职教高考数学真题及答案解析
2024年广西中职对口数学高考真题-+参考答案
2024年广西壮族自治区中等职业教育对口升学考试真题数学注意事项:1.本试卷共4页,总分100分,考试时间60分钟,请使用黑色中性笔直接在试卷上作答.2.试卷前的项目填写清楚.题号一二三总分评分人得分一、单项选择题(本大题共8小题,每小题5分,共40分。
在每小题给出的四个选项中,只有一个是正确的,请将正确选项填入相应题号下)1.已知集合M ={—1,1,x 2},则x 满足()A.x ≠0且x ≠1B.x ≠-1且x ≠0C.x ≠0D.x ≠±12.函数y=ln √x -1+的定义域为()A.{x |x ≠0且x ≠1} B.{x |x >1}C.{x |x ≥1}D.{x |0<x <1}3.下列函数为奇函数的是()A.f (x )=x 2—1B.f (x )=|x |C.21)(x x x f +=D.f (x )=sin 2x 4.下列各值的大小不正确的是()A.2ln 21<log 23B.(-2)3<(-3)3C.6-2<(-5)-2D.log 23<log 39_____1x (x -1)___5.圆心为(4,-5)且与x 轴相切的圆的方程为()A.(x -4)2+(y +5)2=42B.(x +4)2+(y -5)2=42C.(x +4)2+(y -5)2=52D.(x -4)2+(y +5)2=526.下列说法正确的是()A.若直线l 平行于平面α内的无数条直线,则l //α;B.若直线l 在平面α外,则l //α;C.若l //b,直线b ⊂α,则l //α;D.若l //b ,直线b ⊂α,则l 平行于平面α内无数条直线.7.一个笔筒有2B 24支,另一个笔筒有HB 30支,从中任取一支,则有取法.()A.24种B.30种C.54种D.720种8.从编号为1,2,3,…,10的大小相同的求中任取4个,则4个球中号码最大为7的概率()A.212B.152C.74 D.31二、填空题(本大题共5小题,每小题6分,共30分)9.不等式x 2-x -30≤0的解集为.10.已知α是第二象限的角,且tan α=-3,则cos α=.11.已知平面向量a =(1,k),向量b =(-2,5),则a //b,则k=.12.过点M(a ,-1),N(2,a )的直线,且与直线2y -x +1=0平行,则a =.13.如图,在正方体ABCD-A1B 1C 1D 1中,则异面直线A 1B 与AD 1所成角大小为.三、解答题(本大题共2小题,共30分,答题时应写出文字说明、证明过程或验算步骤)14.在等差数列{a n}中,a n=n+8,求S10.(10分)15.某宾馆有相同标准床位100张,根据经验,当宾馆每天的床价不超过100元时,床位可以全部租出去;当床价超过100元时,每提高10元将有5张床空闲,为了提高效益,该宾馆要给床位定一个合适的价格,而且该宾馆每天支出的费用是5000元.(1)当床价为150元时,当天有多少张空床?(2)写出该宾馆一天出租床位的纯收入y与床价x之间的函数关系式.(3)宾馆床价多少时,纯收入最多?2024年广西壮族自治区中等职业教育对口升学考试真题数学(参考答案)一、选择题。
职高数学试卷高考答案解析
1. 下列各数中,绝对值最小的是()A. -2B. 0C. 1D. -3答案:B解析:绝对值表示一个数与0的距离,0的绝对值为0,其他数的绝对值都大于0,因此绝对值最小的是0。
2. 已知函数f(x) = x^2 - 2x + 1,求f(2)的值。
答案:1解析:将x=2代入函数f(x) = x^2 - 2x + 1中,得到f(2) = 2^2 - 2×2 + 1 = 1。
3. 若|a| + |b| = 5,|a - b|的最大值为()A. 5B. 3C. 2D. 4答案:D解析:由三角不等式可知,|a - b| ≤ |a| + |b|,所以|a - b|的最大值为5。
4. 下列各式中,正确的是()A. a^2 + b^2 = (a + b)^2B. a^2 + b^2 = (a - b)^2C. (a + b)^2 = a^2 + b^2D. (a - b)^2 = a^2 + b^2答案:C解析:根据平方差公式可知,(a + b)^2 = a^2 + 2ab + b^2,(a - b)^2 = a^2 - 2ab + b^2,因此C选项正确。
5. 已知方程x^2 - 4x + 3 = 0,求x的值。
答案:x1 = 1,x2 = 3解析:将方程x^2 - 4x + 3 = 0因式分解得(x - 1)(x - 3) = 0,所以x1 = 1,x2 = 3。
二、填空题1. 若a > 0,b < 0,则|a| + |b| = ________。
答案:a - b解析:由于a > 0,|a| = a;b < 0,|b| = -b,所以|a| + |b| = a - b。
2. 已知函数f(x) = -x^2 + 2x - 1,求f(1)的值。
答案:-2解析:将x=1代入函数f(x) = -x^2 + 2x - 1中,得到f(1) = -1^2 + 2×1 - 1 = -2。
2023年广西中职对口数学高考真题 +参考答案
2023年广西壮族自治区中等职业教育对口升学考试真题数学注意事项:1.本试卷共4页,总分100分,考试时间60分钟,请使用黑色中性笔直接在试卷上作答.2.试卷前的项目填写清楚.一、单项选择题(本大题共8小题,每小题5分,共40分。
在每小题给出的四个选项中,只有一个是正确的,请将正确选项填入相应题号下) 1.下列关系成立的是( )A.0∈∅B.2∈NC.3∈{x |-1<x <3}D.3∈{x |-1<x ≤3} 2.过点(2,0)且与y =2x -1平行的直线方程为( ) A.y =2x -4 B.121+=x yC.y =2x +4D.1-21-x y=3.函数的定义域是( ) A.[2,3] B.[1,3) C.[2,3) D.[1,3] 4.下列函数中,偶函数的是( )A.f (x )=x 2-2xB.f (x )=x 2-3C.f (x )=|x -2|D.f (x )=x+cos x22)3ln(-+-=x x y5.下列各组值的大小正确的是( ) A.log 0.50.7<log 0.53B.0.32<0.33C.ln3<1D.40.8<21.86.已知直线l 和三个不重合的平面α,β,γ,下列说法正确的是( ) A.若α⊥ β,l ⊥β,那么l ⊥ αB.若l // α,l ⊥β,那么α // βC.若α // β,l ⊥α,那么l // βD.若α ⊥ β,β⊥γ,那么α ⊥ γ7.用4种不同的颜色对下图3个区域涂色,要求相连的区域不能使用同一个颜色,则不同的涂法有( ).A.24种B.36种C.48种D.64种8.从数字1,2,3,4中任取两个不同的数字构成一个两位数,则所取位数大于40的概率为( )A.51 B.31C.41D.21二、填空题(本大题共5小题,每小题6分,共30分) 9. 不等式3x 2+2x -1≤0的解集为 . 10.已知角α是锐角,且tan α=21,则sin α= .11.已知平面向量a=(2,-1),向量b =(m,2),则b +7a =(5,-5),则m= .12.已知圆的一般方程为x 2+2x +y 2-4y =0,则圆心坐标为 . 13.如图,在正方体ABCD-A 1B 1C 1D 1,AB=AC=1,则异面直线A 1B 与AD 1所成角大小为 .1 23三、解答题(本大题共2小题,共30分,答题时应写出文字说明、证明过程或验算步骤).(10分)14.已知数1+2,3+22,5+23,......,求数列前6项之和S615.(20分)某医药研发一种甲流新药,如果成年人按规定的剂量服用,据监测:服药后每亳升血液中含药量y(微克)与时间t(小时)之间近似满足如图所示的曲线.M(1,4)y=2a-t(1)结合图像,求k与a的值;(2)写出服药后y与t之间的函数关系式;(3)据进一步测定:每毫升血液中含药不少于0.5微克时治疗疾病有效,求服药一次治疗有效时间的范围.2023年广西壮族自治区中等职业教育对口升学考试真题数学(参考答案)一、选择题。
2024河南省中职对口高考数学试题 答案
河南省2024年普通高等学校对口招收中等职业学校毕业生考试数学考生注意:所有答案都要写在答题卡上,写在试卷上无效。
一、选择题(每小题3分,共30分。
每小题中只有一个选项是正确的,请将正确选项涂在答题卡上)1.已知集合A =a ,b ,c ,d ,下列说法错误的(C )A .a ∈AB .b ∈AC .c ∈AD .c ,d ∈A2.设a =2+7,b =3+6,c =2+5下列结论正确的是(A )A .a <b <cB .a <c <bC .b <a <cD .c <b <a解析:a 2=9+214,b 2=9+218,c 2=9+220,因为c 2>b 2>a 2所以c >b >a3.下列函数中,在0,+∞ 上单调递减的为(D )A.y =2x -5B .y =-x 2+x +6C .y =2x 2x +1D .y =1x +14.log 313+log 31+log 313的值为(B )A .-23B .-32C .-43D .-345.设第二象限角α满足tan α=-33,则sin α+π =(B )A .12B .-12C .32D .-32解析:α=5π6,sin (α+π)=-sin 5π6=-126.在复数集中,方程x 2+6x +10=0的根为(D )A .x 1,2=3±i B .x 1,2=±3+i C .x 1,2=±3-iD .x 1,2=-3±i解析:因为(-3+i )+(-3-i )=-6=-b a ,(-3+i )(-3-i )=10=ca,故选D7.等比数列a n a 1≠0 的公比q =2,则a 24a 2⋅a 3=(C )A .2B .4C .8D .168.在空间中,“两直线互相垂直”是“两直线相交”的(D )A .充分条件B .必要条件C .充要条件D .既非充分又非必要条件9.x +1x8的展开式中包含的项有(C)A .常数项B .含x 的项C .含x 2的项D .含x 3的项解析:通项公式为T r +1=C r 8x 8-r (1x)r =C r 8x 8-32r当8-32r =0时,r =163,不成立,当8-32r =1时,r =143,不成立当8-32r =2时,r =4,成立,故选C10.现在有5张相同奖券,其中2张有奖,3张无奖,则连刮2张都中奖的概率为(A )A .110B .15C .310D .25解析:连刮两张都中奖包含1种,共有C 25=10种,概率为110二、填空题(每小题3分,共24分)11.设全集U 是所有小写英文字母组成的集合,A =a ,b ,c ,d ,e ,B =b ,c ,d ,则A ∩C U B ={a ,e }。
中职生高考数学试卷带答案
一、选择题(每题5分,共50分)1. 若函数f(x) = 2x - 3的图像上所有点的横坐标增加1,则对应的函数图像是:A. y = 2x - 2B. y = 2x - 4C. y = 2x - 3D. y = 2x + 1答案:A2. 下列哪个数是无理数?A. √9B. √16C. √25D. √49答案:C3. 已知三角形ABC的三个内角分别为A、B、C,且A = 60°,B = 70°,则角C的度数是:A. 50°B. 60°C. 70°D. 80°答案:A4. 下列哪个不等式是正确的?A. 2x + 3 > 5B. 2x + 3 < 5C. 2x - 3 > 5D. 2x - 3 < 5答案:B5. 若a、b、c是等差数列,且a = 3,b = 5,则c等于:A. 7B. 8C. 9D. 10答案:B6. 已知等比数列的前三项分别为a、ar、ar^2,若a = 2,r = 3,则该数列的第四项是:A. 18B. 24C. 30D. 36答案:D7. 函数y = x^2 - 4x + 4的图像与x轴的交点个数是:A. 1B. 2C. 3D. 4答案:A8. 在直角坐标系中,点A(2, 3),点B(5, 7),则线段AB的长度是:A. 3B. 4D. 6答案:C9. 已知函数y = kx + b的图像是一条直线,且k ≠ 0,则该直线与y轴的交点坐标是:A. (0, k)B. (0, b)C. (k, 0)D. (b, 0)答案:B10. 若a、b、c是等差数列,且a + b + c = 12,则a^2 + b^2 + c^2等于:A. 36B. 48C. 60D. 72答案:A二、填空题(每题5分,共25分)11. 函数f(x) = -x^2 + 4x - 3的顶点坐标是______。
12. 已知等差数列的前三项分别为1,3,5,则该数列的公差是______。
2025职教高考中职数学-三角函数典型例题讲解
7.将函数y=sinx的图象上所有的点向右平移 个单位
10
长度,再把所得各点的横坐标伸长到原来的 2倍(纵坐标
不变),所得图象的函数解析式是
函数y=sinx的图象上的点向右平移 个单位长度可得函数y
10
=sin(x- )的图象;横坐标伸长到原来的2倍(纵坐标不变)可
10
1
1
得函数y=sin( x- )的图象,所以y=sin( x- ).
2
10
2
10
8.函数y=4cos(2x+π)的图象关于
【解析】
因为y=4cos(2x+π)=-4cos2x,函数关于y轴对称
9. 化简sin(x+y)sin(x-y)+cos(x+
y)cos(x-y)的结果是(
)
【解析】
原式=cos(x+y)cos(x-y)+sin(x+y)·sin(x-y)
=cos[(x+y)-(x-y)]=cos2y.
11.计算sin 330°+cos 240°+tan 180°=
●【解析】
原式=-sin 30°-cos
1
60°+0=−
2
−
1
=-1.
2
2
.
2
2
2
,- ),
2
2
4 . 1 − cos 220 2 化简的结果为(
●解析
)
1 − cos 220 2 =|sin220°|,又220°为第三象限角,所
以sin220°<0,故 1 − cos 220 2 =-sin220°.
5.若sin(
【解析】
2
− )<0,且cos(
职教高考数学试卷答案解析
一、选择题1. 答案:A解析:根据题意,函数 $f(x) = x^2 - 4x + 4$ 是一个开口向上的抛物线,其顶点坐标为 $(2, 0)$,因此函数在 $x=2$ 时取得最小值。
故选 A。
2. 答案:C解析:等差数列的通项公式为 $a_n = a_1 + (n-1)d$,其中 $a_1$ 是首项,$d$ 是公差。
根据题意,$a_5 = 15$,$a_8 = 23$,可以列出方程组:$$\begin{cases}a_1 + 4d = 15 \\a_1 + 7d = 23\end{cases}$$解得 $a_1 = 3$,$d = 3$。
所以等差数列的第五项为 $a_5 = 3 + 4 \times 3 = 15$,故选 C。
3. 答案:B解析:根据题意,等比数列 $\{a_n\}$ 的前三项之和为 $21$,公比为 $q$,可以列出方程:$$a_1 + a_1q + a_1q^2 = 21$$当 $q = 1$ 时,$a_1 = 7$;当 $q \neq 1$ 时,$a_1 = 3$。
因此,等比数列的第三项为 $a_3 = 3 \times 3 = 9$,故选 B。
4. 答案:D解析:根据题意,函数 $y = ax^2 + bx + c$ 的图象开口向下,对称轴为 $x = -1$,顶点坐标为 $(-1, -2)$。
因此,$a < 0$,$b = -2a$,$c = -a - 2a = -3a$。
代入选项验证,只有选项 D 满足条件,故选 D。
二、填空题5. 答案:$\frac{1}{2}$解析:根据题意,等差数列 $\{a_n\}$ 的前 $n$ 项和为 $S_n = 2n^2 - n$,所以第 $n$ 项为 $a_n = S_n - S_{n-1} = 4n - 3$。
当 $n = 5$ 时,$a_5 = 4\times 5 - 3 = 17$,故填 $\frac{17}{2}$。
今年职高高考数学试卷答案
一、选择题(每题5分,共50分)1. 选择题答案:D解析:本题考查了实数的概念。
根据实数的定义,实数包括有理数和无理数。
选项D中既包含了有理数又包含了无理数,符合实数的定义。
2. 选择题答案:B解析:本题考查了函数的基本性质。
由于函数y=2x是增函数,所以当x1<x2时,有y1<y2。
因此,选项B正确。
3. 选择题答案:C解析:本题考查了三角函数的周期性。
正弦函数y=sin(x)的周期为2π,因此选项C正确。
4. 选择题答案:A解析:本题考查了二次函数的图像与性质。
由于二次函数y=ax^2+bx+c的开口方向由a的正负决定,a>0时开口向上,因此选项A正确。
5. 选择题答案:D解析:本题考查了数列的概念。
根据数列的定义,数列是由按照一定顺序排列的一列数构成的。
选项D中给出了数列的定义,因此正确。
二、填空题(每题10分,共30分)6. 填空题答案:-2解析:本题考查了解一元二次方程。
根据一元二次方程的解法,有x1=-b+√(b^2-4ac)/2a,x2=-b-√(b^2-4ac)/2a。
将a=1,b=3,c=1代入,得x1=-2,x2=1。
7. 填空题答案:π/3解析:本题考查了三角函数的值。
由于sin(π/3)=√3/2,因此选项π/3是正确的。
8. 填空题答案:-4解析:本题考查了二次函数的最小值。
二次函数y=ax^2+bx+c的最小值出现在顶点处,顶点的x坐标为-x/(2a)。
将a=1,b=-2代入,得x=1,将x=1代入函数得y=-4。
三、解答题(每题20分,共40分)9. 解答题答案:(1)函数y=f(x)在区间[0,2]上单调递增,因此f(2)>f(1)>f(0)。
(2)根据函数的单调性,有f(2)>f(1)>f(0)>f(-1)。
(3)由f(2)>f(1),得f(2)-f(1)>0;由f(1)>f(0),得f(1)-f(0)>0;由f(0)>f(-1),得f(0)-f(-1)>0。
职高数学高考试题及答案
职高数学高考试题及答案题目一:选择题(每题4分,共25题)1. 已知函数$f(x) = 2x^2 + 3x - 4$,则$f(-1)$的值等于()。
A. -8B. -7C. -6D. -52. 在等差数列$\{a_n\}$中,已知$a_1 = 5$,$d = 2$,若$a_{10} = 23$,则$a_2$的值等于()。
A. 9B. 10C. 11D. 123. 函数$f(x) = a^x$($a > 0$)的定义域为全体实数,当$a > 1$时,$f(x)$是()函数。
A. 增函数B. 减函数C. 常数函数D. 正值函数4. 若方程$x^3 - mx^2 + (m - 4)x - 4 = 0$的一个实根是4,则$m$的值等于()。
A. 2B. 4C. 6D. 85. 在等差数列$\{a_n\}$中,已知$a_5 - a_3 = 8$,若$a_2 = 7$,则$d$的值等于()。
A. 1B. 2C. 3D. 46. 抛物线$y = ax^2 + bx + c$的图象关于直线$x = 1$对称,则$a + b + c$的值等于()。
A. -1B. 0C. 1D. 27. 在等差数列$\{a_n\}$中,已知$a_1 = 3$,$a_n = 17$,$S_n = 85$,则$n$的值等于()。
A. 5B. 6C. 7D. 88. 若$\log_2{x} = \log_{\frac{1}{2}}{y}$,则$x$与$y$的关系是()。
A. $x = \frac{1}{y}$B. $x = y$C. $xy = 1$D. $x + y = 0$9. 在等差数列$\{a_n\}$中,$a_1 = 3$,$a_2 = 5$,若$a_1 + a_2 +\ldots + a_n = 2n^2 + n$,则$n$的值等于()。
A. 3B. 4C. 5D. 610. 在平面直角坐标系中,点$A(1, 2)$到直线$2x - y + 3 = 0$的距离等于()。
2023高职高考数学试卷
2023高职高考数学试卷【第一部分:选择题】1. 下列四个数中,最接近√2的是A. 1.2B. 1.4C. 1.6D. 1.82. 若函数f(x)满足f(2x)=2f(x)+5,且f(1)=3,则f(3)的值为A. 13B. 14C. 15D. 163. 设等差数列{an}的通项公式为an=3n-1,若an=8,则n的值为A. 3B. 4C. 5D. 64. 已知函数f(x)=2x^2-3x+1,g(x)=3x+1,h(x)=4-x^2,则f(g(2)-h(1))的值为A. -4B. -3C. -2D. -15. 若a,b,c均为正数,且a+b+c=6,则abc的最大值为A. 4B. 6C. 8D. 9【第二部分:计算题】1. 已知数列{an}的通项公式为an=n^2+3n,求前5项的和。
2. 求函数f(x)=2x^3-5x^2+3x-1的对称轴方程式以及顶点坐标。
3. 解方程组:⎧ 2x-y+z=5⎨ x+3y+2z=11⎩ x-2y+4z=7【第三部分:应用题】一杯温度为80℃的咖啡放在室温25℃的房间中,经过1小时,温度下降到60℃,问再过多长时间,温度会降到40℃?提示:温度下降的速度与温差成正比,与时间成反比。
愿各位考生能够发挥出自己的最佳水平,取得优异的成绩!【第四部分:解析题】1. 问:函数y=log2(x-1)的定义域是多少?并画出其图像。
解析:对于对数函数y=loga(b),要使函数有定义,需要满足b>0 且b≠1。
根据此条件,我们可以得出x-1>0,即x>1。
因此,函数y=log2(x-1)的定义域为x>1。
下面是该函数的图像:(图像画出)2. 问:将抛物线y=x^2-2x+3沿x轴向右平移2个单位后的新函数是什么?解析:将函数y=x^2-2x+3沿x轴向右平移2个单位,相当于将x替换为x-2。
因此,新函数为y=(x-2)^2-2(x-2)+3,简化后为y=x^2-4x+7。
2024年浙江省职教高考研究联合体2024届高三下学期第三次联考数学试题(含答案)
2023—2024学年浙江省职教高考研究联合体第三次联合考试数学试卷2024-03本试卷共三大题,共4页.满分150分,考试时间120分钟. 考生注意:1.答题前,请务必将自己的姓名、准考证号用黑色字迹的签字笔或钢笔分别填写在试卷和答题纸规定的位置上.2.答题时,请按照答题纸上“注意事项”的要求,在答题纸相应的位置上规范作答,在本试卷上的作答一律无效.一、单项选择题(本大题共20小题,1-10小题每小题2分,11-20小题每小题3分,共50分) 在每小题列出的四个备选答案中,只有一个是符合题目要求的.错涂、多涂或未涂均无分.1. 设全集U =R ,若集合{03Z}M x x x =≤≤∈且∣,*}{21,N N x x k k ==+∈∣的关系如图所示,则阴影部分表示的集合为( )A. {|03}x x ≤≤B. {}3|1x x <<C. {}0,2D. {}0,1,2 2. 设R a ∈,R b ∈,R c ∈,且b c >,下列不等式恒成立的是( )A. 22a b a c +>+B. 22a b a c +>+C. 22ab ac >D. 22a b a c > 3. 函数1()2lg(1)f x x x =+-+的定义域为( )A []22-,B. [2,0)(0,2]-C. (1,0)(0,2]-⋃D.(1,2]- 4. 当角α为第二象限角时,|sin |cos sin |cos |αααα-的值是( ).A. 2B. 1C.0 D. 1- 5. 舟山市是浙江省辖地级市.据此可知,“学生甲在浙江省”是“学生甲在舟山市”的( ) A. 充分不必要条件 B. 必要不充分条件 C. 充要条件 D. 既不充分也不必要条件 6. 若直线l 的方程为13(2)y x -=+,则直线l 的倾斜角为.( ) Aπ3 B. π6 C. π2 D. 2π37. 若n S 为数列{}n a 的前n 项和,且1n nS n =+,则31a 等于( )A.34 B. 43C. 112D. 12 8. 已知用30cm 长的铁丝围成一个扇形,且扇形的面积为2225cm 4,则这个扇形的圆心角为( ) A. 2rad B. 1rad C. 1rad 2D. 4rad9. 如图所示,设正方形的边长为x ,且它的外接圆的半径为y ,则y 关于x 的函数解析式为( )A. 2y x =B. 24y x =C. 8y x =D.216y x = 10. 已知△ABC 的顶点坐标为()1,5A -,()2,1B --,()4,7C ,且点M 是BC 边的中点,则BC 边上的中线AM 的长为( )A.2B. 2C.2D. 22.11. 若向量(1,2)AB =,且点A 的坐标为()2,3,则点B 的坐标为( )A. ()2,6B. ()3,5C. ()1,1D. ()1,1-- 12. 若三条直线210y x =+,1y x =+,2y ax =-相交于同一个点,则实数a 的值是( ) A.12B. 12-C. 23 D.23- 13. 已知从1,2,3,4,5这5个数字中随机地选取2个数字,则“选取的2个数字之积大于5”的概率为( ) A.25 B. 12 C. 35 D. 71014. 经过圆2220x x y ++=的圆心,且与直线0x y +=垂直的直线方程是( )A. 10x y -+=B.10x y +-= C. 10x y ++= D. 10x y --= 15. 已知1sin cos 3αα-=,则πcos 22α⎫⎛+ ⎪⎝⎭的值为( ) A. 89- B. 9C. 89D. 3- 16. 杭州第19届亚运会于2023年9月23日至10月8日举行,组委会将甲、乙、丙、丁四名志愿者随机派往黄龙体育中心、杭州奥体中心、浙江大学紫金港校区及杭州师范大学仓前校区四座体育馆工作.若每名志愿者只去一座体育馆工作,每座体育馆必须有一名志愿者,其中甲不去黄龙体育中心,则不同的分配方案有( )A. 12种B. 18种C. 24种D. 96种 17. 已知0x <,0y <,且22x y +=-,则42x y +的最小值为( )A. 1B.C.218. 若直线x a =与双曲线2214xy -=有两个交点,则实数a 的值可以是( )A. 2-B. 4C. 2D. 1 19. 如图所示,在正方体1111ABCD A B C D -中,已知E ,F ,M ,N 分别为棱11B C ,11C D ,11A B ,11A D 的中点,下列结论正确的是( )A. AN DF ∥B. 直线AM 与直线DF 是异面直线C. 平面AMN ∥平面BEFDD. 直线DF 与平面ABCD 所成的角为45︒20. 如图所示,已知椭圆C :22221(0)x y a b a b+=>>左焦点和右焦点分别为1F 和2F ,椭圆C 的右顶点为A ,椭圆C 的上顶点为B ,点P 为椭圆C 上一点,且1PF x ⊥轴,2PF AB ∥,则椭圆C 的离心率为( )A.12B. 22C. 13D. 5 二、填空题(本大题共7小题,每小题4分,共28分)21. 如图所示,已知函数()f x 的图像是折线段ABC ,且点A ,B ,C 的坐标分别为()0,2,()2,2-,()4,2,则()0f f ⎡⎤=⎣⎦________.的22. 已知数列{}n a 和{}n b 均为等差数列,且它们的公差分别为11d =-,22d =-.设32n n n c a b =+,由等差数列的定义知,数列{}n c 是等差数列,则数列{}n c 的公差为________.23. 在二项式22nx x ⎛⎫- ⎪⎝⎭的展开式中,已知第2项和第6项的二项式系数相等,则其展开式中的常数项为________.24. 如图所示,设圆锥的底面中心为O ,已知PB 和PC 是圆锥的两条母线,且2BC =.若三棱锥O PBC -是正三棱锥,则这个圆锥的侧面积为________.25. 已知函数()3cos (00)f x x m x m ωωω=+>>且的最小值为3-,且图像上相邻两个最高点的距离为π,则mω的值为________26. 已知抛物线214y x =-上的动点M 到两定点()0,1F -,()1,3E -的距离之和的最小值为________. 27. 每到冬季来临,候鸟从北方飞到南方过冬.鸟类科学家发现,两岁燕子飞行速度v (单位:m/s )可以表示为耗氧量x 的函数2log 10xv a =.若两岁燕子的耗氧量达到40个单位时,其飞行速度为30m /s v =,则两岁燕子的耗氧量达到80个单位时,其飞行速度为________. 三、解答题(本大题共8小题,共72分)解答应写出文字说明及演算步骤.28. 计算:1222311π2220!lg 252lg 2sin 5426-⎛⎫⎛⎫+⨯++++ ⎪ ⎪⎝⎭⎝⎭的29. 已知钝角α的顶点与坐标原点O 重合,始边与x 轴的非负半轴重合,且终边上有一点()12,5P -. (1)求πcos 2α⎛⎫+ ⎪⎝⎭及2sin 2α的值; (2)若3sin()5αβ+=-,且π0,2β⎛⎫∈ ⎪⎝⎭,求cos β的值. 30. 已知圆C 的圆心坐标是()0,m ,半径是r ,且直线230x y -+=与圆C 相切于点()2,1--. (1)求圆C 的标准方程;(2)若直线l 与直线230x y -+=平行,直线l 与圆C 相交于,P Q 两点,且2PQ =,求直线l 的方程. 31. 已知锐角三角形ABC 三个内角A ,B ,C 的对边分别为a ,b ,c ,且2sin 23sin b C c B =,△ABC 的面积为2,33a b +=.求: (1)cos C 的值; (2)边c 的长.32. 如图所示,已知四棱锥P ABCD -的底面ABCD 为菱形,且60DAB ∠=︒,PB PC BC ===,2PD =.求:(1)二面角P BC D --的余弦值; (2)四棱锥P ABCD -的体积.33. 2023年的冬天,哈尔滨冰雪旅游热度暴涨.如图所示为哈尔滨跳台滑雪训练场的横截面示意图,取某一位置的水平线为x 轴,经过跳台终点A 作水平线的垂线为y 轴,建立平面直角坐标系,图中的抛物线1C :2171126y x x =-++近似表示滑雪场地上的一座小山坡,小琪从点O 正上方4米处的A 点滑出,滑出后沿一段抛物线2C :218y x bx c =-++运动.(1)求小山坡坡顶高度;(2)当小琪运动到离A 处的水平距离为4米时,离水平线的高度为8米,求抛物线2C 的函数解析式; (3)在(2)的条件下,当小琪运动的水平距离为多少米时,小琪与小山坡的竖直距离为1米?34. 如图所示,已知双曲线2213y x -=的两条渐近线与抛物线C :()220y px p =>的准线l 相交于A ,B 两点,且3AOB S =O 为坐标原点),抛物线C 的焦点为F ,准线l 与x 轴的交点为K .(1)求抛物线C 的标准方程; (2)若点M 在抛物线C 上,且||2||MK MF =,求点M 的坐标.的35. 某市2023年发放6万张燃油型汽车牌照和2万张电动型汽车牌照.为了节能减排和控制汽车总量,从2024年开始,每年电动型汽车牌照按50%增长,而燃油型汽车牌照每一年比上一年减少0.5万张.同时规定:一旦某年发放的牌照总数超过10万张,以后每一年发放的电动型汽车牌照的数量维持在这一年的水平不变.(1)记2023年为第1年,每年发放的燃油型汽车牌照数构成数列{}n a ,每年发放的电动型汽车牌照数构成数列{}n b ,完成下列表格,并写出这两个数列的通项公式;16a = 2 5.5a = 3a =________4a =________12b =2b =________3b =________4b =________(2)从2023年算起,到2030年底为止,该市累计发放的牌照数为多少万张?参考答案:DBCAB ADAAD BCCAA BABCD 填空题:2-7-60234 45m/s 解答题: 28.9229.(1)π5cos 213α⎛⎫+=- ⎪⎝⎭,225sin 226α= (2)336530.(1)22(2)5x y ++=(2)220x y -+-=或220x y ---=. 31.(1)3cos 4C = (2)c = 32.(1)79(2)333.(1)6112米 .(2)213482y x x =-++ (3)12米34.(1)24y x = (2)()1,2或()1,2-.35.(1)表格见解析,**0.5 6.5,112N 0,13N n n n n a n n ⎧-+≤≤∈=⎨≥∈⎩且且,1**32,14N26.75,5N n n n n b n n -⎧⎛⎫⋅≤≤∈⎪ ⎪=⎨⎝⎭⎪≥∈⎩且且 (2)77.25万张。
职高高三数学试题及答案
职高高三数学试题及答案一、选择题(每题5分,共20分)1. 下列函数中,为奇函数的是:A. \( y = x^2 \)B. \( y = x^3 \)C. \( y = \sin(x) \)D. \( y = \cos(x) \)答案:C2. 已知 \( a \) 和 \( b \) 是两个不相等的实数,且 \( a^2 - 4a + 4 = 0 \) 和 \( b^2 - 4b + 4 = 0 \),则 \( a + b \) 的值为:A. 4B. -4C. 2D. -2答案:A3. 函数 \( y = \frac{1}{x} \) 的图象在点 \( (1, 1) \) 处的切线方程是:A. \( y = x \)B. \( y = -x + 2 \)C. \( y = x - 1 \)D. \( y = -x + 1 \)答案:D4. 已知 \( \sin(\alpha) = \frac{1}{2} \),\( \alpha \) 为锐角,则 \( \cos(\alpha) \) 的值为:A. \( \frac{\sqrt{3}}{2} \)B. \( \frac{1}{2} \)C. \( -\frac{\sqrt{3}}{2} \)D. \( -\frac{1}{2} \)答案:A二、填空题(每题5分,共20分)1. 已知 \( \tan(\alpha) = 2 \),则 \( \sin(\alpha) \) 的值为________。
答案:\( \frac{2\sqrt{5}}{5} \)2. 函数 \( y = \sqrt{x} \) 的定义域为 ________。
答案:\( [0, +\infty) \)3. 等差数列 \( 3, 7, 11, \ldots \) 的第 \( n \) 项为 ________。
答案:\( 4n - 1 \)4. 已知 \( \cos(\alpha) = \frac{3}{5} \),\( \alpha \) 为锐角,则 \( \sin(\alpha) \) 的值为 ________。
2023年云南省职教高考《数学》真题试卷分析
整体难度:较易
考试范围:函数、集合与常用逻辑用语、等式与不等式、复数、立体几何、平面向量、平面解析几何、三角函数与解三角形、数列
试卷题型
题型
数量
单选题
20
填空题
5
解答题
4
计算题
1
试卷难度
难度
题数
容易
13
较易
15
适中
2
细目表分析
题号
难度系数
详细知识点
一、单选题
1
0.85
28
0.85
由指数函数的单调性解不等式;解不含参数的一元二次不等式
29
0.85
求平面直角坐标系中两点间的距离;由圆心(或半径)求圆的方程
30
0.65
求等差数列的通项公式;等差数列通项公式的基本量计算;求等差数列前n项和;等比中项的应用
四、计算题
27
0.85
求特殊角的三角函数值;三角函数的化简、求值——同角三角函数基本关系;诱导公式五、六;二倍角的正弦公式
15
0.94
已知直线垂直求参数
16
0.85
求余弦(型)函数的最小正周期;二倍角的余弦公式
17
0.94
求特殊角的三角函数值;正弦定理解三角形
18
0.94
已知正(余)弦求余(正)弦;已知弦(切)求切(弦)
19
0.65
求二次(型)函数的最值;已知正(余)弦求余(正)弦
20
0.94
等式的性质与方程的解
二、填空题
9
0.85
复数的坐标表示;复数代数形式的乘法运算
10
0.85
判断复数对应的点所在的象限;复数代数形式的乘法运算;复数除法的代数运算
江苏省对口单招职教高考数学考试含答案
江苏省中等职业学校学业水平考试《数学》试卷(第3套)本试卷分第Ⅰ卷(必考题)和第Ⅱ卷(选考题)两部分.两卷满分100分,考试时间75分钟.第Ⅰ卷(必考题,共84分)一、选择题(本大题共12小题,每小题4分,共48分.每个小题列出的四个选项中,只有一项符合要求.)1. 方程182x⎛⎫= ⎪⎝⎭的解是( )A .31B .31- C .3 D .3-2.设全集R U =,集合{}2>=x x P ,则=P C U ( )A .{}2≤x xB .{}2<x xC .{}2≠x x D .{}2,1 3.下列关于奇函数图象的对称性,正确的叙述是( ) A .关于x 轴对称 B .关于y 轴对称C .关于原点中心对称D .关于直线x y =对称 4.下列关于零向量的说法中,错误..的是( ) A .零向量的长度为0 B .零向量没有方向C .零向量的方向是任意的D .零向量与任一向量都平行 5.样本数据-1,2,0,-2, 1的方差为( ) A .1 B .2 C .3 D .5 6.在长方体ABCD-A 1B 1C 1D 1中,下列表述正确的是( ) A .A 1A ⊥平面BB 1C 1C B .A 1A ⊥平面DC C 1D 1 C .A 1A //平面ABCD D .A 1A //平面BB 1C 1C7.直线220x y -+=和310x y ++=的交点坐标为( ) A .(0,2) B .(1,4) C .(-2,-2) D .(-1,0)8.某公司在甲、乙、丙、丁四个地区的销售点分别有150个、120个、180个、250个.公司为了调查产品销售情况,需从这700个销售点中抽取一个容量为100的样本,比较适宜的抽样方法是( )A .简单随机抽样法B .分层抽样法C .系统抽样法D .抽签法9.设p :2a =,q :1a >-;则( )A .p 是q 的充分而不必要条件B .p 是q 的必要而不充分条件C .p 是q 的充要条件D .p 是q 的既不充分也不必要条件 10.过点(-1,3)且与直线210x y -+=垂直的直线方程是( ) A .270x y -+= B .210x y --=A B C DB 1C 1D 1 A 1 第6题图C .210x y +-=D .210x y ++= 11.已知(3,4),(2,3)a b =-=,则2||3a a b -⋅等于( )A .28B .8-C .8D .28- 12.302302302.log ,,..===c b a 则c b a ,,的大小关系是( )A .a b c <<B .c b a <<C .c a b <<D .a c b << 二、填空题(本大题共2小题,每小题4分,共8分) 13.函数()2f x x =的单调增区间是 .14.如图,在正方体1111ABCD A B C D -中,对角线1BD 与底面ABCD 所成角的正切值为 .三、解答题(本大题共3小题,共计28分.解答时应写出必要的文字说明、证明过程或演算步骤)15.(满分8分)解不等式215x +<.16.(满分10分)已知 4cos 5α=-,α是第三象限的角,试求sin α和tan α的值. 17.(满分10分)某林场计划第一年植树造林200公顷,以后每年比前一年多造林3%.问: (1)该林场第五年计划造林多少公顷?(只需列式) (2)该林场五年内计划造林多少公顷?(精确到0.01)第Ⅱ卷(选考题,共16分)说明:在每组题中选一题解答;若都解答,只按其中的一题给分.一、选择题(本大题共3小题,每小题4分,共12分.每题所给的四个选项中,只有一个选项符合要求.)1.[选做题]在1-1和1-2两题中选答一题.第14题图1—1.与A B ⋅相等的是 ( )A .AB B .ABC .A B +D .A B +1—2.某职业学校机电4班共36名学生,经统计,全班学生身高(单位:cm )情况如下表:160以下 [160,170) [170,180) 180及以上 1人12人20人3人若根据上表绘制饼图,则代表身高在[170,180]内人数的扇形的圆心角等于( ) A .20︒B .100︒C .200︒D .270︒2.[选做题]在2-1和2-2两题中选答一题.2—1.下列关于算法的说法,正确的有( )①求解某一类问题的算法是唯一的;②算法必须在有限步操作之后停止;③算法的每一步操作必须是明确的,不能有歧义或模糊;④算法执行后一定产生确定的结果. A .1个 B .2个 C .3个 D .4个 2—2.某项工程的网络图如图所示(单位:天),则完成该工程的最短总工期为( )A .10.5B .12C .13D .16.5 3.[选做题]在3-1和3-2两题中选答一题.3—1.函数3sin(2)6y x π=-的最小正周期为( )A .2πB .πC .2πD .3π 3—2.复数2(34i -)的实部和虚部分别是( )A .3,4-B .6,8-C .3,4i -D .6,8i - 二、填空题(本大题共1小题,共4分.)4—1.将参数方程是参数)(t 42⎩⎨⎧==ty tx 化为普通方程是 .4—2.表示图中阴影部分平面区域的不等式是 .第4—2题江苏省中等职业学校学业水平考试《数学》试卷 参考答案及评分标准(第3套)本试卷分第Ⅰ卷(必考题)和第Ⅱ卷(选考题)两部分.两卷满分100分,考试时间75分钟.第Ⅰ卷(必考题,共84分)一、选择题(本大题共12小题,每小题4分,共48分.)1 2 3 4 5 6 7 8 9 10 11 12 DACBBDDBACAC二、填空题(本大题共2小题,每小题4分,共8分)13.[)∞+,0或(0)+∞,;14.22. 三、解答题(本大题共3小题,共计28分.解答时应写出必要的文字说明、证明过程或演算步骤)15.解:原不等式等价于5215x -<+< ………………3分 624x ∴-<< ………………5分 32x ∴-<< ………………7分 ∴原不等式的解集为{}32x x -<<. ………………8分 16.解:因为α是第三象限的角,所以sin 0α<,………………2分又因为22sin cos 1αα+=,所以 224sin 1cos 1()5αα=--=--………………5分 35=-………………7分 3sin 35tan 4cos 45ααα-===-. ………………10分17.解:(1)该林场第五年计划造林 4200(13%)+ 公顷. ……4分 (2)该林场五年内计划造林200+200(13%)++2200(13%)++3200(13%)++4200(13%)+ ……2分5200[1(13%)]1(13%)-+=-+ ……5分1061.83≈(公顷) ……6分第Ⅱ卷(选考题,共16分)说明:在每组题中选一题解答;若都解答,只按其中的一题给分.一、选择题(本大题共3小题,每小题4分,共12分.每题所给的四个选项中,只有一个选项符合要求.二、填空题(本大题共1小题,共4分.)4—1.24x y =; 4—2.632≥+y x .。
高考数学试卷中职答案
一、选择题(本大题共12小题,每小题5分,共60分)1. 已知函数f(x) = x^2 - 2x + 1,其图像的对称轴是()A. x = 1B. x = -1C. y = 1D. y = -1答案:A2. 若log2(x-1) = log2(4-x),则x的取值范围是()A. x < 1B. 1 < x < 2C. x > 2D. x ≠ 2答案:B3. 在△ABC中,a=3,b=4,c=5,则cosA的值是()A. 1/2B. 1/3C. 1/4D. 1/5答案:A4. 若等差数列{an}的公差为d,且a1 + a3 + a5 = 21,则a1 + a2 + a3的值为()A. 9B. 12C. 15D. 18答案:B5. 已知复数z = 2 + 3i,其共轭复数是()A. 2 - 3iB. -2 + 3iC. -2 - 3iD. 2 + 3i答案:A6. 函数y = x^3 - 3x在区间[0, 3]上的最大值是()A. 0B. 3C. 6D. 27答案:D7. 若sinα + cosα = √2/2,则sin2α的值是()A. 1/2B. 1/4C. 3/4D. 1答案:C8. 已知等比数列{an}的首项a1 = 1,公比q = 2,则前n项和S_n = ()A. 2^n - 1B. 2^n + 1C. 2^n - 2D. 2^n答案:A9. 若等差数列{an}的公差为d,且a1 = 2,a4 = 8,则a2 + a3的值为()A. 10B. 12C. 14D. 16答案:C10. 若复数z = 1 + bi在复平面上对应的点为(1, b),则b的取值范围是()A. b ≥ 0B. b ≤ 0C. b > 0D. b < 0答案:D11. 若函数f(x) = ax^2 + bx + c在区间[0, 1]上单调递增,则a的取值范围是()A. a > 0B. a < 0C. a ≥ 0D. a ≤ 0答案:A12. 若函数y = |x - 1| + |x + 1|在x=0时的值为3,则x的取值范围是()A. x < 0B. 0 < x < 1C. x ≥ 1D. x ≤ 0 或x ≥ 1答案:D二、填空题(本大题共6小题,每小题5分,共30分)13. 函数y = x^3 - 3x的图像与x轴的交点个数是______个。
江苏省2024年中职职教高考文化统考数学试题
江苏省2024年中职职教高考文化统考数学试卷一、单项选择题(本大题共10小题,每小题4分,共40分.在下列每小题中,选出一个正确答案,将答题卡上对应选项的方框涂满、涂黑)1. 设集合M={x|x≥1,x∈R},m=√2,则下列关系中正确的是()A.m<MB.m>MC.m∉MD.m∈M2. 若复数z=1−2ⅈ,则z⋅ⅈ3等于()A.2+ⅈB.−2−ⅈC.−1+2ⅈD.1−2ⅈ3. 已知向量a⃗=(−2,3),b⃗⃗=(1,−k),若a⃗‖b⃗⃗,则实数k的值是()A.−32B.−23C.32D. 34. 下列逻辑运算正确的是()A.A+B̅̅̅̅̅̅̅̅=A⋅B̅ B.A⋅(A+B)=AC.AB̅̅̅̅+B̅=A+B̅ D.A+B⋅C=A⋅(B+C)5. 已知长方体ABCD−A1B1C1D1的体积是V,点P,Q分别在侧棱CC1和DD1上,且CP=D1Q,则四棱锥A−CPQD的体积是()A.16V B.14V C.13V D.12V6. 已知一个扇形的周长为16,则当该扇形的面积最大时,其圆心角的弧度是()A. 1B. 2C. 4D. 57. 若(√x−2x )n展开式中只有第6项的二项式系数最大,则该展开式中第4项的系数是()A.−960B.−8C. 960D. 33608. 题图是某项工程的网络图(单位:天),则该工程的关键路径是()A.A→C→E→H→IB.A→C→F→G→IC.B→D→F→G→ID.B→D→E→H→I9. 已知双曲线y 2a2−x2b2=1(a>0,b>0)的一条渐近线方程是y=√33x,且该双曲线的一条准线和抛物线y=14x2的准线重合,则该双曲线的标准方程是()A.y 24−x212=1 B.y212−x24=1 C.y2−x23=1 D.y23−x2=110. 已知正实数x,y满足2x+2y−xy=0,若不等式x+4y−m≥0恒成立,则实数m的最大值是()A. 9B. 13C. 18D. 26二、填空题(本大题共5小题,每小题4分,共20分)11. 题图是一个程序框图,执行该程序框图,则输出的S值是_________.12. 已知sⅈn (38π+θ)=13,则cos (74π+2θ)=_________.13. 在数列{a n }中,a 1=34,a n =3an+13−a n+1,则数列{a n }的通项公式为_________. 14. 若动点M (x 1,y 1),N (x 2,y 2)分别在直线l 1:x −y +4=0和直线l 2:x −y +8=0上移动,点P 是线段MN 的中点,则圆(x −2)2+y 2=1上的点到P 点的最小距离是_________.15. 已知函数f (x )={x 2+2x −2,x <1−log 122x ,x >1,若函数f (x )在区间[m,n ]上的值域为[−3,6],则n −m 的取值范围是_________.三、解答题(本大题共8小题,共90分)16. 已知一次函数f (x )=ax +1−a 的图象经过第一、二、三象限.(1)求实数a 的取值范围;(2)解关于x 的不等式a 3x ≤(1a )x 2−4.17. 已知函数f (x )是定义在(−∞,0)∪(0,+∞)上的奇函数,点(2,4)在函数f (x )的图象上,当x <0时,f (x )=x 2+bx .(1)求实数b 的值;(2)求函数f (x )的解析式;(3)若f (a )=5,求实数a 的值.18. 学校准备从2名教师、4名男同学、3名女同学中随机选5人参加一项志愿者服务活动.求下列事件的概率:(1)A ={女同学全部被选中};(2)B ={男同学甲被选中,且至少1名教师被选中};(3)C ={既有男同学又有女同学被选中}.19. 在ΔABC 中,角A,B,C 的对边分别为a,b,c ,且ΔABC 的面积S =a 2+c 2−b 24. (1)求角B 的大小;(2)设函数f (x )=√3cos (2x −π3)−2sⅈn x cos x ,若f (A 2)=√32,b =√6,求a .20. 近年来,电商行业蓬勃发展拓宽了农产品的销售渠道.某农户将成本价20元/千克的有机大米按36元/千克的价格进行线上销售,每天可售出80千克.经统计发现,若将有机大米的售价每提高1元/千克,则日销售量减少4千克;若将有机大米的售价每降低1元/千克,则日销售量增加8千克.不考虑其他因素,问有机大米的售价定为多少元时,每日获得的利润最大?并求出最大利润.21. 已知等差数列{a n}的前n项和为S n,20是S2与S5的等差中项,且a3=7.(1)求数列{a n}的通项公式;(2)设b n=1a n⋅a n+1.①求数列{b n}的前n项和T n;②若C n=43n+12T n,求数列{Cn}的前n项和M n.22. 某地区计划种植两种具有空气净化功能的树:松树和樟树.每种植一株松树每年可吸收3千克二氧化硫和2千克氮氧化物,每种植一株樟树每年可吸收2千克二氧化硫和4千克氮氧化物.目前,该地区的空气质量监测数据显示,全年至少需吸收6000千克二氧化硫和8000千克氮氧化物,方能改善空气质量.假设种植一株松树的成本为800元,种植一株樟树的成本为1000元.不考虑其他因素,请制定一份植树计划,确定应种植多少株松树和樟树,就能以最低的成本满足空气质量改善需求?并求出最低成本.23. 已知椭圆C:x 2a2+y2b2=1(a>b>0)过点(−2,−1),且离心率为√32.(1)求椭圆C的标准方程;(2)设椭圆D:2x 2a2+2y2b2=1,点M(1,t)(t>0)在椭圆D上,射线OM交椭圆C于点N.①求点N的坐标;②若直线l与椭圆C有两个交点E,F,且与椭圆D有且仅有一个交点.证明:ΔEOF的面积是定值.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
职教高考数学真题及答案解析
职教高考是学生在职业教育阶段进行的一项重要考试。
数学是其中的一门必考科目,对于广大职教学子来说,数学的学习和备考都具有重要意义。
为了帮助学生更好地应对职教高考数学考试,本文将对一些过去的真题进行解析,以帮助学子们提高备考效率和应试水平。
第一部分:选择题
选择题是职教高考数学考试的重点。
以下是一道典型的选择题,我们一起来看一下如何解答。
【题目】某公司的成本与销量之间存在如下的函数关系:当月固定成本为4000元,每销售一件产品公司的盈利为销售额与100的差。
设某月销售量为x件,销售额为y元,则该月的成本为()
A. 4000元
B. 4000 + x * 100元
C. 4000 + y * 100元
D. 4000 + (x * y) / 100元
【选项分析】
根据题意可知,成本与销量之间存在函数关系,且成本包括固定成本和盈利。
因此,答案应为固定成本加上销售额与100的差。
【解答】
答案为B. 4000 + x * 100元。
第二部分:填空题
填空题在职教高考数学考试中也有一定比重。
以下是一个典型的
填空题,我们一起来解答一下。
【题目】某公司一款产品的销售价格是x元,已知该产品的总销
售量为y件,总销售额为z元。
则z与x、y之间的关系为______。
【解答】
根据题目中的信息,我们可以得出销售额等于销售价格乘以销售量。
因此,z = x * y。
第三部分:解答题
解答题在职教高考数学考试中一般较为复杂,需要一定的计算和
推理能力。
以下是一个典型的解答题,我们一起来解答一下。
【题目】某公司预计某种产品的固定成本为2000元,每销售一
件产品公司的盈利为销售额与100的差,现该公司计划提高销售量以
增加盈利。
若每增加一件销售量,公司的总盈利将增加700元。
某月
销售量增加了多少件?
【解答】
设月销售量增加的件数为x件,那么根据题意可得,总盈利的增
加量为700元,根据每销售一件产品的盈利公式,我们可以列出方程:
700 = x * 100
解方程可得,x = 7。
因此,该月销售量增加了7件。
结语:
职教高考数学考试对学生们的数学基础和解题能力都提出了一定
的要求。
通过对真题的解析,我们希望能帮助学生们更好地理解考点
和解题技巧。
同时,我们也希望广大职教学子们能够在备考过程中保
持积极的学习态度,多做习题,不断提高自己的解题能力和应试水平,顺利通过职教高考。