高中数学_正弦定理和余弦定理教学设计学情分析教材分析课后反思
高中数学余弦定理教案
高中数学余弦定理教案(经典版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的经典范文,如工作总结、工作计划、演讲致辞、规章制度、合同协议、条据文书、励志名言、好词好句、教学资料、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, our store provides various types of classic sample essays, such as work summaries, work plans, speeches, rules and regulations, contract agreements, policy documents, inspirational quotes, good words and sentences, teaching materials, other sample essays, and more. If you want to learn about different sample formats and writing methods, please stay tuned!高中数学余弦定理教案通过编写教案,教师可以清晰地规划教学内容、目标和步骤,确保教学的有序进行。
"正弦定理和余弦定理"的教学反思
"正弦定理和余弦定理"的教学反思本节课是“正弦定理”教学的第二节课,其主要任务是通过对正弦定理的进一步理解,明确它在“已知三角形的两边及一边所对的角解三角形”方面的应用和运用正弦定理的变式来求三角形中的角和判断三角形的形状。
在知识目标方面:通过创设适宜的数学情境,引导鼓励学生大胆地提出问题、引导学生对所提的问题进行分析、整理,筛选出有价值的问题,注意启发学生揭示问题的数学实质,将提问推向深入。
通过问题的提出、解题方法的探索、到问题的解决、方法的总结、及练习题中方法的应用,都能紧抓公式及公式的变式,运用从特殊到一般、再从一般到特殊的思想方法达成知识目标。
通过练习及六个变式问题调动学生的学习热情,进而采用“正弦定理”、“大边对大角”、“三角形内角和定理”、“数形结合”等知识与方法有效突破本节课的教学难点。
使学生明白这一类数学问题该怎样解,让学生做到“学会数学,会学数学”在能力目标方面:通过例题、练及六个变式问题,培育学生观测、概括、归纳崭新科学知识的能力;通过“故意失效”,使学生“批评”、“找错”、“苏蒂县”,从而并使学生的思维具备批判性,优化他们的思维品质;通过课后练习及课后思索,进一步培育学生的数学意识,化解数学问题的能力。
在情感态度与价值观方面:本节课也很注重对学生非智力因素的培养,注重情感交流与情感的建立与培养。
并在教学过程中做到:与学生真诚相处、平等交流;依据自己的个人特点采取适当的方法与技巧,注重充分发挥教师的个人人格魅力,而非千篇一律的“柔声细语”;能借助信息技术及其它手段,营造一种氛围,一种情境,通过“课前音乐背景”的设置,“课堂上的掌声鼓励”“形体语言与语言艺术”的运用等,力争营造一种愉快、轻松的氛围,创建一个有助于师生,生生思维交流的“情感场”,使数学教学更具有生命力,感染力。
使学生在感悟数学的过程中感受数学的魅力,体验数学产生的美感与幸福感。
通过这文言的自学,不仅备考稳固了旧有科学知识,并使学生掌控了代莱有价值的科学知识,体会联系、发展等实事求是观点,而且培育了学生的应用领域意识和课堂教学操作能力,以及明确提出问题、解决问题等研究性自学的能力。
高中数学_余弦定理教学设计学情分析教材分析课后反思
《余弦定理》教课方案青岛 58中张笋《余弦定理》教课方案课题余弦定理(人教 A 版必修 5 第 1.1.2 节)课型教课理念设计思想教课过程设计新讲课课时安排 1 课时学是教课的出发点、落脚点,教课的中心、重心在学而不在教,教课应当环绕学来组织、设计、展开。
鉴于学生学习的教课不单是教课实质的表现,也是学生形成学科中心修养的必定要求。
新课程的数学倡导学生着手实践,自主研究,合作沟通,深刻地理解基本结论的实质,体验数学发现和创建的历程,力争对现实世界蕴涵的一些数学模式进行思虑,作出判断;同时要讨教师从知识的教授者向讲堂的设计者、组织者、指引者、合作者转变,从讲堂的履行者向实行者、研究开发者转变。
本课全力追求新课程要求,利用师生的互动合作,提高学生的数学思想能力,发展学生的数学应企图识和创新意识,深刻地领会数学思想方法及数学的应用,激发学生研究数学、应用数学知识的潜能。
①从切近学生生活中的实质问题的解决引入问题,让学生设计方案,如何用已知的两条边及其所夹的角来表示第三条边。
②余弦定理的证明:启迪学生从不一样的角度获取余弦定理的证明,或指引学生自己研究获取定理的证明。
③应用余弦定理解斜三角形。
教课过程详细流程教课教课内容环节青岛 58 中育英湖中有一座假山,现有卷尺和测角仪两种工具,请你设计合理的方案,来丈量假山界限上两点 A 和 B 之间的距离。
方案设计学生活动教师活动设计企图学生小组讨从学生每论,研究设计天的必经方案,画在方之路—育框内,小组代英湖提出表登台展现各问题,来个小组的研究源于生活成就。
展现简图,指导并中的问题能激发学组织学生议论、展生的学习示各个小组的设计兴趣,提方案,指导学生进高学习积行可行性研究。
极性。
让在此环节中,学生学生进一可能提出多种不一样起码展现四组步领会到的设计方案,老师学生的设计方数学根源引领学生进行可行案。
于生活,性剖析,找出方案数学服务中共同需要解决的于生活。
问题。
《余弦定理》教课方案青岛 58中张笋几种可行方案归根究竟都是已知三角形两边及夹角,求第三边的问题。
正弦定理和余弦定理的运用教案
正弦定理和余弦定理的运用教案正文:正弦定理和余弦定理的运用教案一、教学目标1. 理解正弦定理和余弦定理的含义和基本公式;2. 掌握正弦定理和余弦定理在解决三角形相关问题中的应用方法;3. 培养学生的逻辑思维能力和解决实际问题的能力。
二、教学重点1. 正弦定理的推导和应用;2. 余弦定理的推导和应用。
三、教学难点1. 正弦定理和余弦定理的理解和记忆;2. 通过具体问题实际运用,使学生深入理解定理的应用方法。
四、教学准备1. 教材:三角函数学科教材;2. 工具:投影仪、黑板、粉笔、直尺、量角器。
五、教学过程Ⅰ. 导入(10分钟)1. 教师简要复习三角比的概念和计算方法;2. 教师引导学生思考:在已知某一角的情况下,如何确定三角形的边长呢?Ⅱ. 正弦定理的推导和应用(20分钟)1. 教师通过投影仪展示正弦定理的基本公式:a/sinA = b/sinB =c/sinC;2. 教师讲解正弦定理的推导过程,并与学生一同完成推导;3. 教师给出具体问题,引导学生运用正弦定理解决问题,并逐步引导学生总结出应用方法。
Ⅲ. 余弦定理的推导和应用(20分钟)1. 教师通过投影仪展示余弦定理的基本公式:c² = a² + b² - 2abcosC;2. 教师讲解余弦定理的推导过程,并与学生一同完成推导;3. 教师给出具体问题,引导学生运用余弦定理解决问题,并逐步引导学生总结出应用方法。
Ⅳ. 正弦定理和余弦定理的综合应用(25分钟)1. 教师给出一些复合问题,要求学生结合正弦定理和余弦定理解决问题;2. 学生分组讨论、解答问题,并在黑板上展示解题过程;3. 教师组织学生展示解题思路和方法,并针对不同解题方法进行及时点评。
Ⅴ. 拓展应用(15分钟)1. 教师布置一些拓展性应用题,要求学生在课后完成;2. 学生自主学习拓展内容,并在下节课讲解时与教师进行互动讨论。
Ⅵ. 总结与作业(10分钟)1. 教师对本节课的要点进行总结,并强调正弦定理和余弦定理的重要性;2. 布置作业:完成课后习题,复习和巩固所学知识。
"正弦定理和余弦定理"的教学反思
"正弦定理和余弦定理"的教学反思数学是人类探索客观世界的工具,由于其客观、准确的特点,它一直是科学文明的重要组成部分。
在对其的探索过程中,数学常常揭示出美丽的规律,每一个规律都是客观世界的一部分。
其中,正弦定理和余弦定理是数学研究的重要工具,也是中学数学的核心内容。
正弦定理和余弦定理是由德国数学家克尔舍瓦在17-19世纪末期研究出来的,它们用于推导三角形角度、面积大小等问题。
正弦定理表明,如果一个三角形有两个边长和一个角度,则可以根据正弦定理求出这个三角形的第三边长;余弦定理则允许我们求出三角形的第三个角度。
此外,它们还可以用于求解各种几何图形的面积和长度。
在中学数学课程中,学习正弦定理和余弦定理是非常重要的,因为它们是理解更复杂数学概念的基础。
然而,由于这两个定理涉及复杂的数学公式,很多学生在学习过程中遇到了困难。
为了解决学生学习正弦定理和余弦定理的困难,我在教学中采取了如下措施:首先,我使用了循环学习法,主要包括讲解、实例分析、练习和评估等,以助于学生理解正弦定理和余弦定理的基本概念;其次,我在实践活动中使用动态图像技术,让学生看到定理的原理应用,同时还增加了动态视频技术,使学生更加沉浸在正弦定理和余弦定理的学习之中;最后,在课堂上,我主动与学生讨论,帮助学生解决计算和理解方面的问题。
通过以上措施,我发现学生对正弦定理和余弦定理的理解有很大的提高。
学生们能够熟练地运用它们来解决各种几何问题,具有良好的分析能力。
虽然教学效果已经显著提高,但是在以后的教学中,有必要定期对学生的学习状况进行评估,以了解学生对正弦定理和余弦定理的深入理解程度,并不断改进教学方法,确保学生能够全面、准确地掌握正弦定理和余弦定理。
正弦定理和余弦定理是中学数学课程中一个重要的知识点,但教学难度比较高,学生容易产生困惑。
为此,我通过循环学习法、动态图像技术、动态视频技术及主动讨论的方式,努力帮助学生理解正弦定理和余弦定理,取得了良好的教学效果。
正弦定理和余弦定理教案学情分析
正弦定理和余弦定理教案学情分析标题:正弦定理和余弦定理教案学情分析学情分析:1.学生背景知识:在初中阶段,学生应已熟悉直角三角形的基本概念和常见定理,如勾股定理和正弦、余弦、正切等函数的基本概念和性质。
2.学生认知水平:学生对于前文所提到的三角函数应有一定的理解,并有能力在三角形中应用这些函数进行计算。
此外,学生应该具备解决简单方程和应用比例的能力。
3.学生学习态度:学生的学习态度可能因为抽象的数学概念和符号操作而出现挫折感。
因此,需要通过具体的实例和互动活动来激发学生的学习兴趣,并提供足够的实践机会来加深对概念的理解和应用能力。
教案内容:1.教学目标:- 熟练掌握正弦定理和余弦定理的概念和基本公式;- 能够根据给定条件应用正弦定理和余弦定理解决实际问题;- 培养学生的逻辑思维能力和问题解决能力。
2.教学重难点:- 教学重点:正弦定理和余弦定理的概念和应用;- 教学难点:如何分析问题,确定适用的定理,并应用数学知识解决实际问题。
3.教学方法和教学手段:- 引导式授课:通过问题导向的方式引导学生思考,激发他们的学习兴趣。
- 情境模拟:通过实际场景模拟和计算机辅助教学等方式,将学生置身于实际应用情境中,增强他们对知识点的理解和记忆。
- 小组合作学习:通过小组活动和合作探究,培养学生的合作能力和解决问题的能力。
4.教学步骤:- 导入:通过展示一些与三角形相关的实际问题激发学生的兴趣,引起他们对本节知识的探究欲望。
- 知识讲解:简明扼要地介绍正弦定理和余弦定理的概念和基本公式,通过具体的图例进行演示。
- 实例演练:提供一些实际问题,引导学生根据已知条件进行分析并应用相应的定理解决问题。
- 学生合作探究:分组让学生自主探究并讨论解决一些更复杂的问题,鼓励他们彼此思考和合作,促进深层次的学习。
- 拓展延伸:引导学生举一反三,应用所学知识解决更多实际问题,并与其他数学概念进行关联。
- 总结归纳:总结本节课学到的内容和方法,并强调重要的概念和技巧。
高中数学_余弦定理教学设计学情分析教材分析课后反思
学情分析:从知识层面上看,高中学生通过前一节课的学习已经掌握了余弦定理及其推导过程;从能力层面上看,学生初步掌握运用余弦定理解决一些简单的斜三角形问题的技能;从情感层面上看,学生对教学新内容的学习有相当的兴趣和积极性,但在探究问题的能力以及合作交流等方面的发展不够均衡。
效果分析:知识的掌握。
有60%的学生能够达到A,35%的学生能够达到B,5%的学生属于C。
前两种学生平时的学习习惯较好,方法科学,第三种学生基础较差,学习习惯和方法均存在问题。
思维能力的发展。
10%的学生能够达到A,65%的学生能够达到B,25%的学生属于C。
第一种是平时表现特别积极、敢于展现、大胆发言的学生。
第二种是平时表现比较积极,在课堂活动中能够积极参与的学生。
第三种平时默默无闻,不敢发言和表现。
合作交流。
66%的学生能够达到A,26%的学生能够达到B,8%的学生属于C。
教材分析:《余弦定理》是必修5第一章《解三角形》的第一节内容,前面已经学习了正弦定理以及必修4中的任意角、诱导公式以及恒等变换,为后面学习三角函数奠定了基础,因此本节课有承上启下的作用。
本节课是解决有关斜三角形问题以及应用问题的一个重要定理,它将三角形的边和角有机地联系起来,实现了"边"与"角"的互化,从而使"三角"与"几何"产生联系,为求与三角形有关的量提供了理论依据,同时也为判断三角形形状,证明三角形中的有关等式提供了重要依据。
"余弦定理"也是初中"勾股定理"内容的直接延拓,它是三角函数一般知识和平面向量知识在三角形中的具体运用,是解可转化为三角形计算问题的其它数学问题及生产、生活实际问题的重要工具具有广泛的应用价值,起到承上启下的作用。
测评练习1.在△ABC中,已知a=4,b=6,C=120°,则边c的值是( )A.8 B.217 C.62 D.2192.在△ABC中,已知a=2,b=3,C=120°,则sin A的值为( )A.5719B.217C.338 D.-57193.在△ABC中,符合余弦定理的是( )A.c2=a2+b2-2abcos CB.c2=a2-b2-2bccos AC.b2=a2-c2-2bccos AD.cos C=a2+b2+c22ab4.在△ABC中,若a=10,b=24,c=26,则最大角的余弦值是( )A.1213B.513 C.0 D.235.已知△ABC的三边分别为2,3,4,则此三角形是( )A.锐角三角形 B.钝角三角形C.直角三角形 D.不能确定6.在△ABC中,已知a2=b2+bc+c2,则角A为( )A.π3B.π6C.2π3D.π3或2π37.在△ABC中,下列关系式①asin B=bsin A②a=bcos C+ccos B③a2+b2-c2=2abcos C④b=csin A+asin C一定成立的有( )A.1个 B.2个C.3个 D.4个8.在△ABC中,已知b2=ac且c=2a,则cos B等于( )A.14B.34C.24D.239.在△ABC中,若A=120°,AB=5,BC=7,则AC=________.10.已知三角形的两边分别为4和5,它们的夹角的余弦值是方程2x2+3x-2=0的根,则第三边长是________.11.在△ABC中,若sin A∶sin B∶sin C=5∶7∶8,则B的大小是________.12.如果等腰三角形的周长是底边长的5倍,那么它的顶角的余弦值为__________.13.在△ABC中,若B=60°,2b=a+c,试判断△ABC的形状.14.已知在△ABC中,cos A=35,a=4,b=3,求角C.15.在△ABC中,a、b、c分别是角A、B、C所对的边长,若(a+b+c)(sin A+sin B-sin C)=3asin B,求C的大小.16.在△ABC中,b=asin C,c=acos B,试判断△ABC的形状.课后反思:本课是在学生学习了三角函数、平面几何、平面向量、正弦定理的基础上而设置的教学内容,因此本课的教学有较多的处理办法。
《余弦定理、正弦定理应用举例》教案、导学案、课后作业
《6.4.3 余弦定理、正弦定理》教案第3课时余弦定理、正弦定理应用举例【教材分析】三角形中的几何计算问题主要包括长度、角、面积等,常用的方法就是构造三角形,把所求的问题转化到三角形中,然后选择正弦定理、余弦定理加以解决,有的问题与三角函数联系比较密切,要熟练运用有关三角函数公式.【教学目标与核心素养】课程目标1、能够运用正弦定理、余弦定理等知识和方法解决一些有关测量距离的实际问题,了解常用的测量相关术语;2、激发学生学习数学的兴趣,并体会数学的应用价值;同时培养学生运用图形、数学符号表达题意和应用转化思想解决数学问题的能力.数学学科素养1.数学抽象:方位角、方向角等概念;2.逻辑推理:分清已知条件与所求,逐步求解问题的答案;3.数学运算:解三角形;4.数学建模:数形结合,从实际问题中抽象出一个或几个三角形,然后通过解这些三角形,得到所求的量,从而得到实际问题的解.【教学重点和难点】重点:由实际问题中抽象出一个或几个三角形,然后逐个解决三角形,得到实际问题的解;难点:根据题意建立数学模型,画出示意图.【教学过程】一、情景导入在古代,天文学家没有先进的仪器就已经估算出了两者的距离,是什么神奇的方法探索到这个奥秘的呢?我们知道,对于未知的距离、高度等,存在着许多可供选择的测量方案,但是没有足够的空间,不能用全等三角形的方法来测量,所以,有些方法会有局限性。
于是上面介绍的问题是用以前的方法所不能解决的。
那么运用正弦定理、余弦定理能否解决这些问题?又怎么解决?要求:让学生自由发言,教师不做判断。
而是引导学生进一步观察.研探.二、预习课本,引入新课阅读课本48-51页,思考并完成以下问题1、方向角和方位角各是什么样的角?2、怎样测量物体的高度?3、怎样测量物体所在的角度?要求:学生独立完成,以小组为单位,组内可商量,最终选出代表回答问题。
三、新知探究1、实际测量中的有关名称、术语四、典例分析、举一反三题型一测量高度问题例1 济南泉城广场上的泉标是隶书“泉”字,其造型流畅别致,成了济南的标志和象征.李明同学想测量泉标的高度,于是他在广场的A 点测得泉标顶端的仰角为60°,他又沿着泉标底部方向前进15.2 m ,到达B 点,测得泉标顶部仰角为80°.你能帮李明同学求出泉标的高度吗?(精确到1 m)【答案】泉城广场上泉标的高约为38 m.【解析】如图所示,点C ,D 分别为泉标的底部和顶端.依题意,∠BAD =60°,∠CBD =80°,AB =15.2 m ,则∠ABD =100°,故∠ADB =180°-(60°+100°)=20°.在△ABD 中,根据正弦定理,BD sin 60°=AB sin ∠ADB . ∴BD =AB ·sin 60°sin 20°=15.2·sin 60°sin 20°≈38.5(m). 在Rt △BCD 中,CD =BD sin 80°=38.5·sin 80°≈38(m),即泉城广场上泉标的高约为38 m.解题技巧(测量高度技巧)(1)在测量高度时,要理解仰角、俯角的概念,仰角和俯角都是在同一铅垂面内,视线与水平线的夹角;(2)准确理解题意,分清已知条件与所求,画出示意图;(3)运用正、余弦定理,有序地解相关的三角形,逐步求解问题的答案,注意方程思想的运用.跟踪训练一1、乙两楼相距200 m ,从乙楼底望甲楼顶的仰角为60°,从甲楼顶望乙楼顶的俯角为30°,则甲、乙两楼的高分别是多少?【答案】甲楼高为200 3 m ,乙楼高为40033m. 【解析】如图所示,AD 为乙楼高,BC 为甲楼高.在△ABC 中,BC =200×tan 60°=2003,AC =200÷sin 30°=400,由题意可知∠ACD =∠DAC =30°,∴△ACD 为等腰三角形.由余弦定理得AC 2=AD 2+CD 2-2AD ·CD ·cos 120°,4002=AD 2+AD 2-2AD 2×⎝ ⎛⎭⎪⎫-12=3AD 2,AD 2=40023,AD =40033.故甲楼高为200 3 m ,乙楼高为40033 m. 题型二 测量角度问题例2 如图所示,A ,B 是海面上位于东西方向相距5(3+3) n mile 的两个观测点.现位于A 点北偏东45°方向、B 点北偏西60°方向的D 点有一艘轮船发出求救信号,位于B 点南偏西60°且与B 点相距20 3 n mile 的C 点的救援船立即前往营救,其航行速度为30n mile/h ,则该救援船到达D 点需要多长时间?【答案】 救援船到达D 点需要的时间为1 h. 【解析】由题意,知AB =5(3+3)n mile ,∠DBA =90°-60°=30°,∠DAB =90°-45°=45°,∴∠ADB =180°-(45°+30°)=105°.在△DAB 中,由正弦定理得BD sin ∠DAB =AB sin ∠ADB, 即BD =AB sin ∠DAB sin ∠ADB===10 3 n mile.又∠DBC =∠DBA +∠ABC =60°,BC =20 3 n mile , 3)sin 45sin1055(33)sin 4545cos 60cos 45sin 60++∴在△DBC 中,由余弦定理,得CD =BD 2+BC 2-2BD ·BC cos ∠DBC = 300+1 200-2×103×203×12=30 n mile , 则救援船到达D 点需要的时间为3030=1 h. 解题技巧: (测量角度技巧)测量角度问题的关键是根据题意和图形及有关概念,确定所求的角在哪个三角形中,该三角形中已知哪些量,需要求哪些量.通常是根据题意,从实际问题中抽象出一个或几个三角形,然后通过解这些三角形,得到所求的量,从而得到实际问题的解.跟踪训练二1、在海岸A 处,发现北偏东45°方向,距离A 处(3-1)n mile 的B 处有一艘走私船,在A 处北偏西75°的方向,距离A 2 n mile 的C 处的缉私船奉命以10 3 n mile 的速度追截走私船.此时,走私船正以10 n mile/h 的速度从B 处向北偏东30°方向逃窜,问缉私船沿什么方向能最快追上走私船?【答案】缉私船沿北偏东60°方向能最快追上走私船.【解析】 设缉私船用t h 在D 处追上走私船,画出示意图,则有CD =103t ,BD =10t ,在△ABC 中,∵AB =3-1,AC =2,∠BAC =120°,∴由余弦定理,得BC 2=AB 2+AC 2-2AB ·AC ·cos∠BAC =(3-1)2+22-2·(3-1)·2·cos 120°=6,∴BC =6,且sin ∠ABC =ACBC ·sin∠BAC =26·32=22, ∴∠ABC =45°,∴BC 与正北方向成90°角.∴∠CBD =90°+30°=120°,在△BCD 中,由正弦定理,得sin ∠BCD =BD ·sin∠CBD CD =10t sin 120°103t=12,∴∠BCD =30°.即缉私船沿北偏东60°方向能最快追上走私船.题型三 测量距离问题例3 如图所示,要测量一水塘两侧A ,B 两点间的距离,其方法先选定适当的位置C ,用经纬仪测出角α,再分别测出AC ,BC 的长b ,a 则可求出A ,B 两点间的距离.若测得CA=400 m ,CB =600 m ,∠ACB =60°,试计算AB 的长.【答案】A ,B 两点间的距离为2007 m.【解析】在△ABC 中,由余弦定理得AB 2=AC 2+BC 2-2AC ·BC cos ∠ACB ,∴AB 2=4002+6002-2×400×600cos 60°=280 000.∴AB =2007 (m).即A ,B 两点间的距离为2007 m.例4 如图所示,A ,B 两点在一条河的两岸,测量者在A 的同侧,且B 点不可到达,要测出A ,B 的距离,其方法在A 所在的岸边选定一点C ,可以测出A ,C 的距离m ,再借助仪器,测出∠ACB =α,∠CAB =β,在△ABC 中,运用正弦定理就可以求出AB .若测出AC =60m ,∠BAC =75°,∠BCA =45°,则A ,B 两点间的距离为________ m.【答案】20 6 .【解析】∠ABC =180°-75°-45°=60°,所以由正弦定理得,AB sin C =AC sin B , ∴AB =AC ·sin C sin B =60×sin 45°sin 60°=206(m). 即A ,B 两点间的距离为20 6 m.解题技巧(测量距离技巧)当A,B两点之间的距离不能直接测量时,求AB的距离分为以下三类:(1)两点间不可通又不可视(如图①):可取某点C,使得A,B与C之间的距离可直接测量,测出AC=b,BC=a以及∠ACB=γ,利用余弦定理得:AB=a2+b2-2ab cos γ.(2)两点间可视但不可到达(如图②):可选取与B同侧的点C,测出BC=a以及∠ABC 和∠ACB,先使用内角和定理求出∠BAC,再利用正弦定理求出AB.(3)两点都不可到达(如图③):在河边测量对岸两个建筑物之间的距离,可先在一侧选取两点C,D,测出CD=m,∠ACB,∠BCD,∠ADC,∠ADB,再在△BCD中求出BC,在△ADC 中求出AC,最后在△ABC中,由余弦定理求出AB.跟踪训练三1.如图,A,B两点在河的同侧,且A,B两点均不可到达,测出A,B的距离,测量者可以在河岸边选定两点C,D,测得CD=a,同时在C,D两点分别测得∠BCA=α,∠ACD=β,∠CDB=γ,∠BDA=δ.在△ADC和△BDC中,由正弦定理分别计算出AC和BC,再在△ABC中,应用余弦定理计算出AB.若测得CD=32km,∠ADB=∠CDB=30°,∠ACD=60°,∠ACB=45°,求A,B两点间的距离.【答案】A,B两点间的距离为64km.【解析】∵∠ADC=∠ADB+∠CDB=60°,∠ACD=60°,∴∠DAC=60°,∴AC=DC=32.在△BCD中,∠DBC=45°,由正弦定理,得BC =DC sin ∠DBC ·sin∠BDC =32sin 45°·sin 30°=64. 在△ABC 中,由余弦定理,得AB 2=AC 2+BC 2-2AC ·BC cos 45°=34+38-2×32×64×22=38. ∴AB =64(km).∴A ,B 两点间的距离为64km. 五、课堂小结让学生总结本节课所学主要知识及解题技巧六、板书设计七、作业课本51页练习,52页习题6.4中剩余题.【教学反思】对于平面图形的计算问题,首先要把所求的量转化到三角形中,然后选用正弦定理、余弦定理解决.构造三角形时,要注意使构造三角形含有尽量多个已知量,这样可以简化运算.学生在这里的数量关系比较模糊,需要强化,三角形相关知识点需要简单回顾。
高中数学正弦定理教案(最新4篇)
高中数学正弦定理教案(最新4篇)高中数学正弦定理教案篇一一、教材分析1.教材地位和作用在初中,学生已经学习了三角形的边和角的基本关系;同时在必修4 ,学生也学习了三角函数、平面向量等内容。
这些为学生学习正弦定理提供了坚实的基础。
正弦定理是初中解直角三角形的延伸,是揭示三角形边、角之间数量关系的重要公式,本节内容同时又是学生学习解三角形,几何计算等后续知识的基础,而且在物理学等其它学科、工业生产以及日常生活等常常涉及解三角形的问题。
依据教材的上述地位和作用,我确定如下教学目标和重难点2.教学目标(1)知识目标:①引导学生发现正弦定理的内容,探索证明正弦定理的方法;②简单运用正弦定理解三角形、初步解决某些与测量和几何计算有关的实际问题。
(2)能力目标:①通过对直角三角形边角数量关系的研究,发现正弦定理,体验用特殊到一般的思想方法发现数学规律的过程。
②在利用正弦定理来解三角形的过程中,逐步培养应用数学知识来解决社会实际问题的能力。
(3)情感目标:通过设立问题情境,激发学生的学习动机和好奇心理,使其主动参与双边交流活动。
通过对问题的提出、思考、解决培养学生自信、自立的优良心理品质。
通过教师对例题的讲解培养学生良好的学习习惯及科学的学习态度。
3.教学的重﹑难点教学重点:正弦定理的内容,正弦定理的证明及基本应用;教学难点:正弦定理的探索及证明;教学中为了达到上述目标,突破上述重难点,我将采用如下的教学方法与手段二、教学方法与手段1.教学方法教学过程中以教师为主导,学生为主体,创设和谐、愉悦教学环境。
根据本节课内容和学生认知水平,我主要采用启导法、感性体验法、多媒体辅助教学。
2.学法指导学情调动:学生在初中已获得了直角三角形边角关系的初步知识,正因如此学生在心理上会提出如何解决斜三角形边角关系的疑问。
学法指导:指导学生掌握“观察——猜想——证明——应用”这一思维方法,让学生在问题情景中学习,再通过对实例进行具体分析,进而观察归纳、演练巩固,由具体到抽象,逐步实现对新知识的理解深化。
“正弦定理和余弦定理”的教学反思-最新教育资料
“正弦定理和余弦定理”的教学反思“正弦定理和余弦定理”是高中数学必修5中“解三角形”的一节内容。
本节在有关三角形、三角函数和解直角三角形知识的基础上,通过对任意三角形边角关系的研究,发现并掌握三角形中边角之间的数量关系。
本节教学内容与前后知识联系紧密,涉及多种数学思想方法,现总结如下。
一、解三角形与判定三角形全等之间的关系解三角形讨论的是三角形中的各种几何量之间的关系,如边、角、面积、外接圆半径和内切圆半径等之间的关系,而正弦定理和余弦定理是解三角形的主要工具。
平面几何主要是从定性的角度研究三角形,解三角形主要是从定量的角度研究三角形中的各种几何量之间的关系,是用解析的方法研究三角形。
两种研究角度不同,可以互补,相得益彰。
判定三角形全等的公理有:边角边公理(SAS)、边边边公理(SSS)、角边角公理(ASA)和角角边公理(AAS)。
其中至少有一个元素是边,仅有三个角(AAA)对应相等的两个三角形相似但不全等。
判定三角形全等条件的几何意义是三角形的其它变量可以用所给的一组变量表达。
如,SSS公理判定三角形全等的几何意义是:△ABC三边的长可以唯一地确定它的三个内角,如已知△ABC的三边,可用余弦定理的推论,求得三角。
SAS公理判定三角形全等的几何意义是:△ABC的两条边的长及其夹角唯一地确定了第三边的长,进而唯一地确定了它的其余两条边长。
如已知△ABC的两边及其夹角C,可以用余弦定理求出第三边。
这时,三边已知,可用余弦定理的推论求出其余两角。
这正是余弦定理可以解决的两类问题:已知三边,求三角(SSS);已知两边及其夹角,求第三边和其余两角(SAS)。
角边角(ASA)公理和角角边公理(AAS)借助三角形内角和定理,可以认为是实质相同的,其几何意义是△ABC的两角和任一边可以唯一确定其余的角和边,如已知△ABC的两角A,B和夹边c,可以求出这是正弦定理所能解决的一类问题:已知两角和任一边,求其余的边和角(ASA,AAS)。
正弦定理及余弦定理教学反思范文
《正弦定理、余弦定理》课后反省刘士成我对教课所持的观点是:数学学习的主要目的是:“在掌握知识的同时,意会由其内容反应出来的数学思想方法,要在思想能力、感情态度与价值观等多方面获得进步和发展。
”数学学习的有效方式是“主动、研究、合作。
”现代教育应是开放性教育,师生互动的教育,研究发现的教育,充满活力的教育。
但是这些提及来简单,做起来却困难重重,平常我在教课过程中迫于升学的压力,讲堂任务完不可的担忧,老是顾忌重重,不敢勇敢试试,缩手缩脚,放不开,走不出以知识教授为主的讲堂教课形式,教师讲的多,学生被动的听、记、练,教师唱独角戏,师生互动少,这类形式单调的教法大大削弱了学生主动学习的兴趣,压迫了学生的思想发展,进而成绩没法大幅提升。
此后要改变这类状况,我想在讲堂上多给学生讲话时机、板演时机,创建条件,使得学生总想在老师眼前同学眼前表现自我,让学生在思想运动中训练思想,让学生到前面来讲,促使学生之间聪慧才华的互相沟通。
三角形中的几何计算的主要内容是利用正弦定理和余弦定理解斜三角形,是对正、余弦定理的拓展和加强,可看作前两节课的习题课。
本节课的要点是运用正弦定理和余弦定理办理三角形中的计算问题,难点是怎样在理解题意的基础大将实质问题数学化。
在求解问题时,第一要确立与未知量之间有关系的量,把所求的问题转变为由已知条件可直接求解的量上来。
为了突出要点,打破难点,联合学生的学习状况,我是从这几方面表现的:我在这节课里所选择的例题就考常出现的三种题型:解三形、判断三角形形状及三角形面积,题目都是很有代表性的,并在学生练习过程中将例题变形让学生能察看到此类题的考点及易错点。
这节课我试图依据新课标的精神去设计,去进行教课,试图以“问题”贯串我的整个教课过程,努力改良自己的教课方法,让学生的接受式学习中融入问题解决的成份,妄图把讲解式与活动式教课有机整合,希望在学生稳固基础知识的同时,可以发展学生的创新精神和实践能力,但我感觉自己还有以下几点做得还不够:①讲堂容量中体来说比较适中,但因为学生的整体能力比较差,没有给出必定的时间让同学们进行议论,把老师自己认犯难的,学生不易懂得直接让优等生进行展现,学生缺少对这几个题目预先认识,没有惹起学生的共同参加,成效上有必定的折扣;②没有充足发掘学生研究解题思路,对学生的解题思想只给出了评论,而没有惹起学生对这一问题的深入研究,比如对于运用正弦定理求三角形的角的时候,出了给学生们惯例方法外,还应给出老教材中对于三角形个数的方法,致少应介绍一下;③没有很好对学生的解题过程和方法进行评论,没起到“点睛之笔”的作用。
高中数学_余弦定理教学设计学情分析教材分析课后反思
《余弦定理》教学设计【学情分析和教学内容分析】:在学习本节课之前,学生已经学习了正弦定理的内容,初步掌握了正弦定理的证明及应用,并明确了用正弦定理可以来解哪些类型的三角形。
在此基础上,教师可以创设一个“已知三角形两边及夹角”来解三角形的实际例子,学生发现不能用上一节所学的知识来解决这一问题,从而引发学生的学习兴趣,引出这一节的内容。
在对余弦定理教学中时,考虑到它比正弦定理形式上更加复杂,教师可以有目的的提供一些供研究的素材,并作必要的启发和引导,让学生进行思考,通过类比、联想、质疑、探究等步骤,辅以小组合作学习,建立猜想,获得命题,再想方设法去证明。
在用两种不同的方法证明余弦定理时,学生可能会遇到证明思路上的困难,教师可以适当的点拨。
【教学目标】:(一)知识与技能1.通过对任意三角形边长和角度关系的探索,掌握余弦定理的两种表示形式及证明余弦定理的向量方法,并会运用余弦定理解决两类基本的解三角形问题。
2.能够运用余弦定理理解解决一些与测量和几何计算有关的实际问题3.通过三角函数、余弦定理、向量数量积等多处知识间联系来体现事物之间的普遍联系与辩证统一。
(二)过程与方法利用向量的数量积推出余弦定理及其推论,并通过实践演算掌握运用余弦定理解决两类基本的解三角形问题。
(三)情感、态度与价值观1.培养学生在方程思想指导下处理解三角形问题的运算能力;2.通过三角函数、余弦定理、向量的数量积等知识间的关系,来理解事物之间的普遍联系与辩证统一。
【教学重点与难点】:重点:余弦定理的发现和证明过程及其基本应用;难点:向量方法证明余弦定理.【教学过程】:一、创设情景千岛湖景点A、B、C、之间已知AB=1338m,CB=700m,夹角C=1200,求AC距离长。
问题提出:在三角形中,已知两边及其夹角,怎么求出此角的对边?二、导入新课1.余弦定理的坐标证明证明:思考:(1).如何建立直角坐标系?(2).A.B.C点的坐标。
高中《正弦和余弦定理》数学教案4篇
高中《正弦和余弦定理》数学教案4篇教案是讲课的前提,是讲好课的基础,教案则备课的具体表现形式。
它可以反映教师在整个教学中的总体设计和思路尤其是教学态度认真与否的重要尺度。
以下是小编为大家整理的高中《正弦和余弦定理》数学教案,感谢您的欣赏。
高中《正弦和余弦定理》数学教案1教学目标进一步熟悉正、余弦定理内容,能熟练运用余弦定理、正弦定理解答有关问题,如判断三角形的形状,证明三角形中的三角恒等式.教学重难点教学重点:熟练运用定理.教学难点:应用正、余弦定理进行边角关系的相互转化.教学过程一、复习准备:1.写出正弦定理、余弦定理及推论等公式.2.讨论各公式所求解的三角形类型.二、讲授新课:1.教学三角形的解的讨论:①出示例1:在△ABC中,已知下列条件,解三角形.分两组练习→讨论:解的个数情况为何会发生变化②用如下图示分析解的情况.(A为锐角时)②练习:在△ABC中,已知下列条件,判断三角形的解的情况.2.教学正弦定理与余弦定理的活用:①出示例2:在△ABC中,已知sinA∶sinB∶sinC=6∶5∶4,求角的余弦. 分析:已知条件可以如何转化→引入参数k,设三边后利用余弦定理求角.②出示例3:在ΔABC中,已知a=7,b=10,c=6,判断三角形的类型.分析:由三角形的什么知识可以判别→求角余弦,由符号进行判断③出示例4:已知△ABC中,,试判断△ABC的形状.分析:如何将边角关系中的边化为角→再思考:又如何将角化为边3.小结:三角形解的情况的讨论;判断三角形类型;边角关系如何互化.三、巩固练习:3.作业:教材P11B组1、2题.高中《正弦和余弦定理》数学教案2一)教材分析(1)地位和重要性:正、余弦定理是学生学习了平面向量之后要掌握的两个重要定理,运用这两个定理可以初步解决几何及工业测量等实际问题,是解决有关三角形问题的有力工具。
(2)重点、难点。
重点:正余弦定理的证明和应用难点:利用向量知识证明定理(二)教学目标(1)知识目标:①要学生掌握正余弦定理的推导过程和内容;②能够运用正余弦定理解三角形;③了解向量知识的应用。
6.1余弦定理与正弦定理-北师大版高中数学必修第二册(2019版)教案
6.1 余弦定理与正弦定理-北师大版高中数学必修第二册(2019版)教案一、教学目标1. 知识目标•理解余弦定理和正弦定理的概念和公式•掌握余弦定理和正弦定理的应用方法•能够解决相关的实际问题2. 能力目标•培养学生的逻辑思维能力和解决问题的能力•培养学生的数学建模能力和实际问题解决能力二、教学重难点1. 教学重点•掌握余弦定理和正弦定理的概念和公式•能够熟练应用余弦定理和正弦定理解决相关问题2. 教学难点•在实际应用中正确运用余弦定理和正弦定理解决各类问题三、教学方法1. 演示法通过案例演示和计算实例等方式,让学生了解和掌握余弦定理和正弦定理的应用方法。
2. 课堂讨论法引导学生对于余弦定理与正弦定理的理解及应用方式进行探究讨论,从而达到更好的理解。
3. 实践操作法通过举例让学生练习余弦定理与正弦定理的应用方法,理解余弦定理与正弦定理的真正实践意义。
四、教学步骤1. 导入介绍余弦定理和正弦定理的概念及公式,并让学生做出一些简单的题目,以此引导学生对这两个定理进行初步认识。
2. 整体感知讨论一个实际问题:如果我们知道一个三角形的两条边及其夹角,如何求第三边的长度?为了理解余弦定理和正弦定理,让学生自己尝试通过勾股定理解决问题,并引导学生认识到勾股定理只适用于直角三角形,不适用于其他类型的三角形。
3. 理论分析介绍余弦定理和正弦定理的公式,并让学生通过不同的例子来熟悉这两个定理的应用方法,并对它们的公式和性质进行深入探究。
4. 引导实践引导学生在实践中运用余弦定理和正弦定理,让学生在解题过程中发现问题,并引导他们通过不同方式解决问题。
在实践中,提供不同的题目让学生练习应用余弦定理和正弦定理的方法。
5. 辅导解惑在学习过程中,要及时跟进学生的学习情况,对于学习困难的学生要及时进行解惑,消除学生的疑虑。
五、教学效果评价在课程结束后,通过作业检测和课堂表现来评价学生对余弦定理和正弦定理的掌握程度。
同时,还可以通过考试、小测验等方式来检验学生的学习情况,并总结疏漏之处,提高教学效果。
《正弦定理和余弦定理》课后反思
《正弦定理和余弦定理》课后反思
《正弦定理和余弦定理》课后反思
临高中学数学组刘益志
三角形中的几何计算的主要内容是利用正弦定理和余弦定理解斜三角形,是对正、余弦定理的拓展和强化。
本节课的重点是运用正弦定理和余弦定理处理三角形中的计算问题,难点是如何在理解题意的基础上将实际问题数学化。
在求解问题时,首先要确定与未知量之间相关联的量,把所求的问题转化为由已知条件可直接求解的量上来。
为了突出重点,突破难点,结合学生的学习情况,我是从这几方面体现的:
我在这节课里所选择的例题就考常出现的三种题型:解三形、判断三角形形状及三角形面积,题目都是很有代表性的,并在学生练习过程中将例题变形让学生能观察到此类题的考点及易错点。
这节课我试图根据新课标的精神去设计,去进行教学,试图以“问题”贯穿我的整个教学过程,努力改进自己的教学方法,让学生的接受式学习中融入问题解决的成份,企图把讲授式与活动式教学有机整合,希望在学生巩固基础知识的同时,能够发展学生的创新精神和实践能力,但我觉得自己还有如下几点做得还不够:①课堂容量中体来说比较适中,但由于学生的整体能力比较差,没有给出一定
的时间让同学们进行讨论,把老师自己认为难的,学生不易懂得直接让优等生进行展示,学生缺乏对这几个题目事先认识,没有引起学生的共同参与,效果上有一定的折扣;②没有充分挖掘学生探索解题思路,对学生的解题思维只给出了点评,而没有引起学生对这一问题的深入研究,③没有很好对学生的解题过程和方法进行点评,没起到“画龙点睛”的作用。
⑤本来准备了一道练习题,但没能很好把握时间,而放弃了,说明了对这堂课准备不足,缺乏对学生很好的了解。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
《正弦定理和余弦定理》教学设计【课型】高三第一轮复习课【课时安排】 1个课时【教学目标】1.理解正弦定理和余弦定理的适用范围;2.会正确选择正弦定理或余弦定理,求有关三角形的边和角的问题;3.能够使用定理的变形,解决一些与三角形的计算有关的度量问题。
【教学重点】1.会根据不同已知条件选择恰当的定理解决问题;2.熟练解决三角形中的边角互化、恒等变换问题.【教学难点】1.熟练运用正弦定理、余弦定理的变化形式;2.能够综合分析题目条件,结合正弦定理和余弦定理进行化简。
【教学设计理念】本节主要体现了“分析、类比”的数学思想,以近几年高考题为依托,结合前面所学三角函数知识的进行解题,通过多让学生参与,发展每个学生的潜能,使学生在具体解题过程中感受正弦定理、余弦定理的适用条件和特点,能够不拘一格,发散学生的思维。
【考纲要求】1.掌握正弦定理、余弦定理,并能解决一些简单的三角形度量问题.2.总结近五年高考题发现,2014及2015两年在解答题第一题中考察过;近三年均在客观题中考察,题目难度多为中等.【考向预测】1.直接使用正余弦定理解三角形2.正余弦定理及面积公式与三角函数相结合,体现正余弦定理的工具性作用3.正余弦定理与函数、不等式等知识的综合应用。
【教学策略】讲练结合法,类比分析法【教学过程】一、考情分析通过课件向同学们展示近五年高考全国1、2、3卷对于正余弦定理的考察,确定考点、考向以及题目难度,确定本节课复习目标。
二、知识梳理1.正、余弦定理在△ABC中,若角A,B,C所对的边分别是a,b,c,R为△ABC外接圆半径,则2.三角形的面积公式:=∆ABCS_________________________________________.三、双基自测1.判断题(1)在△ABC中,asin A=a+b-csin A+sin B-sin C.()(2)在△ABC中,若A>B,则必有sin A>sin B.()(3)在△ABC中,若b2+c2>a2,则△ABC为锐角三角形.() 2. 填空题(1)在△ABC中,A=45°,C=30°,c=6,则a=________.(2)设△ABC的内角A,B,C的对边分别为a,b,c.若a=3,sin B=1 2,C=π6,则b=________.(3)已知△ABC中,内角A,B,C的对边分别为a,b,c,若a=c=6+2,且A =75°,则b =________.四、考点突破考点1 利用正弦定理解三角形例1.(1)已知△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,若A =π6,B =π4,a =1,则 b =( )A .2B .1 C.3 D.2(2)(2015北京高考)在C ∆AB 中,内角A 、B 、C 的对边分别是a 、b 、c ,若3a =,6b =,23πA =,则B = .练习: 在ABC ∆中,内角A 、B 、C 的对边分别是a 、b 、c ,若a =2,b =32, A =30°,则B = .小结①:利用正弦定理可以解决哪些有关三角形的问题? (1)已知三角形的两个角和任一边,求其它的边和角;(2)已知三角形的两边以及其中一边的对角,求其它的边和角。
考点2 利用余弦定理解三角形例 2 (1)△ABC 的内角A ,B ,C 的对边分别为a ,b ,c,.______,7,3,5大小为则A a b c ===(2)(2018年全国2卷)在△ABC 中,为则AB AC BC C ,5,1,552cos ===( )A.24B.30C.29D.52小结②:利用余弦定理可以解决哪些有关三角形的问题? (1)已知三角形的两边以及这两边的夹角,求其它的边和角; (2)已知三角形的三边,求它的三个角。
考点3 正余弦定理的综合应用分析题目条件,师生共同板演解题步骤:例3(1)(2015全国1卷)已知,,a b c 分别是ABC ∆内角,,A B C 的对边,2sin 2sin sin B A C =.(I )若a b =,求cos ;B(II )若B=90°,且2=a ,求△ABC 的面积.学生练习解题步骤,一位同学板演过程:(2)(2016全国Ⅰ卷)△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,已知2cos C (a cos B +b cos A )=c . (I )求C ;(II )若c =7,△ABC 的面积为332,求△ABC 的周长. 小结③:观察下面题目的特点,根据我们的总结,能否迅速找到所用定理?思考题:(2018年全国1卷)△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,_________,8,sin sin 4sin sin 222的面积为则且ABC a c b C B a B c C b ∆=-+=+.【课堂小结】本节课你收获了什么? 【课后巩固】1)在ABC △中,已知2AC =,3BC =,4cos 5A =-,求sinB = .2) 在ABC ∆中,已知a ,b ,c 分别是角A 、B 、C 的对边,若,cos cos ABb a =则ABC ∆的形状是 .3)已知a ,b ,c 分别是△ABC 的三个内角A ,B ,C 所对的边,若a =1,b 3, A +C =2B , 则sin C = .4) 在△ABC 中,D 为边BC 上一点,BD =12DC ,∠ADB =120°,AD =2,若△ADC 的面积为33∠BAC =______ _ .5) 满足条件BC AC AB 2,2==的三角形ABC 的面积的最大值是 .6)在△ABC中,内角A、B、C的对边分别是a、b、c,若22a b-=,sin C=sin B,则A=.7)△ABC中,角A,B,C所对的边分别为a,b,c.已知a=3,cos A=6 3,B=A+π2.(1)求b的值;(2)求△ABC的面积.学情分析学生是学习的主体,每当我们向自己的学生教授知识的时候,自然要考虑到我们的教学对象在学习本课时的原有基础、现有困难及学习心理特征,从而有针对性地确定学习的重点、难点及教法学法。
我的教学对象是高三文科普通班的学生,大部分学生的数学基础比较一般。
他们在高一阶段学习了解三角形部分的新课,在高三一轮复习阶段,他们对这一部分知识点有遗忘,正余弦定理的公式以及变形应用不熟练,对知识的总结不到位,并且尤其对高考的考点、难度等都不太明确。
《正弦定理和余弦定理》效果分析一、教学设计方面本节课为高三一轮复习课,结合学情,本节课的教学设计由浅入深,由实际例题升华到方法总结,这一设计符合学生的认知规律,由学生总结思想方法,实际效果较好。
二、教学过程方面教学过程分为五个部分,先从多媒体展示高考考情开始,这样学生比较清晰的了解了考情,明确了目标,在接下来的学习中有的放矢;基本知识的复习对基础较差的同学来说是非常必要的,通过课下完成的双基自测,方便老师进一步了解学情,但让学生自己来说错误点,有些学生不敢于发言,导致被动。
例题方面,学生当堂完成,学生代表回答,这样提高了同学的思维速度,集中了注意力,效果较好;让学生参与黑板板演,也更直观的加强了师生互动,并且比较容易分析学生的问题。
最后学生总结本节课内容,思想方法得到了升华。
三、需要改进的地方学生在有些题目做错后,不能主动提出自己的问题,主动性较差,教师还应该多观察课堂学生的表现,让所有的学生参与进来,在调动他们的积极性。
教材分析本节内容是人民教育出版社出版的普通高中课程标准实验教科书《数学》必修五的第一章第2节,在此之前学生已经学习过了勾股定理、平面向量、正弦定理等相关知识,这为过渡到本节内容的学习起着铺垫作用。
本节内容实质是学生已经学习的勾股定理的延伸和推广,它描述了三角形重要的边角关系,将三角形的“边”与“角”有机的联系起来,实现边角关系的互化,为解决斜三角形中的边角求解问题提供了一个重要的工具,同时也为在日后学习中判断三角形形状,证明三角形有关的等式与不等式提供了重要的依据.在本节课中教学重点是余弦定理的内容和公式的掌握,余弦定理在三角形边角计算中的运用;教学难点是余弦定理的发现及证明;教学关键是余弦定理在三角形边角计算中的运用.测评练习[小题对点练——点点落实]对点练(一) 利用正、余弦定理解三角形1.(2018·安徽合肥一模)△ABC 的角A ,B ,C 的对边分别为a ,b ,c ,若cos A =78,c-a =2,b =3,则a =( )A .2 B.52 C .3D.722.(2018·湖北黄冈质检)在△ABC 中,角A ,B ,C 的对边分别是a ,b ,c ,若a =52b ,A =2B ,则cos B =( )A.53B.54C.55D.563.(2018·包头学业水平测试)已知a ,b ,c 分别为△ABC 内角A ,B ,C 的对边,sin 2B =2sin A sin C ,且a >c ,cos B =14,则a c =( )A .2 B.32 C .3D .44.(2018·湖南长郡中学模拟)若△ABC 的内角A ,B ,C 所对的边分别为a ,b ,c ,已知2b sin 2A =a sin B ,且c =2b ,则ab=( )A .2B .3 C.2D.35.(2018·兰州一模)△ABC 中,内角A ,B ,C 对应的边分别为a ,b ,c ,c =2a ,b sin B -a sin A =12a sin C ,则sin B 的值为( )A.223B.34C.74D.13对点练(二) 正、余弦定理的综合应用1.(2018·武汉调研)在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,若cb <cos A ,则△ABC 为( )A .钝角三角形B .直角三角形C .锐角三角形D .等边三角形2.(2018·湖南邵阳一模)在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c .已知三个向量m =⎝⎛⎭⎫a ,cos A 2,n =⎝⎛⎭⎫b ,cos B 2,p =⎝⎛⎭⎫c ,cos C2共线,则△ABC 的形状为( ) A .等边三角形 B .等腰三角形 C .直角三角形 D .等腰直角三角形3.(2018·福建八校联考)我国南宋著名数学家秦九韶发现了从三角形三边求三角形面积的“三斜公式”,设△ABC 三个内角A ,B ,C 所对的边分别为a ,b ,c ,面积为S ,则“三斜求积”公式为S =14⎣⎡⎦⎤a 2c 2-⎝⎛⎭⎫a 2+c 2-b 222.若a 2sin C =4sin A ,(a +c )2=12+b 2,则用“三斜求积”公式求得△ABC 的面积为( )A.3 B .2 C .3D.64.在△ABC 中,内角A ,B ,C 的对边分别为a ,b ,c ,且满足b =c ,b a =1-cos Bcos A .若点O 是△ABC 外一点,∠AOB =θ(0<θ<π),OA =2,OB =1,如图所示,则四边形OACB 面积的最大值是( )A.4+534B.8+534C .3D.4+525.(2018·广东揭阳模拟)已知△ABC 中,角A ,32B ,C 成等差数列,且△ABC 的面积为1+2,则AC 边的长的最小值是________.6.已知△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,若△ABC 的面积S =a 2-(b -c )2,且b +c =8,则S 的最大值为________.[大题综合练]1.(2018·湖北部分重点中学适应性训练)在△ABC 中,a ,b ,c 分别为内角A ,B ,C 的对边,且满足cos(A -B )=2sin A sin B .(1)判断△ABC 的形状;(2)若a =3,c =6,CD 为角C 的平分线,求CD 的长.2.(2017·云南昆明二模)如图,在△ABC 中,已知点D 在BC 边上,满足AD ⊥AC ,cos ∠BAC =-13,AB =32,BD = 3.(1)求AD 的长; (2)求△ABC 的面积.3.(2018·河南郑州模拟)在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,且满足cos 2C -cos 2A =2sin ⎝⎛⎭⎫π3+C ·sin ⎝⎛⎭⎫π3-C . (1)求角A 的值;(2)若a =3且b ≥a ,求2b -c 的取值范围.《正弦定理和余弦定理》课后反思在教学过程中,第一步通过课件向同学们展示近五年高考全国1、2、3卷对于正余弦定理的考察,确定考点、考向以及题目难度,确定本节课复习目标。