止运动;同时,动点Q从点B出发,沿数轴向左以每秒2个单位长度的速度向点A运动,到点A停止运动设点P运动的时间为t秒,P、Q两点的距离为d(d≥0)个单位长度.(1)当t=1时,d=________;(2)当P、Q两点中有一个点恰好运动到线段AB的中点时,求d的值;(3)当点P运动到线段AB的3等分点时,直接写出d的值;(4)当d=5时,直接写出t的值.【答案】(1)3(2)解:线段AB的中点表示的数是:=1.①如果P点恰好运动到线段AB的中点,那么AP=AB=3,t==3,BQ=2×3=6,即Q运动到A点,此时d=PQ=PA=3;②如果Q点恰好运动到线段AB的中点,那么BQ=AB=3,t=,AP=1× =,则d=PQ=AB﹣AP﹣BQ=6﹣﹣3=.故d的值为3或(3)解:当点P运动到线段AB的3等分点时,分两种情况:①如果AP=AB=2,那么t==2,此时BQ=2×2=4,P、Q重合于原点,则d=PQ=0;②如果AP=AB=4,那么t==4,∵动点Q从点B出发,沿数轴向左以每秒2个单位长度的速度向点A运动,到点A停止运动,∴此时BQ=6,即Q运动到A点,∴d=PQ=AP=4.故所求d的值为0或4(4)解:当d=5时,分两种情况:①P与Q相遇之前,∵PQ=AB﹣AP﹣BQ,∴6﹣t﹣2t=5,解得t=;②P与Q相遇之后,∵P点运动到线段AB的中点时,t=3,此时Q运动到A点,停止运动,∴d=AP=t=5.故所求t的值为或5.【解析】【分析】(1)当t=1时,求出AP=1,BQ=2,根据PQ=AB﹣AP﹣BQ即可求解;(2)分①P点恰好运动到线段AB的中点;②Q点恰好运动到线段AB的中点两种情况进行讨论;(3)当点P运动到线段AB的3等分点时,分①AP=AB;②AP=AB两种情况进行讨论;(4)当d=5时,分①P与Q相遇之前;②P与Q相遇之后两种情况进行讨论.2.如图,数轴上点A,B分别对应数a,b.其中a<0,b>0.(1)当a=﹣2,b=6时,线段AB的中点对应的数是________;(直接填结果)(2)若该数轴上另有一点M对应着数m.①当m=2,b>2,且AM=2BM时,求代数式a+2b+20的值;②当a=﹣2,且AM=3BM时,小安演算发现代数式3b﹣4m是一个定值.老师点评:你的演算发现还不完整!请通过演算解释:为什么“小安的演算发现”是不完整的?【答案】(1)2(2)解:①当m=2,b>2时,点M在点A,B之间,∵AM=2BM,∴m﹣a=2(b﹣m),∴2﹣a=2(b﹣2),∴a+2b=6,∴a+2b+20=6+20=26;②小安只考虑了一种情况,故老师点评“小安的演算发现”是不完整的.当点M在点A,B之间时,a=﹣2,∵AM=3BM,∴m+2=3(b﹣m),∴m+2=3b﹣3m,∴3b﹣4m=2,∴代数式3b﹣4m是一个定值.当点M在点B右侧时,∵AM=3BM,∴m+2=3(m﹣b),∴m+2=3m﹣3b,∴2m﹣3b=2,∴代数式2m﹣3b也是一个定值.【解析】【解答】解:(1)由题意得出,线段AB的中点对应的数是2,故答案为:2.【分析】(1)首先根据数轴的性质,即可得出中点对应的数值;(2)①首先判定点M 在点A,B之间,然后根据等式列出关系式,即可得解;②根据题意,分两种情况进行求解:点M在点A,B之间和点M在点B右侧时,通过列出等式,即可判定.3.同学们都知道,|3-(-1)∣表示3与-1的差的绝对值,其结果为4,实际上也可以理解为3与-1两数在数轴上所对应的两点之间的距离,其距离同样是4;同理,∣x-5|也可以理解为x与5两数在数轴上所应的两点之间的距离,试利用数轴探索:(1)试用“| |”符号表示:4与-2在数轴上对应的两点之间的距离,并求出其结果;(2)若|x-2|=4,求x的值;(3)同理,|x-3|+|x+2|表示数轴上有理数x所对应的点到3和-2所对应的两点距离之和,请你直接写出所有符合条件的整数x,使得|x-3|+|x+2|=5;试求代数式|x-3|+|x+2|的最小值.【答案】(1)解:|4-(-2)|=6(2)解:x与2的距离是4,在数轴上可以找到x=-2或6(3)解:当-2≤x≤3时,x所对应的点到3和-2所对应的两点距离之和是5,∴符合条件的整数x=-2,-1,0,1,2,3;当x<-2或x>3时,x所对应的点到3和-2所对应的两点距离之和大于5,∴|x-3|+|x+2|的最小值是5【解析】【分析】(1)根据已知列式求解即可;(2)按照已知去绝对值符号即可求解.(3)当-2≤x≤3时,x所对应的点到3和-2所对应的两点距离之和是5;当x<-2或x>3时,x所对应的点到3和-2所对应的两点距离之和大于5,由此即可得出结论.4.如图,点A、B都在数轴上,O为原点.(1)点B表示的数是________;(2)若点B以每秒2个单位长度的速度沿数轴向右运动,则2秒后点B表示的数是________;(3)若点A、B分别以每秒1个单位长度、3个单位长度的速度沿数轴向右运动,而点O 不动,t秒后,A、B、O三个点中有一个点是另外两个点为端点的线段的中点,求t的值. 【答案】(1)-4(2)0(3)解:① 当点O是线段AB的中点时,OB=OA4-3t=2+tt=0.5② 当点B是线段OA的中点时, OA = 2 OB2+t=2(3t-4)t=2③ 当点A是线段OB的中点时, OB = 2 OA3t--4=2(2+t)t=8综上所述,符合条件的t的值是0.5,2或8.【解析】【解答】(1)点B表示的数是-4;(2)2秒后点B表示的数是 0 ;【分析】(1)根据数轴上所表示的数的特点即可直接得出答案;(2)用点B开始所表示的数+点B运动的路程=经过t秒后点B表示的数,即可得出结论;(3)找出t秒后点A、B表示的数,分①点O为线段AB的中点,②当点B是线段OA的中点,③点A是线段OB的中点,根据线段中点的数学语言列出方程,求解即可求出此时的t值,综上即可得出结论。
有理数及其运算培优试卷

a10有理数及其运算加强版一、认真选一选:1.下列说法正确的是( )A.所有的整数都是正数B.不是正数的数一定是负数C.0不是最小的有理数D.正有理数包括整数和分数2. 12的相反数的绝对值是( ) A.-12 B.2 C.-2 D.123.有理数a 、b 在数轴上的位置如图1-1所示,那么下列式子中成立的是( ) A.a>b B. a<b C. ab>0 D.0a b >4.在数轴上,原点及原点右边的点表示的数是( )A.正数B.负数C.非正数D.非负数5.如果一个有理数的绝对值是正数,那么这个数必定是( )A.是正数B.不是0C.是负数D.以上都不对( )现从中任意拿出两袋大米,这两袋大米的质量最多相差( )A.0.8kgB.0.6kgC.0.5kgD.0.4kg7..若0<m,则m 、m 2、1m的大小关系是( ) A.m<m 2<1m ; B.m 2<m<1m ; C.1m <m<m 2; D.1m <m 2<m 8.三峡大坝坝顶混凝土浇筑量约为2643万m 3,将这一数据用科学计数法表示为( )A.2.643×103 m 3B. 0.2643×108 m 3;C.26.43×106 m 3D.2.643×107 m 39.下列运算正确的是( )A.-22÷(-2)2=1;B. 31128327⎛⎫-=- ⎪⎝⎭ C.1352535-÷⨯=- D. 133( 3.25)6 3.2532.544⨯--⨯=-10.若a=-2×32,b=(-2×3)2,c=-(2×3)2,则下列大小关系中正确的是( )A.a>b>0B.b>c>a;C.b>a>cD.c>a>b二、认真填一填:11.某地气温不稳定,开始是6℃,一会儿升高4℃,再过一会儿又下降11℃, 这时气温是__.12.一个数的相反数是113-,这个数是________.13.互为相反数的两个数在数轴上对应点之间的距离为4,这两个数是_______.14. 计算:21122-÷⨯=_______. 15.某冷冻库房的温度是5-℃,如果每小时降温5℃,那么降到25-℃需要_____小时.16.若│x -1│+(y+2)2=0,则x-y=___________;17.如图,有一个半径为12个单位长度的圆心,将圆心上的点A 放在原点,并把原片沿数轴逆时针滚动一周,点A 到达点'A 的位置,则点'A 表示的数是______;若点B 表示的数是 3.14-,则点B 在点'A 的_______(填“左边”、“右边”或“重合”). A'A 3421-1018.计算题(1)(-12)÷4×(-6)÷2; (2) 235(4)0.25(5)(4)8⎛⎫-⨯--⨯-⨯- ⎪⎝⎭; (3) 43156()7814⨯-+ (4) 1100()100.0110⨯-⨯⨯ 19.【概念学习】规定:求若干个相同的有理数(均不等于0)的除法运算叫做除方,如222÷÷,()()()()3333-÷-÷-÷-等,类比有理数分乘方,我们把222÷÷记作2③,读作“2的圈3次方,”()()()()3333-÷-÷-÷-记作()3-④,读作:“3-的圈4次方”.一般地,把()0n a a a a a a ÷÷÷÷≠个记作a ⓝ,读作“a 的圈n 次方”.【初步探究】 (1)直接写出计算结果:2=③______,12⎛⎫-= ⎪⎝⎭⑤______. (2)关于除方,下列说法错误的是( )A.任何非零数的圈3次方都等于它的倒数B.对于任何正整数n ,1ⓝ=1C.34=④③D.负数的圈奇数次方结果是负数,负数的圈偶数次方结果是整数.【深入思考】我们知道,有理数的减法运算可以转化为加法运算,除法运算可以转化为乘法运算,有理数的除方运算如何转化为乘方运算呢?(1)试一试,仿照上面的算式,将下列运算结果直接写成幂的形式.()3-=④______;5=⑥______;12⎛⎫-= ⎪⎝⎭⑩______. (2)想一想:将一个非零有理数a 的圈()3n n ≥次方写成幂的形式等于______; (3)算一算:23111123323⎛⎫⎛⎫⎛⎫÷-⨯---÷ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭④⑤⑥.。
2017年有理数培优题0001

有理数培优题基础训练题一、填空:1在数轴上表示一2的点到原点的距离等于()。
2、若I a I = —a,则a ()0.3、任何有理数的绝对值都是()。
4、如果a+b=O,那么a、b 一定是()。
5、将毫米的厚度的纸对折20次,列式表示厚度是()。
6、已知|a| 3,|b| 2,|a b| a b,则a b ()7、|x 2| |x 3|的最小值是()。
8在数轴上,点A B分别表示1」,贝U线段AB的中点所表示的数是()。
4 2a b20109、若a,b互为相反数,m,n互为倒数,P的绝对值为3,贝U mn p2()10、若abc M0,则回也1a b 也的值是(c).11、下列有规律排列的一列数:.3 2 5 31、——、——、一、一、°…,其中从左到右第100个数是()二、解答问题:1、已知x+3=0,|y+5|+4的值是4, z对应的点到-2对应的点的距离是7,求x、y、z这三个数两两之积的和。
3、若2x |4 5x| |1 3x| 4的值恒为常数,求x满足的条件及此时常数的值。
4、若a,b,c 为整数,且|a b |2010|c a|20101,试求|c a | |a b| |b c| 的值。
5、计算:—2 + 5 7 + _9 11 + 13 15 + 176 12 20 30 42 56 726、应用拓展:将七只杯子放在桌上,使三只口朝上,四只口朝下。
现要求每次翻转其中任意四只,使它们杯口朝向相反,问能否经有限次翻转后,让所有杯子杯口朝下?能力培训题知识点一:数轴例1:已知有理数a在数轴上原点的右方,有理数b在原点的左方,那么()A. ab b B . ab b C . a b 0 D . a b 0 拓广训练:1如图a,b为数轴上的两点表示的有理数,在a b,b 2a, a b, b a中,负数的个数有()("祖冲之杯”邀请赛试题)A. 1 B . 2 C . 3 D . 43、把满足2 a 5中的整数a表示在数轴上,并用不等号连接。
1有理数的基本概念(培优题)

第二章 有理数及其运算第1讲 有理数的基本概念一、有理数1 把下列各数分别填人相应的括粤内:-3.5, -21, 32, +8.1, 0, 1.3, -20%, 5,41, -7, 3.14 整数{ } 分数{ } 负整数{ } 正有理数{ }2.下列说法中,正确的是 ( )A .有理数是指整数、分数、正有理数、零、负有理数这五类数B .—个有理数不是正数就是负数C .—个有理数不是整数就是分数D .以上说法都正确3.某项科学研究以45分钟为1个时间单位,并记每天上午10时为0,10时以前记为负,10时以后记为正,例如:9:15记为-1,10:45记为1等.依此类推,上午7:45应记为 _______.4.用最小的正整数、最小的质数、最小的非负数和最小的合数组成的四位数中,最大的—个数是 _______.5.下列说法中,正确的是 ( ) A .符号不同的两个数互为相反数 B .相反数是不相等的两个数C .互为相反数的两个数相加的和为零D .和—个点距离相等的两个点在数轴上表示的两个数—定互为相反数一、数轴1. 数轴上离原点距离小于2的整数点的个数为______,不大于2的整数点的个数为____,等于2的整数点的个数为_______.2. 在数轴上表示数a 的点到原点的距离为3, 则a=__________.3.(1)已知a 、b 为有理数,且a>0, b<0, a+b <0, 把四个数a 、b 、-a 、-b 按从小到大的顺序排列是___________________.(2)已知数轴上有A 、B 两点,A 、B 之间的距离为1,点A 与原点O 的距离为3,那么点B 对应当数是__________.4.如图,在数轴上有六个点,且AB=BC=CD =DE, 则图中与点P 表示的数最接近的一个数是( )A.-1B.1C.3D.55.已知点A ,B ,P 均在数轴上,点P 对应的数是-1,线段AP 的长是2个单位长度,线段BP 的长是3个单位长度,则线段AB 的长为_______个单位长度.二、绝对值(一)基础知识1.去掉绝对值符号的法则:2.绝对值的基本性质 (1)非负性:|a|≥0;若|a|+|b|=0, 则a=0, 且b=0.(2)|ab|=|a||b|; (3))0(≠=b bab a ; (4)|a|2=|a 2|.3.绝对值的几何意义 (1)“|a|”表示:在数轴上表示数a 的点到原点的距离; (2)“|a-b|”表示:数轴上数a 、数b 两点间的距离. (二)典型习题1.下列各数中,互为相反数的是 ( ) A.32-和 -32 B .23和 -32 C. 32-和23D .32- 和 32 A B C D E-59 P2.绝对值小于l26而大于26的整数有 ( ) A .100个 B .99个 C .198个 D .200个 3.下列说法正确的是 ( )A .两个有理数不相等,那么这两个数的绝对值也—定不相等B .任何—个数的相反数与这个数—定不相等C .两个有理数的绝对值相等,那么这两个有理数相等D .两个数的绝对值相等,且符号相反,那么这两个数是互为相反数4.-| a | = -3.2,则a=_______5.如图,M ,N ,P ,R 分别是数轴上四个整数所对应的点,其中有—点是原点,并且MN=NP=PR=1.数a 对应的点在M 与N 之间,数b 对应的点在P 与R 之间, 若| a |+| b | = 3,则原点是 ( )A .M 或RB .N 或PC .M 或ND .P 或R 6.用>, <,≥,≤,=填空 (1)若|a -1|=a -1, 则a____1; (2)若|a -2|=2-a, 则a____2. 7.判断题(1)|a -b|=|b -a|; ( ) (2)若|a |=b ,则a =b ; ( ) (3)若|a|<|b|,则a <b ; ( ) (4)若a >b ,则|a|>|b|; ( ) (5)若|a |> 0,则a >0 ( ) (6)若a > 0,则|a |>0 ( ) (7)若a < 0,则-a >0 ( ) (8)若0 < a < 1,则|a | < 1 ( )8.若|x|=3,|y|=2,且|x -y|=y -x ,求x ,y 的值.9.计算:991100131412131121-++-+-+- .三、有理数的大小比较1.比较大小:-54_____-75.2.将-1918,-199198,-19991998按从小到大的顺序排列:____________________________ 3.观察下图,再比较大小:(1)将“a ,b ,c ,0”这四个数按从小到大的顺序排列:________________.(2)将“-a ,b ,| c |,0”这四个数按从小到大的顺序排列:__________________________.4.若| a | = -a,| b|= b ,|c|=-c,|d|=-d ,且都不为零,还满足|a |>|b|>|c|>|d|,请把a,-a,b ,-b ,c-c ,d ,-d 这八个数按从小到大的顺序排列.5.若|a -1|+|b +2|=0, 则a=____, 且b=____;6.若a ,b ,c 为整数,且|a-b|+|c-a|=1,试计算|c-a|+|a-b|+|b-c|的值.9. 设有理数a ,b ,c 在数轴上的对应点如图1-1所示,化简|b-a |+|a-c |+|c-b |.。
宁波数学有理数(培优篇)(Word版 含解析)

一、初一数学有理数解答题压轴题精选(难)1.如图,在数轴上每相邻两点间的距离为一个单位长度,点、、、对应的数分别是,且 .(1)那么 ________, ________:(2)点以个单位/秒的速度沿着数轴的正方向运动,秒后点以个单位/秒的速度也沿着数轴的正方向运动,当点到达点处立刻返回,与点在数轴的某点处相遇,求这个点对应的数;(3)如果、两点以(2)中的速度同时向数轴的负方向运动,点从图上的位置出发也向数轴的负方向运动,且始终保持,当点运动到时,点对应的数是多少?【答案】(1)-6;-8(2)解:由(1)可知:,,,,点运动到点所花的时间为,设运动的时间为秒,则对应的数为,对应的数为: .当、两点相遇时,,,∴ .答:这个点对应的数为;(3)解:设运动的时间为对应的数为:对应的数为:∴∵∴∵对应的数为∴①当,;②当,,不符合实际情况,∴∴答:点对应的数为【解析】【解答】解:(1)由图可知:,∵,∴,解得,则;【分析】(1)由a、d在数轴上的位置可得d=a+8,代入已知的等式可求得a的值,再根据数轴可确定原点的位置;(2)根据相遇问题可求得相遇时间,然后结合题意可求解;(3)根据AB=AC列方程,解含绝对值的方程可求解.2.认真阅读下面的材料,完成有关问题:材料:在学习绝对值时,我们已了解绝对值的几何意义,如|5-3|表示5、3在数轴上对应的两点之间的距离;又如|5+3|=|5-(-3)|,所以|5+3|表示5、-3在数轴上对应的两点之间的距离。
因此,一般地,点A,B在数轴上分别表示有理数a,b,那么A,B之间的距离(也就是线段AB的长度)可表示为|a-b|。
因此我们可以用绝对值的几何意义按如下方法求的最小值;即数轴上x与1对应的点之间的距离,即数轴上x与2对应的点之间的距离,把这两个距离在同一个数轴上表示出来,然后把距离相加即可得原式的值.设A、B、P三点对应的数分别是1、2、x.当1≤x≤2时,即P点在线段AB上,此时;当x>2时,即P点在B点右侧,此时= PA+PB=AB+2PB>AB;当x <1时,即P点在A点左侧,此时=PA+PB=AB+2PA>AB;综上可知,当1≤x≤2时(P点在线段AB上),取得最小值为1.请你用上面的思考方法结合数轴完成以下问题:(1)满足的x的取值范围是________。
有理数培优-数轴上的动点问题

有理数培优——数轴上的动点问题一、基础知识1、两点之间的距离:大的数减去小的数注:(1)已知两点的距离和较大数,较小数=较大数-距离;(2)已知两点的距离和较小数,较大数=较小数+距离.2、两点的中点公式:2ba.3、解题方法:(1)遇动点问题注意动点的起始位置以及方向和速度;(2)当无法比较两数大小的时候,求两者之间的距离时需要添加绝对值;(3)若遇相遇或追击问题,通常抓路程作为列等量关系的依据.例1、在下面给出的数轴中,点A表示1,点B表示﹣2,回答下面的问题:(1)A、B之间的距离是;(2)观察数轴,与点A的距离为5的点表示的数是:;(3)若将数轴折叠,使点A与﹣3表示的点重合,则点B与数表示的点重合;(4)若数轴上M、N两点之间的距离为2018(M在N的左侧),且M、N两点经过(3)中折叠后互相重合,则M、N两点表示的数分别是:M:;N:.练习1、如图,数轴上有A、B、C三点,点A和点B所表示的数分别为﹣3和+,点C到点A、点B的距离相等.(1)点C表示的数为;(2)若数轴上有一点P,若满足P A+PB=10,求点P表示的数;(3)若数轴上有一点Q.若满是QA+QB﹣QC=,求点Q表示的数.例2、如图,数轴上两点A,B所表示的数分别为﹣3,1.(1)写出线段AB的中点M所对应的数;(2)若点P从B出发以每秒2个单位长度的速度向左运动,运动时间为x秒.①用含x的代数式表示点P所对应的数;②当BP=2AP时,求x值.练习1、已知a是最大的负整数,b是﹣5的相反数,c=﹣|﹣2|,且a、b、c分别是点A、B、C在数轴上对应的数.(1)求a、b、c的值,并在数轴上标出点A、B、C.(2)若动点P从点A出发沿数轴正方向运动,动点Q同时从点B出发也沿数轴正方向运动,点P的速度是每秒3个单位长度,点Q的速度是每秒1个单位长度,求运动几秒后,点P可以追上点Q?(3)在数轴上找一点M,使点M到A、B、C三点的距离之和等于12,请求出所有点M对应的数.练习2、如图,数轴上A点表示的数是﹣2,B点表示的数是5,C点表示的数是10.(1)若要使A、C两点所表示的数是一对相反数,则“原点”表示的数是:.(2)若此时恰有一只老鼠在B点,一只小猫在C点,老鼠发现小猫后立即以每秒一个单位的速度向点A 方向逃跑,小猫随即以每秒两个单位的速度追击.①在小猫未抓住老鼠前,用时间t(秒)的代数式表示老鼠和小猫在移动过程中分别与点A之间的距离;②小猫逮住老鼠时的“位置”恰好在,求时间t.练习3、如图,已知A,B两点在数轴上,点A表示的数为﹣10,OB=3OA,点M以每秒3个单位长度的速度从点A向右运动.点N以每秒2个单位长度的速度从点O向右运动(点M、N同时出发)(1)请你写出数轴上点B对应的数;(2)当运动的时间为3秒时,请你求出此时点M、N在数轴上对应的数,并求出M、N之间的距离;(3)经过几秒,点M、点N分别到原点O的距离相等.练习4、如图,点O为数轴原点,点A表示的数是4,将线段OA沿数轴移动,移动后的线段记为O′A′.(1)当点O′恰好是OA的中点时,数轴上点A′表示的数为.(2)设点A的移动距离AA′=x.①当O′A=1时,求x的值;②D为线段AA′的中点,点E在线段OO′上,且OE=OO′,当点D,E所表示的数互为相反数时,求x的值.例3、如图,在数轴上点A表示的有理数为﹣6,点B表示的有理数为6,点P从点A出发以每秒2个单位长度的速度由A→B→A运动,同时,点Q从点B出发以每秒1个单位长度的速度由B→A运动,当点Q 到达点A时P、Q两点停止运动,设运动时间为t(单位:秒).(1)求t=2时,求点P和点Q表示的有理数;(2)求点P与点Q第一次重合时的t值;(3)当t的值为多少时,点P表示的有理数与点Q表示的有理数距离是3个单位长度?练习1、动点A从原点出发沿数轴的负方向运动,同时动点B也从原点出发沿数轴的正方向运动,且动点B的速度是动点A的速度的2倍(速度单位:1个单位长度/秒).运动2秒钟时,动点A,B相距6个单位长度(1)若设动点A的运动速度为x个单位长度/秒,则可列方程为::(2)若动点A,B运动3秒时都停止,则此时动点A,B在数轴上表示的数分别为:A,B:;(直接写出结果)(3)若动点A,B分别从(2)中的位置再次同时开始在数轴上按原来的速度运动,但运动方向不限,问经过几秒钟,A,B两点相距6个单位长度?练习2、如图,A、B分别为数轴上的两点,A点对应的数为﹣20,B点对应的数为100.(1)请写出与A、B两点距离相等的点M所对应的数;(2)现有一只电子蚂蚁P从B点出发,以6个单位/秒的速度向左运动,同时另一只电子蚂蚁Q恰好从A 点出发,以4个单位/秒的速度向右运动,设两只电子蚂蚁在数轴上的C点相遇,你知道C点对应的数是多少吗?(3)若当电子蚂蚁P从B点出发时,以6个单位/秒的速度向左运动,同时另一只电子蚂蚁Q恰好从A 点出发,以4个单位/秒的速度也向左运动,请问:当它们运动多少时间时,两只蚂蚁间的距离为20个单位长度?练习3、如图,数轴上线段AB=2(单位长度),CD=4(单位长度),点A在数轴上表示的数是﹣4,点C 在数轴上表示的数是4,若线段AB以3个单位长度/秒的速度向右匀速运动,同时线段CD以1个单位长度/秒的速度向左匀速运动.(1)问运动多少秒时BC=2(单位长度)?(2)线段AB与线段CD从开始相遇到完全离开共经过多长时间?(3)P是线段AB上一点,当B点运动到线段CD上,且点P不在线段CD上时,是否存在关系式BD﹣AP=3PC.若存在,求线段PD的长;若不存在,请说明理由.练习4、如图,将一条数轴在原点O和点B处各折一下,得到一条“折线数轴”.图中点A表示﹣10,点B表示10,点C表示18,我们称点A和点C在数轴上相距28个长度单位.动点P从点A出发,以2单位/秒的速度沿着“折线数轴”的正方向运动,从点O运动到点B期间速度变为原来的一半,之后立刻恢复原速;同时,动点Q从点C出发,以1单位/秒的速度沿着数轴的负方向运动,从点B运动到点O期间速度变为原来的两倍,之后也立刻恢复原速.设运动的时间为t秒.问:(1)动点P从点A运动至C点需要多少时间?(2)P、Q两点相遇时,求出相遇点M所对应的数是多少;(3)求当t为何值时,P、O两点在数轴上相距的长度与Q、B两点在数轴上相距的长度相等.例4、如图,已知A,B两点在数轴上,点A在原点O的左边,表示的数为﹣10,点B在原点的右边,且BO=3AO.点M以每秒3个单位长度的速度从点A出发向右运动.点N以每秒2个单位长度的速度从点O出发向右运动(点M,点N同时出发).(1)数轴上点B对应的数是,点B到点A的距离是;(2)经过几秒,原点O是线段MN的中点?(3)经过几秒,点M,N分别到点B的距离相等?练习1、如图1,已知数轴上有三点A、B、C,它们对应的数分别为a、b、c,且c﹣b=b﹣a;点C对应的数是10.(1)若BC=15,求a、b的值;(2)如图2,在(1)的条件下,O为原点,动点P、Q分别从A、C同时出发,点P向左运动,运动速度为2个单位长度/秒,点Q向右运动,运动速度为1个单位长度/秒,N为OP的中点,M为BQ的中点.①用含t代数式表示PQ、MN;②在P、Q的运动过程中,PQ与MN存在一个确定的等量关系,请指出它们之间的关系,并说明理由.练习2、已知数轴上三点M,O,N对应的数分别为﹣1,0,3,点P为数轴上任意点,其对应的数为x.(1)MN的长为;(2)如果点P到点M、点N的距离相等,那么x的值是:;(3)如果点P以每分钟2个单位长度的速度从点O向左运动,同时点M和点N分别以每分钟2个单位长度和每分钟3个单位长度的速度也向左运动.设t分钟时点P到点M、点N的距离相等,求t的值.例5、数轴上,若点A、B表示的数分别是﹣1和﹣3,一个点从A出发向右移动5cm到达C点,用1个单位长度表示1cm(1)请在数轴上标出A,B,C三点的位置,并直接写出线段BC的长度:BC=;(2)若点M在数轴上表示的数是x,且MA=3cm,则x的值是;(3)若点B以每秒2cm的速度向左移动至点P1,同时点A、C分别以每秒1cm和4cm的速度向右移动至点P2、P3,设移动时间为t秒,试探索:P3P2﹣P1P2的值是否会随着t的变化而变化?请说明理由.练习1、已知b是最小的正整数,且(c﹣5)2与|a+b|互为相反数(1)请直接写出a,c的值:a=,c=;(2)在(1)的条件下,若点P为一动点,其对应的数为x,点P在0到2之间运动,即0≤x≤2时,化简:|x+1|﹣|x﹣1|+3|x﹣2|;(3)在(1)(2)的条件下,a,b,c分别对应的点A、B、C开始在数轴上运动,若点A以每秒1个单位长度的速度向左运动,同时,点B和点C分别以每秒2个单位长度和5个单位长度的速度向右运动,假设t秒钟过后,若点B与点C之间的距离表示为BC,点A与点B之间的距离表示为AB.请问:BC﹣AB的值是否随着时间t的变化而改变?若变化,请说明理由;若不变,请求其值.练习2、数轴上线段的长度可以用线段端点表示的数进行减法运算得到,例如:如图①,若点A,B在数轴上分别对应的数为a,b(a<b),则AB的长度可以表示为AB=b﹣a.请你用以上知识解决问题:如图②,一个点从数轴上的原点开始,先向左移动2个单位长度到达A点,再向右移动3个单位长度到达B点,然后向右移动5个单位长度到达C点.(1)请你在图②的数轴上表示出A,B,C三点的位置.(2)若点A以每秒1个单位长度的速度向左移动,同时,点B和点C分别以每秒2个单位长度和3个单位长度的速度向右移动,设移动时间为t秒.①当t=2时,求AB和AC的长度;②试探究:在移动过程中,3AC﹣4AB的值是否随着时间t的变化而改变?若变化,请说明理由;若不变,请求其值.二、巩固练习1、如图,已知数轴上点A表示的数为﹣12,点B在点A右边,且OA=2OB.(1)写出数轴上点B表示的数;(2)点M为数轴上一点,若AM﹣BM=4,求出点M表示的数.2、如图,点O为原点,已知数轴上点A和点B所表示的数分别为﹣12和8,动点M从点A出发,以每秒3个单位长度的速度沿数轴向右匀速运动,同时动点N从点B出发,以每秒2个单位长度的速度沿数轴向左匀速运动,设运动时间为t秒.(1)当t=2时,AM=个单位长度,BN=个单位长度,此时MN的中点C所对应的有理数为;(2)在运动过程中,当MN=AB时,求点M所对应的有理数.3、已知如图,在数轴上有A,B两点,所表示的数分别为﹣10,﹣4,点A以每秒5个单位长度的速度向右运动,同时点B以每秒3个单位长度的速度也向右运动,如果设运动时间为t秒,解答下列问题:(1)运动前线段AB的长为;运动1秒后线段AB的长为;(2)运动t秒后,点A,点B运动的距离分别为和;(3)求t为何值时,点A与点B恰好重合;(4)在上述运动的过程中,是否存在某一时刻t,使得线段AB的长为5,若存在,求t的值;若不存在,请说明理由.4、如图,已知数轴上点A表示的数为6,点B表示的数为﹣4,C为线段AB的中点,动点P从点B出发,以每秒2个单位长度的速度沿数轴向右匀速运动,设运动时间为t(t>0)秒.(1)点C表示的数是(2)当t=秒时,点P到达点A处;(3)点P表示的数是(用含字母t的代数式表示);(4)求t为多少秒时,线段PC的长为2个单位长度.5、如图,已知数轴上有A、C两点,分别对应的数为﹣400和200,动点P、Q分别从A、C两点同时出发向左运动,同时动点R从A点出发向右运动,点P、Q、R的速度分别为每秒10、5、2个单位长度,点M 为P、R的中点,点N为R、Q的中点,多少秒时恰好满足点M到点R的距离是点R到点N的距离的4倍(不考虑点R与点Q相遇之后的情形).6、如图,从数轴上的原点开始,先向左移动2cm到达A点,再向左移动4cm到达B点,然后向右移动10cm 到达C点.(1)用1个单位长度表示1cm,请你在题中所给的数轴上表示层A、B、C三点的位置;(2)把点C到点A的距离记为CA,则CA=cm;(3)若点B以每秒3cm的速度向左移动,同时A、C点以每秒lcm、5cm的速度向右移动,设移动时间为t(t>0)秒,试探究CA﹣AB的值是否会随着t的变化而改变?请说明理由.7、已知:A,B,C为数轴上三个运动的点,速度分别为a个单位/秒、b个单位/秒和c个单位/秒(a、b、c为正整数),且满足|5﹣a|+(b﹣3)2=1﹣c.(1)求A,B,C三点运动的速度;(2)若A,B两点分别从原点出发,向数轴正方向运动,C从表示+20的点出发同时向数轴的负方向运动,几秒后,C点恰好为AB的中点?11。
第1章 有理数培优训练试题(含解析)

浙教版七上数学第一章:有理数培优训练答案一.选择题:1.答案:B解析:∵053=-++b a ,∴,3,03-=∴=+a a 5,05=∴=-b b ,故选择B2.答案:D解析:∵ab <0, ∴a 、b 异号, ∵a+b <0,∴负数的绝对值大于正数的绝对值. 故选:D .3.答案:B解析:∵01≥-x ,即当1=x 时,|x ﹣1|+2的最小值为2,故选择B4.答案:B解析:∵21=2,22=4,23=8,24=16,25=32,26=64,27=128,28=256, 我们发现四次一循环,因为2......50442018=÷,故未位数为4,故选择B5.答案:A解析:∵0是有理数中的其中一个数,它可以表示很多种不同的意义,故①错误; ∵整数包括正整数、负整数和零,故②错误; ∵正数和负数中有不是有理数的数,故③错误; ∵没有最小的整数,故④错误;∵负分数是有理数,故⑤正确。
故选择A 6.答案:A解析:01<<-a ,01,01,0>+>-<∴a a a ,()()011<+-∴a a a ,故选择A7.答案:D解析:如果m 是一个有理数,当0>m 时,0<-m ;当0=m 时,0=-m ; 当0<m 时,0>-m ,故选择D8.答案:D解析:试题分析:0<a <1,取21=a ,所以21-=-a ,21=a ,21-=-a ,所以a a a a 11->->>,故本题选D.9.答案:B解析:∵0,0><b a 且b a >, ∴a b b a -<<-<,故选择B10.答案:A解析:因为102601710=, 98604930=, 92602315=, 99603320=, 95601912= 又10299989592<<<<,故中间一个数应是4930,故选择A二.填空题:11.答案:2解析:P 表示的数为1-,向右平移3个单位后P '表示的数为212.答案:5解析:∵212-的相反数为212,这两个数中间的整数为2,1,0,1,2--共5个。
七年级有理数培优题(有答案)

七年级有理数培优题(有答案) 有理数培优题基础训练题一、填空:1、在数轴上表示-2的点到原点的距离等于2.2、若|a|=-a,则a<0.3、任何有理数的绝对值都是非负数。
4、如果a+b=0,那么a、b一定是互为相反数。
5、将0.1毫米的厚度的纸对折20次,列式表示厚度是0.1*2^20毫米。
6、已知|a|=3,|b|=2,|a-b|=a-b,则a+b=5.7、|x-2|+|x+3|的最小值是1.8、在数轴上,点A、B分别表示-4/11、4/2,则线段AB 的中点所表示的数是0.9、若a,b互为相反数,则ab<0.10、若abc≠0,且P的绝对值为3,则(a+b+c)/(abc)+mn-p^2=3253.11、下列有规律排列的一列数:1、3、6、10、15、…,其中从左到右第100个数是5050.二、解答问题:1、已知x+3=0,|y+5|+4的值是4,z对应的点到-2对应的点的距离是7,求x、y、z这三个数两两之积的和。
解:由x+3=0得x=-3,|y+5|+4=4,解得|y+5|=0,y=-5,z到-2的距离为7,即|z-(-2)|=7,解得z=-9或5.两两之积的和为:x*y+x*z+y*z=(-3)*(-5)+(-3)*(-9)+(-5)*(-9)=72.3、若2x+|4-5x|+|1-3x|+4的值恒为常数,求x满足的条件及此时常数的值。
解:当4-5x>=0,1-3x>=0时,2x+|4-5x|+|1-3x|+4=2x+(4-5x)+(1-3x)+4=-4x+9;当4-5x=0时,2x+|4-5x|+|1-3x|+4=2x-(4-5x)+(1-3x)+4=-x+9;当4-5x>=0,1-3x=1/3时,2x+|4-5x|+|1-3x|+4的值为9;当1/34/5时,2x+|4-5x|+|1-3x|+4的值为-2x+7.4、若a,b,c为整数,且|a-b|^(2010)+|c-a|^(2010)=1,试求|c-a|+|a-b|+|b-c|的值。
有理数培优试题

1、设a 是最小的自然数,b 是最大的负整数,c 是绝对值最小的有理数,则a-b+c•的值为( )A.-1B.0C.1D.22、下列说法中正确的是( )A.两个负数相减,等于绝对值相减;B.两个负数的差一定大于零C.负数减去正数,等于两个负数相加D.正数减去负数,等于两个正数相减3、下列说法正确的是( )A 整数就是正整数和负整数B 负整数的相反数就是非负整数C 有理数中不是负数就是正数D 零是自然数,但不是正整数4如果两个有理数在数轴上的对应点在原点的同侧,那么这两个有理数的积( )A.一定为正B.一定为负C.为零D. 可能为正,也可能为负5.若干个不等于0的有理数相乘,积的符号( )A.由因数的个数决定B.由正因数的个数决定C.由负因数的个数决定D.由负因数和正因数个数的差为决6若三个不等的有理数的代数和为0,则下面结论正确的是( )A.3个加数全为0B.最少有2个加数是负数C.至少有1个加数是负数D.最少有2个加数是正数7、以下命题正确的是( ).(A )如果那么a 、b 都为零 (B )如果 ,那么a 、b 不都为零 (C )如果 ,那么a 、b 都为0(D )如果 ,那么a 、b 均不为零8、若23(2)0m n -++=,则2m n +的值为( )A .4-B .1-C .0D .49如图,数轴上一动点A 向左移动2个单位长度到达点B,再向右移动5个单位长度到达点C,若点C 表示的数为1,则点A 表示的数为( )A. 7B. 3C. -3D. -210满足b a b a +=-成立的条件是( )A. 0≥abB. 1>abC. 0≤abD. 1≤ab11若65,2522--=+-=x x B x x A ,则A 与B 的大小关系是( )A.A >BB.A=BC.A <BD. 无法确定12有1000个数排一行,其中任意相邻的三个数中,中间的数等于它前后两数的和,若第一个数和第二个数都是1,则第1000个数的和等于( )(A)1000 (B)1 (C)0 (D)-113.如果a+b >0,a-b <0,ab <0,则a 0,b 0,14.已知b b a b a 2=-++,在数轴上给出关于a 、b 的四种情况如图所示,则成立的是15.若5=x ,3=y ,且x y y x -=- ,则()=++y x y x16若2a+3b=2011,则代数式())9()(232b a b a b a +-+---=17.由四舍五入得来的近似数1.20,精确到 位,21.3万精确到 位,有效数字有 个18、已知P 是数轴上的一个点。
【精选】人教版七年级上册数学 有理数(培优篇)(Word版 含解析)

一、初一数学有理数解答题压轴题精选(难)1.同学们都知道表示5与-2之差的绝对值,实际上也可理解为5与-2两数在数轴上所对的两点之间的距离,试探索:(1)求 ________.(2)找出所有符合条件的整数,使得.满足条件的所有整数值有________(3)由以上探索,猜想对于任何有理数x,是否有最大值或最小值?如果有最大值或最小值是多少?有最________(填“最大”或“最小”)值是________.【答案】(1)7(2)-3,-2,-1,0,1,2;(3)最小;3【解析】【解答】(1)原式=|5+2|=7.故答案为: 7;(2)令x+3=0或x-2=0时,则x=-3或x=2.当x<-3时,- (x+3) - (x-2) =5 ,-x-3-x+2=5,解得x=-3(范围内不成立)当-3≤x≤2时,(x+3) - (x-2) = 5,x+3-x+1=4,0x=0,x为任意数,则整数x=-3,-2,-1, 0,1,当x>2时,(x+3) + (x-2) = 5,x=2(范围内不成立) .综上所述,符合条件的整数x有: -3, -2, -1, 0,1,2.故答案为:-3,-2,-1,0,1,2;(3) 由(2) 的探索猜想,对于任何有理数x,有最小值为3,令x-3=0或x-6=0时,则x=3,x=6当x<3时,-(x-3)-(x-6)=-2x+3﹥3当3≤x≤6时,x-3-(x-6)=3,当x>6时,x-3+x-6=2x-9>3∴对于任何有理数x,有最小值为3【分析】(1)直接去括号,再按照去绝对值的方法去掉绝对值就可以了;(2)要求x的整数值可以进行分段计算,令x+3=0或x-2=0时,分为3段进行计算,最后确定x的值.(3)根据(2)方法去绝对值,分为3种情况去绝对值符号,计算三种不同情况的值,最后讨论得出最小值.2.结合数轴与绝对值的知识回答下列问题:(1)数轴上表示4和1的两点之间的距离是________;表示-3和2两点之间的距离是________;一般地,数轴上表示数m和数n的两点之间的距离等于|m-n|.(2)如果|x+1|=3,那么x=________;(3)若|a-3|=2,|b+2|=1,且数a、b在数轴上表示的数分别是点A、点B,则A、B 两点间的最大距离是________.(4)若数轴上表示a的点位于-4与2之间,则|a+4|+|a-2=________.【答案】(1)3;5(2)2或-4(3)8(4)6【解析】【解答】解:数轴上表示4和1的两点之间的距离是:;表示和两点之间的距离是:故答案为:或或故答案为:或(3)或或当时,则两点间的最大距离是,当a=5,b=-1时,A、B两点间的距离是6,当a=1,b=-3时,A、B两点间的距离是4,当时,则两点间的最小距离是,则两点间的最大距离是,最小距离是故答案为:(4)数轴上表示a的点位于-4与2之间,则故答案为:【分析】(1)根据数轴上任意两点间的距离等于这两点所表示的数的绝对值即可算出答案;(2)根据绝对值的意义去绝对值的符号,再解方程即可;(3)根据绝对值的意义去绝对值的符号,再解方程求出a,b的值,然后分四种情况求出ab 之间的距离,再比大小即可;(4)根据数轴上的点所表示的数的特点可知-4<a<2,所以a+4>0,a-2<0,再根据绝对值的意义去绝对值符号并合并同类项即可.3.数轴上两点间的距离等于这两个点所对应的数的差的绝对值.例:点A、B在数轴上对应的数分别为a、b,则A、B两点间的距离表示为AB=|a﹣b|.根据以上知识解题:(1)点A在数轴上表示3,点B在数轴上表示2,那么AB=________.(2)在数轴上表示数a的点与﹣2的距离是3,那么a=________.(3)如果数轴上表示数a的点位于﹣4和2之间,那么|a+4|+|a﹣2|=________.(4)对于任何有理数x,|x﹣3|+|x﹣6|是否有最小值?如果有,直接写出最小值.如果没有.请说明理由.【答案】(1)1(2)1或-5(3)6(4)解:∵|a-3|+|a﹣6|表示a到3与a到6的距离的和,∴当3≤a≤6时,|a-3|+|a-6|= =3,当a>6或a<3时,|a-3|+|a﹣6|>3,∴|a-3|+|a﹣6|有最小值,最小值为3.【解析】【解答】(1)AB= =1,故答案为:1( 2 )∵数轴上表示数a的点与﹣2的距离是3,∴ =3,∴-2-a=3或-2-a=-3,解得:a=1或a=-5,故答案为:1或-5( 3 )数a位于﹣4与2之间,|a+4|+|a﹣2|表示a到-4与a到2的距离的和,∴|a+4|+|a﹣2|= =6,故答案为:6【分析】(1)根据数轴上两点间的距离等于这两个点所对应的数的差的绝对值即可算出答案;(2)根据数轴上两点间的距离等于这两个点所对应的数的差的绝对值列出方程,求解即可;(3)根据题意可知:此题其实质就是求数轴上表示数a的点到表示数字-4的点的距离与数轴上表示数a的点到表示数字2的点的距离的和,又数轴上表示数a的点位于-4与2之间,故该距离等于数轴上表示数字-4与表示数字2的点之间的距离,从而即可得出答案;(4)此题其实质就是求数轴上表示数a的点到表示数字3的点的距离与数轴上表示数a 的点到表示数字6的点的距离的和,从而分当3≤a≤6时,当a>6或a<3时三种情况考虑即可得出答案.4.如图,在数轴上点A表示的数a、点B表示数b,a、b满足|a-30|+(b+6)2=0.点O是数轴原点。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
有理数培优题 基础训练题一、填空:1、在数轴上表示-2的点到原点的距离等于( )。
2、若∣a ∣=-a,则a ( )0.3、任何有理数的绝对值都是( )。
4、如果a+b=0,那么a 、b 一定是( )。
5、将0.1毫米的厚度的纸对折20次,列式表示厚度是( )。
6、已知||3,||2,||a b a b a b ==-=-,则a b +=( )7、|2||3|x x -++的最小值是( )。
8、在数轴上,点A 、B 分别表示2141,-,则线段AB 的中点所表示的数是( )。
9、若,a b 互为相反数,,m n 互为倒数,P 的绝对值为3,则()20102a b mn p p++-=( )。
10、若abc ≠0,则||||||a b c a b c++的值是( ) . 11、下列有规律排列的一列数:1、43、32、85、53、…,其中从左到右第100个数是( )。
二、解答问题:1、已知x+3=0,|y+5|+4的值是4,z 对应的点到-2对应的点的距离是7,求x 、y 、 z 这三个数两两之积的和。
3、若2|45||13|4x x x +-+-+的值恒为常数,求x 满足的条件及此时常数的值。
4、若,,a b c 为整数,且20102010||||1a b c a -+-=,试求||||||c a a b b c -+-+-的值。
5、计算:-21 +65-127+209-3011+4213-5615+72176、应用拓展:将七只杯子放在桌上,使三只口朝上,四只口朝下。
现要求每次翻转其中任意四只,使它们杯口朝向相反,问能否经有限次翻转后,让所有杯子杯口朝下?能力培训题知识点一:数轴例1:已知有理数a 在数轴上原点的右方,有理数b 在原点的左方,那么( ) A .b ab < B .b ab > C .0>+b a D .0>-b a 拓广训练:1、如图b a ,为数轴上的两点表示的有理数,在a b b a a b b a ---+,,2,中,负数的个数有( )(“祖冲之杯”邀请赛试题)A .1B .2C .3D .43、把满足52≤<a 中的整数a 表示在数轴上,并用不等号连接。
2、利用数轴能直观地解释相反数;例2:如果数轴上点A 到原点的距离为3,点B 到原点的距离为5,那么A 、B 两点的距离为 。
拓广训练:1、在数轴上表示数a 的点到原点的距离为3,则._________3=-a2、已知数轴上有A 、B 两点,A 、B 之间的距离为1,点A 与原点O 的距离为3,那么所有满足条件的点B 与原点O 的距离之和等于 。
(市“迎春杯”竞赛题)3、利用数轴比较有理数的大小;例3:已知0,0<>b a 且0<+b a ,那么有理数b a b a ,,,-的大小关系是 。
(用“<”号连接)(市“迎春杯”竞赛题) 拓广训练:1、 若0,0><n m 且n m >,比较m n n m n m n m --+--,,,,的大小,并用“>”号连接。
例4:已知5<a 比较a 与4的大小拓广训练:1、已知3->a ,试讨论a 与3的大小2、已知两数b a ,,如果a 比b 大,试判断a 与b 的大小4、利用数轴解决与绝对值相关的问题。
例5: 有理数c b a ,,在数轴上的位置如图所示,式子c b b a b a -++++化简结果为( )A .c b a -+32B .c b -3C .c b +D .b c -拓广训练:1、有理数c b a ,,在数轴上的位置如图所示,则化简c c a b b a ------+11的结果为 。
2、已知b b a b a 2=-++,在数轴上给出关于b a ,的四种情况如图所示,则成立的是 。
① ② ③ ④3、已知有理数c b a ,,在数轴上的对应的位置如下图:则b a c a c -+-+-1化简后的结果是( ) (省初中数学竞赛选拨赛试题)A .1-bB .12--b aC .c b a 221--+D .b c +-21三、培优训练1、已知是有理数,且()()012122=++-y x ,那以y x +的值是( )A .21 B .23 C .21或23- D .1-或23 2、(07)如图,数轴上一动点A 向左移动2个单位长度到达点B ,C .若点C 表示的数为1,则点A 表示的数为( ) A.7B.3C.3-D.2-3、如图,数轴上标出若干个点,每相邻两点相距1个单位,点A 、B 、C 、D 对应的数分别是整数d c b a ,,,且102=-ad ,那么数轴的原点应是( ) A .A 点 B .B 点 C .C 点 D .D 点4、数d c b a ,,,所对应的点A ,B ,C ,D 在数轴上的位置如图所示,那么c a +与d b +的大小关系是( )A .d b c a +<+B .d b c a +=+C .d b c a +>+D .不确定的5、不相等的有理数c b a ,,在数轴上对应点分别为A ,B ,C ,若c a c b b a -=-+-,那么点B ( )A .在A 、C 点右边B .在A 、C 点左边 C .在A 、C 点之间D .以上均有可能 6、设11++-=x x y ,则下面四个结论中正确的是( )(全国初中数学联赛题) A .y 没有最小值 B .只一个x 使y 取最小值 C .有限个x (不止一个)使y 取最小值 D .有无穷多个x 使y 取最小值 7、在数轴上,点A ,B 分别表示31-和51,则线段AB 的中点所表示的数是 。
8、若0,0<>b a ,则使b a b x a x -=-+-成立的x 的取值围是 。
9、x 是有理数,则22195221100++-x x 的最小值是 。
10、已知d c b a ,,,为有理数,在数轴上的位置如图所示:且,64366====d c b a 求c b a b d a -+---22323的值。
11、(市中考题)(1)阅读下面材料:点A 、B 在数轴上分别表示实数b a ,,A 、B 两点这间的距离表示为AB ,当A 、B 两点中有一点在原点时,不妨设点A 在原点,如图1,b a b OB AB -===;当A 、B 两点都不在原点时, ①如图2,点A 、B 都在原点的右边b a a b a b OA OB AB -=-=-=-=;②如图3,点A 、B 都在原点的左边()b a a b a b OA OB AB -=---=-=-=; ③如图4,点A 、B 在原点的两边()b a b a b a OB OA AB -=-+=+=+=。
综上,数轴上A 、B 两点之间的距离b a AB -=。
(2)回答下列问题:①数轴上表示2和5两点之间的距离是 ,数轴上表示-2和-5的两点之间的距离是 ,数轴上表示1和-3的两点之间的距离是 ;②数轴上表示x 和-1的两点A 和B 之间的距离是 ,如果2=AB ,那么x 为 ; ③当代数式21-++x x 取最小值时,相应的x 的取值围是 ; ④求1997321-+⋅⋅⋅+-+-+-x x x x 的最小值。
聚焦绝对值一、阅读与思考绝对值是初中代数中的一个重要概念,引入绝对值概念之后,对有理数、相反数以及后续要学习的算术根可以有进一步的理解;绝对值又是初中代数中一个基本概念,在求代数式的值、代数式的化简、解方程与解不等式时,常常遇到含有绝对值符号的问题,理解、掌握绝对值概念应注意以下几个方面: 1、脱去绝值符号是解绝对值问题的切入点。
脱去绝对值符号常用到相关法则、分类讨论、数形结合等知识方法。
去绝对值符号法则:BAOB(A)O BAOoAOo()()()0000<=>⎪⎩⎪⎨⎧-=a a a a a a 2、恰当地运用绝对值的几何意义从数轴上看a 表示数a 的点到原点的距离;b a -表示数a 、数b 的两点间的距离。
3、灵活运用绝对值的基本性质 ①0≥a ②222a a a == ③b a ab ⋅= ④()0≠=b ba b a⑤b a b a +≤+ ⑥b a b a -≥- 二、知识点反馈 1、去绝对值符号法则例1:已知3,5==b a 且a b b a -=-那么=+b a 。
拓广训练:1、已知,3,2,1===c b a 且c b a >>,那么()=-+2c b a 。
(市“迎春杯”竞赛题)2、若5,8==b a ,且0>+b a ,那么b a -的值是( )A .3或13B .13或-13C .3或-3D .-3或-13 2、恰当地运用绝对值的几何意义例2: 11-++x x 的最小值是( ) A .2 B .0 C .1 D .-1 解法1、分类讨论当1-<x 时,()()221111>-=--+-=-++x x x x x ; 当11≤≤-x 时,()21111=--+=-++x x x x ; 当1>x 时()221111>=-++=-++x x x x x 。
比较可知,11-++x x 的最小值是2,故选A 。
解法2、由绝对值的几何意义知1-x 表示数x 所对应的点与数1所对应的点之间的距离;1+x 表示数x 所对应的点与数-1所对应的点之间的距离;11-++x x 的最小值是指x 点到1与-1两点距离和的最小值。
如图易知当11≤≤-x 时,11-++x x 的值最小,最小值是2故选A 。
拓广训练:1、 已知23++-x x 的最小值是a ,23+--x x 的最大值为b ,求b a +的值。
三、培优训练1、如图,有理数b a ,在数轴上的位置如图所示:则在4,2,,,2,--+---+b a b a a b a b b a 中,负数共有( )(省荆州市竞赛题) A .3个 B .1个 C .4个 D .2个 2、若m 是有理数,则m m -一定是( ) A .零 B .非负数 C .正数 D .负数3、如果022=-+-x x ,那么x 的取值围是( )A .2>xB .2<xC .2≥xD .2≤x4、b a ,是有理数,如果b a b a +=-,那么对于结论(1)a 一定不是负数;(2)b 可能是负数,其中( )(第15届省竞赛题)A .只有(1)正确B .只有(2)正确C .(1)(2)都正确D .(1)(2)都不正确 5、已知a a -=,则化简21---a a 所得的结果为( ) A .1- B .1 C .32-a D .a 23-6、已知40≤≤a ,那么a a -+-32的最大值等于( )A .1B .5C .8D .9 7、已知c b a ,,都不等于零,且abcabcc c b b a a x +++=,根据c b a ,,的不同取值,x 有( )A .唯一确定的值B .3种不同的值C .4种不同的值D .8种不同的值 8、满足b a b a +=-成立的条件是( )(省黄冈市竞赛题) A .0≥ab B .1>ab C .0≤ab D .1≤ab 9、若52<<x ,则代数式xx xx x x +-----2255的值为 。