电磁场数值方法电子教案:绪论

合集下载

电磁场和电磁波电子教案4

电磁场和电磁波电子教案4

第四章 时变电磁场4、1波动方程既随时间又随空间作周期性变化的场称其为波。

波动方程反应了时变电磁场中电场场量和磁场场量在空间中传播时所遵循的规律,通过麦克斯韦方程组推导得到。

一、波动方程的建立(无源区)0,0==Jρ⎪⎪⎪⎩⎪⎪⎪⎨⎧=•∇=•∇∂∂=⨯∇∂∂-=⨯∇)4(0)3(0)2()1(D B t D H t B E(1) 式两边取旋度,)(H tE ⨯∇∂∂-=⨯∇⨯∇μ左边: E E 2)(∇-•∇∇右边:22t E∂∂- με 有 0222=∂∂-∇t E E με 同理 0222=∂∂-∇tH H με 无源区场的波动方程时变电磁场的场量在空间中是以波动形式变化的,因此称时变电磁场为电磁波。

通过解波动方程,可以求出空间中电磁场的分布情况。

但需要注意的是,只有少数特殊情况可以通过直接求解波动方程求解。

4、2电磁场的位函数 1、矢量位和标量位0)()(=∂∂+⨯∇⇒⨯∇∂∂-=∂∂-=⨯∇⨯∇=tA E A t tB E AB无旋的令 ϕϕ∇-∂∂-=⇒-∇=∂∂+tAE t A E:电磁场的标量位。

2、洛仑兹条件tA ∂∂-=•∇ϕμε3、达朗贝尔方程 (在洛仑兹条件下,ϕ,A所满足的微分方程)线性、各向同性的均匀介质,将A B ⨯∇=,ϕ∇-∂∂-=t A E 代入t EJ H ∂∂+=⨯∇ε, 有 )1()(222J t A t A A μϕμεμε-=∂∂+•∇∇-∂∂-∇另有 )2()(2ερϕ-=•∇∂∂+∇A t由洛仑兹条件ερϕμεϕμμε-=∂∂-∇⇒-=∂∂-∇⇒222)2(222)1(tJtA A ⎪⎪⎭⎪⎪⎬⎫达朗贝尔方程 4、 3电磁能量守恒定律一、 电磁场能量密度和能流密度电场能量密度:22121EE D w e ε=•= 磁场能量密度:22121H H B w m μ=•=总能量密度:)(2122H E w w w m e με+=+=能流密度: 电磁波定向运动伴随电磁场能量移动,其流动情况用能流密度表示,其数值为单位时间垂直流过单位面积的能量,方向为能量流动方向。

电磁场数值计算方法_工程电磁场讲义

电磁场数值计算方法_工程电磁场讲义

其他的分析软件
除了ANSYS以外,还有许多通用或电 磁分析专业软件,例如: ANSOFT 公司 的Maxwell 2D&3D、HFSS、飞箭公司的 FEPG、COMSOL公司的FEMLAB等等, 它们各有特点。
3.Applications
3.1 应用实例1——准静电场
2 0
架空线路分裂导线表面电场
FEM相比其它数值方法的优点在于: ——理论基础成熟; ——计算格式规范统一,利于编程; ——适应性高,适合各种复杂形状的区域; ——求解精度高;
由于这些优异的特性,在短短几十年时间里, FEM成为了绝大多数物理和工程问题中(机械、 航空、汽车、船舶、土木、海洋工程、电气电 子、压力容器等)应用最广泛的一种计算机辅助 分析方法。 在电磁分析领域,除了FEM以外,也有其 它有效的数值方法,例如:矩量法(MOM)、边 界元法(BEM)、时域有限差分法(FDTD)等等。
七、边界条件
1、狄利克莱边界条件
满足狄利克莱边界条件非常简单,只需要令狄利克莱 边界上的各节点电势为给定的值即可。图1中,若节点1 1 0, 4 1 , 和节点4上分别有狄利克莱边界条件:
则加入边界条件后的矩阵方程为:
K K 0 0
1 11 1 21
K 1 2 K 22 K 22 2 K32 0
1 K 1 11 K K1 21 1 f 1 1 f f 1 2
1 K12 1 K 22
2 K 2 22 K K 2 32 2 f 2 2 f f 2 3
Ni i i x
由形函数的性质可知:
1 Ni 0 x xi x xi 1

电磁场理论课程教案.

电磁场理论课程教案.

《电磁场理论》课程教案
第 1 页总28 页
《电磁场理论》课程教案
第 2 页总28 页
《电磁场理论》课程教案
第 3 页总28 页
《电磁场理论》课程教案
《电磁场理论》课程教案
第 5 页总28 页
《电磁场理论》课程教案
第 6 页总28 页
《电磁场理论》课程教案
第7 页总28 页
《电磁场理论》课程教案
第8 页总28 页
《电磁场理论》课程教案
第9 页总28 页
《电磁场理论》课程教案
第10 页总28 页
《电磁场理论》课程教案
第11 页总28 页
《电磁场理论》课程教案
第12页总28 页
《电磁场理论》课程教案
第13 页总28 页
《电磁场理论》课程教案
第14 页总28 页
《电磁场理论》课程教案
第15 页总28 页
《电磁场理论》课程教案
第16 页总28 页
《电磁场理论》课程教案
第17 页总28 页
《电磁场理论》课程教案
第18 页总28 页
《电磁场理论》课程教案
《电磁场理论》课程教案
《电磁场理论》课程教案
第21 页总28 页
《电磁场理论》课程教案
第22 页总28 页
《电磁场理论》课程教案
《电磁场理论》课程教案
第24 页总28 页
《电磁场理论》课程教案
第25 页总28 页
《电磁场理论》课程教案
第26 页总28 页
《电磁场理论》课程教案
第27 页总28 页
《电磁场理论》课程教案
第28 页总28 页。

第一章场论

第一章场论
∂Ax ∂Ay ∂Az ∫∫ Ax dydz + Ay dxdz + Az dxdy = ∫∫∫ ( ∂x + ∂y + ∂z )dV ∆S ∆Ω
G
二、梯度物理意义 增加率的最大值及方向。 标量的梯度表示了标量u增加率的最大值及方向。由 梯度的定义和物理意义可以得出梯度是一个矢量。 梯度的定义和物理意义可以得出梯度是一个矢量。
三、梯度的计算公式
gradu = ∇u = ∂u ∂u ∂u ex + ey + ez ∂x ∂y ∂z
算子本身并无意义,而是一种微分运算符号, •∇算子本身并无意义,而是一种微分运算符号,同时有被看作是矢 又对其后面的量进行微分运算( 量。它既是一个矢量,又对其后面的量进行微分运算(二重包括转 变矢量和进行一阶微分)。因而矢量微分算符 变矢量和进行一阶微分)。因而矢量微分算符∇符合矢量的标量积 )。 和矢量积的乘法规则,在计算时,先按矢量乘法规则展开, 和矢量积的乘法规则,在计算时,先按矢量乘法规则展开,再做微
A • B = Ax • Bx + Ay • B y + Az • Bz
2、特点: 、特点:
A • A = A2
A• B = B• A
三、求矢积 1、公式: 、公式:
ex A × B = ABsinθ en = Ax Bx
2、特点: 、特点:
ey Ay By
ez Az Bz
A×B = −B× A
四、矢量代数的微分公式 dAy dA d A dAx = e y + z ez ex + dt dt dt dt
其中( , , 为该射线分别与 为该射线分别与x,y,z轴的夹角, cosα,cosβ,cosγ为L 轴的夹角, 其中 ( α,β, γ为该射线分别与 轴的夹角 为 方向的方向余弦) 方向的方向余弦)。

电磁场数值分析基础

电磁场数值分析基础

A 4 r 2
折叠微带天线 建立计算模型时,忽略损耗,考虑金属贴 片为理想金属导体(PEC)。
35
36
6
1.5.1 误差的来源与分类
观测误差 在数学模型中往往还有一些根据观测得到的物理量, 如温度、长度、电压等等,而观测不可避免会带来误 差。这种由观测产生的误差称为观测误差. 例.求解电阻的阻值。
1.5.2 绝对误差与相对误差
例:用毫米刻度的直尺测量一长度为 x 的物体,其长度近似值 x 30mm 。 对于毫米刻度尺,最小刻度是1mm,则最大误 差为0.5mm,即其绝对误差限为0.5mm
*
则称
e( x ) x x
*
为近似值x的绝对误差,简称误差。
通常准确值x*是未知的,因此误差e(x)也未知。 若能根据测量工具或计算情况估计出误差绝对 值的一个上界,即

1
0
11 11 sin x x3 x2 dx x dx x 0 0 x x 3! x 6
17 dx 18
截断误差为: 0
1
sin x 17 dx 18 x
1.5.2 绝对误差与相对误差
* 定义1 设 x 是准确值,其近似值为x ,
无线通信
19 20
1.2 数值分析的用途
1.2 数值分析的用途
数码相机
美国F117隐身飞机
21 22
1.2 数值分析的用途
数值计算方法能够极大地覆盖所能解决 的问题类型 数值计算方法可以让用户更加智慧地使 用“封装”的软件 用 封装 的软件 数值计算方法是学习使用计算机的有效 载体 数值计算方法提供了加强对数学知识理 解的平台
2 2 2 kc 2 EZ 0 , 在波导内 2 x y

《电磁场》课程教案

《电磁场》课程教案

课程教案(2015—2016学年第 2 学期)课程名称:电磁场学分学时: 2学分 32学时授课班级:选修课学生人数: 114 人选用教材:《工程电磁场导论》(冯慈璋,马西奎)开课学院:自动化学院任课教师:教师职称:讲师教师所在单位:教务处2、梯度的定义注意:此处重点引导学生理解梯度方向和大小的物理意义。

(3)哈密尔顿算子的定义引入汉密尔顿算子有:则梯度可表示为:讨论、思考题、作业及课后参考资料讨论:电磁学的发展史教学后记本次课的内容主要是介绍电磁学发展史,矢量运算,场的概念,学生兴趣较高、理解难度不大。

周次第 2 周第1次课章节名称第零章矢量分析和场的概念0.4 矢量场的散度与旋度;0.5 矢量积分定理;0.6 麦克斯韦方程组。

授课方式理论课(√)实验课()实习()教学时数 2教学目标及基本要求(1)要求熟练掌握矢量场的散度与旋度;(2)理解矢量场的通量与环量以及三个常用矢量积分定理和亥姆霍兹定理;(3)了解麦克斯韦方程组,建立起对电磁场理论的整体认识;教学重点、难点重点:散度与旋度意义及坐标表达式;难点:高斯散度定理、斯托克斯定理以及亥姆霍兹定理的意义。

教学基本内容与教学设计(含时间分配)教学基本内容按以下内容逐个讲授:一、矢量场的散度(25分钟)1、矢量场的通量通量是一个标量。

当场矢量与曲面法线方向之间夹角为锐角时,dΦ>0;当场矢量与曲面法线方向之间夹角为钝角时,dΦ<0;当场矢量与曲面法线方向垂直时,dΦ=0若Φ>0,则表示流出闭合面的通量大于流入的通量,说明有矢量线从闭合面内散发出来。

若Φ<0,则表示流入闭合面的通量大于流出的通量,说明有矢量线被吸收到闭合面内。

若Φ=0,则表示流出闭合面的通量与流入的通量相等,说明矢量线处于某种平衡状态。

2、散度的定义应用散度概念可以分析矢量场中任一点的情况。

在M点,若divA>0,则表明M点有正源;若divA<0,则表明M点有负源。

divA为正值时,其数值越大,正源的发散量越大;divA为负值时,其绝对值越大,表明这个负源吸收量越大。

电磁场与电磁波电子教案

电磁场与电磁波电子教案

电磁场与电磁波电子教案第一章:电磁场的基本概念1.1 电荷和电场介绍电荷的性质和分类解释电场的概念和电场线电场强度的定义和计算电场的叠加原理1.2 磁场和磁力介绍磁铁和磁性的概念解释磁场的概念和磁感线磁感应强度的定义和计算磁场的叠加原理1.3 电磁感应介绍法拉第电磁感应定律解释感应电动势和感应电流的产生电磁感应的实验现象和应用第二章:电磁波的基本性质2.1 电磁波的产生和传播介绍麦克斯韦方程组和电磁波的理论基础解释电磁波的产生和传播过程电磁波的波动方程和波长、频率、速度的关系2.2 电磁波的能量和动量介绍电磁波的能量密度和能量传递解释电磁波的动量和动量传递电磁波的辐射压和辐射阻力的概念2.3 电磁波的偏振和反射、折射介绍电磁波的偏振现象和偏振光的性质解释电磁波在介质中的反射和折射现象反射定律和折射定律的原理及应用第三章:电磁波的传播和辐射3.1 电磁波在自由空间中的传播介绍自由空间中电磁波的传播特性解释电磁波的辐射和天线原理电磁波的辐射强度和辐射功率的概念3.2 电磁波在介质中的传播介绍电磁波在介质中的传播规律解释介质的折射率和介电常数的概念电磁波在介质中的衰减和色散现象3.3 电磁波的辐射和天线原理介绍天线的分类和基本原理解释天线的辐射特性和发展电磁波的辐射模式和天线的设计方法第四章:电磁波的应用4.1 电磁波在通信技术中的应用介绍电磁波在无线通信中的应用解释无线电波的传播和传播损耗电磁波在移动通信和卫星通信中的应用4.2 电磁波在雷达技术中的应用介绍雷达技术的基本原理和组成解释雷达方程和雷达的探测距离电磁波在雷达系统和雷达导航中的应用4.3 电磁波在医疗技术中的应用介绍电磁波在医学影像诊断中的应用解释磁共振成像(MRI)的原理和应用电磁波在放射治疗和电磁热疗中的应用第五章:电磁波的防护和辐射安全5.1 电磁波的辐射和防护原理介绍电磁波的辐射对人体健康的影响解释电磁波的防护原理和防护措施电磁屏蔽和电磁兼容的概念5.2 电磁波的辐射标准和法规介绍国际和国内电磁波辐射的标准和法规解释电磁波辐射的限制和测量方法电磁波辐射管理的政策和监管措施5.3 电磁波的辐射安全和防护措施介绍电磁波辐射的安全距离和防护措施解释电磁波辐射的个人防护和公共场所的防护措施电磁波辐射的环保意识和公众宣传的重要性第六章:电磁波在电力系统中的应用6.1 电磁波在电力传输中的应用介绍高压输电线路中的电磁干扰问题解释输电线路的屏蔽和接地措施电磁波在特高压输电技术中的应用6.2 电磁波在电力系统监测与控制中的应用介绍电力系统中的电磁场监测和测量技术解释电磁波在电力系统状态监测和故障诊断中的应用电磁波在智能电网和分布式发电系统中的应用6.3 电磁波在电力设备中的影响及防护分析电磁波对电力设备的干扰和影响解释电磁兼容性设计在电力设备中的应用电磁波防护措施在电力设备中的实施方法第七章:电磁波在交通领域的应用7.1 电磁波在铁路交通中的应用介绍铁路信号系统和电磁波在信号传输中的应用解释铁路通信和列车无线通信系统中电磁波的应用电磁波在铁路自动控制系统中的应用7.2 电磁波在汽车交通中的应用介绍汽车电子设备和电磁波的应用解释车载通信系统和电磁波在车辆导航中的应用电磁波在智能交通系统中的应用7.3 电磁波在航空和航天领域的应用介绍电磁波在航空通信和导航中的应用解释电磁波在卫星通信和航天器通信中的应用电磁波在航空航天器中的其他应用,如雷达和遥感技术第八章:电磁波在工科领域的应用8.1 电磁波在电子工程中的应用介绍电磁波在无线电发射和接收中的应用解释电磁波在微波器件和天线技术中的应用电磁波在射频识别(RFID)技术中的应用8.2 电磁波在光电子学中的应用介绍电磁波在光纤通信中的应用解释电磁波在激光器和光电器件中的应用电磁波在光电探测和成像技术中的应用8.3 电磁波在生物医学领域的应用介绍电磁波在医学诊断和治疗中的应用解释电磁波在磁共振成像(MRI)和微波热疗中的应用电磁波在其他生物医学技术中的应用,如电疗和电磁屏蔽第九章:电磁波的环境影响和政策法规9.1 电磁波的环境影响分析电磁波对环境和生物的影响,如电磁辐射污染解释电磁波的环境监测和评估方法电磁波环境保护措施和可持续发展策略9.2 电磁波的政策法规介绍国际和国内关于电磁波辐射的政策法规解释电磁波辐射的标准和限制条件电磁波辐射管理的政策和监管措施9.3 电磁波的公众宣传和教育分析电磁波辐射的公众认知和误解解释电磁波辐射的安全性和健康影响电磁波辐射的公众宣传和教育方法第十章:电磁波的未来发展趋势10.1 新型电磁波技术和材料的研究介绍新型电磁波发射和接收技术的研究解释新型电磁波传输材料和超材料的研究进展电磁波技术在未来的应用前景10.2 电磁波在新型能源领域的应用介绍电磁波在太阳能和风能等新型能源领域的应用解释电磁波在智能电网和能源互联网中的应用电磁波在未来能源系统中的作用和挑战10.3 电磁波与物联网和大数据的结合分析电磁波在物联网通信中的应用解释电磁波在大数据传输和处理中的作用电磁波在未来物联网和大数据技术中的挑战和发展趋势重点和难点解析一、电磁场的基本概念:理解电荷、电场、磁场和磁力的基本性质,以及电磁感应的原理。

电磁场课件-电磁场教案-第2章-2013

电磁场课件-电磁场教案-第2章-2013

电磁场课件-电磁场教案-第2章-2013章序名称第2章静态电磁场I:静电场2.1 基本方程与场的特性授课学时1学时教材分析本章的静电场是课程的第一部分内容。

在这部分内容的学习中,学生第一次以矢量分析和数学物理方法的观点和方法来认识和分析一种矢量场,这种方法将贯穿整个课程的始终。

因此,很好的理解、掌握静电场的基本内容,是掌握整个课程内容的基础。

教材采用演绎法进行编排,本节的先知内容包括1.1节涉及到的电荷及电荷分布、电场强度等基本概念,以及第1章涉及的电磁场矢量分析、场论的数学基础、麦克斯韦方程组等宏观电磁场分析基本理论,因此在讲述时需要对这些内容进行回顾和强调。

本节教材内容适中,所编排的例题2-1和2-2主要作用是通过实例强化学生对散度、旋度计算中涉及的坐标系、标量、矢量等概念的理解,球坐标系下散度和旋度表达式不需学生掌握。

学生分析学生前面学过物理电磁学的相关知识,因此对积分形式的麦克斯韦方程容易理解,当时的学习脉络是从实验定律出发先特殊再一般的归纳方法,最后导出麦克斯韦方程。

而本书是先麦克斯韦方程的演绎法,学生需要先理解。

学生对第一章涉及的矢量分析、场论基础学习理解会比较困难,包括积分形式和微分形式的适用范围、点乘和叉乘的概念、点乘和梯度算子的区别等,因此本节需要继续对相关内容进行重复和强化,教学目标知识目标:1.理解静态电磁场、静电场的定义。

2. 掌握微分形式的静电场基本方程,以及静电场的无旋场、有散场特性。

3. 掌握真空中的高斯定理能力目标:1.能够用真空中的高斯定理,针对简单问题,由E计算ρ。

教学重点1.静电场中电荷源量与电场分布的对应关系2.真空中的高斯定理。

教学难点通过本节强化学生对场论中散度、旋度等概念的理解教学手段板书配合多媒体教学方法启发式提问、讲解、例题强化教学用具无教学内容提要备注第2章静态电磁场I :静电场静电场定义:由相对于观察者为静止的、且量值不随时间变化的电荷所激发的电场。

电磁场课件-电磁场教案-第1章-2013

电磁场课件-电磁场教案-第1章-2013

章序名称第1章 电磁场的数学物理基础授课学时7学时教材分析(1) 首先阐述电磁场物理模型的构成,概括了源量、场量以及媒质电磁性能参数等物理概念;(2) 其次,基于电磁场是一种矢量场,重点讨论矢量分析和场论的数学基础;(3) 通过数学和物理概念的结合,进一步深化对电磁感应定律和全电流概念的理解,从数学和物理意义上描述麦克斯韦方程组。

学生分析矢量分析的概念虽然在高等数学中已经涉及,但工科的学生很少有机会系统的学习矢量分析这门课程,本章主要从数学和物理相结合的角度来分析宏观电磁理论。

教学目标知识目标:1.掌握电磁场物理模型构成,理解源量、场量以及媒质电磁性能参数等物理概念。

2.掌握矢量分析的方法。

3.理解麦克斯韦方程组在数学和物理意义上的描述。

能力目标:1.培养学生建立电磁场的物理概念。

2.培养学生从数学和物理角度分析电磁场的能力。

教学重点(1) 电磁场的物理模型 (2) 矢量分析(3) 场论(4) 麦克斯韦方程组 教学难点(1) 矢量分析(2) 场论(3) 麦克斯韦方程组教学手段 多媒体(图像、动画) 教学方法 启发、讨论、研究 教学用具章序名称 1.1 电磁场物理模型的构成授课学时7学时教材分析(4)首先阐述电磁场物理模型的构成,概括了源量、场量以及媒质电磁性能参数等物理概念;(5)其次,基于电磁场是一种矢量场,重点讨论矢量分析和场论的数学基础;(6)通过数学和物理概念的结合,进一步深化对电磁感应定律和全电流概念的理解,从数学和物理意义上描述麦克斯韦方程组。

学生分析矢量分析的概念虽然在高等数学中已经涉及,但工科的学生很少有机会系统的学习矢量分析这门课程,本章主要从数学和物理相结合的角度来分析宏观电磁理论。

教学目标知识目标:1.掌握电磁场物理模型构成,理解源量、场量以及媒质电磁性能参数等物理概念。

2.掌握矢量分析的方法。

3.理解麦克斯韦方程组在数学和物理意义上的描述。

能力目标:1.培养学生建立电磁场的物理概念。

电磁学电子教案课件

电磁学电子教案课件
硬磁材料
如铝镍钴、铁氧体等,用于制造永磁体,利用其较强的剩磁 和矫顽力特性保持磁场。
05
电磁感应与麦克斯韦方程组
Chapter
电磁感应的基本概念
总结词
描述电磁感应现象及其产生条件。
详细描述
电磁感应是当磁场发生变化时,会在 导体中产生电动势的现象。其产生条 件包括磁场、导体和磁通量的变化。
法拉第电磁感应定律
麦克斯韦方程组的应用
总结词
列举麦克斯韦方程组在各个领域的应用实例。
详细描述
麦克斯韦方程组在通信工程、电子工程、光学等领域有广泛应用。例如,在通信领域, 该方程组可用于分析电磁波的传播特性,提高信号传输的稳定性和可靠性;在电子工程 领域,该方程组可用于研究电磁场对电子设备的干扰和影响,提高设备的性能和稳定性
电磁力
带电粒子或带电物体之间 通过电磁场相互作用产生 的力。
电磁学的发展历程
静电学
研究静止电荷产生的电场 及其与物质相互作用。
静磁学
研究静止磁场及其与物质 的相互作用。
电磁感应
研究变化的磁场如何产生 电场,以及变化的电场如 何产生磁场。
电磁学在生活中的应用
无线通信
医疗设备
利用电磁波传递信息,实现无线通信 。
电磁学电子教案课件
目录
• 电磁学概述 • 电磁场与电磁波 • 电场与电介质 • 磁场与磁介质 • 电磁感应与麦克斯韦方程组
01
电磁学概述
Chapter
电磁学的基本概念
01
02
03
电磁场
由电场和磁场组成,是物 质的一种形态,具有能量 和动量。
电磁波
在空间传播的电磁场,具 有振荡、振动和传播等特 性。
总结词

电磁场数值方法(PDF)

电磁场数值方法(PDF)

时变场中的差分法&21&2.1波动方程的差分法222u u ⎧∂∂−=220,0,0a x l t T t x <<<<⎪∂∂⎪0:(),(),0u t u x x x l t ϕψ∂⎪===≤≤⎨∂120,();,()0(0)()(0)x u u t x l u u t t T ⎪====≤<⎪12(0)(0),u l u ϕϕ⎪==⎩¾差分方程的形成和求解N第(n+1)层t τ+第n层时刻t xj-1τhJj+1jj 11[,(1)](,)n n j j u u u jh n u jh n ττ+−=+−4232341234(,)111()()(),()2!3!4!j nn n j j j n n u x t u u u t t t tt t t ττττ+∂∂∂∂=+++≤≤∂∂∂∂%%1(1)]()n nu −423234[,(,(,)111j j j n n n u u jh n u jh n u x t u u u t t t ττττττ−−=−−∂∂∂∂=−+−+≤≤%%%%1234()()(),()2!3!4!j j j n n t t t t∂∂∂∂4421124(,)(,)1n n n n u x t u x t u +−∂∂∂++%%%2442()[]4!j j j j j j u u u t t tττ−+=∂∂∂11n n n +−∂22222()()jj jn j uu uu O tττ−+=+∂21122n n n j j j n uu u u +−−+∂22()()j O h hx=+∂n n 1()()jjnj uuu O tττ+−∂=+∂⎧1111222220,(1,1;1,1)n n n n n n jjjj jj U U U U U U a j J n N h τ+−+−−+−+−==−=−⎪L L 10(),(),(1,1)j j j U U U jh jh j J ϕψ⎪⎪−⎪===−⎨L 012(),(),(0,1,,)n n J U u n U u n n N τττ⎪⎪===L ⎪⎪⎩aτλ=h122212(1,(1,1;1,1n n n n n U U U U U J n N λλλ+−−⎧=+−+−=−=−L L 1110()()),(),(1,1)jj jj jj j j U U U jh jh j J +⎪−⎪===−L 012())(),(),(0,1,,)j n nJ j j U u n U u n n N ϕψτττ⎨⎪⎪===L (*)⎩显式差分¾类似(*),直接从下面两层的值解出上面一层的值¾τ收敛性¾稳定性n n j jU u −−>1a τλ=≤hτ在缩小步长时,要按同一比率缩小。

《工程电磁场》课件

《工程电磁场》课件
● 本课程学习将遵循数学建模、分析的主线索展开,因此,除微积分基 础知识外,矢量分析与场论、数理方程(偏微分方程)与特殊函数等数学知识 和工具都应成为定性乃至定量分析电磁场问题所必备的知识基础。
2. 掌握常用分析、计算的方法
● 通过例题、习题等环节不断提高逻辑思维、分析与解题能力,这也是 理论联系实际、通过实践能动地理解和深化概念的过程。
三、学习方法
电磁场理论体系完整、简练,内涵丰富、概念性强,且较抽象。同时, 应用数学知识与工具较多,涉及知识面宽,故更需要注意科学的学习方法
1. 深入理解,建立正确的物理概念,并熟练运用必须的数学 知识和工具
● 实践证明,正确理解物理概念是学习中困难的主要方面,故需抓住此 主要矛盾,通过深入钻研,使之得以缓解。
度)J(r,t),其量值为
J lim i di
S Sn 0
n
dSn
其方向习惯上定义为正电荷运动的方向。
(单位: A/m2)
(1.2)
§1.3 矢量分析教学中的若干讨论点
1. 点函数在不同坐标系下的数学描述
例1.1 设标量点函数(r)在直角坐标系下的表示式为(x,y,z)= x2+y2-z,试写出该点函数在圆柱坐标系下的表示式,并以给定点的函
想化实际带电系统的电荷分布形态为如下四种形式:
(1)点电荷 q(r,t):
(2)电荷体密度 (r,t)q:r C
(3)电荷面密度
r(r,tlVi)m:0 qVr
dq r
dV
C/m3
(4)电荷线密度
r(r,tl)Sim :0 qSr
§1.1 电磁场的物理模型及其分析
根据电磁现象和过程分析的物理模型构造的本质,可建立如下电磁 场分析与电路分析的物理模型之间的对比关系。

2024版电磁学电子教案ppt课件

2024版电磁学电子教案ppt课件
2024/1/29
电子技术
电磁学在电子技术领域有 着广泛应用,如电子器件、 集成电路、电子计算机等。
能源技术
电磁感应原理在能源技术 领域有着重要应用,如发 电机、电动机、变压器等。
5
课程目标与学习方法
课程目标
掌握电磁学的基本概念和原理,理解 电磁现象的本质和规律,培养分析和 解决电磁问题的能力。
学习方法
2024/1/29
8
电场强度与叠加原理
2024/1/29
电场强度的定义和物理意义
01
描述电场的力的性质,电场强度的矢量性
点电荷的电场强度
02
点电荷周围电场强度的分布和计算
叠加原理
03
多个点电荷产生的电场强度的叠加,电场强度的叠加满足矢量
叠加原理
9
高斯定理及其应用
2024/1/29
高斯定理的内容和物理意义
2024/1/29
44
电磁感应实验:法拉第圆盘发电机
3. 调整磁场发生装置,使磁场 方向垂直于圆盘表面。
4. 手动旋转圆盘或利用电机驱 动圆盘旋转,观察电流表的变化
41
磁场实验:霍尔效应测量
3. 调整磁场发生装置,使磁场 方向垂直于霍尔元件表面。
2024/1/29
4. 记录电压表的读数,并计算 磁场的强度。
5. 改变磁场方向或电流方向, 重复实验,观察霍尔电势的变 化规律。
42
电磁感应实验:法拉第圆盘发电机
实验目的
了解电磁感应原理,掌握法拉第圆盘发电机的使用方法。
3
电磁学定义与发展历程
2024/1/29
定义
电磁学是研究电和磁的相互作用以 及电磁场性质的科学分支。
发展历程

工程电磁场原理(教师手册)

工程电磁场原理(教师手册)

“电磁场”课程的地位与作用:
● “电磁场”课程内容是电气信息类专业本科生所应具备知识结构的必 要组成部分——电气信息类各专业主要课程的核心内容都是电磁现象在特 定范围、条件下的体现,因此,分析电磁现象的定性过程和定量方法是电 气信息类各专业学生掌握专业知识和技能的基础; ● 近代科学技术发展进程表明,电磁场理论是众多交叉学科的生长点 和新兴边缘学科发展的基础; ● 教学实践证明,本课程不仅将为电气信息类学生专业课的学习提供 必须的知识基础,而且将增强学生面向工程实际的适应能力和创造能力, 关系到学生基本素质培养的终极目标。
q ( r ′) C
(2)电荷体密度 ρ(r′,t):
ρ ( r ′ ) = lim
σ ( r ′ ) =: (4)电荷线密度 τ(r′,t):
Δ q ( r ′ ) dq ( r ′ ) = C/m 3 ΔV ′ → 0 Δ V ′ dV ′
二、引言
1. 什么是场?
● 物理概念上的描述:“在遍及一个被界定的或无限扩展的空间 内,存在着某种必须予以重视、研究的效应”。例如,温度场
T(x,y,z,t)、重力场F(x,y,z,t),以及电场E(x,y,z,t)、磁场 B(x,y,z,t)等对应于相应物理效应客观存在的物理场;
● 数学意义上的描述:“给定区域内各点数值的集合,并由此规定 了该区域内某一特定量的特性”。
• • • • • • • • • • • • • • 浦东国际机场磁悬浮线(EMS型磁浮列车)和日本山梨磁悬浮试验线(EDS型磁浮列车); 电磁探测(应用于油、气、矿藏、地层结构探测和气象预测等遥感、遥测技术); 电子束曝光、离子束注入技术(大规模集成电路芯片制造); 现代战争中的电磁技术(导弹防御系统、隐身飞机、巡航导弹、GPS系统、信息干扰等); 广播、电视、移动电话、微波通信和光纤通信等; 电磁热加工技术(感应加热、微波加热和微波炉等); 生物医学工程中的电磁技术(核磁共振CT、X线透视和肿瘤热疗法等); 超导储能技术; 高能量密度的百万kW级汽轮、水轮发电机设计、制造(优化)技术; 1000kV超高电压电力系统及其装置的设计、制造(优化)技术; 磁流体发电技术; 纳米微晶磁性材料的应用; 卫星太阳能发电站; …………………………………

《数值计算方法》电子教案

《数值计算方法》电子教案

Rn (x b)
f (n1) ( ) (x b)n1
(n 1)!
为x、b之间的数,
主讲教师:宋红伟
25
Yangzte University
§2.误差的基本概念及误差分析
设 f(x) 是一元函数,x 的近似值为x*,以 f(x*) 近似 f(x)
(即f(x*) 为 f(x) 的近似值),其误差限为 ( f (x)),可用泰
重点讨论
程序 设计
Yangzte University
第一章 绪论
可 收敛性:方法的可行性
则 数 靠 稳定性:初始数据等产生的误差对结果的影响
值性
方 法
分 析
误差估计:运算结果不能产生太大的偏差且

能够控制误差
设 计
计 算
便于编程实现:逻辑复杂度要小
原 复 计算量要小:时间复杂度要小,运行时间要短
x x* 1 10mn1 2
主讲教师:宋红伟
21
Yangzte University
§2.误差的基本概念及误差分析
例: 3.1415926538597932;
* 3.14, 3.1416
问: * 有几位有效数字?请证明你的结论。
m=0
n=3
证明:* 3.14 100 (3 1101 4 102)
主讲教师:宋红伟
17
绝对误差限
往往未知
代替相对误差
代替相对误差限
* r
(
x
*
)
2 15
13.33%
* r
(
y
*
)
5 1000
0.5%
Yangzte University
§2.误差的基本概念及误差分析
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

电磁场数值方法
时域积分方程方法(TDIE)
时域
时域有限元法(TDFE)
电磁场数值方法
时域有限差分法(FDTD)
高频近似方法
Hale Waihona Puke 域 “低频”方法 有限元(FEM)
有限差分(FDM)
矩量法(MOM)
University of Electronic Science & Technology of China
University of Electronic Science & Technology of China
电磁场数值方法
绪论
一、数值方法产生的历史与发展现状 二、数值方法的地位和作用 三、数值方法的分类与共性
University of Electronic Science & Technology of China
University of Electronic Science & Technology of China
课程内容与要求
➢上机(10学时)
静电场中的差分法:(6学时) 时变电磁场中的差分法:矩形波导TE和TM波(4学时)
➢课程设计
根据给定课题提交完整的研究报告
University of Electronic Science & Technology of China
University of Electronic Science & Technology of China
电磁场数值方法
学时:48学时 学分:3
University of Electronic Science & Technology of China
课程内容
➢课堂理论教学(38学时)
绪论(1学时) 第一章 静态场中的有限差分法(12学时) 第二章 时变场中的差分法(6学时) 第三章 有限元法(14学时) 第四章 矩量法(5学时)
University of Electronic Science & Technology of China
教材及参考书
➢参考书
3.《电磁场数值分析》盛剑霓等,科学出版社,1984年. 4.《计算电磁学的数值方法》,吕英华 ,清华大学出版社 2006年. 5.《计算电磁学》,王秉中,科学出版社,2002年. 6.《电磁场有限元法》,金建铭(美)著,王建国译,西安 电子科技大学出版社,1998年. 7. 《电磁辐射与散射问题的矩量法》,李世智, 电子工业出 版社,1985年. 8. 《Field Computation by Moment Methods》,R.F Harrington,IEEE Press,1993年.
考核方式
➢平时考勤及作业 10% ➢上机与课程设计 10% ➢期末开卷考试 80%
University of Electronic Science & Technology of China
教材及参考书
➢教材
《电磁场数值方法》,方宙奇,孟敏主编,电子科技大学出 版社,2012年.
➢参考书
1.《电磁场数值方法》,陈嘉玉,电子科技大学出版社, 1994年. 2.《电场及磁场问题的分析与计算》,(英)K.J.宾斯,P.J. 劳伦松著,徐世杰译,人民教育出版社,1985年.
相关文档
最新文档