代数式的值教案(1)

合集下载

《代数式的值》教案设计

《代数式的值》教案设计

《代数式的值》教案设计第一章:代数式的基础知识1.1 代数式的概念介绍代数式的定义:用字母和数字的组合表示的数学表达式。

强调代数式中的字母代表未知数或变量。

1.2 代数式的ponents介绍代数式中的常数项、变量项、系数等概念。

举例说明代数式中的不同组成部分。

第二章:代数式的运算2.1 代数式的加减法介绍代数式加减法的规则:同类项相加减,系数相加减,变量不变。

提供练习题,让学生练习代数式的加减法。

2.2 代数式的乘除法介绍代数式乘除法的规则:同类项相乘除,系数相乘除,变量不变。

提供练习题,让学生练习代数式的乘除法。

第三章:代数式的值3.1 代数式的求值介绍代数式的求值方法:将给定的数值代入代数式中的变量,计算出结果。

提供练习题,让学生练习代数式的求值。

3.2 代数式的化简介绍代数式的化简方法:通过运算将代数式简化为更简单的形式。

提供练习题,让学生练习代数式的化简。

第四章:代数式的应用4.1 线性方程的解介绍如何利用代数式求解线性方程:将方程两边的代数式进行运算,找到未知数的值。

提供练习题,让学生练习解线性方程。

4.2 实际问题与代数式的应用提供实际问题,让学生利用代数式解决问题,培养学生的实际应用能力。

第五章:代数式的综合练习5.1 综合练习题提供综合练习题,涵盖代数式的基础知识、运算、求值、化简和应用等方面。

让学生通过练习题巩固所学知识,提高解题能力。

第六章:代数式的多项式6.1 多项式的定义与性质介绍多项式的概念:由多个单项式通过加减运算组成。

强调多项式的每一项称为单项式,且多项式中的常数项、变量项、系数等概念。

6.2 多项式的运算介绍多项式加减法的规则:同类项相加减,系数相加减,变量不变。

介绍多项式乘法的规则:使用分配律进行乘法运算。

提供练习题,让学生练习多项式的加减乘法。

第七章:代数式的指数与对数7.1 指数的基本概念介绍指数的定义:表示乘方的运算。

强调指数运算的规则:同底数幂相乘,指数相加;同底数幂相除,指数相减。

3.3 代数式的值(1)

3.3  代数式的值(1)

X 2x +5 2(x +5)
4
3
2
1
0
1
探索本题中的 规律较为困难, 教 中 4 2 学3 让 学 生 具体地“做” 用绳子、 剪刀操 作,然后再分 析、思考。
(1) 先让学生完成表格 (2) 从这张表格上你获得了哪些 信息? (3) 随着值的逐渐增大, 两个代数 式的值怎样变化? (4) 当代数式 2x +5 的值为 25 时, 代数式 2(x +5)的值是多少?
2 2 2 2 2
1 3 6 = 9 2
认真听讲, 注意 格式
=2 (2) -3 (2) (3) +(-3)
2
=2 4-3 (-2) (-3)+9 =8-18+9 =-1 教师写出例 1 的全部过程(主要
由学生仿照例 1
4) 运算时原代数式的运算顺序不 变。
规范学生做此类题目的格式) 补充例题 当 x = 5、 =- 4 时, y 求代数式 -3x -5y 的值。
课时编号 备课时间 课 题 3.3 代数式的值(1)
[教案]
教学目标
1、会求代数式的值,感受代数式求值可以理解为一个转换过程或某种算法 2、会利用代数式求值推断代数式所反映的规律 3、能理解代数式值的实际意义 4、通过代数式求值的教学活动,渗透数学中的函数思想,培养学生解决实际 问题能力 求代数式的值 利用代数式求值推断代数式所反映的规律 教 教学内容 学 过 程 教师活动 出示习题,学生自主练习 学生活动 学生积极思考。 口头回答问题
教学重点 教学难点
1、求下图三角形的面积: h a 2、继续求下图三角形的面积 3 6
三角形的面积 三角形的面积 =

3.2 代数式的值 教案 数学人教版七年级上册(2024年)新版教材

3.2 代数式的值 教案  数学人教版七年级上册(2024年)新版教材

3.2代数式的值【教学目标】1.了解代数式的值的定义,能熟练地求代数式的值,理解代数式求值可以为一个转换过程或一个算法.2.在代数式求值过程中,初步感受函数的对应思想.3.会用代数式解决简单的实际问题.【重点难点】重点:会求代数式的值并解释代数式值的实际意义.难点:应用求代数式的值解决实际问题.【教学过程】一、创设情境为了开展体育活动,学校要购置一批排球,每班配备5个,学校另外留20个.(1)学校总共需要购置个排球.(2)如果学校有15个班级,那么需要购置的排球数是;(3)如果学校有20个班级,那么需要购置的排球数是.你是如何计算的?二、探究归纳探究点1:求代数式的值问题1:上述代数式的值是由谁的取值确定的?总结:一般地,用数值代替代数式中的字母,按照代数式中的运算关系计算得出的结果,叫作代数式的值.问题2:根据下列x,y的值,你能求出代数式2x+3y的值吗?.(1)x=15,y=12;(2)x=1,y=-12总结:1.代入时,将相应的字母换成已给定的数值,其他的运算符号、原来的数及运算顺序都不能改变.2.当字母取不同数值时,代数式的值一般也不同.3.如果字母的取值是负数或分数,乘方时应加括号.【典例探究】例1:教材P79【例2】【针对性训练】教材P80练习总结:(1)求代数式的值的步骤:第一步:代入,用具体数值代替代数式里的字母;第二步:计算,按照代数式中指明的运算,计算出结果.(2)注意事项:①一个代数式中的同一个字母,只能用同一个数值去代替;②如果代数式里省略乘号,那么字母用数值代替时要添上乘号,代入负数和分数时要加括号;③代入时,不能改变原式中的运算符号及数字;④运算时,要注意运算顺序,即先算平方,再算乘除,最后算加减,有括号的要先算括号里面的.【拓展探究】问题3:代数式x2+x+3的值为7,则代数式2x2+2x-3的值是多少?你是如何计算的?探究点2:应用代数式的值解决实际问题问题4:填空:(1)路程=×;(2)工作量=×;(3)总价=×;(4)长为a,宽为b的长方形面积=;(5)边长为a的正方形面积=;(6)底为a,高为h的三角形面积=;(7)上底为a,下底为b,高为h的梯形面积=;(8)半径为r的圆的面积=;(9)长为a,宽为b,高为c的长方体的体积=;(10)棱长为a的立方体的体积=.【典例探究】例2:教材P80例3分析:跑道的周长是两段直道和两段弯道的长度的和.根据圆的周长求出弯道的长度.教师示范解答步骤.例3:教材P81例4分析:三角尺的面积=三角形的面积-圆的面积.总结:涉及不规则图形面积问题时,可以通过割补法把不规则图形转化为规则图形的和或者差来进行求解.【针对性训练】教材P81练习三、检测反馈(一)基础训练:1.当a=b=3时,x,y互为倒数,1(a+b)-3xy的值是()2A.0B.3C.-3D.62.当x=1,y=6时,代数式x2+y2的值是.3.当x=1,y=6时,求下列代数式的值:(1)x2+y2;(2)x2-2xy+y2.4.小亮从家出发乘汽车行驶了a千米用了1小时,又步行了0.5千米,又用了0.1小时到达某地.(1)用代数式表示小亮从家到某地的平均速度.(2)当a=80时,求此平均速度.5.如图,一个直角三角形ABC的直角边BC=a,AC=b,三角尺的厚度为h,三角形内部圆的半径为r.(1)用式子表示阴影部分体积V(结果保留π);(2)当a=10,b=6,r=2,h=0.2时,计算V的值.(π取3.14.结果精确到0.1)(二)拓展训练1.已知|A|=5,|B|=3,且AB<0,则A-B的值是()A.2或8B.1或-8C.±2D.±82.当x=1时,ax4+bx2+2=-3;当x=-1时,ax4+bx2-2=()A.3B.-3C.-5D.-73.我们定义一个新运算“★”如下:x≤y时,x★y=x2;x>y时,x★y=y.则当z=-3时,代数式(-2★z)-(-4★z)的值为.4.某商城销售某品牌运动鞋和袜子,运动鞋每双定价为300元,袜子每双定价为40元,十一期间商城决定开展促销活动,活动期间向顾客提供两种优惠方案:方案一:买一双运动鞋送一双袜子;方案二:运动鞋和袜子都按定价的九折付款;现某顾客要到该商城购买10双运动鞋,x(x>10)双袜子.(1)若该客户按照方案一购买,需付款元(用含x的代数式表示);若该客户按照方案二购买,需付款元(用含x的代数式表示);(2)若x=30,①通过计算说明按照方案一、方案二购买,哪种方案较为合算?②请你设计一个最优惠的购买方案,使得该客户花费最少,并写出你的购买方案和所需的费用.四、本课小结会求代数式的值,对于一个代数式,它所含的字母取不同的值时,所得代数式的值一般也不同,所以在求代数式的值时,要注意解题步骤:(1)指出字母的取值;(2)抄写代数式;(3)代入;(4)计算.五、布置作业P82T3,5,7六、板书设计七、教学反思1.通过导入“代数式的值”概念时,情境导入,达到了激发学生兴趣的成效,让学生感受到了数学的生活化,营造了轻松的学习气氛.进一步理解代数式和代数式值的概念,为本节应用代数式的值解决实际问题作铺垫.在教学中注意引导学生体验字母取值和代数式值的对应思想.2.本节课一开始就直奔主题,提出如何求代数式的值,并要求学生根据两个不同类型的方法(直接代入法与整体代入法)求值,并求相同字母下代数式的值.通过计算,再次巩固了代数式的求值,突出重点.让学生经历探究、讨论、合作、交流的进程,明确符号所代表的数量关系,发展符号意识,熟练掌握求代数式值的方法,升华学生对概念的理解,并锻炼学生的计算能力.通过对实际问题的解决,学生熟悉到数学来源于生活,应用于生活,在问题解决中运用代数式求值的知识,通过实际背景帮学生明白代数式值的实际意义,调动学生的实践意愿.。

2024-2025学年初中数学七年级上册(人教版)教案第1课时求代数式的值

2024-2025学年初中数学七年级上册(人教版)教案第1课时求代数式的值

3.2 代数式的值第1课时 求代数式的值教学目标课题 3.2 第1课时 求代数式的值授课人素养目标 1.了解代数式的值的概念,会把具体数代入代数式进行计算.2.感受代数式求值是一个转换过程或某种算法,锻炼学生的计算能力和解题能力. 教学重点 求代数式的值.教学难点较复杂的代数式求值,理解代数式的值与字母的取值间的对应关系.教学活动教学步骤 师生活动活动一:创设情境,新课导入 设计意图 设计实例引出代数求值的需求,为进入新课做铺垫.【情境引入】谁说数学学不好?这不,先前数学成绩很差的刘伟,经过不断努力,不但成绩直线上升,而且现在还能设计程序计算呢!如图就是刘伟设计的一个程序.当输入x 的值为3时,你能求出输出的y 的值吗?y 的值为-3.像上面这样,我们在列出代数式的情况后,往往还需要求出所需的数值.怎么求呢?这就是本课时需要解决的问题.【教学建议】 学生独立完成说出答案,让其在按照程序探索求值的过程中感受代数式求值的必要性.活动二:交流合作,探究新知 设计意图 通过实际问题引入代数式的值的概念,并通过例题引导学生学会求代数式的值,并归纳求代数式的值的步骤.探究点 求代数式的值问题 为了开展体育活动,学校要购置一批排球,每班配5个,学校另外留20个.学校总共需要购置多少个排球?记全校的班级数是n ,则需要购置的排球总数是5n+20.提问 (1)如果班级数是15,怎么根据上面求得的代数式得到具体结果呢?如果班级数是15,用15代替字母n ,那么需要购置的排球总数是5n+20=5×15+20=95.(2)如果班级数是20呢?同上,如果班级数是20,用20代替字母n ,那么需要购置的排球总数是5n+20=5×20+20=120.概念引入:【教学建议】求代数式的值的注意事项:(1)代数式中的运算符号和具体数字都不能改变,代入数值以后原来省略的乘号一定要还原,如例1;(2)字母在代数式中所处的位置必须搞清楚;(3)若字母取值是分数,做乘方运算时必须加上括号,若字母取值是负数也必须加上括号;(4)代数式若有现实背景,也不可取归纳总结:求代数式的值的步骤:(1)代入,即用具体数值代替代数式中的字母;(2)计算,即按照代数式指明的运算顺序计算得出结果. 【对应训练】教材P80练习第1,2题. 不符合实际意义的值,如李明买了n个足球,这里的n就不能取正整数以外的值.活动三:实际应用,巩固新知设计意图通过解决实际问题提高学生对代数式求值的掌握程度.例3科技改变生活.刘伟是一名摄影爱好者,他最近新入手了一台如图所示的无人机进行航拍,刘伟将这台无人机放在距离地面1.5m的台子上,以ɑm/s的速度匀速上升40s后进行拍照,然后以(b-2)m/s的速度匀速下降25s后进行第二次拍照.(1)用代数式表示无人机两次拍照时距地面的高度;(2)当ɑ=12,b=10时,求无人机第二次拍照时距地面的高度.解:(1)第一次拍照时距地面的高度是(1.5+40ɑ)m,第二次拍照时距地面的高度是[(1.5+40ɑ)-25(b-2)]m.(2)当ɑ=12,b=10时,(1.5+40ɑ)-25(b-2)=(1.5+40×12)-25×(10-2)=281.5.因此,无人机第二次拍照时距地面的高度为281.5m.【对应训练】教材P80练习第3题.【教学建议】教师鼓励学生独立完成,潜移默化地提高学生观察、分析、解决问题的能力,并在这一过程中将列代数式与求代数式的值融会贯通,提高应用能力,体验克服困难的过程,树立学习数学的信心.解题大招 求代数式的值求代数式的值时,将相应的字母换成已知的数值,原式中的数字和运算符号都不能改变.有时候字母的值没有直接给出,就需要先求字母的值再代入计算;当无法得知具体字母的值时,通常会用到“整体思想”,先对已知式子进行变形,或对要求值的代数式进行变形,使其满足“整体代入”的条件,再整体代入求值.培优点 实际问题中的代数式求值活动四:随堂训练,课堂总结【随堂训练】见《创优作业》“随堂小练”册子相应课时随堂训练. 【课堂总结】师生一起回顾本节课所学主要内容,并请学生回答以下问题:1.什么是代数式的值?你会把具体数代入某个代数式进行求值吗?2.代数式求值时要注意运算符号和运算顺序,你能举例说明吗?3.字母的取值和代数式的值之间有何联系?你能对特定问题下某个字母的值和对应代数式的值的实际意义进行解释吗? 【知识结构】【作业布置】1.教材P82习题3.2第1,2,3,4,7,8题.2.《创优作业》主体本部分相应课时训练.板书设计教学反思 “代数式的值”是初中阶段代数研究的重要问题之一,它是学生在学习了代数式后的内容,且贯穿于初中阶段代数学习的始终.通过这部分内容的学习,既能强化学生的计算能力,也能使其感知字母的取值的变化与代数式的值之间的联系,为将来学习函数的知识做铺垫.。

3.2代数式的值(教案)-人教版七年级数学上册

3.2代数式的值(教案)-人教版七年级数学上册
3.成果分享:每个小组将选择一名代表来分享他们的讨论成果。这些成果将被记录在黑板上或投影仪上,以便全班都能看到。
(五)总结回顾(用时5分钟)
今天的学习,我们了解了代数式值的基本概念、重要性和应用。通过实践活动和小组讨论,我们加深了对代数式值如何应用于解决实际问题的理解。我希望大家能够掌握这些知识点,并在日常生活中灵活运用。最后,如果有任何疑问或不明白的地方,请随时向我提问。
-代数式在实际问题中的应用:将实际问题转化为代数式,并求解,需要学生具备一定的建模能力和创新思维。
举例:
-难点解释代数式的抽象性,可以通过图形、实际情境等引入代数式,如通过购物问题引入2x + 3表示总费用。
-对于运算性质的难点,可以通过对比、示例等方式讲解,如讲解分配律时,通过具体的数字运算和代数式运算对比,加深理解。
五、教学反思
在今天的课堂中,我发现学生们对于代数式的值的概念接受度较高,他们能够通过具体的实例理解代数式的含义。在导入新课环节,通过日常生活中的购物问题,成功引起了学生的兴趣,这为后续的学习打下了良好的基础。
然而,在新课讲授过程中,我也注意到一些学生在理解代数式的运算性质时遇到了困难。特别是在分配律的应用上,部分学生还不能熟练掌握。我意识到需要在这个环节加强个别指导,通过更多的示例和练习,帮助学生克服这一难点。
(二)新课讲授(用时10分钟)
1.理论介绍:首先,我们要了解代数式值的基本概念。代数式值是指将代数式中的字母用具体的数值替换后进行计算得到的结果。它是数学表达的一种重要方式,可以帮助我们解决实际问题。
2.案例分析:接下来,我们来看一个具体的案例。比如,购物时商品的价格是单价和数量的函数,我们可以用代数式表示为p = nx,其中p是总价,n是单价,x是数量。通过代入不同的数量,我们可以计算出不同的总价。

《代数式的值》教案设计

《代数式的值》教案设计

《代数式的值》教案设计第一章:代数式的基础知识1.1 代数式的定义介绍代数式的概念,理解代数式是由数字、变量以及运算符号组成的表达式。

举例说明代数式的不同形式,如整式、分式等。

1.2 代数式的变量解释变量的概念,变量是代表未知数的符号。

介绍变量的命名规则,如何使用字母表示变量。

1.3 代数式的运算复习基本的算术运算规则,包括加法、减法、乘法、除法。

讲解代数式中的运算顺序,掌握整式的乘法和除法法则。

第二章:代数式的值2.1 代数式的求值解释代数式的求值是指将变量替换为具体的数值后计算表达式的结果。

举例说明如何求解代数式的值,如将变量的值代入表达式中进行计算。

2.2 代数式的化简介绍代数式的化简,即简化表达式的形式,减少冗余的项或因子。

讲解如何进行代数式的化简,包括合并同类项、分解因式等方法。

2.3 代数式的值的应用探讨代数式的值在实际问题中的应用,如解决方程和不等式问题。

举例说明如何将实际问题转化为代数式的求值或化简问题。

第三章:代数式的求值方法3.1 代数式的代入法介绍代入法求解代数式的值,即将变量的值直接代入表达式中进行计算。

举例说明代入法的具体步骤和应用。

3.2 代数式的替换法解释替换法求解代数式的值,即将代数式中的变量替换为其他表达式。

讲解如何使用替换法求解复杂的代数式问题。

3.3 代数式的图像法介绍使用图形方法求解代数式的值,通过绘制函数图像来观察变量的取值范围。

举例说明如何利用图像法求解代数式的值。

第四章:代数式的化简方法4.1 合并同类项讲解合并同类项的规则,即将具有相同字母和指数的项进行合并。

举例说明如何合并同类项,简化代数式的表达形式。

4.2 分解因式解释分解因式的概念,即将代数式写成乘积的形式,提取公因数或应用公式。

讲解如何使用分解因式的方法化简代数式,如提取公因数、应用完全平方公式等。

4.3 应用完全平方公式介绍完全平方公式的概念,即(a+b)^2 = a^2 + 2ab + b^2,(a-b)^2 = a^2 2ab + b^2。

沪科版数学七年级上册《代数式的值》教学设计1

沪科版数学七年级上册《代数式的值》教学设计1

沪科版数学七年级上册《代数式的值》教学设计1一. 教材分析《代数式的值》是沪科版数学七年级上册的一章内容,主要目的是让学生理解代数式的概念,掌握代数式的运算方法,并能够求出代数式的值。

这一章内容是学生学习代数的基础,对于培养学生的逻辑思维和数学素养具有重要意义。

二. 学情分析七年级的学生已经具备了一定的数学基础,对于一些基本的数学运算已经有了一定的了解。

但是,对于代数式的概念和运算方法可能还比较陌生,需要通过具体的教学活动来引导学生理解和掌握。

三. 教学目标1.理解代数式的概念,能够正确地书写代数式。

2.掌握代数式的运算方法,能够进行简单的代数式运算。

3.能够求出给定代数式的值,并能够应用代数式解决实际问题。

四. 教学重难点1.代数式的概念和书写方法。

2.代数式的运算方法。

3.求代数式的值的方法和应用。

五. 教学方法1.采用问题驱动的教学方法,引导学生通过解决问题来理解和掌握代数式的概念和运算方法。

2.使用实例讲解和练习,让学生通过实际操作来加深对代数式的理解。

3.采用小组合作学习的方式,让学生通过讨论和交流来提高解决问题的能力。

六. 教学准备1.准备相关的教学PPT,包括代数式的定义、代数式的运算方法等。

2.准备一些实际的例子,用于讲解和练习代数式的运算。

3.准备一些练习题,用于巩固学生对代数式的理解和掌握。

七. 教学过程1.导入(5分钟)利用PPT展示一些实际的例子,引导学生思考这些例子中的数学关系,从而引出代数式的概念。

2.呈现(15分钟)通过PPT呈现代数式的定义和书写方法,让学生初步了解代数式的概念和书写方法。

3.操练(20分钟)让学生分组进行讨论,每组选择一个实际的例子,尝试将其写成代数式的形式,并计算出其值。

然后,各组汇报自己的结果,其他组进行评价和讨论。

4.巩固(15分钟)让学生独立完成一些练习题,巩固对代数式的理解和掌握。

教师进行个别辅导,帮助学生解决问题。

5.拓展(10分钟)让学生思考一些实际问题,尝试用代数式来表示和解决这些问题,进一步拓展学生的应用能力。

华东师大初中数学七年级上册《3.2代数式的值》精品教案 (1)

华东师大初中数学七年级上册《3.2代数式的值》精品教案 (1)

3.2代数式的值一、学习目标确定的依据1、课程标准结合问题情境理解代数式的值的实际意义,会求代数式的值;知道代数式的值是一种算法。

2、教材分析本节课是初中数学华师大版七年级数学第二部分,是对代数式和有理数的运算相关知识的继续和拓展,是学习化简求值计算的基础,有着承上启下的作用。

3、中招考点河南中考每年都会以计算或解答题的形式考察分式或整式的化简并代入求值,这就要用到代数式的值的相关知识,所以本节内容在中招考试中占有重要地位。

4、学情分析学生在学习代数式和有理数的运算的基础上学习代数式的值较容易接受,但是整体代入求值,往往较为困难。

二、学习目标1、能说出代数式的值的概念,2、会用数字代替数,求出代数式的值四、教学过程 三、评价任务1、向同桌说出代数式的值的概念,能用自己的话说出求代数式的值的方法。

2、能根据实际问题列出代数式并会用数字代替数,求出代数式的值 。

学习 目标教学活动评价要点两类结构学习目标1:能说出代数式的值的概念自学指导一:1、内容:90--91页例12、时间:5分钟。

3、方法:前4钟自学后1分钟小组讨论自学中所遇到的问题。

4、要求:自学后能独立完成下列问题:(1)用_____代替代数式里的字母,按照代数式中的___________________得出的结果,叫做代数式的值。

自学检测一:2.2.1.1.121---=DCBAxx)的值是(,则、若___3,24________251325.21.13.5.23,2222的值是则代数式、已知。

的值是时,代数式、当)值是(的时,代数式、当--=-+-=++==babaxxDCBAbababa5、当x=2,y=-1时,求代数式x(x+y)的值。

全班90%的学生能准确说出代数式的值的概念会求出代数式的值。

两类结构1、一般地,用数值代替代数式里的字母,按照代数式中的运算关系计算得出的结果,叫做代数式的值。

学习目标2:能正确书写代数式。

自学指导二:1. 内容:课92-93页的例22. 时间:3分钟。

《代数式的值》word版 公开课一等奖教案 (1)

《代数式的值》word版 公开课一等奖教案 (1)

当我们在日常办公时,经常会遇到一些不太好编辑和制作的资料。

这些资料因为用的比较少,所以在全网范围内,都不易被找到。

您看到的资料,制作于2021年,是根据最新版课本编辑而成。

我们集合了衡中、洋思、毛毯厂等知名学校的多位名师,进行集体创作,将日常教学中的一些珍贵资料,融合以后进行再制作,形成了本套作品。

本套作品是集合了多位教学大咖的创作经验,经过创作、审核、优化、发布等环节,最终形成了本作品。

本作品为珍贵资源,如果您现在不用,请您收藏一下吧。

因为下次再搜索到我的机会不多哦!3.3 代数式的值(第一课时)教学目标: 一、知识目标:1、会求代数式的值,感受代数式求值可以理解为一个转换过程或某种算法2、会利用代数式求值推断代数式所反映的规律 3能理解代数式值的实际意义二、能力目标:通过代数式求值的教学活动,渗透数学中的函数思想,培养学生解决实际问题能力。

三、情感目标:让学生体会从生活中发现数学和应用数学解决生活中问题的过程,品尝成功的喜悦,激发学生应用数学的兴趣教学重点:求代数式的值教学难点:利用代数式求值推断代数式所反映的规律。

.教学过程: 一、创设情境:1.求下图三角形的面积:生:三角形的面积 =2ha 2.继续求下图三角形的面积生:三角形的面积 =2163⨯⨯= 9 3.用字母a 表示三角形的底,h 表示三角形的高,求当a =6,h = 3时,三角形的面积。

三角形的面积 =2h a = 2163⨯⨯= 9 4.揭示新课(这节课我们就来学习4.3节代数式的值)二、探索新知1.师生共同学习例1当a =-2、b = -3时,求代数式2a 2-3ab +b 2的值。

教师写出例1的全部过程(主要规范学生做此类题目的格式) 解:当a = -2、b = -3时, 2a 2-3ab +b 2=2)2(-⨯2-3)3()2(-⨯-⨯+(-3)2=2⨯4-3⨯(-2)⨯(-3)+9 =8-18+9 =-12..学习例2(补充例题)当x = 5、y =- 4时,求代数式 -3x -5y 的值。

3.2第2课时代数式的值(教案)

3.2第2课时代数式的值(教案)
-实际问题中的代数式建模:培养学生从实际问题中抽象出代数式的能力,例如根据“苹果的价格是每千克x元,小明买了2千克苹果和一些香蕉,总共花费了y元”这样的情景,能够列出代数式2x+y。
-运算准确性:要求学生在进行代数式求值时,能够准确无误地进行计算,避免常见的运算错误。
2.教学难点
-代数式的抽象理解:学生可能难以理解代数式中字母所代表的抽象意义,如x、y等不具体指代的数值。教师需要通过具体的例子和图形辅助,帮助学生理解代数式的抽象性。
五、教学反思
今天我们在课堂上探讨了代数式的值,整体来说,我觉得这节课的效果还是不错的。学生们对于代数式求值的方法有了基本的掌握,通过实例和练习,他们能够理解并运用代入法来求解代数式。不过,我也注意到了一些需要改进的地方。
在讲授过程中,我发现有些学生对代数式的抽象理解还有一定难度,尤其是当涉及到复合代数式时,他们可能会感到困惑。这让我意识到,我需要花更多的时间去解释和演示这些概念,或许可以通过更多的图形和实际例子来帮助他们理解。
-代数式的复合运算:在代数式中,可能会出现复合运算,如(2x+3)×(x-1),学生在求值时可能会混淆运算顺序或遗漏步骤,这是教学的难点。
-字典型代入的掌握:字典型代入是代数式求值的一个难点,学生需要理解如何将一个已知的值代入到代数式的特定位置。例如,将x=5代入代数式2x^2-3x+1,求得的值是56代数式求值的方法:本节课的核心内容是使学生掌握代数式的求值方法,包括直接代入、字典型代入和整体代入等。例如,对于代数式2x+3,当给出x的值时,学生需要能够直接计算出代数式的值。
-代数式的符号意识:强调代数式中符号的作用,让学生理解不同的符号代表不同的运算关系,如加、减、乘、除等。
3.成果分享:每个小组将选择一名代表来分享他们的讨论成果。这些成果将被记录在黑板上或投影仪上,以便全班都能看到。

代数式的值-教学教案

代数式的值-教学教案

代数式的值-教学教案教学目标1.使学生掌握代数式的值的概念,能用具体数值代替代数式中的字母,求出代数式的值;2.培养学生准确地运算能力,并适当地渗透特殊与一般的辨证关系的思想。

教学建议1.重点和难点:正确地求出代数式的值。

2.理解代数式的值:(1)一个代数式的值是由代数式中字母的取值而决定的.所以代数式的值一般不是一个固定的数,它会随着代数式中字母取值的变化而变化.因此在谈代数式的值时,必须指明在什么条件下.如:对于代数式;当时,代数式的值是0;当时,代数式的值是2.(2)代数式中字母的取值必须确保做到以下两点:①使代数式有意义,②使它所表示的实际数量有意义,如:中不能取1,因为时,分母为零,式于无意义;如果式子中字母表示长方形的长,那么它必须大于0.3.求代数式的值的一般步骤:在代数式的值的概念中,实际也指明了求代数式的值的方法.即一是代入,二是计算.求代数式的值时,一要弄清楚运算符号,二要注意运算顺序.在计算时,要注意按代数式指明的运算进行.4。

求代数式的值时的注意事项:(1)代数式中的运算符号和具体数字都不能改变。

(2)字母在代数式中所处的位置必须搞清楚。

(3)如果字母取值是分数时,作乘方运算必须加上小括号,将来学了负数后,字母给出的值是负数也必须加上括号。

5.本节知识结构:本小节从一个应用代数式的实例出发,引出代数式的值的概念,进而通过两个例题讲述求代数式的值的方法.6.教学建议(1)代数式的值是由代数式里的字母所取的值决定的,因此在教学过程中,注意渗透对应的思想,这样有助于培养学生的函数观念.(2)列代数式是由特殊到一般,而求代数式的值,则可以看成由一般到特殊,在教学中,可结合前一小节,适当渗透关于特殊与一般的辨证关系的思想.教学设计示例代数式的值(一)教学目标1使学生掌握代数式的值的概念,能用具体数值代替代数式中的字母,求出代数式的值;2培养学生准确地运算能力,并适当地渗透特殊与一般的辨证关系的思想。

《代数式的值》教案设计

《代数式的值》教案设计

《代数式的值》教案设计一、教学目标:1. 让学生理解代数式的概念,掌握代数式的基本运算方法。

2. 培养学生运用代数式解决实际问题的能力。

3. 提高学生分析问题、解决问题的能力。

二、教学内容:1. 代数式的概念及基本运算。

2. 代数式在实际问题中的应用。

三、教学重点与难点:1. 重点:代数式的概念,代数式的基本运算。

2. 难点:代数式在实际问题中的应用。

四、教学方法:1. 采用问题驱动法,引导学生主动探究代数式的概念和运算方法。

2. 利用实例分析,让学生学会将实际问题转化为代数式问题。

3. 采用小组合作学习,提高学生解决问题的能力。

五、教学过程:1. 导入:通过生活中的实例,引导学生思考代数式的概念。

2. 新课:讲解代数式的定义,介绍代数式的基本运算方法。

3. 练习:让学生独立完成一些代数式的运算题目,巩固所学知识。

4. 应用:分析实际问题,引导学生将问题转化为代数式问题,并求解。

5. 总结:对本节课的内容进行总结,强调代数式在实际问题中的应用。

6. 作业:布置一些有关代数式的练习题目,巩固所学知识。

这五个章节的内容主要涵盖了代数式的概念、基本运算以及实际应用。

在教学过程中,要注意引导学生主动探究,培养他们分析问题、解决问题的能力。

六、教学评估:1. 通过课堂提问,检查学生对代数式概念的理解程度。

2. 通过运算练习,评估学生对代数式基本运算的掌握情况。

3. 通过实例分析,评估学生将实际问题转化为代数式问题的能力。

七、教学反馈:1. 根据学生的课堂表现和作业完成情况,及时给予反馈,指出学生的优点和不足。

2. 鼓励学生在课堂上积极提问,及时解答他们的疑问。

3. 针对学生的弱点,进行有针对性的辅导。

八、教学拓展:1. 介绍代数式在其他学科中的应用,如物理学、化学等。

2. 引导学生探索代数式与函数、方程等数学概念的联系。

3. 推荐一些有关的课外阅读材料,供有兴趣的学生进一步学习。

九、教学反思:1. 在教学过程中,是否有效地引导学生主动探究代数式的概念和运算方法?2. 学生是否能将实际问题转化为代数式问题,并熟练地进行求解?3. 针对教学过程中的不足,如何改进教学方法,提高教学效果?十、课后作业:1. 请学生总结本节课所学的内容,包括代数式的概念、基本运算及实际应用。

数学人教版2024版七年级初一上册 3.2 代数式的值 教学教案01

数学人教版2024版七年级初一上册 3.2 代数式的值 教学教案01

第三章代数式3.2 代数式的值
公式可以求出弯道的长度
解:(1)两段直道的长为2a;
两段弯道组成一个圆,
它的直径为b,周长为πb.
因此,这条跑道的周长为2a + πb.
(2)当 a = 67.3 m,b = 52.6 m 时,
2a + πb = 2×67.3 + 3.14×52.6
≈ 300(m)
因此,这条跑道的周长约为300 m.
例 4 一个三角尺的形状和尺寸如图所示,用代数式表示这个三角尺的面积S. 当 a = 10 cm,b = 17.3 cm,r = 2 cm 时,求这个三角尺的面积(π 取 3. 14)
分析:三角尺的面积= 三角形的面积- 圆的面积.
根据三角形、圆的面积公式可以求出三角尺的面积.
巩固练习
如图是一个长为x,宽为y 的长方形休闲广场,在它的四角各修建一块半径为r 的四分之一圆形的花坛(阴影部分),其余部分作为休闲区.
(1)用代数式表示休闲区的面积;
(2)若长方形休闲广场的长为50 m,
宽为20 m,四分之一圆形花坛的半径为8 m,求休闲区
的面积(π 取3.14,结果取整数).
解:(1)休闲区的面积为xy - πr2.
(2)当x = 50 m,y = 20 m,r = 8 m 时,
xy - πr2 = 50×20 - 3.14×82 ≈ 799 (m2).
因此,休闲区的面积约为799 m2.
三、课堂练习:
四、课堂小结
使学生掌握代数式的值的概念,用代数式中的计算关系来计算代数式的结果,正确认识代数式中的符号
在实际生活中,经常将数值代入到几何图形的公式中进行求值,从而解决相应的问题.。

代数式的值教案

代数式的值教案

代数式的值教案代数式的值教案「篇一」【学习目标】1、了解代数式的值的意义,能准确地求出代数式的值;2、通过代入法求值培养学生良好的学习习惯和品质,提高运算能力与创新设计能力;3、通过字母取不同的值的变化来认识世界发展变化及全面的观点。

【学习重点】能准确地求出代数式的值。

【学习难点】能准确地求出代数式的值。

【学习过程】『问题情境、研讨』情境一:某公园依地势摆若干个由大小相同的正方形构成的花坛,并在各正方形花坛的顶点与各边的中点布放盆花以营造节日气氛。

(1)填写下表图形编号 (1) (2) (3) (4)盆花数(2)若要求第100个图案要用多少盆花,怎样去解答?情境二:(1)看图,如果小朋友的年龄为x岁,那么工人的年龄怎么表示?(2)当x=9时,工人过了40岁了吗?(3)想一想:当x=6时工人的年龄呢?结论:根据问题的需要,用具体数值代替代数式中的字母,按照代数式中的运算关系,计算出的结果,就叫做这个代数式的值。

『例题讲评』 P70/例1、 P/71议一议『学生练习』 P71/练一练:1、2补充:(1)当x=1时,求代数式4 -x+x2的值。

(2)当a=2,b=-5时,求下列代数式的值:①(a+b)(a-b) ②a2-b2。

(3)当x+y=-2,xy=-4时,求代数式 - 的值。

3.3 代数式的值(1)随堂练习评价_______________1.当x=-1时,代数式|5x+2|和1-3x的值分别为,则M、N之间的关系为A.MNB.M2.当a=-2时,代数式-a2的值是A.4B.-2C.-4D.23.已知a-b=-2,则代数式3(a-b)2-b+a的值为A.10B.12C.-10D.-124.当a=2,b=-3,c=-4时,代数式b2-4ac的值为___________。

5.如果a+b=-3,ab=-4,代数式的值为__________。

6.已知:x=-1,y=2,则(x-y)2-x3+x2y2 = 。

代数式的值公开课教案

代数式的值公开课教案

代数式的值公开课教案一、教学目标1. 让学生理解代数式的概念,掌握代数式的基本运算规则。

2. 培养学生运用代数式解决实际问题的能力。

3. 提高学生对数学的兴趣,培养学生的逻辑思维能力。

二、教学内容1. 代数式的概念及基本运算规则。

2. 代数式在实际问题中的应用。

三、教学方法1. 采用讲解法,引导学生理解代数式的概念和基本运算规则。

2. 采用案例分析法,让学生通过实际问题学会运用代数式。

3. 采用小组讨论法,培养学生的合作能力和解决问题的能力。

四、教学准备1. 教学PPT。

2. 教学案例及练习题。

五、教学过程1. 导入:通过一个简单的实际问题,引导学生思考如何用数学表达式来表示问题中的数量关系。

2. 讲解代数式的概念及基本运算规则,让学生掌握代数式的定义和运算方法。

3. 案例分析:给出一个实际问题,让学生运用代数式解决问题,培养学生的应用能力。

4. 课堂练习:布置一些代数式的运算题目,让学生独立完成,巩固所学知识。

5. 总结:对本节课的内容进行总结,强调代数式的重要性和应用价值。

6. 作业布置:布置一些相关的代数式练习题,让学生课后巩固。

7. 课后反思:对本节课的教学进行反思,了解学生的掌握情况,为的教学做好准备。

六、教学评估1. 课堂问答:通过提问,了解学生对代数式概念和运算规则的理解程度。

2. 练习题:分析学生完成练习题的情况,评估学生对知识的掌握和应用能力。

3. 小组讨论:观察学生在小组讨论中的表现,评估学生的合作能力和解决问题的能力。

七、教学拓展1. 邀请数学专家进行讲座,让学生更深入地了解代数式的应用领域。

2. 组织学生参加代数式相关的竞赛或活动,提高学生的学习兴趣。

3. 推荐学生阅读代数式相关的书籍或文章,丰富学生的知识储备。

八、教学反馈1. 收集学生对课程的意见和建议,不断优化教学方法。

2. 及时与学生沟通,了解学生的学习困惑,提供针对性的指导。

3. 根据学生的反馈,调整教学内容和难度,使教学更符合学生的需求。

代数式的值教案设计

代数式的值教案设计

一、教学目标1. 知识与技能:(1)理解代数式的概念,能够正确书写简单的代数式;(2)掌握代数式的基本运算方法,包括加减乘除、乘方等;(3)能够利用代数式解决实际问题。

2. 过程与方法:(1)通过观察、分析、归纳等方法,引导学生发现代数式的运算规律;(2)运用代数式解决实际问题,提高学生的应用能力。

3. 情感态度与价值观:(1)培养学生对数学的兴趣,激发学生学习代数式的积极性;(2)培养学生合作、探究的学习态度,提高学生的自主学习能力。

二、教学重点与难点1. 教学重点:(1)代数式的概念及书写方法;(2)代数式的基本运算方法;(3)运用代数式解决实际问题。

2. 教学难点:(1)代数式运算规律的发现;(2)将实际问题转化为代数式求解。

三、教学准备1. 教师准备:(1)熟练掌握代数式的相关知识;(2)准备相关教学案例、例题;(3)制作教学课件、板书设计。

2. 学生准备:(1)预习代数式相关知识;(2)准备笔记本,记录重点知识;(3)积极参与课堂讨论。

四、教学过程1. 导入新课:(1)利用生活中的实例,引出代数式的话题;(2)介绍代数式的概念及书写方法。

2. 自主学习:(1)学生自主探究代数式的基本运算方法;(2)教师引导学生发现代数式运算规律。

3. 课堂讲解:(1)讲解代数式的运算方法,举例说明;(2)引导学生运用代数式解决实际问题。

4. 巩固练习:(1)学生独立完成相关练习题;(2)教师批改、讲解,及时反馈。

5. 课堂小结:(1)学生总结本节课所学知识;(2)教师补充、强调重点知识点。

五、课后作业1. 复习本节课所学知识,巩固代数式的概念、运算方法;2. 完成课后练习题,运用代数式解决实际问题;3. 预习下一节课内容,为课堂学习做好准备。

六、教学策略1. 情境教学:通过生活实例,激发学生学习兴趣,引导学生理解和掌握代数式。

2. 合作学习:鼓励学生分组讨论,共同探究代数式的运算规律,提高学生的团队协作能力。

个性初中数学代数式的值教案

个性初中数学代数式的值教案

【教案】个性初中数学代数式的值【一、教学目标】1. 了解代数式的基本组成和含义,掌握代数式化简的方法。

2. 熟悉解代数式的值的常用方法,能灵活应用代数式求值。

3. 培养学生对代数式的逻辑分析能力和数学计算思维。

【二、教学重点】1. 掌握代数式求值的基本方法和技巧。

2. 熟悉代数式化简的基本方法和技巧。

3. 培养学生对代数式求值的意识和能力。

【三、教学难点】1. 培养学生分析代数式的思维能力和逻辑思维能力。

2. 培养学生进行代数式求值的能力。

3. 提高学生对数学计算思维的认识和能力。

【四、教学内容】1. 代数式的基本组成和含义。

2. 代数式的化简方法和技巧。

3. 解代数式的值的常用方法和技巧。

【五、教学方法】1. 讲授法:讲解代数式求值的基本方法和技巧。

2. 演示法:通过实例进行讲解和演示,帮助学生加深对代数式求值的理解和认知。

3. 组合性教学法:将代数式的基本组成和含义、化简方法和技巧、求值的方法和技巧进行系统地组合,使学生能够全面掌握代数式求值的基本方法和技巧。

【六、教学媒体】1. 教科书、实物模型:利用教科书和实物模型辅助讲解和演示,帮助学生理解和掌握代数式的基本概念和基本操作。

2. 多媒体:使用多媒体PPT等工具,展现代数式的结构和化简过程,使学生更加形象直观地理解代数式求值的方法和技巧。

【七、教学评价】1. 课堂笔记:要求学生认真听讲,做好课堂笔记,记录重要知识点和思路。

2. 练习册:将代数式求值的习题集落实到练习册上,让学生反复练习、巩固。

3. 课堂测验:课堂测验是评价教学成果的重要方式,通过考核学生的掌握情况,及时发现问题、调整方案,为后续教学提供数据支持。

【八、教学实施】1. 预热:利用教师提前准备好的课件,展现个性化的代数式求值,唤起学生兴趣,引导学生进入学习状态。

2. 讲授:主要是讲解代数式化简和求值的方法和技巧,针对不同难度的代数式和求值题目,运用不同的解题方法和技巧,辅助学生掌握相关知识点。

代数式的值教案

代数式的值教案

代数式的值教案教学目标:1.理解代数式的概念及其运算规则。

2.能够根据给定的代数式计算其值。

3.能够利用代数式解决实际问题。

教学重点:1.代数式的概念及其运算规则。

2.利用代数式计算其值。

教学难点:1.能够利用代数式解决实际问题。

教学准备:1.教师准备黑板、白板、彩色粉笔、教学课件等教学工具。

2.准备代数式的相关练习题。

教学过程:Step 1:引入新知识(1)教师通过提问和举例引导学生思考:什么是代数式?代数式有哪些运算规则?(2)教师板书代数式的定义及运算规则。

Step 2:讲解代数式的运算规则(1)教师通过例题讲解代数式的运算规则,包括相同项的合并、同类项的相加减、乘法公式的运用等。

(2)教师提供练习题,让学生进行练习并检查答案。

Step 3:小组合作探究(1)将学生分组,每个小组选择一道代数式的题目进行解答和讨论。

(2)学生在小组内彼此交流、讨论,并找出解题的思路和方法。

(3)教师在小组之间巡视,提供指导和帮助。

Step 4:学生展示与分享(1)各小组派一名代表上台,展示他们的解题过程和答案。

(2)学生对其他小组的解答进行评价,并提出自己的见解和问题。

(3)教师对学生的答案进行点评和总结。

Step 5:拓展练习(1)教师提供一些适当难度的练习题,让学生进行练习。

(2)学生独立完成练习题,并互相交流解题思路和方法。

(3)教师布置课后作业。

Step 6:课堂总结(1)教师对本节课的内容进行总结,强调代数式的概念及运算规则。

(2)鼓励学生积极参与课堂讨论,提出自己的想法和思考。

教学反思:本节课通过引入新知识、讲解运算规则、小组合作探究、学生展示与分享等多种教学方法,培养了学生的合作能力、交流能力和解决问题的能力。

对于一些学生来说,代数式的概念和运算规则可能较为抽象,需要通过大量的练习巩固加深理解。

因此,在课后的作业布置上,应适当增加练习题的数量,让学生更好地掌握代数式的计算方法。

初中初一数学上册《代数式的值》教案、教学设计

初中初一数学上册《代数式的值》教案、教学设计
作业要求:
1.学生独立完成作业,家长监督,确保作业质量。
2.作业完成后,认真检查,及时发现问题,改正错误。
3.遇到难题时,主动与同学、老师交流,共同解决问题。
4.作业上交后,教师将对学生的作业进行批改和反馈,学生需认真对待。
四、教学内容与过程
(一)导入新课,500字
1.教师通过生活中的实例,如购物时计算总价、求解几何图形的面积等,引导学生回顾小学阶段接触过的代数知识,为新课的学习做好铺垫。
2.提问:“同学们,我们知道,数学中的表达式由数字、字母和运算符号组成,那么这些表达式有什么作用呢?今天我们将学习一种特殊的表达式——代数式,并了解它的值是如何求解的。”
在教学过程中,采用以下方法培养学生的逻辑思维能力和解决问题的能力:
1.引导学生通过观察、分析、归纳等思维活动,发现代数式的规律,提高学生的观察能力和概括能力。
2.设计不同难度的例题和练习题,使学生在解决问题的过程中,逐步掌握代数式的求值方法,提高解题技巧。
3.鼓励学生开展合作学习,进行讨论和交流,培养学生的团队协作能力和沟通能力。
初中初一数学上册《代数式的值》教案、教学设计
一、教学目标
(一)知识与技能
1.理解代数式的定义,知道代数式是由数பைடு நூலகம்、字母和运算符号组成的表达式。
2.学会使用代入法求代数式的值,并能运用到实际问题中。
3.能够根据题意列出代数式,并正确求解其值。
4.掌握代数式的化简和运算规则,提高解题能力。
(二)过程与方法
三、教学重难点和教学设想
(一)教学重难点
1.代数式的定义及其与方程、不等式的区别。
2.代数式的代入求值方法,以及在不同情境下的应用。
3.代数式的化简和运算规则,提高解题效率。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2.1.3.代数式的值
合肥市龙岗中学於国俊
2013.10.24
教材分析:
本节课在内容安排上,首先从一个人的生活实例出发,引出代数式的值的概念,使学生实现从数到式的飞跃,知道了列代数式的目的是解决问题,解决问题的过程中,往往需要根据代数式中字母所取的值,确定代数式的值,也就是本节课的内容。

本节课的重难点在于让学生学会求代数式的值,并理解代数式里的字母取值应使得代数式与它所表示的实际数量有意义。

教学目标:
知识与技能:了解代数式的值的概念,会求代数式的值,会利用求代数式的值解决较简单的实际问题。

过程与方法:在具体情境中感受代数式中的字母表示数的意义,体会代数式实际上是由计算关系反映的一种数量关系。

情感、态度与价值观:通本节内容的学习培养学生的学习兴趣和实际运用数学的能力。

教学重难点:
重点:求代数式的值。

难点:理解代数式里的字母可取不同的值,但是所取的数值不能使代数式或它表示的实际问题失去意义。

教具准备:多媒体课件。

教学方法:小组合作、精讲点拔、启发式教学。

教学过程:
一、组织活动、引入新课
课前和同学们聊天、交流,问:1.你们晚上一般几点钟睡觉?早晨几点钟起床啊?(学生积极回答),2.那么你们觉得睡这几个小时够不够呢?白天上课会不会打瞌睡啊?(学生回答有说够的,有说不够的),究竟够不够呢?我们等一会再说先上课,(师:上课,师生问好)刚才老师在上课前问了几名同学一些关于睡眠的问题,你们这个年龄段究竟要几个小时的睡眠才够呢?我们来看一看:一项调查研究显示:一个10—50岁的人,每天所需要的睡眠时间t h与他
的年龄n岁之间的关系为:t= 。

例如,你们的数学老师我今年30岁了,那么我每天所需的睡眠时间是
t=
1030
110-
=8(h)
10 110n
-
算一算,你每天所需要的睡眠时间?(算出的结果只能参考,具体情况要根据个人睡眠习惯和睡眠的质量等原因因人而异)。

(设计意图:以和学生息息相关的睡眠时间问题讲解分析代数式的值的概念,对学生兴趣的培养.学习目的的端正都是有益的,让学生在实际生活中去发现,代数式中的字母可以用数字代替求出固定的结果,初步体会求代数式值的过程)。

二、探究新知
1.师问:你能由上面的研究说一说什么是代数式的值吗?(不要看课本) 学生分小组讨论后回答
师:像刚才这样,用某个数值去代替代数式中的字母,并按照代数式中的运算关系计算得出的结果叫做代数式的值。

(板书:2.1.3代数式的值)同学回家后可以帮你们的家人算一算他们所需要的睡眠时间,但是要注意:你们要算的人的年龄不能大于50岁,小于10岁。

超过取值范围后结果便没有什么意义。

2.师:下面我们来看一张照片,讲解例题:
例1.堤坝的横截面是梯形,测得梯形上底为a=18m ,下底b=36m ,高h=20m ,

2名同学板演,其他同学在下面写(合上课本),教师到学生中间看看学生的解答情况。

写完后由学生先订正,然后教师讲解,(注意格式)
(设计意图:以生活中的实际问题让学生回忆、复习、巩固小学的部分知识,对本节课内容的学习先奠定一个基础,为后面的学习带来帮助)。

3.师:通过上面的学习我们已经初步学会了如何去求代数式的值,以及大概的步骤了,下面我们再来做一做:
例2:根据所给x 的值,求代数式4x+5的值:(1)x=2(2)x=-3.5 (3)x=2
12 3名同学板演,教师巡视、检查学生的答题情况。

答完先由学生订正然后教师精讲点拔。

师:在今后解决问题的过程中,经常需要根据代数式中字母的取值来确定代数式的值,你能根据代数式的值的概念找出求代数式的值的方法吗?
学生活动:积极思考,相互讨论,找出方法,
求代数式的值的步骤:
(1)写出条件:解:当……时,(2)抄写代数式,(3)代入数值,(4)计算出结果。

归纳为四个字:写、抄、代、计。

(设计意图:鼓励学生探索方法大胆实践,养成善于思考总结规律的习惯)。

师:我们现在已经基本学会了如何去求代数式的值及解题的基本步骤了,刚才在别的班有两个同学过来问我一个题目他们认为是对的,现在我们大家一起来帮他们看一看到底对不对。

例3..练一练: 判断题:
①当 时, ( ) ②当 时, ( ) 师:请学生回答对、错,上黑板写出正确步骤和答案,你能从上面的运算过程中说一说代数式的值在计算时需要注意哪些问题吗?
师生交流得:注意:①代数式中省略了乘号时,代入数值后“乘号”要填上;②如果代入的值是负数、分数,代入时应加上括号。

③要按照运算法则进行运算。

(设计意图:一环紧扣一环的发问,使学生对代数式的值的概念有了清楚的认识,分散了难点,也培养了学生逻辑思维能力。

)现在大家已经小有所成了,让我们再接再厉争取更大的进步。

三、巩固与拓展练习
1.填写下面右图中对应的数值(并填括号中的数):学生口答。

师:刚才的问题大家回答的很好,现在你们已经快大有所成了,只需再做两题就行了,
x 2x+5 2-=x 123322-=-=x 21=x 413213322=⎪⎭
⎫ ⎝⎛=x
2.设甲数是x,乙数是y,
(1)用代数式表示甲、乙两数平方的差;
(2)用代数式表示甲、乙两数差的平方;
(3)当x = -3,y = 2时,计算(1)和(2)所列代数式的值。

师:请两名同学上黑板,其他同学在家庭本上写。

(设计意图:一边复习如何把语言文字描述的数量关系列代数式,一边学会求代数式的值,让学生在练习中巩固自己所学的知识)。

3.现在同学们已经大有所成了,老师就有件事情请同学们帮个忙,老师准备这周末开车去一趟上海,老师的车在行驶时平均每小时耗油8L,行驶前油箱中有油80L.
⑴用代数式表示行驶x h后,油箱中的剩余油量Q=______;
⑵计算行驶了6h到达上海后,油箱中的剩余油量。

⑶到上海办完事后接着老师就要返回合肥,还需要6h,你能算出剩余油量Q 的值吗?
(设计意图:通过现实生活中的实例说明,代数式里的字母虽然可以取不同的数值,但是这些数值不能使代数式和它表示的实际问题失去意义。

本题中的x 不能取负数和大于10的值)。

师:感谢同学们积极的帮助,让老师知道了油箱中的油是不够跑到上海一个来回的,老师也和你们一起在这节课中学会很多知识,那么现在让我们共同来回忆一下本节课学习了哪些内容?
四.归纳总结:
1、知道什么是代数式的值,并会求代数式的值。

2、求代数式的值的步骤:
(1)写出条件:解:当……时,(2)抄写代数式,
(3)代入数值,(4)计算出结果。

3、求代数式的值的注意事项:
(1)代数式中省略了乘号时,代入数值以后必须添上乘号;
(2)如果代入的值是负数、分数,代入时应加上括号;
(3)要按照运算法则进行运算。

4、代数式里的字母可取不同的值,但是所取的数值不能使代数式或它表示的实际问题失去意义。

五.布置作业:
课堂作业:课本66页第3题和67页第7题
家庭作业:课本66页:第1、2题。

相关文档
最新文档