4高考数学三角函数典型例题

合集下载
相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

三角函数典型例题

1 .设锐角ABC ∆的内角

A B C ,,的对边分别为a b c ,,,2sin a b A =.

(Ⅰ)求B 的大小;

(Ⅱ)求cos sin A C +的取值范围.

【解析】:(Ⅰ)由2sin a b A =,根据正弦定理得sin 2sin sin A B A =,所以1sin 2

B =

, 由ABC ∆为锐角三角形得π6

B

=

. (Ⅱ)cos sin cos sin A C

A A π⎛⎫

+=+π-- ⎪6⎝⎭

cos sin 6A A π⎛⎫

=++ ⎪⎝⎭

1cos cos sin 22A A A =++

3A π⎛

⎫=+ ⎪⎝

⎭.

2 .在ABC ∆中,角A . B .C 的对边分别为a 、b 、c,且满足(2a-c)cosB=bcos C .

(Ⅰ)求角B 的大小; (Ⅱ)设()()()2411m sin A,cos A ,n k,k ,=

=>且m n ⋅的最大值是5,求k 的值.

【解析】:(I)∵(2a -c )cos B =b cos C , ∴(2sin A -sin C )cos B =sin B cos C . 即2sin A cos B =sin B cos C +sin C cos B =sin(B +C )

∵A +B +C =π,∴2sin A cos B =sinA . ∵0

2

1. ∵0

3

π. (II)m n ⋅=4k sin A +cos2A . =-2sin 2A +4k sin A +1,A ∈(0,3

2π)

设sin A =t ,则t ∈]1,0(.

则m n ⋅=-2t 2+4kt +1=-2(t -k )2+1+2k 2,t ∈]1,0(. ∵k >1,∴t =1时,m n ⋅取最大值. 依题意得,-2+4k +1=5,∴k =2

3. 3 .在ABC ∆中,角

C B A ,,所对的边分别为c b a ,,,22

sin 2sin

=++C

B A . I.试判断△

ABC 的形状;

II.若△ABC 的周长为16,求面积的最大值.

【解析】:I.)4

2sin(22sin 2cos 2sin 2sin π

π+=+=+-C C C C C

2

242π

ππ==+∴C C 即,所以此三角形为直角三角形.

II.ab ab b a b a 221622+≥+++=,2)22(64-≤∴ab 当且仅当b a =时取等

号,

此时面积的最大值为()24632

-.

4 .在ABC ∆中,a 、b 、c 分别是角A . B .C 的对边,C =2A ,4

3

cos =A

, (1)求B C cos ,cos 的值; (2)若2

27

=

⋅BC

BA ,求边AC 的长。 【解析】:(1)8

1116921cos 22cos cos 2=-⨯

=-==A A C

47

sin ,43cos ;873sin ,81cos =

===A A C C 得由得由

()16

9

814387347cos cos sin sin cos cos =⨯-⨯=

-=+-=∴C A C A C A B (2)24,2

27

cos ,227=∴=∴=

⋅ac B ac BC

BA ① 又

a A a c A C C c A a 2

3

cos 2,2,sin sin ==∴== ② 由①②解得a=4,c=6

2516

9

483616cos 2222=⨯

-+=-+=∴B ac c a b 5=∴b ,即AC 边的长为5.

5 .已知在ABC ∆中,

A B >,且A tan 与B tan 是方程0652=+-x x 的两个根.

(Ⅰ)求)tan(B A +

的值;

(Ⅱ)若AB 5=,求BC 的长. 【解析】:(Ⅰ)由所给条件,方程0652

=+-x x 的两根tan 3,tan 2A B ==.

∴tan tan tan()1tan tan A B A B A B ++=-23

1123

+==--⨯

(Ⅱ)∵

180=++C B A ,∴)(180B A C +-= .

由(Ⅰ)知,1)tan(tan =+-=B A C

,

∵C 为三角形的内角,

∴sin C

=

∵tan 3A =,A 为三角形的内角,

∴sin A =

, 由正弦定理得:

sin sin AB BC

C A

=

∴BC =

=6 .在

ABC

∆中,已知内角

A .

B .C

所对的边分别为a 、b 、c ,向

(2s i n 3

m B =,2

cos 2,2cos 12B n B ⎛

=- ⎪⎝⎭

,且//m n 。 (I)求锐角B 的大小;

(II)如果2b =,求ABC ∆的面积ABC S ∆的最大值。 【解析】:(1)

//m n ⇒ 2sinB(2cos 2B

2-1)=-

3cos2B

⇒2sinBcosB=-3cos2B ⇒ tan2B=- 3 ∵0<2B<π,∴2B=2π3,∴锐角B=π

3

(2)由tan2B =- 3 ⇒ B=π3或5π

6