化工原理下册课件第二章 吸收第1课时吸收过程的气-液平衡

合集下载

化工原理吸收教学课件PPT

化工原理吸收教学课件PPT

5.1.1 化工生产中的传质过程
一、均相物系的分离
均相混合物的分离,首先要设法制造另外一个相,
使得物质从一个相转移到另外一相。
根据不同组分
某种过程
均相物系
两相物系
在各相中物性 的差异,使某
组分从一相向
实现均相物系的分离
另一相转移: 相际传质过程
相际传质过程
均相物系分离
相际传质过程的推动力:浓度差
5
分离
均 相 混 合 物 非 均 相 混 合 物
动量传递 三传 热量传递
质量传递
-----在浓度差、温度差、压 力差等推动力作用下,物质从 一处向另一处的转移过程。包 括相内传质和相际传质两类。
利用某种性质差异
方法 加 加入 入能 另量 外一种分 物离 质剂 作为 加场,如浓度场、电 温场 度、磁场
4
13
5.1.7 吸收操作的分类
按被吸收 组分数目
单组分吸收
多组分吸收√ 气体混合物 液体
气体 吸收
按吸收有无 化学反应
按溶质组 成的高低
按吸收的 温度变化
物理吸收
化学吸收√
低浓度吸收
高浓度吸收√
等温吸收
非等温吸√收
溶质A S
惰性组分B 吸收剂
相界面
本章只讨论单组分、低浓度、等温、物理吸收过程 的有关原理和计算。
ExA p*A
y*Ap*A/ pxAE/ p
p*A ExA

mE p
y*A mxA
26
在低浓度气体吸收计算中,通常采用基准不变
的比摩尔分数Y( 或 X)表示组成。
由yA*mxA

YA* 1YA*
mX*A 1 X*A

化工原理下册PPT课件

化工原理下册PPT课件

xe
y m
0.1 0.94
0.106
即 x < xe,表明液相未饱和 发生吸收 致使气相被吸收为液相。
第14页/共50页
反之,若 y = 0.05 的含氨混合气 与液相 x = 0.1 的氨水接触,
则 y<ye , 或 x>xe ,
发生解
此时液相中部分氨将转入气相 吸过程
注意点:要搞清实际浓度与平衡浓度,二者不能混淆
第2页/共50页
第一节 概述
一、吸收过程
目的:气体混合物分离 依据:溶解度差异 应用: (1)制取液体产品 如三酸制备
(2)回收有价值的物质 如煤气中取苯 (3)除去有害成分以净化气体 环保中废气治理
二、过程实施与经济性
1、过程实施——吸收与解吸流程: 煤气脱苯
第3页/共50页
①一个完整的吸收分离过程一般包括吸收和解吸两个部分
吸收操作费用 溶剂损失——溶剂的挥发和变质 溶剂再生费用—是吸收操作经济性的体现
第7页/共50页
三、本章讨论要点 1、 单组分物理吸收 2、 微分接触设备——填料塔 3、填料吸收塔的设计与操作
本章重点:填料吸收塔的塔高计算 难点:传质过程有关概念
第8页/共50页
比较:
第二节 气液相平
衡传热
吸收
冷热流体间的热量传递、 气液两相间的物质传递 推动力是两流体间的温度差 两相间的浓度差?
推动力为实际浓度与平衡浓度的偏离程度
实际浓度
气相浓度 y
塔内某一截面处
液相浓度 x
平衡浓度
ye = mx y
xe m
(y,x) y-ye
xe-x
由图可见吸收推动力并非(y-x) 而是 y-ye 或 xe-x 即实际浓度与平衡浓度的偏离程度

《化工原理吸收》课件

《化工原理吸收》课件
02 模拟方法可以预测不同操作条件下的吸收效果, 以及优化吸收设备的结构和操作参数。
03 常用的模拟方法包括物理模型模拟、数学模型模 拟和实验模拟等。
吸收过程的优化策略
01
吸收过程的优化策略是通过调整操作条件和设备参数
来提高吸收效果的方法。
02
优化策略通常包括选择合适的吸收剂、优化操作条件
、改进设备结构和操作参数等。
增加流速可以提高溶质的 传递速率,但同时会增加 设备的投资和能耗。
04
吸收设备与流程
吸收设备的类型与特点
填料塔
结构简单,易于制造, 适用于气体流量较小、 溶液组成较低的情况。
板式塔
传质效率高,处理能力 大,适用于气体流量较 大、溶液组成较高的情
况。
喷射器
结构简单,操作方便, 适用于气体流量较小、 溶液组成较低的情况。
THANK YOU
感谢各位观看
溶解度与相平衡的关系
物质在气液两相中的溶解度差异是吸收过程得以进行的驱动力。
亨利定律与相平衡
亨利定律:气体在液体中的溶解度与该气体在气液界 面上的分压成正比。
输标02入题
亨利定律的数学表达式:(Henry's Law):(c = kP)
01
03
亨利定律的应用:通过测量气体的溶解度和气液界面 上的分压,可以计算出亨利常数,进而了解物质在特
03
优化策略的目标是提高吸收效果、降低能耗和减少环
境污染等。
06
吸收的实际应用
工业废气的处理
工业废气处理
吸收法可用于处理工业生产过程中产生的废气,如硫氧化物 、氮氧化物等有害气体。通过吸收剂的吸收作用,将有害气 体转化为无害或低害物质,达到净化废气的目的。

化工原理下1-1气液平衡

化工原理下1-1气液平衡

101.3 116.9 135.5 155.7 179.2 204.2 240.0 40.0 46.0 54.0 63.3 74.3 86.0 101.3
补充例题解答
解:设泡点温度 kPa 由式 1-4 计算结果表明,所设泡点温度偏高。再设泡点温度 表数据插值求得 kPa 由式 1-4 泡点温度 ℃。 kPa ℃,由附 ℃,查附表得 kPa
x y 描点绘出x y图。 1 ( 1) x 说明:
(1)组成 均以易挥发组分的组成表 示,故曲线位于对角线上方 (2)平衡线上不同点代表一个气、 液平衡状态,即对应一组 x、y、t, 且y (或x) 越大,t 愈低。 (3)平衡线距对角线越远,物系越易 分离。 (4)压力增加,平衡线靠近对 角线。
增加,塔径不够)或减压 (热敏性物料)。
当p变化小于30%,其对的影响 可忽略不计。
x y 1 ( 1) x
说明:

x
y
( 1) y
—— 相平衡方程 ① α表示了物系分离的难易程度,α 远离1,物系 易分离, α≈1 或 α=1,则该物系不能用普通的蒸馏 方法分离。 ② 对于非理想物系, α不能作为常数处理。 ③ 对于理想溶液,相对挥发度α 变化不大,可取一 平均值作为常数处理,相平衡关系简单。
气相为理想气体
理想气体:气体分子的体积可忽略 气体分子间无作用力
(二)双组分理想物系气液相平衡 • 1、用函数关系表示 1)用饱和蒸气压和相平衡常数表示 2)用相对挥发度表示 • 2、用相图表示 1) t-x-y图
2) x-y图
拉乌尔定律 理想物系在一定温度下,气相中任一组 分的平衡分压等于此纯组分在该温度下 的饱和蒸气压与它在溶液中的摩尔分率 的乘积。 PA= PA0 x A

化工原理(天大版)---(下册)第二章 吸收

化工原理(天大版)---(下册)第二章 吸收
c P 常数 RT dc A dc B dz dz J A J B
c c A c B 常数
根据菲克定律:
DAB DBA
dc A J A D AB dc z
dcB J B ห้องสมุดไป่ตู้BA dcz
1.
2-2-2 气相中的稳态分子扩散
等分子反方向扩散 pB1<pB2
第二章 吸收
• 吸收定义
利用组成混合气体各组分在溶剂中溶解度不同,来分离 气体混合物的操作,称为吸收操作。 溶质A 惰性组分B 溶剂S 吸收溶液 吸收尾气
• 吸收操作示意图 • 吸收在工业上的用途
分离混合气体以回收所需的组分 除去有害组分以净化气体 制备某种气体的溶液 工业废气的治理
• 吸收的分类
按有无化学反应 按溶质气体的数目
物理吸收 化学吸收
按有无明显热效应,
分单组分吸收 多组分吸收 等温吸收 非等温吸收
• 吸收与蒸馏的不同
原理不同 蒸馏可获得较纯的产品,而吸收则不能
2.1气体吸收的相平衡关系
2-1-1 气体的溶解度
• 相平衡 • 平衡分压(饱和分压) • 平衡浓度(饱和浓度) • 气体的溶解度:指气体在液相中的饱和浓度,用单位质
3. 指明传质过程进行的极限 yi2min≥y*i2=m xi2
xi1max≤x*i1=yi1/m
2.2 传质机理与吸收速率
2.2.1分子扩散与菲克定律

2.2.1分子扩散与菲克定律
扩散通量
J A D AB dc A dc z
菲克(Fick) 定律
JA:物质A在z方向上的分子扩散通量,kmo1/(m2· s) dcA/dcz:物质A的浓度梯度,kmol/ m4 DAB:物质A在介质B中的分子扩散系数, m2/s 当系统总压不高且各处温度均匀

化工原理下ppt第2章 吸收

化工原理下ppt第2章 吸收
第2章 吸收
2.1 气体吸收的相平衡关系 2.2 传质机理与吸收速率 2.3 吸收塔的计算 2.4 吸收系数
2.5 脱吸及其他条件下的吸收
1
1. 吸收的原理
分离物系 气体混合物
尾气 B(含微量A)
吸收剂 S
形成两相体系的方法
引入一液相(吸收剂) 传质原理 各组分在吸收剂中溶 解度不同。 A:溶质(吸收物质) B:惰性组分(载体)
p*
NH3 10℃
0
x
14
2.亨利定律的表达式
1) p - x关系
p Exi
式中:E——亨利系数,k pa。 E的讨论: 表示气体溶解能力的常数; 溶解度,亨利系数↓;
i
E随温度变化而变化, T↓,E↓;
E的来源:实验测定或从手册中查得。
15
2.亨利定律的表达式
2) p - c关系
45
2. 一组分通过另一停滞组份的扩散
Dp NA RTz pA1 pA2 pB2 pB1 ln pB 2 pB1
NA p pA2 Dp p ln B2 A1 RTz pB1 pB2 pB1

pBm
pB2 pB1 pB2 ln pB1
Nm N
2
42
1
JA
N NcA/c NcB/c JB 1 2 NB
NA
N NA N B NB 0 N NA
对组分A
cA NA J A N c
cA dcA NA (1 ) J A D c dz
Dc dcA NA c c A dz
在气相扩散
pA cA RT
液相主体
溶解

化工原理 PPT 第2章 吸收

化工原理 PPT  第2章 吸收
混合气体接触,溶质便向液相转移,直至液相
中溶质达到饱和,组成不再增加为止,这种状
态称为相际动平衡,简称相平衡或平衡。 平衡分压:平衡状态下气相中的溶质分压,又称饱和 分压。
平衡组成:平衡状态下液相中的溶质组成,又称饱和
组成。
14
溶解度 C A :气体在液体中的饱和组成。
2.溶解度的意义 1)表明一定条件下,吸收过程可能达到的极限 程度;
m
202 .6 p
从气相分析 y*=mx=23.94×0.01=0.24<y=0.3 故SO2必然从气相转移到液相,进行吸收过程。 y 0.3 x* 0.0125 m 23.94 以液相摩尔分数表示的吸收推动力为: ∆x=x*-x=0.0125-0.01=0.0025 以气相摩尔分数表示的吸收推动力为: ∆y= y - y*=0.3-0.24=0.06
1.判断传质进行的方向
①气、液相组成(yi,xi)在平衡线上方(P点): 相对于液相组成xi 而言, 气相浓度为过饱和 ( yi yi* ),溶质 A 由气 相向液相转移。 相对于气相组成yi 而言, 液 相 浓 度 欠 饱 和 ( xi xi* ),故液相有吸 收溶质 A 的能力。
y yi
释放溶质
P
yi* f ( xi )
yi*
o xi
吸收溶质
xi*
x
结论:若系统气、液相组成(yi , xi)在平衡线上方,则体系 将发生从气相到液相的传质,即吸收过程。
27
②气、液相组成(yi,xi)在平衡线下方(Q点): 相对于液相组成xi 而言 气相浓度为欠饱和 * ( yi y),溶质 A 由液相 i 向气相转移。 相对于气相组成yi而言实 际液相浓度过饱和 ( xi xi* ),故液相有释放 溶质 A 的能力。

化工原理 气液相平衡

化工原理 气液相平衡
6.2 气液相平衡
一、气体在液体中的溶解度
气液两相处于平衡状态时,溶质在液相中的含量。
pA
O2
CO2
SO2
由图可见,曲线愈平坦,
该组分的溶解度愈大;曲线
愈陡峭,溶解度愈小。
NH 3
cA
几种气体在水中的溶解度曲线图
当总压不太高(p<0.5MPa)时,
总压的变化不改变pA—CA之间的 关系。对于稀溶液,pA—CA符合 线性关系。
y2
x2
x2
y2 y2min
y1
x11 x1max
当吸收剂用量 L↓→x1↑→x1max=x1*=y1/m
x1
y1
L↑→y2↓→y2min=y2*=mx2
Hale Waihona Puke 3.计算过程的推动力y

y
x
x*
吸收 y y* x x*
推动力:y y y x x* x
y
y

x
x
解吸 y y* x x*
y y* y
推动力:
x x x
二、亨 利 (Henry)定 律
亨利定律:对稀溶液,溶解度曲线为一直线。
pA ExA
E——亨利系数
p
A
cA
/H
H——溶解度系数

y
A
mxA
m——相平衡常数
各参数之间的关系
p
A
cA
/
H= cM H
cA cM
cM H
xA
p
A
/
P总
E
P总
xA
E CM s
H MsH m E
P总
c
A
Hp A

化工原理下册第二章吸收2

化工原理下册第二章吸收2

解:令p代表CO2在气相中的分压,那么由分压定律可知: p=Py==
在此题的浓度范围内亨利定律适用。 根据式2-2可知:c*=Hp 其中H为30℃时CO2在水中的溶解度系数。 由式2-4可知:
H EM S

c* p EM S
查表2-1可知30℃时CO2在水中的亨利系数E=1.88×105kPa,又因CO2为难溶于水的 气体,故知溶液浓度甚低,所以溶液密度可以按纯水计算。Ρ=1000kg/m3,那么

加 热 器 含苯煤气
冷 却


过热蒸汽
煤气脱苯的吸收与解吸流程
h
6
2、气体吸收的工业应用
•净化或精制气体
例:合成氨工艺中,合成气中的净化脱碳
•制取某种气体产品的液态产品
例:用水吸收氯化氢气体制取盐酸
•回收混合气体中所需的组分
例:用洗油处理焦炉气以回收其中的芳烃,硫酸回收焦炉气中的氨
•工业废气的制理
吸收操作所得到的溶液称为吸收液成分为吸收操作所得到的溶液称为吸收液成分为和溶质和溶质排出的气体称为吸收尾气排出的气体称为吸收尾气主要成分主要成分为惰性气体为惰性气体还含有剩余的溶质还含有剩余的溶质吸收剂吸收尾气混合气吸收液逆流吸收操作示意图气体溶剂被吸收气体板式塔气体溶剂填料被吸收气体填料塔吸收设备流程填料塔板式塔吸收设备解吸流程吸收剂在吸收塔内再循环流程吸收煤气脱苯的吸收与解吸流程含苯煤气脱苯煤气净化或精制气体例
h
2
吸收操作所得到的溶液称为吸收液〔成分为S和溶质A〕,排出的气体称为吸收尾气(主 要成分为惰性气体B,还含有剩余的溶质A)。
吸收操作的逆过程〔即含溶质气体的液体,受到另一汽〔气〕相的作用使溶质与溶剂别离 的过程〕称为解吸。

《化工原理》(下)第二章吸收第一课时

《化工原理》(下)第二章吸收第一课时

Y2
X2
Y1
X1
22
思考题
含SO2为10%(体积)的气体混合物与浓度C为 0.020kmol.m-3的SO2水溶液在一个大气压下相接触。 操作条件下两相的平衡关系为pe=1.62C(大气 压) ,则SO2将从___相向___相转移, 以 气相组成表示的传质总推动力为_________ 大气压.
第二章 吸 收
2019/6/9
1
本章基本内容
① 吸收过程中气液相平衡 ② 吸收过程的传质机理* ③ 吸收过程传质模型及传质速率表达* ④ 吸收操作的物料衡算(重点) ⑤ 填料层高度的计算方法(重点)
2019/6/9
2
概述
一. 吸收生产中的应用
分离和净化原料气。原料气在加工以前,其中无 用的或有害的成分都要预先除去。如合成氨所用 的原料气中分离出CO2、CO等杂质。
易溶气体m<难溶气体m
2019/6/9
19
2.1.3 相平衡在吸收过程中的应用
1. 判断过程进行的方向 因自发进行过程总是趋向体系的平衡方向的,如图 中A、B点所示。
A点: y>ye; x<xe 溶质向液体转移:
吸收过程
ቤተ መጻሕፍቲ ባይዱB点: y<ye; x>xe 溶质向气相转移
解吸过程
2019/6/9
20
2. 确定传质过程的推动力
B 空气
2019/6/9
5
三. 典型吸收解吸流程
解吸的目的:回收溶质、溶剂的再生―使之循环使用
2019/6/9
6
采用吸收操作实现气体混合物分离必须解决的问 题:
选择合适的溶剂(吸收剂) 选择性地溶解某一组分(或某些组分)(一般原则)

化工原理-气体吸收_图文

化工原理-气体吸收_图文
• 在一定温度下达到平衡时,溶液的浓度随气体压力的增加 而增加。如果要使一种气体在溶液中里达到某一特定的浓 度,必须在溶液上方维持较高的平衡压力。
• 气体的溶解度与温度有关,一般来说,温度下降则气体的 溶解度增高。
溶解度曲线:在一定温度、压力下,平衡时溶质在气相和液 相中的浓度的关系曲线。例:图2-2,2-3,2-4。
本章以分析单组分的等温物理吸收为重点,以便掌握最基本 的原理。
• 气体吸收是物质自气相到液相的转移,这是一种传质过程。 • 混合气体中某一组分能否进入溶液里,既取决于该组分的分压,
也取决于溶液里该组分的平衡蒸汽压。如果混合气体中该气体的 分压大于溶液的平衡蒸汽压,这个组分便可自气相转移至液相, 即被吸收。由于转移的结果,溶液里这个组分的浓度便增高,它 的平衡蒸汽压也随着增高,到最后,可以增高到等于它在气相中 的分压,传质过程于是停止,这时称为气液两相达到平衡。 • 反之,如果溶液中的某一组分的平衡蒸汽压大于混合气体中该组 分的分压,这个组分便要从溶液中释放出来,即从液相转移到气 相,这种情况称为解吸(或脱吸)。 • 所以根据两相的平衡关系可以判断传质过程的方向与极限,而且 ,两相的浓度距离平衡愈远,则传质的推动力愈大,传质速率也 愈大。 • 吸收操作的分析,应该从气液两相的平衡关系与传质速率关系着 手,本章各节即如此展开讨论。
y
相对于气相浓度而言实
际液相浓度过饱和
(x>x*),故液相有释放
o
溶质 A 的能力。
y*=f(x)
吸收溶质
Q
释放溶质
x* x x
结论:若系统气、液相浓度(y,x)在平衡线下方,则体系将 发生从液相到气相的传质,即解吸过程。
传质过程的方向
气、液相浓度(y,x)处于

化工原理--吸收(课件版)

化工原理--吸收(课件版)

二、摩尔比
1.定义:
X
x 1
x
液相中溶质的摩尔数 液相中溶剂的摩尔数
Y
y 1
y
气相中溶质的摩尔数 气相中惰性气体的摩尔

2.摩尔比表示的亨利定律

X x 1 x


x X

1 X
Y y 1 y
y Y 1Y
代入 y* mx 得 Y * m X
1Y * 1 X
所以 mX (1 Y*) Y * (1 X )
所以
cA
f (T ,
p
A
)

p
A
f (T , cA )
溶解度曲线:表示该函数的曲线。(图2-2、图23、图2-4)
• 溶解度特性: T↑,cA↓

p
A
↑,cA↑
• 所以: 低温高压有利吸收

高温低压有利解(脱)吸
2-1-2 亨利定律
一、亨利定律:在一定的温度和压力(不太高)下, 稀溶液中溶质在气相中的平衡分压与其在液相 中的溶解度成正比,即:
二、分类 • 物理吸收,H2O吸收CO2 • 化学吸收,NaOH溶液吸收CO2
• 单组分吸收,H2O吸收乙醇 • 多组分吸收,液态烃吸收气态烃
• 等温吸收,H2O吸收丙酮 • 非等温吸收,H2O吸收SO3
• 低浓度吸收,氨水吸收SO2 • 高浓度吸收,H2O吸收NH3
三、用途 (1)回收混合气体中的有用物质,用硫酸吸收焦炉
代入
p
A
Ex

pA
L
EcAM S cA(MS
M A)

pA
cA H

1
EM S
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2、依据:依各组分在溶剂中的溶解度的差异实现 组分分离。
如:用水吸收空气中的氨气 吸收剂—液体-溶剂 solvent--- S 水 溶质---能溶于溶剂的组分 solute--- A 氨气 惰性气体—载体,不能溶于和微溶于溶剂的组分
B 空气
3、典型吸收解吸流程
原料气:含苯煤气;产品:脱苯煤气;吸收剂:洗油 解吸的目的:回收溶质、溶剂的再生―使之循环使用
3、单组分吸收: 混合气中只有单一组分进入液相,称 单组分吸收
4、多组分吸收: 有两个或多个组分进入进入液相,为 多组分吸收。
5、等温吸收:吸收过程没有溶解热或反应热的释放; 或对于有热效应但没有导致体系温度显著升高的过 程。
6、非等温吸收:吸收过程有溶解热或反应热的释放, 导致吸收液相温度升高的过程。
(吸收过程的操作性问题) 主要涉及溶质在气-液两相中的平衡关系、物料衡算、 吸收机理与吸收过程速率
2.1 气液相平衡
2.1.1 气体在溶剂中的溶解度
一、气液相平衡 气-液相长时间充分接触,达到平衡时,其气相浓 度与液相浓度之间的关系为相平衡关系。
平衡状态下,气相中溶质的分压称为平衡分压, 液相中溶质的浓度称为平衡浓度或饱和浓度,或 称溶解度。
X 液 液相 相中 中溶 溶剂 质 m m的 的 ooll1xx Y 气气 相相 中中 惰溶 性质 气 m的 om体 lo的 l1yy
2.1.2 相平衡关系
一、 亨利定律
相平衡关系与体系的温度、压力以及物性相关, 对采用稀溶液吸收混合气中低浓度溶质组分时, 其溶解度曲线通过原点,并为一直线。
用亨利定律描述。
四、吸收过程主要研究内容
主要介绍单组分低浓度等温物理吸收的原理与计算。 1、了解吸收过程的方向与极限;(平衡关系) 2、确定完成一定分离任务所需要的吸收剂用量;(操
作关系) 3、对于既定的分离物系和分离要求,确定吸收塔的相
关尺寸;(吸收塔的设计,传质速率方程) 4、分析吸收塔分离气体混合物所能达到的分离效率;
溶解度的影响因素?
A、B、S构成的单组分物理吸收气、液两相体系,
组分数C=3,相数f=2,自由度数F:
f F C 2 3 2 2 3
溶解度表明一定条件下溶质在液体中的溶解极限, 是吸收过程所能达到的极限。与物系温度、压力及 该溶质在气相中的浓度有关。x*-(T,P,y)
二、溶解度曲线 在一定温度和压力下,混合气体与其溶剂达到相 平衡时,溶质组分在两相中组成呈一定的对应关 系,常以溶解度表示。
m E P
➢ 式பைடு நூலகம்,P为总压。
四、各亨利系数的影响因素
➢ 亨利系数E=f(物系,T) 温度T ,E ; 总压P对E影响很小 理想溶液: E=p0(饱和蒸汽压) 易溶气体E<难溶气体E
➢ 溶解度系数H =f(物系,T) 总压P对H影响很小;温度T ,H 易溶气体H>难溶气体H
p*=Ex p*-溶质组分在气相的平衡分压,kPa; x-溶质组分在液相的组成,摩尔分数; E-亨利系数,kPa。
二、亨利定律的不同形式
浓度的表示方法不同,享利定律的形式不同。
1、p*~c关系
p* c H
H-溶解度系数,kmol/(kN·m)=f(T) ,c-溶质摩尔浓度
2、 y*~x关系 y* mx
m-相平衡常数,m值越大,表示溶解度越小。 y, x-气相、液相中溶质的摩尔分率
3、Y*~X关系 Y* mX mX 1(1m)X
Y,X-气相、液相中溶质的摩尔比
三、亨利系数E 、 H、m之间的关系 ➢ E,H 之间的关系:
对于稀溶液:则溶质浓度较低,溶液可近似视为 纯溶剂:故有
H
EM s
➢ E, m之间的关系:
b)提供适当的传质设备以实现汽液两相的传质 尽可能增大两相的接触面积与湍动程度。吸收设备
大致可分成两大类:即板式塔(逐级接触)和填料 塔(微分接触)
三、吸收过程分类
1、物理吸收: 利用混合气中各组分在溶剂中的溶解度 的差异分离气体混合物。
2、化学吸收: 以气体混合物各组分能否在溶剂中发生 化学反应来分离混合气体。 如碳酸钠溶液净化含CO2的气体 CO2+Na2CO3+H2O=2NaHCO3 化学吸收操作具有高选择性, 化学反应满足以下条件: 可逆性 这样使溶剂得以再生循环使用。 较高的反应速率
第2章 吸收
2.1 吸收过程的气-液平衡 2.2 吸收过程的传质动力学* 2.3 吸收过程的数学模型与速率方程* 2.4 吸收塔的计算
(重点:物料衡算及填料层高度计算)
2.5 吸收系数 2.6 解吸及其他条件下的吸收
二、 吸收基本原理
1、定义:吸收操作是将气体混合物的各个组分予以 分离的单元操作。
溶解度:气液平衡时,溶质在液相中的浓度。
x* f (p)
p* f (x)
平衡分压 p*:平衡时,混合气中溶质组分的分压, Pa; x-液相中溶质组分的摩尔分数。
三、溶解度的影响因素
❖ 溶质的性质:不同的气体在溶剂中的溶解度不同 易溶气体,难溶气体
❖ 分压p对溶解度的影响:当p增加,x* 增加。(T 一定) ❖ 总压P对溶解度的影响:
4、采用吸收操作实现气体混合物分离必须解决的问 题
a)选择合适的溶剂(吸收剂) 选择性地溶解某一组分(或某些组分)(一般原 则)
吸收剂的性能是吸收操作良好与否的关键,选择 时要从以下几方面来考虑:
①对被吸收的组分要有较大的溶解度,且有较好 的选择性(其它组分的溶解度很小可忽略)。
②要有较低的蒸气压,以减少吸收过程中溶剂的挥 发损失。 ③要有较好的化学稳定性,以免使用过程中变质。 ④腐蚀性要小,以减小设备费用和维修费。 ⑤粘度要低,以利于传质及输送;比热要小,使再 生时的耗热量较小;不易燃,以利于安全生产。 ⑥吸收后的溶剂应易于再生。
在溶质组分分压不变时,若P变化不大,不影响溶 解度。即总压不影响p、x*之间 的关系 ❖ 温度对溶解度的影响: T增加,x*下降,(p一定)
T增加,p*增加 ( x一定)
四、吸收过程浓度的表示法 在吸收过程中,惰性气体不溶于液相,溶剂也没有显 著的气化现象,在任一截面上惰性气体和溶剂的摩 尔流量均不发生变化。 以惰性气体和溶剂的量为基准,分别表示溶质在气液 两相的浓度, 常将组成以摩尔比X、Y表示。
相关文档
最新文档