八年级数学几何图形第15讲 等腰三角形的数学思想(学生版)

合集下载

华师大版八年级数学上册《等腰三角形的性质》优课件(共22张PPT)

华师大版八年级数学上册《等腰三角形的性质》优课件(共22张PPT)
谢谢观赏
You made my day!
我们,还在路上……
等腰三角形的顶角平分线,底边上的中线 和底边上的高互相重合”.
三条边都相等的三角形是等边三角形。 等边三角形的各个角都相等,并且每一个角都 等于60°.
练习
1.在△ABC中,AB=AC, (1)若∠A=72°,其余两角各是多少度?
(2)若有一个角为72°,其余两角各为多少 度?
(3)BD为△ABC的底角平分线,且△ABD也是 等腰三角形,各角的度数可能会是多少?
A
解:
B
D
C
(1) ∵AB = AC,D是BC边上的中点(已知)
∴AD⊥BC, ∠BAD =∠CAD(等腰三角形 “三线合一”)
∴∠ADC =∠ADB=90°(垂直的定义)
(2) ∵∠BAD +∠B +∠ADB=180° (三角形内角和等于180°)
∴∠BAD=180°-∠B-∠ADB =180°-30°-90°=60°
2.等腰三角形各部分的名称是什么?
相等的两条边 腰
A 顶角
两腰的夹角
顶角
第三条边 腰与底的夹角


底角
底角
腰 底角
B底 C
3.请大家观察自己所画的等腰三角形,能发现 它有什么特征吗?
实验:请同学们把自己画的等腰三角形剪下 来,再用折纸的方法把它的两腰叠在一起, 从实验中能得到什么结论?
A
A
B
C
B BBB
∵ AB=AC (已知), B D C
∠BAD= ∠CAD(角平分线的定义)
AD=AD(公共边), 此时AD还是什么线?
∴ △ABD≌△ACD(SAS).
∴ ∠B=∠C(全等三角形的对应角相等).

2021年华师大版八年级数学上册《等腰三角形的判定》精品课件.ppt

2021年华师大版八年级数学上册《等腰三角形的判定》精品课件.ppt

。2020年12月14日星期一2020/12/142020/12/142020/12/14
• 15、会当凌绝顶,一览众山小。2020年12月2020/12/142020/12/142020/12/1412/14/2020
• 16、如果一个人不知道他要驶向哪头,那么任何风都不是顺风。2020/12/142020/12/14December 14, 2020
等腰三角形的性质定理
1、从边看:等腰三角形的两腰相等。 (定义) 2、从角看:等腰三角形的两 底角相等。(性质定理1) 3、从重要线段看:等腰三角形的顶角 平分线、底边上的中线和高线互相重 合。(性质定理2)
如何判定一个三角形是等腰三角形? 定义:有两边相等的C=80
求BC的长。
A
例2、如图,C表示灯塔,轮船从A处出发以每时18海里的速度向 正北(AN方向)航行,2时后到达B处。测得C在A的北偏西40 方向,并在B的北偏西80方向,求B处到灯塔C的距离。
解:由已知,NBC=80,A=40
∵ NB C=A+C(三角形的一个外角等于不相邻的两个内角和。)
4、用等腰三角形的判定定理和性质定理证角相等或线段相等, 要求角或线段是同一个三角形中的内角或边;用三角形全等证 角相等或线段相等没有这个要求,但证明过程较复杂。
请完成作业本中练习!
• 9、春去春又回,新桃换旧符。在那桃花盛开的地方,在这醉人芬芳的季节,愿你生活像春天一样阳光,心情像桃花一样美丽,日子像桃子一样甜蜜。 2020/12/142020/12/14Monday, December 14, 2020
∴▲ABC是等腰三角形。
如果一个三角形有两个角相 等,那么这个三角形是等腰 三角形。
(在一个三角形中,等角对等边。)

八年级《等腰三角形》数学教案4篇

八年级《等腰三角形》数学教案4篇

八年级《等腰三角形》数学教案4篇教案,也称课时计划,教师经过备课,以课时为单位设计的具体教学方案,教案是上课的重要依据,通常包括:班级、学科、课题、上课时间、课的类型、教学方法、教学目的、教学内容、课的进程和时间分配等。

以下是我为大家整理的,感谢您的欣赏。

八年级《等腰三角形》数学教案1教学目标(一)教学知识点1.等腰三角形的概念.2.等腰三角形的性质.3.等腰三角形的概念及性质的应用.1.经历作(画)出等腰三角形的过程,•从轴对称的角度去体会等腰三角形的特点.2.探索并掌握等腰三角形的性质.(三)情感与价值观要求通过学生的操作和思考,使学生掌握等腰三角形的相关概念,并在探究等腰三角形性质的过程中培养学生认真思考的习惯.教学重点1.等腰三角形的概念及性质.2.等腰三角形性质的应用.教学难点等腰三角形三线合一的性质的理解及其应用.教学方法探究归纳法.教具准备师:多媒体课件、投影仪;生:硬纸、剪刀.教学过程Ⅰ.提出问题,创设情境[师]在前面的学习中,我们认识了轴对称图形,探究了轴对称的性质,•并且能够作出一个简单平面图形关于某一直线的轴对称图形,•还能够通过轴对称变换来设计一些美丽的图案.这节课我们就是从轴对称的角度来认识一些我们熟悉的几何图形.来研究:①三角形是轴对称图形吗?②什么样的三角形是轴对称图形?[生]有的三角形是轴对称图形,有的三角形不是.[师]那什么样的三角形是轴对称图形?[生]满足轴对称的条件的三角形就是轴对称图形,•也就是将三角形沿某一条直线对折后两部分能够完全重合的就是轴对称图形.[师]很好,我们这节课就来认识一种成轴对称图形的三角形──等腰三角形.Ⅱ.导入新课[师]同学们通过自己的思考来做一个等腰三角形.作一条直线L,在L上取点A,在L外取点B,作出点B关于直线L的对称点C,连结AB、BC、CA,则可得到一个等腰三角形.[生乙]在甲同学的做法中,A点可以取直线L上的任意一点.[师]对,按这种方法我们可以得到一系列的等腰三角形.现在同学们拿出自己准备的硬纸和剪刀,按自己设计的方法,也可以用课本P138探究中的方法,•剪出一个等腰三角形.……[师]按照我们的做法,可以得到等腰三角形的定义:有两条边相等的三角形叫做等腰三角形.相等的两边叫做腰,另一边叫做底边,两腰所夹的角叫做顶角,底边与腰的夹角叫底角.同学们在自己作出的等腰三角形中,注明它的腰、底边、顶角和底角.[师]有了上述概念,同学们来想一想.(演示课件)1.等腰三角形是轴对称图形吗?请找出它的对称轴.2.等腰三角形的两底角有什么关系?3.顶角的平分线所在的直线是等腰三角形的对称轴吗?4.底边上的中线所在的直线是等腰三角形的对称轴吗?•底边上的高所在的直线呢?[生甲]等腰三角形是轴对称图形.它的对称轴是顶角的平分线所在的直线.因为等腰三角形的两腰相等,所以把这两条腰重合对折三角形便知:等腰三角形是轴对称图形,它的对称轴是顶角的平分线所在的直线.[师]同学们把自己做的等腰三角形进行折叠,找出它的对称轴,并看它的两个底角有什么关系.[生乙]我把自己做的等腰三角形折叠后,发现等腰三角形的两个底角相等.[生丙]我把等腰三角形折叠,使两腰重合,这样顶角平分线两旁的部分就可以重合,所以可以验证等腰三角形的对称轴是顶角的平分线所在的直线.[生丁]我把等腰三角形沿底边上的中线对折,可以看到它两旁的部分互相重合,说明底边上的中线所在的直线是等腰三角形的对称轴.[生戊]老师,我发现底边上的高所在的直线也是等腰三角形的对称轴.[师]你们说的是同一条直线吗?大家来动手折叠、观察.[生齐声]它们是同一条直线.[师]很好.现在同学们来归纳等腰三角形的性质.[生]我沿等腰三角形的顶角的平分线对折,发现它两旁的部分互相重合,由此可知这个等腰三角形的两个底角相等,•而且还可以知道顶角的平分线既是底边上的中线,也是底边上的高.[师]很好,大家看屏幕.(演示课件)等腰三角形的性质:1.等腰三角形的两个底角相等(简写成“等边对等角”).2.等腰三角形的顶角平分线,底边上的中线、•底边上的高互相重合(通常称作“三线合一”).[师]由上面折叠的过程获得启发,我们可以通过作出等腰三角形的对称轴,得到两个全等的三角形,从而利用三角形的全等来证明这些性质.同学们现在就动手来写出这些证明过程).(投影仪演示学生证明过程)[生甲]如右图,在ABC中,AB=AC,作底边BC的中线AD,因为所以BAD≌CAD(SSS).所以∠B=∠C.[生乙]如右图,在ABC中,AB=AC,作顶角∠BAC的角平分线AD,因为所以BAD≌CAD.所以BD=CD,∠BDA=∠CDA=∠BDC=90°.[师]很好,甲、乙两同学给出了等腰三角形两个性质的证明,过程也写得很条理、很规范.下面我们来看大屏幕.(演示课件)[例1]如图,在ABC中,AB=AC,点D在AC上,且BD=BC=AD,求:ABC各角的度数.[师]同学们先思考一下,我们再来分析这个题.[生]根据等边对等角的性质,我们可以得到∠A=∠ABD,∠ABC=∠C=∠BDC,•再由∠BDC=∠A+∠ABD,就可得到∠ABC=∠C=∠BDC=2∠A.再由三角形内角和为180°,•就可求出ABC的三个内角.[师]这位同学分析得很好,对我们以前学过的定理也很熟悉.如果我们在解的过程中把∠A设为x的话,那么∠ABC、∠C都可以用x来表示,这样过程就更简捷.(课件演示)[例]因为AB=AC,BD=BC=AD,所以∠ABC=∠C=∠BDC.∠A=∠ABD(等边对等角).设∠A=x,则∠BDC=∠A+∠ABD=2x,从而∠ABC=∠C=∠BDC=2x.于是在ABC中,有∠A+∠ABC+∠C=x+2x+2x=180°,解得x=36°.在ABC中,∠A=35°,∠ABC=∠C=72°.[师]下面我们通过练习来巩固这节课所学的知识.Ⅲ.随堂练习(一)课本P141练习1、2、3.练习1.如下图,在下列等腰三角形中,分别求出它们的底角的度数.答案:(1)72°(2)30°2.如右图,ABC是等腰直角三角形(AB=AC,∠BAC=90°),AD是底边BC上的高,标出∠B、∠C、∠BAD、∠DAC的度数,图中有哪些相等线段?答案:∠B=∠C=∠BAD=∠DAC=45°;AB=AC,BD=DC=AD.3.如右图,在ABC中,AB=AD=DC,∠BAD=26°,求∠B和∠C的度数.答:∠B=77°,∠C=38.5°.(二)阅读课本P138~P140,然后小结.Ⅳ.课时小结这节课我们主要探讨了等腰三角形的性质,并对性质作了简单的应用.等腰三角形是轴对称图形,它的两个底角相等(等边对等角),等腰三角形的对称轴是它顶角的平分线,并且它的顶角平分线既是底边上的中线,又是底边上的高.我们通过这节课的学习,首先就是要理解并掌握这些性质,并且能够灵活应用它们.Ⅴ.课后作业(一)课本P147─1、3、4、8题.(二)1.预习课本P141~P143.2.预习提纲:等腰三角形的判定.Ⅵ.活动与探究如右图,在ABC中,过C作∠BAC的平分线AD的垂线,垂足为D,DE∥AB交AC于E.求证:AE=CE.过程:通过分析、讨论,让学生进一步了解全等三角形的性质和判定,•等腰三角形的性质.结果:证明:延长CD交AB的延长线于P,如右图,在ADP 和ADC中ADP≌ADC.∠P=∠ACD.又DE∥AP,∠4=∠P.∠4=∠ACD.DE=EC.同理可证:AE=DE.AE=CE.板书设计§14.3.1.1等腰三角形(一)一、设计方案作出一个等腰三角形二、等腰三角形性质1.等边对等角2.三线合一三、例题分析四、随堂练习五、课时小结六、课后作业八年级《等腰三角形》数学教案2一、教材的地位和作用现实生活中,等腰三角形的应用比比皆是.所以,利用“轴对称”的知识,进一步研究等腰三角形的特殊性质,不仅是现实生活的需要,而且从思想方法和知识储备上,为今后研究“四边形”和“圆”的性质打下坚实的基础.性质“等腰三角形的两个底角相等”是几何论证过程中,证明“两个角相等”的重要方法之一.“等腰三角形底边上的三条重要线段重合”的性质是今后证明“两条线段相等”“两条直线互相垂直”“两个角相等”等结论的重要理论依据.教学重点:1. 让学生主动经历思考和探索的过程.2. 掌握等腰三角形性质及其应用.教学难点:等腰三角形性质的理解和探究过程.二、学情分析本年级的学生已经研究过一般三角形的性质,积累了一定的经验,动手能力强,善于与同伴交流,这就为本节课的学习做好了知识、能力、情感方面的准备.不同层次的学生因为基础不同,在学习中必然会出现相异构想,这也将是我在教学过程中着重关注的一点.三、目标分析知识与技能1.了解等腰三角形的有关概念和掌握等腰三角形的性质2. 了解等边三角形的概念并探索其性质3. 运用等腰三角形的性质解决问题过程与方法1.通过观察等腰三角形的对称性,发展学生的形象思维.2.探索等腰三角形的性质时,经历了观察、动手实践、猜想、验证等数学过程,积累数学活动经验,发展了学生的归纳推理,类比迁移的能力. 在与他人交流的过程中,能运用数学语言合乎逻辑的进行讨论和质疑,提高了数学语言表达能力.情感态度价值观:1.通过情境创设,使学生感受到等腰三角形就在自己的身边,从而使学生认识到学习等腰三角形的必要性.2.通过等腰三角形的性质的归纳,使学生认识到科学结论的发现,是一个不断完善的过程,培养学生坚强的意志品质.3.通过小组合作,发展学生互帮互助的精神,体验合作学习中的乐趣和成就感.四、教法分析根据学生已有的认知,采取了激疑引趣——猜想探究——应用体验——建构延伸的教学模式,并利用多媒体辅助教学.教学过程教学过程设计意图同学们,我们在七年级已研究了一般三角形的性质,今天我们一起来探究特殊的三角形:等腰三角形.等腰三角形的定义有两条边相等的三角形叫做等腰三角形.等腰三角形中,相等的两边都叫做腰,另一边叫做底边,两腰的夹角叫做顶角.腰和底边的夹角叫做底角.提出问题:生活中有哪些现象让你联想到等腰三角形?首先让学生明确:本学段的几何图形都是按一般的到特殊的顺序研究的.通过学生描述等腰三角形在生活中的应用,让学生感受到数学就在我们身边,以及研究等腰三角形的必要性.剪纸游戏你能利用手中的这个矩形纸片剪出一个等腰三角形吗? 注意安全呦!学情分析:大部分学生会有自己的想法,根据轴对称图形的性质,利用对折纸片,再“剪一刀”就是就得到了两条“腰”;可能还有的同学会利用正方形的折法,获得特殊的等腰直角三角形;可能还有同学先画图,再依线条剪得.在这个过程中,注重落实三维目标.让学生在获取新知的过程中更好的认识自我,建立自信.我不失时机的对学生给予鼓励和表扬,使活动更加深入,课堂充满愉悦和温馨.知其然,更重要的是知其所以然.因此,我力求让学生关注剪法的理性思考.我设计了问题:你是如何想到的? 为的是剖析学生的思维过程:“折叠”就是为了得到“对称轴”,“剪一刀”就是就得到了两条“腰”,由“重合”保证了“等腰”.这样就建立了“操作”与“证明”的中间桥梁.从实际操作中得到证明的方法,也为发现“三线合一”做了铺垫.提出问题:等腰三角形还有什么性质?请提出你的猜想,验证你的猜想?并填写在学案上.合作小组活动规则:1、有主记录员记录小组的结论;2、定出小组的主发言人(其它同学可作补充);3、小组探究出的结论是什么?4、说明你们小组所获得结论的理由.等腰三角形的性质:性质一:等腰三角形的两个底角相等(简称“等边对等角”).性质二:等腰三角形顶角的平分线、底边上的中线、底边上的高重合(简称“三线合一”).学情分析:这个环节是本节课的重点,也是教学难点.尽管在教学过程中,因为学生的相异构想,数学猜想的初始叙述不准确,甚至不正确,但我不会立即去纠正他们,而是让同学们不断地质疑﹑辨析、研讨和归纳,逐渐完善结论.让他们真正经历数学知识的形成过程,真正的体现以人为本的教学理念,努力创设和谐的教育教学的生态环境.通过设置恰当的动手实践活动,引导学生经历观察、动手实践、猜想、验证等数学探究活动,这种探究的学习过程,恰恰是研究几何图形性质的一般规律和方法.(1)在此环节中,我的教学要充分把握好“四让”:能让学生观察的,尽量让学生观察;能让学生思考的,尽量让学生思考;能让学生表达的,尽量让学生表达;能让学生作结论的,尽量让学生作结论.这种教学方式,把学习的过程真正还给学生,不怕学生说不好,不怕学生出问题,其实学生说不好的地方、学生出问题的地方都正是我们应该教的地方,是教学的切入点、着眼点、增长点.(2)教师在这个过程中,充分听取和参与学生的小组讨论,对有困难的学生,及时指导.巩固知识1.等腰三角形顶角为70°,它的另外两个内角的度数分别为________;2.等腰三角形一个角为70°,它的另外两个内角的度数分别为_____;3.等腰三角形一个角为100°,它的另外两个内角的度数分别为_____.内化知识1.如图1,在△ABC中,AB=AC,AD⊥BC,∠BAC=120°你能求出∠BAD的度数吗?知识迁移等边三角形有什么特殊的性质?简单地叙述理由.等边三角形的性质定理:等边三角形的各角都相等,并且每一个角都等于60°.拓展延伸如图2,在△ABC中,AB=AC,点D,E在BC上,AD=AE,你能说明BD=EC?由于学生之间存在知识基础、经验和能力的差异,我为学生提供了层次分明的反馈练习.将练习从易到难,从简到繁,以适应不同阶段、不同层次的学生的需要.让学生拾阶而上,逐步掌握知识,使学困生达到简单运用水平,中等生达到综合运用水平,优等生达到创建水平.畅谈收获总结活动情况,重在肯定与鼓励.引导学生从本课学习中所得到的新知识,运用的数学思想方法,新旧知识的联系等方面进行反思,提高学生自主建构知识网络、分析解决问题的能力.帮助学生梳理知识,回顾探究过程中所用到的从特殊到一般的数学方法,启发学生更深层次的思考,为学生的下一步学习做好铺垫.反思过程不仅是学生学习过程的继续,更重要的是一种提高和发展自己的过程.基础性作业:P65 习题1、2、3、4八年级《等腰三角形》数学教案3教学目标:【知识与技能】1、理解并掌握等腰三角形的性质。

人教版八年级数学上册13.3等腰三角形(教案)及反思

人教版八年级数学上册13.3等腰三角形(教案)及反思
(二)新课讲授(用时10分钟)
1.理论介绍:首先,我们要了解等腰三角形的基本概念。等腰三角形是指两边长度相等的三角形。它的重要性在于,等腰三角形的两个底角相等,具有独特的性质和应用。
2.案例分析:接下来,我们来看一个具体的案例。通过分析等腰三角形在桥梁建筑中的应用,了解它如何帮助我们解决问题。
3.重点难点解析:在讲授过程中,我会特别强调等腰三角形的定义和性质这两个重点。对于难点部分,如底角平分线、高、中线及对称轴的性质,我会通过举例和比较来帮助大家理解。
-等腰三角形的底角平分线、高、中线及对称轴性质:这些性质是解决相关几何问题的基础,需要学生熟练掌握。
-实际应用:培养学生将等腰三角形的性质应用于解决实际问题,如计算角度、线段长度等。
举例:讲解等腰三角形性质时,可以结合具体图形,如等腰三角形ABC(AB=AC),强调角B=角C,底角平分线、高、中线互相重合。
最后,我认为在今后的教学中,要加强以下几个方面:
1.提高学生对等腰三角形性质的理解,通过丰富多样的教学手段,让学生真正掌握知识点。
2.培养学生独立思考和解决问题的能力,鼓励他们在课堂上积极发言,表达自己的观点。
3.注重课堂总结与反馈,及时了解学生的学习情况,调整教学方法,提高教学效果。
2.教学难点
-难点一:等腰三角形性质的理解与应用。学生在理解等腰三角形的性质时,可能会对其底角平分线、高、中线及对称轴的相互关系感到困惑。
举例:解释底角平分线同时也是高和中线时,学生可能会混淆这些概念,需要教师通过图形和具体例题进行详细讲解。
-难点Байду номын сангаас:等腰三角形的判定在实际问题中的应用。学生在面对复杂几何图形时,可能难以准确识别等腰三角形。
1.讨论主题:学生将围绕“等腰三角形在实际生活中的应用”这一主题展开讨论。他们将被鼓励提出自己的观点和想法,并与其他小组成员进行交流。

最新2019-2018秋沪科版八年级数学上册第15章教学课件:15.3 第1课时 等腰三角形的性质定理及推论(共36张PPT

最新2019-2018秋沪科版八年级数学上册第15章教学课件:15.3 第1课时 等腰三角形的性质定理及推论(共36张PPT

系,∠ABC、∠C呢?
x

∠BDC= ∠A+ ∠ABD=2 ∠A=2 ∠ABD,
∠ABC= ∠BDC=2 ∠A,
∠C= ∠BDC=2 ∠A.
(2)设∠A=x,请把△ ABC的内角和用含
2x B
x的式子表示出来.
∵ ∠A+ ∠ABC+ ∠ C=180 ° ∴x+2x+2x=180 °,
D 2x
C
解:∵AB=AC,BD=BC=AD, ∴∠ABC=∠C=∠BDC, ∠A=∠ABD.
4.(1)等腰三角形一个底角为75°,它的另外两个角为 __7_5_°, 3_0_°;
(2)等腰三角形一个角为36°,它的另外两个角为 _7_2_°__,_7_2_°__或__3_6_°__,1_0_8_°_;
(3)等腰三角形一个角为120°,它的另外两个角为 30°,30°.
5.在△ABC中, AB=AC,AB的垂直平分线与AC 所在的直线相交得的锐角为50°,则底角的大小为 __7_0_°__或__2_0_°_. A
B
DC
BD=DC(作图),
应用格式:
AD=AD(公共边),
∵AB=AC(已知)
∴△ABD≌△ACD(SSS). ∴∠B=∠C(等边对等角)
∴∠B=∠C(全等三角形对应角相等).
证法2: 证明:作顶角∠BAC的平分线AD, 交BC于点D.
∵AD平分∠BAC , ∴∠1=∠2.
在△ABD与△ACD中, AB=AC(已知), ∠1=∠2(已证), AD=AD(公共边), ∴ △ABD ≌ △ACD(SAS), ∴ ∠B=∠C.
图①
图②
证明:(1)如图①,过A作AG⊥BC于G. ∵AB=AC,AD=AE, ∴BG=CG,DG=EG, ∴BG-DG=CG-EG, ∴BD=CE; (2)∵BD=CE,F为DE的中点, ∴BD+DF=CE+EF, ∴BF=CF. ∵AB=AC,∴AF⊥BC.

冀教版八年级上册数学《等腰三角形》教学说课课件

冀教版八年级上册数学《等腰三角形》教学说课课件
AD=AD (公共边),
B DC
∴ △BAD ≌ △CAD (
∴ ∠B= ∠C (全等三角形的对应角相等).
合作探究
思考:由△BAD≌ △CAD,除了可以得到∠B= ∠C之外,你还可以得到那 些相等的线段和相等的角?和你的同伴交流一下,看看你有什么新的发现?
解:∵△BAD≌ △CAD,由全等三角形的性质易得 BD=CD,∠ADB=∠ADC,∠BAD=∠CAD. 又∵ ∠ADB+∠ADC=180°, ∴ ∠ADB=∠ADC= 90° , 即AD是等腰△ABC底边BC上的中线、顶角∠BAC的 角平分线、底边BC上的高线 .
★ 练一练
2、 如图,△ABC是等边三角形,E是AC上一点,D是BC延 长线上一点,连接BE,DE,若∠ABE=40°,BE=DE,求 ∠CED的度数.
解:∵△ABC是等边三角形, ∴∠ABC=∠ACB=60°. ∵∠ABE=40°, ∴∠EBC=∠ABC-∠ABE=60°-40°=20°. ∵BE=DE, ∴∠D=∠EBC=20°, ∴∠CED=∠ACB-∠D=40°.
A
B
C
知识讲解
问题 等腰三角形“三线合一”的性质同样存在与等边三角形中吗?
等腰三角形
等边三角形
等腰三角形顶角的平分线、底边的高、底 边的中线三线合一(一条对称轴)
等边三角形顶角的平分线、底边的高、底边 的中线三线合一(三条对称轴)
知识归纳
归纳: 等边三角形的性质: 等边三角形的三个角都__相__等__,并且每一个角都
C
B
B.∠A=70°,∠B=60°
∵∠1=∠2 ,
∵∠1=∠2,
C.∠A=40°,∠B=70° D.∠A=40°,∠B=80°
∴ BD=DC (等角对等边).

初中数学课件等腰三角形的性质(几何)ppt课件

初中数学课件等腰三角形的性质(几何)ppt课件
接求出等腰三角形的面积。
利用三角函数
通过已知角度和边长,利用三角函 数求出高或底,再代入公式计算面 积。
利用向量
在平面直角坐标系中,可以利用向 量表示三角形的顶点,通过向量的 运算求出三角形的面积。
案例分析:不同类型题目解法
01
02
03
04
已知等腰三角形的底和高,直 接代入公式求解。
已知等腰三角形三边长度,利 用海伦公式求解。
勾股定理在等腰三角形中的推广
对于非直角的等腰三角形,可以通过作高将其分为两个直角三角形,再利用勾股定理求解 相关问题。
相似三角形与等腰三角形关系探讨
相似三角形定义
两个三角形如果它们的对应角相等,则称这两个三角形相 似。
等腰三角形的相似性质
对于两个等腰三角形,如果它们的顶角相等,则这两个三 角形相似。此外,如果两个等腰三角形的底边和腰成比例 ,则这两个三角形也相似。
实际应用:测量、作图等问题
01
测量
在实际生活中,等腰三角形的性质可以应用于测量问题。例如,在无法
直接测量某一边长时,可以通过测量等腰三角形的底角和腰长来间接计
算。
02
作图
在几何作图中,等腰三角形的性质也有广泛应用。例如,可以通过作等
腰三角形的高来平分底边,或者通过作等腰三角形的角平分线来得到对
称的图形。
初中数学课件等腰三角形的性质(几 何)ppt课件
目录
• 等腰三角形基本概念与性质 • 等腰三角形判定方法 • 等腰三角形面积计算 • 等腰三角形在生活中的应用 • 等腰三角形相关定理和推论 • 练习题与课堂互动环节
01
等腰三角形基本概念与性质
等腰三角形定义及特点
定义
有两边相等的三角形叫做等腰三 角形。

《等腰三角形的性质》八年级数学上学期说课稿(通用7篇)

《等腰三角形的性质》八年级数学上学期说课稿(通用7篇)

《等腰三角形的性质》八年级数学上学期说课稿《等腰三角形的性质》八年级数学上学期说课稿(通用7篇)作为一名优秀的教育工作者,就难以避免地要准备说课稿,借助说课稿可以让教学工作更科学化。

优秀的说课稿都具备一些什么特点呢?下面是小编整理的《等腰三角形的性质》八年级数学上学期说课稿,欢迎大家分享。

《等腰三角形的性质》八年级数学上学期说课稿篇1一、教材分析1、教材的地位与作用:本节课内容是在学生掌握了一般三角形和轴对称的知识,具有初步的推理证明能力的基础上进行学习的。

使学生学会分析、学会证明,在培养学生的思维能力和推理能力等方面有重要的作用。

通过等腰三角形的性质反映在一个三角形中“等边对等角”的边角关系,并且是对轴对称图形性质的直观反映(三线合一)。

它所倡导的“观察———发现———猜想———论证”的数学思想方法是今后研究数学的基本思想方法。

等腰三角形的性质也是论证两个角相等、两条线段相等、两条直线垂直的重要依据,因此,本节内容在教材中处于非常重要的地位,起着承前启后的作用。

2、教学目标:知识技能:理解掌握等腰三角形的性质;运用等腰三角形的性质进行证明和计算。

过程方法:通过实践、观察、证明等腰三角形的性质,发展学生合情推理能力和演绎推理能力。

解决问题:通过观察等腰三角形的对称性,及运用等腰三角形的性质解决有关的问题,提高学生观察、分析、归纳、运用知识解决问题的能力,发展应用意识。

情感态度:通过引导学生对图形的观察、发现,激发学生的好奇心和求知欲,并在运用数学知识解答问题的活动中获取成功的体验,建立学习的自信心。

(根据教材内容的地位与作用及教学目标,因此我将把本节课的重点确定为:等腰三角形的性质的探究和应用。

由于对文字语言叙述的几何命题的证明要求严格且步骤繁琐,此时八年级学生还没有深刻的理解和熟练的掌握,因此我将把本节课的难点定为:等腰三角形性质的推理证明。

)3、教学重点与难点:重点:等腰三角形的性质的探索和应用。

冀教版八年级数学上册《等腰三角形》-课件-(共33张PPT)

冀教版八年级数学上册《等腰三角形》-课件-(共33张PPT)
(1)把△ABC沿BC边上的高AD所在的直线折叠, △ABC被直线 AD分成的两部分能够重合吗?如果重合,请指出重合的部分?
A
B
C
D
(1)把△ABC沿BC边上的高AD所在的直线折叠, △ABC被直线 AD分成的两部分能够重合吗?如果重合,请指出重合的部分?
A
B
C
D
(1)把△ABC沿BC边上的高AD所在的直线折叠, △ABC被直线 AD分成的两部分能够重合吗?如果重合,请指出重合的部分?
M
A
O
N
B
C
1 72° 72°
B
C
5.在等腰直角三角形ABC中, ∠ACB =90°,CD 是底边上的高,那么图中有 3 个等腰直角三 角形,分别是 △ACB、 △ADC、 △BDC 。
C
45° 45°
45°
45°
A
D
B
6.如图,AD是△ABC的外角∠EAC的平分线,
且AD∥BC,试判断△ABC的形状,并说明理由
冀教版八年级数学上册 《等腰三角形》 课件 (
共33张PPT)
2023/5/28
学习目标
• 1、探索并证明等腰三角形的判定定理。 • 2、等腰三角形判定定理的运用。
学习重点:等腰三角形判定定理的运用。
复习引入
等腰三角形有哪些特征呢?
1.等腰三角形的两腰 相等 ;
A
2.等腰三角形的两个底角 相等 ,( 简称“ 等边对等角”);
选作:P146 -B组1题
八.检测
1.下列四个说法中,不正确的有( B)
①三个角都相等的三角形是等边三角形。 ➢ ②有两个角等于60°的三角形是等边三角形。 ➢ ③有一个是60°的等腰三角形是等边三角形。 ➢ ④有两个角相等的等腰三角形是等边三角形。

八年级数学上册 第15章 轴对称图形与等腰三角形(等腰三角形性质)说课稿 (新版)沪科版-(新版)沪

八年级数学上册 第15章 轴对称图形与等腰三角形(等腰三角形性质)说课稿 (新版)沪科版-(新版)沪

《等腰三角形》一、说教材分析:1.教材内容:本课是等腰三角形,本课内容在初中数学教学中起着比较重要的作用。

通过等腰三角形的特征反映在一个三角形中等边对等角关系,并且对轴对称图形特征的直观反映(三线合一),对以后直角三角形和相似三角形学习起到相当重要的作用。

2、教学目标:(1)认知目标:要求学生掌握等腰三角形的特征和三线合一的特征,使学生会用等腰三角形的特征进行证明或计算,逐步渗透几何证题的基本方法:分析法和综合法;(2)能力目标:培养观察能力、分析能力、联想能力、表达能力;使学生初步学会分析几何证明题的思路,从而提高学生的逻辑思维能力及分析问题、解决问题的能力;(3)情感目标:通过亲自动手,发现“等腰三角形两底角相等”和“三线合一”特征,对学生进行数学美育教育。

3、教学重难点:(1)教学重点:等腰三角形两底角相等的特征是本课的重点。

(2)教学难点:等腰三角形“三线合一”特征的运用是本课的难点。

4、教具准备:为了使学生了解这堂课,本节课要求学生自制若干个不同等腰三角形和一般性三角形纸片模型。

二、说教学方法:由于八年级学生的理解能力和思维特征,他们往往需要依赖直观具体形象的图形的年龄特点,以及八年级学生刚刚学习轴对称图形,对轴对称图形的分析相对比较好,再加上八年级学生思维的感官性,所以本课由学生通过翻折等腰三角形纸片去发现等腰三角形的两个特征,也为使课堂生动、有趣、高效,特将整节课以观察、思考、讨论贯穿于整个教学环节之中,我通过实验观察,采用教具直观教学法,启发式教学法和师生互动式教学模式进行教学。

教学过程中注意师生之间的情感交流,培养学生“多观察、动脑想、大胆猜、勤钻研”的研讨式学习模式,培养学生的数形结合的思想。

对于等腰三角形的“两底角相等”和“三线合一”这两个特征,通过让学生动手操作,让学生翻折不同的等腰三角形,如顶角是锐角、钝角或直角的等腰三角形,以及一般三角形的模版,从而让学生逐步通过等腰三角形的轴对称变换探索出相关的特征。

等腰三角形中数学思想的应用

等腰三角形中数学思想的应用

平行四边形与等腰三角形 的转换
将等腰三角形进行适当的平移和旋转,可以 将其转化为平行四边形。通过这种转换,可 以利用平行四边形的性质来解决与等腰三角
形相关的几何问题。
THANKS
感谢您的观看
等腰三角形的判定
总结词
可以通过两边相等或两边夹角相等来 判定一个三角形为等腰三角形。
详细描述
在三角形中,如果两边长度相等,则 该三角形为等腰三角形;另外,如果 一个三角形的两边夹角相等,则该三 角形也是等腰三角形。
02
等腰三角形中的数 学思想
分类讨论思想
分类讨论思想在等腰三角形中的应用
等腰三角形是三角形的一种特殊情况,需要根据不同的边长和角度进行分类讨论。例如,在等腰三角 形中,可以根据底边和腰的长度关系,将等腰三角形分为“底边大于两腰”、“底边等于两腰”、“ 底边小于两腰”三种情况进行讨论。
几何问题中的应用
等腰三角形在几何问题中有着广泛的应用,它可以用来解决 与角度、边长、面积和体积等有关的几何问题。例如,在解 决等腰梯形的面积和周长问题时,可以通过构造等腰三角形 来简化计算过程。
等腰三角形还可以用来解决一些与圆有关的几何问题。例如 ,在解决与圆有关的切线问题时,可以通过构造等腰三角形 来证明切线的性质和定理。
等腰三角形是三角形的一种特殊 形式,其特点是具有两边长度相 等,这两边称为等腰三角形的腰 ,另外一边称为底边。
等腰三角形的性质
总结词
等腰三角形具有轴对称性、底边与腰之间的角度相等、高等性质。
详细描述
等腰三角形具有一些特殊的性质,如它是轴对称图形,可以通过底边的中点作一条垂直于底边的直线,将三角形 分为两个完全相同的部分;另外,等腰三角形的两个底角相等,且等于顶角的度数;此外,等腰三角形的高也相 等,且垂直一个顶点与对边中点 的线段被称为中线。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第15讲等腰三角形的数学思想(原卷版)
第一部分典例剖析+针对训练
类型一方程思想
典例1(2020秋•西城区校级月考)如图,在△ABC中,AB=AC,AD=DE,∠BAD=20°,∠EDC=10°,则∠ADE=.
针对训练1
1.(南通期末)如图,在Rt△ABC中,D,E为斜边AB上的两个点,且BD=BC,AE=AC,则∠DCE的度数为()
A.30°B.36°C.45°D.48°
2.如图所示,在△ABC中,AB=CD,D为BC上一点,且CD=AC,连接AD,且AD=BD,求∠BAC的度数.
3.泗阳县期末)已知,在△ABC 中,点D 在BC 上,点E 在BC 的延长线上,且BD =BA ,CE =CA .
(1)如图1,若∠BAC =90°,∠B =45°,试求∠DAE 的度数;
(2)若∠BAC =90°,∠B =60°,则∠DAE 的度数为 (直接写出结果);
(3)如图2,若∠BAC >90°,其余条件不变,探究∠DAE 与∠BAC 之间有怎样的数量关系?
类型二 分类讨论思想
例2 (2022秋•拱墅区期末)已知等腰△ABC 中,AB =AC ,若AB 的垂直平分线与边AC 所在直线相交所得锐角为40°,则等腰△ABC 的底角∠B 的大小为 .
例3 已知等腰三角形的周长为28cm ,其中的一边长是另一边长的32倍,求这个等腰三角形各边的长.
针对训练2
4.(2020•黔南州)已知等腰三角形的一边长等于4,一边长等于9,则它的周长为( )
A .9
B .17或22
C .17
D .22
5.(2022•平乐县模拟)如图,平面直角坐标系中,已知A (2,2),B (4,0).若在坐标轴上取点C ,使△ABC 为等腰三角形,则满足条件的点C 的个数是( )
A .5
B .6
C .7
D .8
6.(2019秋•蜀山区期末)在△ABC中,D、E是边BC上的两点,DC=DA,EA=EB,∠DAE=40°,则∠BAC的度数是.
7.(2020秋•邹城市期中)如果一等腰三角形的顶角为钝角,过这个等腰三角形的一个顶点的直线将这个等腰三角形分成两个等腰三角形,那么这个等腰三角形的顶角的度数为.
类型三化归思想
典例4(2022•市中区一模)在一次夏令营活动中,小明同学从营地A出发,要到A地的北偏东60°方向的C处,他先沿正东方向走了200m到达B地,再沿北偏东30°方向走,恰能到达目的地C(如图),那么,由此可知,B、C两地相距m.
针对训练3
9.(2020秋•朝阳区校级期中)我们知道“对称补缺”的思想是解决与轴对称图形有关的问题的一种重要的添加辅助线的策略,参考这种思想解决下列问题
如图,在△ABC中,D为△ABC外一点.
(1)若AC平分∠BAD,CE⊥AB于点E,∠B+∠ADC=180°,求证:BC=CD;
(2)若∠ACB=90°,AC=BC,F是AC上一点,AD⊥BF交BF延长线于点D,且BF是∠CBA的角平分线.求证:2AD=BF
10.(2021春•周村区期末)在△ABC中,AB=AC,在△ABC的外部作等边三角形△ACD,E为AC的中点,连接DE并延长交BC于点F,连接BD.
(1)如图1,若∠BAC=100°,求∠BDF的度数;
(2)如图2,∠ACB的平分线交AB于点M,交EF于点N,连接BN.
①补全图2;
②若BN=DN,求证:MB=MN.
第二部分专题提优训练
1.(2022春•萍乡期末)如图的网格中,点A、B在格点上,在网格上找到点C,使△ABC为等腰三角形,这样的点C共有()
A.8个B.9个C.10个D.11个
2.(2022春•蚌埠期末)如图,在△ABC中,AB=AC=5,BC=8,D是线段BC上的动点(不含端点B、C).若线段AD长为正整数,则点D的个数共有()
A.2个B.3个C.4个D.5个。

相关文档
最新文档